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The Physics Inventory of Quantitative Literacy (PIQL) aims to assess students’ physics
quantitative literacy at the introductory level. PIQL’s design presents the challenge of isolating
types of mathematical reasoning that are independent of each other in physics questions. In its
current form, PIQL spans three principle reasoning subdomains previously identified in the
research literature: ratios and proportions, covariation, and signed (negative) quantities. An
important psychometric objective is to test the orthogonality of these three reasoning
subdomains. We present results that suggest that students’ responses to PIQL questions do not fit
this structure. Groupings of correct responses identified in the data provide insight into the ways
in which students’ knowledge may be structured. Moreover, questions with multiple correct
responses may have different responses in different data-driven groups, suggesting that the both
the answer choice and the context of the question may impact how students (implicitly) relate
various ideas.
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One major goal of university-level physics courses is the development of mathematical
reasoning skills, but despite decades of research on the complex interplay between physics
conceptual understanding and mathematical reasoning (Boudreaux, Kanim, & Brahmia, 2015;
Brahmia, Boudreaux, & Kanim, 2016a, 2016b; Rebello, Cui, Bennett, Zollman, & Ozimek,
2007; Sherin, 2001; Thompson, 2010), measuring these skills has not gained as much popularity
as strictly conceptual assessments such as the Force Concept Inventory or Force and Motion
Conceptual Evaluation (Madsen, McKagan, & Sayre, 2017; Madsen, McKagan, Sayre, & Paul,
2019).

Assessing conceptual understanding is inherently easier than assessing generalized
mathematical reasoning. The former is tied to specific physics contexts taught over a finite
period, while the latter is ubiquitous across contexts and time. Physics education researchers
have conducted qualitative case studies to probe students’ mathematical reasoning and their
transitions to expert-like reasoning (c.f., Hayes & Wittmann, 2010; Hu & Rebello, 2013; Smith,
Thompson, & Mountcastle, 2013). While this method of research provides a rich view into how
specific students reason in a particular context, little has been published that characterizes the
process of emerging expert-like mathematical reasoning across multiple topics and for a large
group of students.

We have developed the Physics Inventory of Quantitative Literacy (PIQL) to meet the need
fora robust and easily administered multiple-choice assessment to measure students’
mathematical reasoning in the context of physics (a.k.a., physics quantitative literacy, PQL)
(Olsho, White Brahmia, Boudreaux, & Smith, 2019).The PIQL is intended to test three key
components of PQL: ratio and proportion (Cohen & Kanim, 2005), covariation (Carlson,
Ocehrtman, & Engelke, 2010; Hobson & Moore, 2017; Moore, Paoletti, & Musgrave, 2013;
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Paoletti & Moore, 2017), and negativity (Brahmia & Boudreaux, 2017; Vlassis, 2004; White
Brahmia, Olsho, Smith, & Boudreaux, 2018, 2019, in press).

We consider PQL to be a conceptual blend between physics concepts and mathematical
reasoning (Fauconnier & Turner, 2002). In order to measure the complexity of ideas that students
bring from both of these input spaces, we have chosen to include some multiple-choice multiple-
response (MCMR) questions in which students are instructed to “select all statements that must
be true” from a given list, and to “choose all that apply” (emphasis in the original text). The
MCMR question format has the potential to reveal more information about students’ thinking
than standard single-response (SR) questions, but it also poses problems with data analysis, as
typical analyses of multiple-choice tests assume SR questions. We have previously compared
two different methods that could be used to identify groups of questions evident in students’
responses to PIQL questions and compare them to the groups defined by our three PQL
constructs (Smith et al., in press). In this paper we briefly describe these methods and present our
preliminary results from using module analysis for multiple-choice responses, which allows each
correct response to MCMR questions to be included separately (Brewe, Bruun, & Bearden,
2016).

Data for this study were collected in two different terms at a comprehensive public university
in the Northwestern United States. The PIQL was given as a pretest during the first week of the
term in three different calculus-based introductory physics classes: Mechanics (N = 821),
Electricity and Magnetism (N = 701), and Thermodynamics and Waves (N = 585). These data do
not form a matched set, but we take them as three snapshots in time, which may be
representative of a progression through the introductory course sequence: before mechanics
(PreMech), after mechanics and before electricity & magnetism (PostMech), and after
electricity& magnetism (PostEM). Previous analyses of these data have shown that students’
overall scores on the PIQL increase over time, so we can consider students progressing toward
expertise through our data (Smith et al., 2018, in press).

