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The Physics Inventory of Quantitative Literacy (PIQL) aims to assess students’ physics 
quantitative literacy at the introductory level. PIQL’s design presents the challenge of isolating 
types of mathematical reasoning that are independent of each other in physics questions. In its 
current form, PIQL spans three principle reasoning subdomains previously identified in the 
research literature: ratios and proportions, covariation, and signed (negative) quantities. An 
important psychometric objective is to test the orthogonality of these three reasoning 
subdomains. We present results that suggest that students’ responses to PIQL questions do not fit 
this structure. Groupings of correct responses identified in the data provide insight into the ways 
in which students’ knowledge may be structured. Moreover, questions with multiple correct 
responses may have different responses in different data-driven groups, suggesting that the both 
the answer choice and the context of the question may impact how students (implicitly) relate 
various ideas. 
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One major goal of university-level physics courses is the development of mathematical 
reasoning skills, but despite decades of research on the complex interplay between physics 
conceptual understanding and mathematical reasoning (Boudreaux, Kanim, & Brahmia, 2015; 
Brahmia, Boudreaux, & Kanim, 2016a, 2016b; Rebello, Cui, Bennett, Zollman, & Ozimek, 
2007; Sherin, 2001; Thompson, 2010), measuring these skills has not gained as much popularity 
as strictly conceptual assessments such as the Force Concept Inventory or Force and Motion 
Conceptual Evaluation (Madsen, McKagan, & Sayre, 2017; Madsen, McKagan, Sayre, & Paul, 
2019).  

Assessing conceptual understanding is inherently easier than assessing generalized 
mathematical reasoning. The former is tied to specific physics contexts taught over a finite 
period, while the latter is ubiquitous across contexts and time. Physics education researchers 
have conducted qualitative case studies to probe students’ mathematical reasoning and their 
transitions to expert-like reasoning (c.f., Hayes & Wittmann, 2010; Hu & Rebello, 2013; Smith, 
Thompson, & Mountcastle, 2013). While this method of research provides a rich view into how 
specific students reason in a particular context, little has been published that characterizes the 
process of emerging expert-like mathematical reasoning across multiple topics and for a large 
group of students.  

We have developed the Physics Inventory of Quantitative Literacy (PIQL) to meet the need 
fora robust and easily administered multiple-choice assessment to measure students’ 
mathematical reasoning in the context of physics (a.k.a., physics quantitative literacy, PQL) 
(Olsho, White Brahmia, Boudreaux, & Smith, 2019).The PIQL is intended to test three key 
components of PQL: ratio and proportion (Cohen & Kanim, 2005), covariation (Carlson, 
Oehrtman, & Engelke, 2010; Hobson & Moore, 2017; Moore, Paoletti, & Musgrave, 2013; 
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Paoletti & Moore, 2017), and negativity (Brahmia & Boudreaux, 2017; Vlassis, 2004; White 
Brahmia, Olsho, Smith, & Boudreaux, 2018, 2019, in press). 

We consider PQL to be a conceptual blend between physics concepts and mathematical 
reasoning (Fauconnier & Turner, 2002). In order to measure the complexity of ideas that students 
bring from both of these input spaces, we have chosen to include some multiple-choice multiple-
response (MCMR) questions in which students are instructed to “select all statements that must 
be true” from a given list, and to “choose all that apply” (emphasis in the original text). The 
MCMR question format has the potential to reveal more information about students’ thinking 
than standard single-response (SR) questions, but it also poses problems with data analysis, as 
typical analyses of multiple-choice tests assume SR questions. We have previously compared 
two different methods that could be used to identify groups of questions evident in students’ 
responses to PIQL questions and compare them to the groups defined by our three PQL 
constructs (Smith et al., in press). In this paper we briefly describe these methods and present our 
preliminary results from using module analysis for multiple-choice responses, which allows each 
correct response to MCMR questions to be included separately (Brewe, Bruun, & Bearden, 
2016).  

Data for this study were collected in two different terms at a comprehensive public university 
in the Northwestern United States. The PIQL was given as a pretest during the first week of the 
term in three different calculus-based introductory physics classes: Mechanics (N = 821), 
Electricity and Magnetism (N = 701), and Thermodynamics and Waves (N = 585). These data do 
not form a matched set, but we take them as three snapshots in time, which may be 
representative of a progression through the introductory course sequence: before mechanics 
(PreMech), after mechanics and before electricity & magnetism (PostMech), and after 
electricity& magnetism (PostEM). Previous analyses of these data have shown that students’ 
overall scores on the PIQL increase over time, so we can consider students progressing toward 
expertise through our data (Smith et al., 2018, in press).  

