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Abstract Artificial intelligence and neuromorphic computing driven by neural networks has enabled
many applications. Software implementations of neural networks on electronic platforms are limited in
speed and energy efficiency. Neuromorphic photonics aims to build processors in which optical

hardware mimic neural networks in the brain.

Introduction

The field of neuromorphic (i.e., neuron-
isomorphic) computing aims to bridge the gap
between the energy efficiency of von Neumann
computers and the human brain [1], [2]. The rise
of neuromorphic computing can be attributed the
widening gap between current computing
capabilities and current computing needs [3], [4].
Consequently, this has spawned research into
novel brain-inspired algorithms and applications
uniquely suited to neuromorphic processors.
These algorithms attempt to solve artificial
intelligence (Al) tasks in real-time while using less
energy. We posit that we can make use of the
high parallelism and speed of photonics to bring
the same neuromorphic algorithms to
applications requiring multiple channels of multi-
gigahertz analog signals, which digital
processing struggles to process in real-time.

By combining the high bandwidth and
parallelism of photonic devices with the
adaptability and complexity attained by methods
similar to those seen in the brain, photonic neural
networks have the potential to be at least ten
thousand times faster than state-of-the-art
electronic processors while consuming less
energy per computation [5]. An example of such
an application is nonlinear feedback control; a
very challenging task that involves computing the
solution of a constrained quadratic optimization
problem in real time. Neuromorphic photonics
can enable new applications because there is no
general-purpose hardware capable of dealing
with microsecond environmental variations [6].

Neuromorphic photonics approaches

Neuromorphic photonic [7] approaches can be
divided into two main categories: coherent (single
wavelength) and incoherent (multiwavelength)
approaches. Neuromorphic systems based on
reservoir computing [8]-[10] and Mach-Zehnder
interferometers [11], [12] are example of coherent
approaches. In reservoir computing the
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predefined random weights of their hidden layers
cannot be modified. An alternative approach
uses silicon photonics to design fully
programmable neural networks [6], with a so-
called broadcast-and-weight protocol [13],[14]. In
this architecture, photonic neurons output optical
signals with unique wavelengths. These are
multiplexed into a single waveguide and
broadcast to all others, weighted, and
photodetected. Each connection between a pair
of neurons is configured independently by one
microring resonator (MRR) weight, and the
wavelength division multiplexed (WDM) carriers
do not mutually interfere when detected by a
single photodetector. Consequently, the physics
governing the neural computation is fully analog
and does not require any logic operation or
sampling, which would involve serialization and
sampling. Thus, they exhibit distinct, favorable
trends in terms of energy dissipation, latency,
crosstalk and bandwidth when compared to
electronic neuromorphic circuits [5]. The
advantage of this approach over the
aforementioned approaches is that it has already
demonstrated fan-in, inhibition, time-resolved
processing, and autaptic cascadability [15].
However, the same physics also introduce
new challenges, especially reconfigurability,
integration, and scalability. Information carried by
photons is harder to manipulate compared to
electronic  signals, especially  nonlinear
operations and memory storage. Photonic
neurons described here solve that problem by
using optoelectronic components (O/E/O), which
can be mated with standard electronics providing
reconfigurability. However, neuromorphic
photonic circuits are challenging to scale up
because they do not benefit from digital
information, memory units and a serial processor,
and therefore requires a physical unit for each
elementin a neural network, increasing size, area
and power consumption. Here, integration costs
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must also be considered, since the advantages
of using analog photonics (high parallelism and
high bandwidth) must outweigh the costs of
interfacing it with digital electronics (requiring
both O/E and analog/digital conversion).

Vision of a neuromorphic processor
Recently, in our tutorial, Ref. [16], we proposed a
vision for a neuromorphic processor. We
discussed how such a neuromorphic chip could
potentially be interfaced with a general-purpose
computer (Fig. 1), i.e. a CPU, as a coprocessor
to target specific applications. Broadly speaking,
there are two levels of complexity associated with
co-integrating a general-purpose electronic
processor with an application-specific optical
processor. Firstly, a CPU processes a series of
computation instructions in an undecided amount
of time and is not guaranteed to be completed.
Neural networks, on the other hand, can process
data in parallel and in a deterministic amount of
time. CPUs have a concept of a ‘fixed’ instruction
set on top of which computer software can be
developed. However, a neuromorphic processor
would require a hardware description language
(HDL) because it describes the intended
behavior of a hardware in real-time. Secondly,
seamlessly interfacing a photonic integrated
circuit with an electronic integrated circuit will
take several advances in science and technology
including on-chip lasers and amplifiers, co-
integration of CMOS with silicon photonics,
system packaging, high-bandwidth digital-to-
analog converters (DAC) and analog-to-digital
converters (ADCs).
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Fig. 1: Simplified schematics of a neuromorphic processor.
Thanks to integrated laser sources and photodetectors, it can
input and output RF signals directly as an option to optically
modulated signals. The waveform generator allows for
programming arbitrary stimulus that can be used as part of a
machine learning task. Reproduced from [6].

Application example: fiber
impairment compensation

Neuromorphic photonic processors are well
suited for applications in which signals are in the

nonlinearity

analog and/or optical domain. This alleviates
some of the I/O challenges associated with
DACs. One such application is in fiber
nonlinearity = compensation in long-haul
transmission systems.
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Fig. 2: Micrograph image of a wirebonded photonic neural
network chip from Princeton University's Lightwave Lab.

