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Abstract—We revisit the joint source-channel coding (JSCC)
problem of transmitting correlated sources over the additive
white Gaussian noise channel using deep learning methods.
Specifically, we consider the design of JSCC schemes for transmit-
ting multivariate Gaussian sources, and Gauss-Markov processes
over noisy channels with bandwidth (BW) compression and low
delay. We show that encoding and decoding schemes represented
by deep neural networks can be optimized jointly to obtain good
JSCC schemes. Specifically, we adopt sinusoidal representation
networks (SIRENs) for the transmission of multivariate Gaussian
sources. The new architecture not only provides similar per-
formance as the state-of-the-art (SOTA) with higher flexibility,
but also results in interpretable encoder mappings. For the
transmission of Gauss-Markov sources, recurrent neural net-
works (RNNs) are implemented to extract temporal information
without resorting to explicit decorrelation prior to transmission.
Experimental results show improved performance compared with
traditional schemes.

I. INTRODUCTION

We consider the joint source-channel coding (JSCC) prob-
lem of transmitting a discrete-time analog-valued source of
dimension k, over a discrete-time additive white Gaussian noise
(AWGN) channel with n = γk-uses, subject to power constraint
on the encoded symbols. Our focus is on the bandwidth (BW)
compression case, i.e. γ < 1. It is well known that separation-
based source and channel coding is generally suboptimal at
finite delay, and in the absence of perfect knowledge of the
channel signal-to-noise ratio (CSNR) at the transmitter. In
such situations, JSCC has shown promising potential (see for
example, [1], [2], [3]). A majority of the works have focused
on memoryless Gaussian sources, albeit this assumption is
often not satisfied in practice. The design of optimal JSCC
schemes for transmitting correlated sources over the AWGN
channel with small delay remains an interesting open problem.
This is the focus of this paper.

One solution is to design a hybrid digital-analog (HDA)
source-channel coding scheme. For the Gauss-Markov source,
Skoglund et. al employ a turbo channel code in the digital
part, and linear/nonlinear coding in the analog part, which
are followed by superposing the analog and digital signals
for transmission [4]. In [5], a simpler vector quantizer is
implemented in the digital part and linear coding is considered
in the analog part. Pure analog mappings have also been broadly
studied. A scheme using non-parametric mappings has been
proposed and optimized in [6] and its performance has been
shown to be close to optimal. For bivariate Gaussian sources,
parametric encoder mappings based on sinusoidal functions

which reduce encoding and decoding complexities have been
proposed in [7].

On the other hand, recent advancements in the design of
deep learning based communication systems (e.g., see [8], [9],
[10]), have provided impetus for revisiting JSCC problems. For
the problem of transmitting i.i.d. Gaussian sources over AWGN
channel with BW compression, a variational auto-encoder based
method has been put forward in [11]. Both the BW compression
and BW expansion cases have been reinspected in [12], where
a recurrent neural network (RNN)-based structure is adopted
together with fine tuning techniques. Meanwhile, [13] has
designed JSCC schemes for images using convolutional neural
networks and generalized divisive normalization. For image
transmission over the noisy channel with feedback, [14] has
proposed a neural architecture inspired by the Schalkwijk-
Kailath scheme.

In this work, we focus on two kinds of correlated sources –
multivariate Gaussian source and Gauss-Markov source, and
design JSCC schemes for their transmission over the AWGN
channel. The main contributions of this article are as follows,

• We formulate the JSCC problem for correlated sources
as training an auto-encoder (AE). Similar to [13], we set
the AWGN channel to be a non-trainable layer.

• For the multivariate Gaussian source, we employ si-
nusoidal representation networks (SIRENs) in both the
transmitter and receiver, where the sine function is selected
as the activation function. This model has a simple
structure and is easy to train. Our experimental results
show that the performance of this scheme matches that
of the non-parametric mappings based method in [7], and
closely approaches the asymptotic limit at low CSNRs.
It also exhibits robustness to mismatch between the true
source correlation and the correlation that the scheme is
designed for. Further, the learned encoder transformation
reveals a completely different mapping from the classical
spiral-like curve for the i.i.d. Gaussian source.