We have previously reported preliminary results from applying module analysis to identify 
coherent groups of PIQL questions and responses (Smith et al., in press). In the current study we 
interpret these results in new ways that focus specifically on the questions related to covariation. 
Our work is guided by the research question: In what ways do patterns of students’ responses to 
PIQL questions reveal insights into the ways in which they think about and use covariation in 
physics contexts?  

Previous Results: Coherent Modules Identified from Students’ Responses 
We have previously used both confirmatory and exploratory factor analysis to identify 

groups of questions evident in students’ response patterns to PIQL questions and compare those 
groups with our pre-defined PQL constructs (Smith et al., in press). These results showed a poor 
alignment between response patterns and our three primary constructs of PQL: ratio and 
proportion (questions 1–6), covariation (questions 7–14), and negativity (questions 15–20); 
however, a major limitation of factor analysis is that questions must be scored dichotomously as 
either completely correct or incorrect. This is problematic for MCMR questions because a 
student who chose one correct response to a question with two correct responses would be coded 
the same way as a student who chose multiple incorrect responses; therefore, we choose not to 
emphasize these results here. 

To preserve the nuance and complexity of students’ response patterns within (and between) 
questions we used module analysis for multiple-choice responses to examine the network of 
student responses to PIQL questions (Brewe et al., 2016). Module analysis uses community 
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detection algorithms to identify modules (a.k.a. communities, clusters, etc.) within networks of 
responses to multiple-choice questions. We have chosen to analyze a network of only correct 
responses to PIQL questions. The benefit of this method is that we can examine the patterns that 
arise from students’ selections of each individual correct response, which preserves some of the 
complexity of module analysis questions by recognizing any time a student chooses a correct 
response. A limitation of the way that we have used module analysis is that we are ignoring 
whether or not a student chooses incorrect responses in addition to correct responses. Expanding 
the network to include correct and incorrect responses could address this limitation, but is 
beyond the scope of the current study. 

In network analysis studies, the choice of community detection algorithm seems to depend a 
lot on personal preference of the researchers. Unfortunately, the InfoMap algorithm used by 
Brewe et al. (2016) did not yield useful results.1 In the absence of clear guidelines regarding 
which community detection algorithm would be most relevant, we chose to compare the modules 
identified by six different algorithms. We feel confident that modules that are identified by 
multiple community detection algorithms are representative of the data. 

A major result from our analyses was that the modules were not consistent in our three time-
dependent data sets. The results went from four modules in PreMech (two with only two 
responses each) to six modules in PostEM (most with only 2–3 responses). Contrast this to what 
might be expected for a hypothetical group of experts: true experts would answer all questions 
correctly, resulting in strong links between all correct responses, and all responses being in one 
coherent module. Our data show that as students progress toward expertise during the 
introductory sequence, modules become less coherent, not more. Additional data from upper-
division students are needed to examine the continuation of this progression. 

The changes in module definitions over time led us to look for consistent patterns across the 
results, which may represent stable elements of student reasoning. Figure 1 shows the average 
likelihood that each question pair occurs in the same module as well as the “submodules” that we 
have identified as being consistent across our analyses. Each of these submodules may be seen as 
a bright yellow/orange square along the diagonal in Figure 1, with submodule i (in the upper 
right corner) being the least cohesive (least bright). Some submodules are subsets of our PQL 
constructs: ratio and proportion (iii), covariation (ii and viii), and negativity (ix). Others include 
questions from two or three of these constructs (i, iv, v, vi, and vii), emphasizing the connections 
between these constructs.  

The MCMR questions with more than one correct response show some particularly 
interesting trends. Question 17 has two correct answers (17D, 17G) that group very strongly 
together. Question 16 also has two correct responses (16C, 16D), but they do not group into the 
same submodule. Question 9 has three correct responses: 9C and 9D are in submodule i (which 
is the least coherent submodule mentioned above), and 9A groups equally well with two 
different submodules, neither of which connects with 9C or 9D. 