Artificial neural networks (ANNs) have been
demonstrated for optical fiber communication,
such as fiber nonlinearity compensation (NLC) in
long-haul transmission systems [17]. Benefiting
from the training and execution procedures of
ANNs, ANN-NLC algorithms can create effective
fiber transmission models from the received
symbols without needing prior knowledge of
transmission link parameters. Compared with the
deterministic NLC approaches, such as digital
back propagation [18], ANN-NLC provides
comparable system performance with lower
computational complexity. However, despite the
reduced complexity with ANN-NLC, the hardware
implementation of real-time ANN-NLC for high-
speed optical transmission systems is still a
challenge with conventional electronics (e.g.,
ASIC), considering the required computation
speed and associated power consumption. The
challenges in high circuit complexity, together
with tight power budget, have prohibited
implementing high-performance but
computationally intensive DSP algorithms like
ANNSs in real time. So far, most efforts have been
focused on developing new algorithms that
requires compromises between transmission link
performance and DSP complexity.

Applications such as ANN-NLC for optical
communications demand for low-power and high-
speed neural network implementation, and
therefore necessitates the investigation of new
hardware beyond purely electronic physics.
Neuromorphic photonic processors are ideal for
processing high-speed optical communication
signals. Our prior research on PNN has revealed
the analogy between the neural networks and
WDM photonic hardware and demonstrated
underlying on-chip devices that allow practical
implementation on silicon photonic platforms
[14,15]. The advances of silicon photonics enable
integrations of optical devices and interconnects
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with sufficient density to perform computing tasks
driven by real-world applications [6].

In OFC 2020 [19] demonstrated the
experimental demonstration of a neuromorphic
photonic processor (Fig. 2) to compensate for
fiber nonlinearity over a 10,080 km trans-Pacific
transmission link of 32 Gbaud PM-16QAM
signals. By utilizing this photonic processor, we
have achieved Q-factor improvement of 0.51 dB,
which is only 0.06 dB lower than implementing
the ANN with numerical simulation. The superior
precision of photonic processor demonstrates the
feasibility of using it for optical fiber transmission
applications. Although the bandwidth of our
current chip is limited, caused by the low
extinction ratio of the modulator on chip, it can be
realistically increased to accommodate the high-
speed communication signals in future iterations
[11]. Given such bandwidths, neuromorphic
photonic processors could allow real-time ANN-
enabled signal processing for high-speed
communication signals with a single pipeline.

Advances in Science and Technology to Meet
Challenges

In the recent roadmap article [21], we outlined
some scientific and technological advances
necessary to meet the challenges to envision a
neuromorphic processor outlines in the previous
section.

Photonic processors have light sources,
passive and active devices. Currently, there is no
single commercial fabrication platform that can
simultaneously offer devices for light generation,
wavelength multiplexing, photodetection, and
transistors on a single die; state-of-the-art
devices in each of these categories use different
photonic materials (SiN, Ge, InP, GaAs, 2D
materials, etc) with incongruous fabrication
processes (silicon-on-insulator, CMOS,
FinFETSs). Silicon photonics is becoming an ideal
platform for integrating these devices while
offering a combination of foundry compatibility,
device compactness, and cost that enables the
creation of scalable photonic systems on chip.

Materials: Energy efficient and fast switching
optical and electro-optical materials are needed
for non-volatile photonic storage and weighting,
as well as high-speed optical switching and
routing, with low power consumption. Neural non-
linearities are already possible on mainstream
platforms using electrooptic transfer functions
[15], but new materials promise significant
performance opportunities. Phase change
materials (PCMs), and graphene and ITO-based
modulators can also be utilized for implementing
non-linearities. Plasmonic PCMs can bridge the
optical and electrical signals, through the dual
operation modes [22]. A general material design

method is in urgent need to develop appropriate
photonic materials for different photonic
components [23].

Lasers and amplifiers: On-chip optical gain
and power will require co-integration with active
InP lasers and semiconductor optical amplifiers.
Current approaches involve either IlI-V to silicon
wafer bonding (heterogeneous integration) or co-
packaging with precise assembly (hybrid
approach) [24]. Quantum dot lasers are another
promising approach as they can be grown directly
onto silicon, but fabrication reliability does not
currently reach commercial standards [25].

Electrical control: Co-integrating CMOS
controller chips with silicon photonics to provide
electrical tuning control/stabilization will be
critical. Candidates include wire-bonding, flip-
chip bonding, 2.5D integration (interposers), 3D
stacking (through-silicon-vias), and monolithic
integration. Each has performance and design
tradeoffs [26].

System packaging: A photonic processor
must be inter- faced with a computer. It would
need to be self-contained, robust to temperature
fluctuations, and with electrical inputs/outputs [6].
Currently, manufacturers do not assemble
electrical/thermal elements and chip-to-fiber
interconnects.

Algorithms: Significant advances will be
required to map abstract neural algorithms to
photonic processor to usher these platforms into
the commercial space. So far, only individual
devices and small control circuits are described
in the literature. The goal is to enable neural
network programming tools (TensorFlow) to
directly reconfigure a neuromorphic photonic
processor [6].

Conclusion

Neuromorphic photonics has reached an
inflection  point,  benefiting from  great
opportunities as the world looks for alternative
processor architectures. The physical limits of
Dennard scaling is galvanizing the community to
put forward candidates for next generation
computing, from bio- to quantum computers.
Photonics and in particular neuromorphic
photonics are a formidable candidate for analog
reconfigurable processing. We expect the
development of this field to accelerate as
neuroscience makes further leaps towards our
understanding of the nature of cognition and
artificial intelligence demands more
computational resources for machine learning.
As photonics technology matures and becomes
more accessible to academic groups and small
companies, we expect this acceleration to
continue.
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