• For the Gauss-Markov source, we leverage the ability of
RNNs to exploit temporal correlation in the source and
represent the encoder and decoder networks with stacked
RNNs. We rely on the network to extract temporal features,
without explicitly decorrelating the source. Following a
similar fine tuning technique as in our prior work [12],
the AE learns robust encoding and decoding mappings to
mismatched source correlations and channel conditions.
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II. PROBLEM FORMULATION

A. System model

We consider the system model shown in Fig. 1. We assume
that the source to be transmitted is a k-dimensional vector of
random variables u ∈ Rk, where ui is ith component of this
vector, for i = 1, ..., k.

Fig. 1: System model with single transmitter and single receiver
for transmitting a correlated source over an AWGN channel.

We consider two types of correlated sources. In the first
case, we assume the source is a multivariate Gaussian source.
For simplicity, here we consider a 2-dimensional source
following a bivariate Gaussian distribution with zero mean
and covariance matrix Σu = σ2

[ 1 ρ
ρ 1

]
, where ρ denotes the

correlation coefficient. The analysis can be easily extended
to higher dimensions within reasonable range. In the second
case, the sources follow an order-1 zero-mean stationary Gauss-
Markov process, i.e., ui = zi + ρui−1, for i = 1, ..., k, with
zi

i.i.d.∼ N (0, σ2
z), σ2

z = 1 − ρ2, u0 = z0, and the correlation
coefficient |ρ| < 1.

We assume the parametrized encoder function as fφe
(·) :

Rk → Rn, and the transmitted channel codeword is denoted
as x = fφe(u). We focus on the case of BW compression, i.e.
k > n. The channel codeword satisfies a power constraint given
by 1

nE[||x||]2] ≤ PT , and without loss generality it is assumed
PT = 1. The transmission is impaired by additive white
Gaussian noise, i.e., n ∼ N (0, σ2

nI), and the channel outputs
y = x + n. The received vector y is decoded by applying
the decoding function gφd

(·) : Rn → Rk parameterized by φd,
and the estimate is denoted as û = gφd

(y). The quality of
the restoration is evaluated by the mean squared error (MSE)
distortion between u and û,

D(u, û) =
1

k
E[||u− û||22].

B. Optimum performance theoretically attainable (OPTA)

OPTA is the minimum distortion theoretically achievable
under the given channel condition, and we include it in
our baselines. It should be noted that the OPTA is the
asymptotically achievable limit and can only be approached
with asymptotically large block length (and hence, delay).

We denote R(D) and D(R) as the rate-distortion function
pair for the source, and C as the channel capacity. It is well
known from [15] that, sources can be compressed at rate R(D)
with distortion D, and also it is feasible to transmit C bits
of information with arbitrarily low error rate. The OPTA on
distortion can be derived when the source coding and channel
coding are optimal, and kR(D) = nC.

The channel capacity for the AWGN channel is given by

C =
1

2
log

(
1 +

PT
σ2

n

)
.

For the case of bivariate Gaussian sources, we follow the
the parametric rate-distortion function given in [7],

D(θ) =
1

M

M∑
i=1

min [θ, λi]

R(θ) =
1

M

M∑
i=1

max
[
0,

1

2
log
(λi
θ

)]
where λi’s are the eigenvalues of the covariance matrix Σu, and
M is the number of positive eigenvalues. The corresponding
OPTA is given in [7], if k = 2, n = 1.

OPTA =


2σ2

n + 2

2σ2
n + (1− ρ)

,
PT
σ2

n

<
2ρ

1− ρ√
σ2

n + 1

σ2
n(1− ρ2)

,
PT
σ2

n

≥ 2ρ

1− ρ

For the case of Gauss-Markov sources with a variance σ2

and a correlation coefficient ρ, according to [16], the parametric
rate-distortion function can be calculated through spectral
density function of source Φuu(ω) using Grenander and Szegö’s
theorem and is given in parametric form by

D(θ) =
1

2π

∫ π

−π
min

(
Φuu(ω), θ

)
dω

R(θ) =
1

2π

∫ π

−π
max

(
0,

1

2
log2

Φuu(ω)

θ

)
dω

For small rate, rate-distortion function can be calculated through
numerical approximation. The Shannon lower bound matches
the rate-distortion function when the rate is moderately large,

R(D) =
1

2
log2

σ2(1− ρ2)

D
, D ≤ σ2 1− ρ

1 + ρ

D(R) = (1− ρ2)σ22−2R, R ≥ log2(1 + ρ)

We define the channel signal-to-noise ratio (CSNR) as
CSNR := 10 log10

(
PT

σ2
n

)
(in dB), and signal-to-distortion ratio

(SDR) as SDR := 10 log10

(
σ2

D

)
(in dB).

