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ABSTRACT The genomes of Methylomonas sp. strain EFPC1 and Methylococcus sp.
strain EFPC2, isolated from a mercury-contaminated stream in Oak Ridge, Tennessee,
were sequenced.

Twomethanotrophs of the Gammaproteobacteria class,Methylomonas sp. strain EFPC1 and
Methylococcus sp. strain EFPC2, were isolated from the mercury-contaminated East Fork

Poplar Creek (EFPC) in Oak Ridge, Tennessee, from biofilm samples collected in July, 2020 (spe-
cific sampling locations, N35.990385°, W84.317983° and N35.992482°, W84.315327° for
Methylomonas sp. EFPC1 andMethylococcus sp. EFPC2, respectively). Biofilm samples were first
inoculated in nitrate mineral salts medium (1) in liquid culture at 30°C with methane as the
sole carbon and energy source to enrich for methanotrophs. After visible growth on methane,
samples were then streaked onto NMS agar plates as described earlier (2). After repeated
streaking onto NMS plates with purity confirmed via microscopy, 16S rRNA gene sequencing
and negative growth on nutrient agar plates (3), a single colony of each strain was then grown
in NMS liquid medium with methane. DNA from 50-ml and 200-ml cultures were extracted
using phenol-chloroform extraction (4) and Qiagen Genomic-tip 500/G (Qiagen, Hilden,
Germany) for Illumina and GridION Nanopore sequencing, respectively. Libraries for Illumina
sequencing were prepared using a NEBNext Ultra II FS DNA Library Prep Kit (New England
Biolabs, Inc., Ipswich, MA) with 15-min fragmentation and size selected for 275 to 475 bp.
Libraries for GridION Nanopore sequencing were prepared using ligation sequencing and
native barcoding expansion kits (SQK-LSK109 and EXP-NBD104; Oxford Nanopore
Technologies, Littlemore, UK) following the manufacturers’ protocols. Genomic DNA (gDNA)
was sequenced using separate Nano flow cells and 500cycle V2 kits on a MiSeq sequencer
(Illumina, Inc., San Diego, CA) at the University of Michigan Advanced Genomics Core (AGC).
Long-read sequencing was performed on the GridION X5 platform at the University of
Michigan AGC (Oxford Nanopore Technologies, Littlemore, UK). Basecalling was performed
using Guppy (v.4.2.3) (5). Sequence quality was assessed using FastQC (v0.11.9) (6) before and
after trimming. The short and long reads were trimmed using Trimmomatic (v0.39) (7) and
Porechop (v0.2.4) (8), respectively, and then were assembled using Unicycler (v0.4.9b) with no
correction (9). Assembly completeness was assessed via BUSCO (v4.1.4) (10) and also visually
confirmed using Bandage (v0.8.1) (11). The final contigs were annotated using the National
Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline (v5.1) (12). The
annotated 16S rRNA sequences were used as queries in search of the most similar organism
using the Basic Local Alignment Search Tool (BLAST; v2.11.0) (13). Default parameters were
used for all software unless otherwise specified.

Methylomonas sp. strain EFPC1 and Methylococcus sp. strain EFPC2 genomes were 4.99
Mbp and 4.56 Mbp (96% and 95.2% completion), consisting of either 1 chromosome and 1
plasmid (for Methylomonas sp. strain EFPC1) or 1 chromosome and 2 plasmids (for
Methylococcus sp. strain EFPC2). All chromosomes and plasmids were circularized and then
rotated according to the starting gene via Unicycler and were visually inspected using
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Bandage. 16S rRNA sequence analyses of Methylomonas sp. strain EFPC1 indicated that it
was phylogenetically similar to Methylomonas sp. LW13 (14), and Methylococcus sp. strain
EFPC2 was most similar toMethylococcus geothermalis IM1T (15). Average nucleotide identity
(ANI) values between Methylomonas sp. strain EFPC1 and Methylomonas sp. LW13 and
between Methylococcus sp. strain EFPC2 and Methylococcus sp. IM1T were ;95% and 73%,
respectively (16). Genes for particulate methane monooxygenase (pMMO) were found in
bothMethylomonas sp. strain EFPC1 andMethylococcus sp. strain EFPC2, while evidence of a
divergent form of pMMO (pXMO) and soluble methane monooxygenase was found in only
Methylomonas sp. strain EFPC1. These results are summarized in Table 1.

Data availability. Accession numbers for the annotated sequences and raw reads
are posted in Table 1.
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