New Insights: Covariation Questions Group Together and Split Apart 
To answer our research question we consider the questions intended to assess students’ PQL 

regarding covariation (7–14). Some of these items were taken directly (with permission) from the 
Precalculus Concept Assessment (PCA) (Carlson et al., 2010): question 8 asks students to 
interpret the slope of a graph of a function (modified from the PCA by graphing speed as a 
function of time), questions 11 and 12 are bottle questions for which students need to either 

 
1 Wells et al. (2019) report similar difficulty using the InfoMap algorithm.  
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select a bottle to match a given graph (11) or select a graph to match a given bottle (12), and 
question 14 asks students to interpret a ratio expression with a variable in the numerator and 
denominator to make claims about both the rate of change of the ratio and its limiting value (in 
the context of fish in a lake). Question 7 is a variation on the students-professors question in 
which students must select an equation to represent the statement “There are three times as many 
quarks as nucleons.” Question 9 tells students that the length and width of a flag both increase by 
a factor and asks which, if any, of the following quantities also increase by the same factor: 
perimeter, area, length of diagonal, and/or length of curve superimposed on the diagonal. For 
question 10 students must compare the distances traveled by two joggers who run at different 
speeds for different amounts of time, and for question 13 students are given the equation 
! = # $

%&' and asked what happens to m if both n and p double (with k held fixed). 
As seen in Figure 1, these questions show up in five out of the nine submodules, but only two 

submodules include only covariation questions (ii and viii). We identify commonalities between 
the questions that appear in covariation-only submodules. Questions 8, 11, and 12 (submodule ii) 
all require students to interpret graphs, and these are the only such questions on the PIQL. 
Questions 10 and 13 (submodule viii) both require students to determine the output of a known 
function with two input variables. The questions in each of these submodules test students’ 
abilities to use a unique and somewhat sophisticated type of reasoning. 

It is more difficult to identify why other questions/responses group together (or don’t). It 
makes sense that students would choose 9C (the curve along the diagonal of the flag) at similar 
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Submodule Definitions 

    i)  5, 9C, 9D, 20 

   ii)  8, 11, 12 

  iii)  3, 6 

  iv)  18, 19, (9A) 

  vi)  1, 16D 

   v)  7, 15, (9A) 

 vii)  2, 4, 14, 16C 

viii)  10, 13 

  ix)  17D, 17G 

Figure 1. Previous results from applying module analysis to PIQL data (Smith et al., in press). The heat map shows 
the average cooccurrence matrix from the three data sets (yellow indicating responses that are always in the same 
module, dark blue indicating responses that are never in the same module). The bright squares along the diagonal 

are used to identify the consistent “submodules” across data sets. Questions intended to probe ratio and proportion 
are shown in bold in the definition list, questions for covariation are in italics, and questions for negativity are 

underlined. Response 9A fits equally with two submodules. 
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rates as they choose 9D (the diagonal itself). But why is 9A (the perimeter of the flag) more 
strongly connected to questions 7 and 15 (both of which require students to select an equation 
based on a description) or to questions 18 and 19 (which involve interpreting negative vector 
quantities)? Questions 2, 4, and 14 all involve ratios, but 16C requires students to correctly 
compare a positively charged sphere and a negatively charged sphere, which does not (on the 
surface) seem to be related. More work is needed to reveal why students’ responses group in 
these particular ways. 

Summary and Future Directions 
As mentioned above, the submodules identified by module analysis do not correspond with 

the groups defined by our PQL constructs. This suggests that either a) students’ PQL cannot be 
separated into skills regarding ratio and proportion, covariation, and negativity, or b) their skills 
in these areas have developed similarly such that they are functionally equivalent. Regardless of 
the interpretation, module analysis reveals complexity and structure that changes over time as 
students progress through the introductory physics course sequence.  

Several questions still remain: 
• How do the modules identified by students’ responses to PIQL questions change over 

time throughout the undergraduate curriculum? 
• How sensitive are these modules to different forms of instruction? Are they the same 

at different institutions or in different courses?  
• How do students’ choices of incorrect responses relate to their choices of correct 

responses (especially for MCMR questions)? How often do students contradict 
themselves? 

• Are there underlying commonalities that we can identify in each module? How do 
these relate to previous literature on quantification and quantitative reasoning or 
students’ conceptual understanding of physics? 

Module analysis opens the possibilities for future work that goes beyond analysis of only 
correct responses by identifying modules of incorrect responses as well (Brewe et al., 2016). 
Including incorrect responses in the module analysis could provide evidence to explain why 
some questions and responses group together in unexpected ways. This is particularly important 
for interpreting responses to MCMR questions, as different (in)correct responses can reveal 
insights into different aspects of a student’s understanding regarding both physical concepts and 
mathematical reasoning. This interplay is essential to measuring PQL. 

We plan to look more closely at the dynamics of the defined modules over time by using 
matched sets of responses collected from the same students at different times, and by expanding 
data collection beyond the introductory sequence. These longitudinal data will allow us greater 
confidence in claims regarding how students’ response patterns change over time. Future work 
will also include expanding data collection beyond a single university. The coupling of PIQL 
MCMR questions with module analysis shows promise for finding patterns of emergent expertise 
in mathematical reasoning in introductory physics, and beyond, on a scale that cannot be 
achieved using qualitative research methods. 
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