III. PROPOSED METHOD

In this section, we elaborate on our proposed deep learning
based models for transmitting bivariate Gaussian sources
and Gauss-Markov sources over AWGN channels with BW
compression, as well as their corresponding training techniques.

A. Autoencoder

AE is not only a classical model for latent representation
learning, but also a successful tool in promoting end-to-end
wireless communication system performance. The encoder
neural network and the decoder neural network replace the
traditional manually-designed modules in the transmitter and re-
ceiver. An AWGN channel can be represented as a non-trainable
layer in between the encoder and decoder networks such that
the forward or backward propagation will not be impaired.
To satisfy the power constraint, we set xL,i =

xL−1,i−x̄L−1,i

σxL−1,i
,

where L, i denote the last layer of the encoder and i-th element,
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respectively. And this can be implemented as a normalization
layer at the end of the encoder network.

MSE is not only a common distortion measure for restoration,
but also a widely-used cost function for regression. Here we
set MSE given by

MSE :=
1

k
Eu,n

[
||u− gφd

(fφe
(u) + n)||22

]
as the end-to-end optimization objective during training. The
following sections will employ this AE model with channel
and the end-to-end loss function.

B. Case I: Bivariate Gaussian Source

1) SIREN: In [7], it has been shown that both parametric
mappings and non-parametric mappings present periodicity and
sinusoidal-like contours. Through successive optimization of
the encoder-decoder pair at each iteration [6], non-parametric
mappings have been shown to work well in low dimensions.
Despite that, it needs to implement numerical approximations
to integrals involved in its alternating optimization, and store
the corresponding table for the encoder and decoder. Hence this
scheme heavily relies on the accuracy for discretizing the source
and channel space, and the size of the lookup table size grows
exponentially with the dimension of the source. In contrast,
parametric mappings are defined with respect to sinusoidal
functions, and an approximation to minimum-mean-squared-
error decoder is utilized. It reduces the storage requirements
and lowers the computational complexity, but sacrifices the
performance at high CSNRs due to the sub-optimality of the
decoder.

Our proposed scheme is based on two facts. On one side, we
are inspired by the observation that the encoder mapping for
both of the aforementioned schemes resemble sinusoids. On the
other side, recent works have shown that [17] SIRENs can be
trained in a stable manner and they are very effective in solving
a series of challenging representation problems and boundary
value problems. Particularly, compared with other activation
functions, SIREN are closed on many operations, such as
additions and derivatives, and the learned representations are
relatively smoother. This renders it possible to gracefully
optimize the encoder and decoder networks when their weights
are initialized properly. Based on these desirable properties
of SIRENs, we propose to build our encoding and decoding
schemes based on SIRENs.

According to [17], a simple layer of SIREN is the concate-
nation of a fully connected layer and a sine function as the
activation function,

Ψ(x) = Wl(ψl−1 ◦ ψl−2 ◦ · · · ◦ ψ0)(x) + bn,

zi 7→ ψi(zi) = sin (Wixi + bi)

where ψi : RMi 7→ RNi is the i-th layer of the network,
with Mi and Ni as the corresponding input and the output
dimensions. Wi ∈ RNi×Mi and bi are the learnable weight
matrix and biases of the i-th layer network.

The structure of the model can be found in Table. I. All the
encoders in this case consist of 3 layers of SIRENs with

Layer Hidden size / Annotation Output size
Case: Bivariate Gaussian source, transmitter

Input Input layer k
[SIREN] × 3 200 n
Normalization Power constraint n

Case: Bivariate Gaussian source, receiver
[SIREN] × 4 300 k

Case: Gauss-Markov source, transmitter
Input Reshape n× 2

BiLSTM 48/direction n× 96
BiLSTM 48/direction n× 96

FF+Reshape 1 n
Normalization power constraint n

Case: Gauss-Markov source, receiver
Reshape+BiLSTM 64/direction n× 128

BiLSTM 64/direction n× 128
FF+Reshape 2 k

TABLE I: Model parameters of channel AE.

200 hidden units per layer, and all decoders consist of 4
layers of SIRENs with 300 hidden units per layer. For faster
convergence, we use a scaled version of a SIREN with scale
coefficient 1.2. The correct initialization of weights is the
key to keeping the dot product between weights and input of
the layer following the same distribution and thus avoiding
vanishing or exploding gradients. Here we initialize the weights
using a uniform distribution as suggested in [17]. The scalar
factor associated with weights of the first layer of encoder and
decoder networks is set at 30, and at 1 for the rest of layers,
so as to keep frequency components of activation spectrum
similar and accelerate the training process.

2) Training Techniques: For all experiments corresponding
to this case, we generate bivariate Gaussian sources of batch
size 1.024× 105 every iteration, train the model with Adam
optimizer with learning rate 0.0004, and use the same batch
size for validation data. We continue the optimization until no
further improvement on validation data is observed, and keep
the model with minimum validation loss for testing.

C. Case II: Gauss-Markov Sources

1) RNN: A Gauss-Markov source is a temporally correlated
sequence. RNNs, especially long-short-term-memory (LSTM,
in [18]) networks are well-known for achieving significant
successes with various tasks involving temporally correlated
sequences. Therefore, we adopt bidirectional LSTM (BiLSTM)
networks for each layer, and build both the encoder and decoder
with stacked layers of BiLSTMs, respectively.

The implementation details are as follows. The source
sequence is first reshaped into a n × k

n tensor, which acts
as the input to the 2 stacked layers of BiLSTMs. The output
goes through a position-wise fully-connected feedforward (FF)
layer, followed by a normalization layer that produces the
channel codewords to satisfy the power constraint. The receiver
structure is similar. The observed symbol sequence is first
reshaped into dimension n × 1, and processed by 2 stacked
layers of BiLSTMs subsequently. It is then used in tandem
with another fully-connected FF layer, and the output is of
dimension n× k

n . The recovered symbols are finally obtained
after reshaping.
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Let he and hd denote the number of hidden units for
LSTM cells employed in the encoder and decoder networks
respectively. We set he = 48 and hd = 64. We find that despite
the fact that no specific layers play the role of a decorrelator,
the architecture is sufficient to handle the task. The details of
structure can be found in Table I with k/n = 2.

2) Training Techniques: According to the reported result in
[12], empirically we can take advantage of decent fine tuning
techniques, such as larger batch size and learning rate schedule,
for the faster convergence and better performance.

First, as suggested by [19], a proper pair of larger batch size
and higher learning rate can achieve the same performance level
with fewer parameter updates without impairing generalization
of the model. More specifically, for JSCC, it is important
that the training data adequately covers the space of possible
inputs. Without large batch sizes, the space of possible inputs
may not be covered well rendering our learned encoder
mapping inefficient for such corner data points. This problem
is accentuated at high CSNRs. This can be alleviated by using
a larger batch size which implies more data points available to
generalize the model well. Moreover, the encoder also benefits
from a more accurate approximation of second moment brought
by a larger batch size.

Secondly, we schedule the learning rate with warm restart
and cosine annealing as suggested in [20]. For any epoch t

that satisfies
∑i−1
j=0 T

(j)
o ≤ t <

∑i
j=0 T

(j)
o , the learning rate

ηt is set according to

ηt = η
(i)
min + 0.5(η(i)max − η

(i)
min)(1 + cosπTcur/T

(i)
o ).

Here, η(i)min and η(i)max are the minimum and maximum learning
rates w.r.t. the i-th restart cycle. T (i)

o and Tcur = t−
∑i−1
j=0 T

(j)
o

stand for the length of current restart cycle, and the number of
epochs that have lapsed since the recent restart cycle, respec-
tively. This schedule has been empirically shown effectiveness
of achieving almost better anytime performance in [20]. This
was shown to be effective for analog JSCC of i.i.d. Gaussian
sources over AWGN channel with BW mismatch in [12].

In the experiments, we let η(i)max decay exponentially every
restart cycle, and T (i)

o grow exponentially every restart cycle, so
that it can explore the minima with finer resolution in the later
stages. We set T (0)

o = 50 with growing factor 2, η(0)max = 0.01

with decay factor 0.75, and η(i)min = 0 for all i. We use Adam
optimizer, and train the model until the loss converges. We test
the model with the weights corresponding to the best validation
performance.

IV. EXPERIMENTAL RESULTS

A. Case I: Bivariate Gaussian Source

In this section, we present experimental results for trans-
mitting bivariate Gaussian sources with 2:1 BW compression.
A plot of the SDR versus CSNR is shown in Fig. 2(a) for a
source correlation of ρ = 0.9. We use the parametric mapping
scheme in [7] and the non-parametric mapping scheme in [6]
as baselines for comparison. In addition to these traditional
schemes, we also designed a neural network based JSCC

Fig. 2: Performance comparison of JSCC schemes for transmis-
sion of bivariate Gaussian source with 2:1 BW compression.

Fig. 3: Simulation results showing model robustness to source
correlation.

scheme for comparison, which uses ReLU activation and
batch normalization. The performance of the proposed scheme
is close to that of the non-parametric mapping in [6] over
the entire CSNR range, and closely approaches the OPTA
at low to middle CSNRs. It should be noted that the OPTA
is an asymptotic bound and is achieved at infinite delay in
general. Our scheme outperforms parametric mappings in [7]
and the ReLU based network at high CSNRs. Similar results
are obtained for the case of ρ = 0.75 as depicted in Fig. 2(b),
where the gap between the performance of our scheme and that
of parametric mappings as well as ReLU based network is larger
than for the ρ = 0.9 case. Although the proposed method and
non-parametric mappings based method can both approach the
SOTA performance, the complexity of non-parametric method
increases exponentially with k, n; on the contrary, that of neural
network based methods increases linearly with k, n for small
values of k, n. Besides, the proposed scheme is able to learn
a smoother and more interpretable encoding mappings than
ReLU based networks (see Fig. 4(a-c) and (e)).

The robustness of the proposed scheme to the source
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(a) SIREN CSNR 20 dB, ρ =
0.9

(b) SIREN CSNR 30 dB, ρ =
0.9

(c) SIREN CSNR 20 dB, ρ =
0.75

(d) Normal source, CSNR 20
dB

(e) ReLU CSNR 30 dB, ρ =
0.75

Fig. 4: Encoder transformations for 2:1 BW compression of a bivariate Gaussian source.

correlation coefficient is shown in Fig. 3. The model is trained
at with ρ = 0.75, and CSNR 10dB, but the performance
is tested for a range of correlations. It can be seen that the
performance smoothly degrades with respect to the mismatched
source correlations.

In order to gain interpretability about the encoding scheme,
we plot the encoder transformation learned by the proposed
scheme in Fig. 4. The x-axis and y-axis represent the first
and second element in the source vector, and the z-axis serves
as the scalar to be transmitted over the channel. The color
is selected according to the value of z-axis, such that deeper
blue corresponds to larger values and lighter yellow to smaller
values. The plot (d) in Fig. 4 shows the encoder mapping
when ρ = 0 with 2:1 BW compression that was designed in
[12]. It resembles a spiral-like curve filling the entire source-
channel space. The first three plots correspond to different
source correlations and it can be seen that the encoder functions
learned by the proposed scheme for the correlated case are
clearly different from that of the uncorrelated case.

Let the eigenvectors and eigenvalues of the covariance matrix
of the bivariate Gaussian sources be {v1,v2}, and {λ1, λ2}
respectively, where λ1 > λ2. Note any point in the source
space can be expressed as αv1 + βv2. Implied by the plots, it
is consistent that all the learned mappings partition the source
space along the direction of v1. Given fixed value of α and
within small vicinity of β along the direction of v2, all source
symbols will be encoded into similar values; but given fixed
value of β, two neighbor points in the source space can be
encoded into different scalars if they are located on the two
sides of the boundary.

For a fixed correlation coefficient, a higher CSNR leads to a
denser partition along the direction of v1, and the contour of
the sinusoidal-like wave changes with higher frequency. This
is in line with our intuition - at high CSNRs, it suffices to
maintain a smaller Euclidean distance between the transmitted
symbols corresponding to points that are farther apart. Thus
more periods of the sinusoid can fit through the source space.

For a fixed CSNR, a lower correlation coefficient leads
to a sparser partition along the direction of v1, and the
contour of the sinusoidal-like wave has lower frequency. This
is also reasonable, since lower correlation coefficient implies
an increase in the length of λ2 and a decrease in the length
of λ1. This leaves relatively less space to partition along the

Fig. 5: Performance of JSCC schemes for transmission of
Gauss-Markov source with BW compression; ρ = 0.9.

direction of v1 under the same noise level, and thus there are
fewer periods for the sinusoidal-like wave.

B. Case II: Gauss-Markov Source

In this section, we show the experimental results for the
transmission of Gauss-Markov sources over the AWGN channel
with BW compression. We set the source vector to be 24
dimensional, with correlation coefficient as 0.9, and the
channel symbol vector is 12 dimensional. HDA schemes in
[4], employing either linear or nonlinear analog coding, are
selected as our baseline.

As plot in Fig. 5, we train the network under fixed CSNRs
(15 dB, and 20 dB) and test it over the entire CSNR range. Its
performance is compared with the HDA schemes (we select
the curves with linear analog part that have been commented
in the literature as providing ‘best overall performance’ in
[4]) trained at CSNR 15dB and 20dB, as well as the OPTA.
The value of ∆ controls the ratio of power assigned to analog
part to the total input power of the channel in HDA. The plot
reveals that the proposed scheme outperforms the baseline over
most of the test CSNRs, and has a smoother degradation with
respect to mismatch in the channel condition. Particularly in the
middle CSNR range, our scheme performs close to the OPTA.
The baseline HDA schemes consider sources with dimension
32, which is longer than the proposed scheme. And also the
turbo coding at the digital part of the encoder costs the HDA
scheme higher complexity and longer delay. Admittedly, the
performance of the proposed scheme is compromised at very
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high CSNRs, and improving the performance in this regime
will be investigated in future work.

(a) Source symbol (b) Transmitted symbol

Fig. 6: Correlation matrix of the source and the transmitted
signal w.r.t. a Gauss-Markov source; ρ = 0.9, CSNR 10dB.

In Fig. 6, we plot the correlation matrix for the source sym-
bols and transmitted symbols. It can be seen that the transmitted
signal is uncorrelated in time with slightly different power
levels across the different channel uses. This is reminiscent
of applying a decorrelator followed by some form of reverse
waterfilling. It is interesting to note that our encoder naturally
learns a mapping which can be justified by information theory.

We also examine the capability to gracefully degrade with
discrepancy in source correlation. As in Fig. 7, the model
is trained with ρ = 0.5, CSNR 15 dB, and tested with
various correlation values. The plot demonstrates that within
a reasonable range of correlation values, the trained model is
robust to mismatch in the source correlation.

Fig. 7: Robustness of the proposed scheme to mismatch in the
correlation of the Gauss-Markov source; CSNR 15dB.

V. CONCLUSION

We designed JSCC schemes for the transmission of correlated
Gaussian sources over AWGN channels using an autoencoder
model. We showed that SIRENs are a good choice for represent-
ing the encoder and decoder for the transmission of bivariate
Gaussian sources. Our proposed model has a simple structure, is
easy to train, and is extendable to sources of moderately higher
dimension. Its performance matches the SOTA, and closely
approaches the OPTA at low CSNRs. Further, our scheme is
robust to source correlation discrepancy. We also proposed
RNN-based schemes for the transmission of Gauss-Markov
source. The learned system exhibits improved performance and
smooth degradation in the presence of mismatch in the source
correlation as well.
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