We have previously reported preliminary results from applying module analysis to identify
coherent groups of PIQL questions and responses (Smith et al., in press). In the current study we
interpret these results in new ways that focus specifically on the questions related to covariation.
Our work is guided by the research question: In what ways do patterns of students’ responses to
PIQL questions reveal insights into the ways in which they think about and use covariation in
physics contexts?

Previous Results: Coherent Modules Identified from Students’ Responses

We have previously used both confirmatory and exploratory factor analysis to identify
groups of questions evident in students’ response patterns to PIQL questions and compare those
groups with our pre-defined PQL constructs (Smith et al., in press). These results showed a poor
alignment between response patterns and our three primary constructs of PQL: ratio and
proportion (questions 1-6), covariation (questions 7—14), and negativity (questions 15-20);
however, a major limitation of factor analysis is that questions must be scored dichotomously as
either completely correct or incorrect. This is problematic for MCMR questions because a
student who chose one correct response to a question with two correct responses would be coded
the same way as a student who chose multiple incorrect responses; therefore, we choose not to
emphasize these results here.

To preserve the nuance and complexity of students’ response patterns within (and between)
questions we used module analysis for multiple-choice responses to examine the network of
student responses to PIQL questions (Brewe et al., 2016). Module analysis uses community
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detection algorithms to identify modules (a.k.a. communities, clusters, etc.) within networks of
responses to multiple-choice questions. We have chosen to analyze a network of only correct
responses to PIQL questions. The benefit of this method is that we can examine the patterns that
arise from students’ selections of each individual correct response, which preserves some of the
complexity of module analysis questions by recognizing any time a student chooses a correct
response. A limitation of the way that we have used module analysis is that we are ignoring
whether or not a student chooses incorrect responses in addition to correct responses. Expanding
the network to include correct and incorrect responses could address this limitation, but is
beyond the scope of the current study.

In network analysis studies, the choice of community detection algorithm seems to depend a
lot on personal preference of the researchers. Unfortunately, the InfoMap algorithm used by
Brewe et al. (2016) did not yield useful results.! In the absence of clear guidelines regarding
which community detection algorithm would be most relevant, we chose to compare the modules
identified by six different algorithms. We feel confident that modules that are identified by
multiple community detection algorithms are representative of the data.

A major result from our analyses was that the modules were not consistent in our three time-
dependent data sets. The results went from four modules in PreMech (two with only two
responses each) to six modules in PostEM (most with only 2-3 responses). Contrast this to what
might be expected for a hypothetical group of experts: true experts would answer all questions
correctly, resulting in strong links between all correct responses, and all responses being in one
coherent module. Our data show that as students progress toward expertise during the
introductory sequence, modules become less coherent, not more. Additional data from upper-
division students are needed to examine the continuation of this progression.

The changes in module definitions over time led us to look for consistent patterns across the
results, which may represent stable elements of student reasoning. Figure 1 shows the average
likelihood that each question pair occurs in the same module as well as the “submodules” that we
have identified as being consistent across our analyses. Each of these submodules may be seen as
a bright yellow/orange square along the diagonal in Figure 1, with submodule i (in the upper
right corner) being the least cohesive (least bright). Some submodules are subsets of our PQL
constructs: ratio and proportion (iii), covariation (ii and viii), and negativity (ix). Others include
questions from two or three of these constructs (i, iv, v, vi, and vii), emphasizing the connections
between these constructs.

The MCMR questions with more than one correct response show some particularly
interesting trends. Question 17 has two correct answers (17D, 17G) that group very strongly
together. Question 16 also has two correct responses (16C, 16D), but they do not group into the
same submodule. Question 9 has three correct responses: 9C and 9D are in submodule i (which
is the least coherent submodule mentioned above), and 9A groups equally well with two
different submodules, neither of which connects with 9C or 9D.

New Insights: Covariation Questions Group Together and Split Apart
To answer our research question we consider the questions intended to assess students’ PQL
regarding covariation (7—14). Some of these items were taken directly (with permission) from the
Precalculus Concept Assessment (PCA) (Carlson et al., 2010): question 8 asks students to
interpret the slope of a graph of a function (modified from the PCA by graphing speed as a
function of time), questions 11 and 12 are bottle questions for which students need to either

! Wells et al. (2019) report similar difficulty using the InfoMap algorithm.
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Submodule Definitions

i) 5,9C, 9D, 20
i) 811,12
iii)y 3,6
iv) 18,19, (94)
v) 7,15, (94)

vi) 1, 16D
vii) 2,4, 14, 16C

viii) 10, 13
ix) 17D, 17G

17D 17G 10E 13C 2A 4E 14B 16C 1C 16D 7D 15A 9A 18C 19B 3D 6A 8B 11B 12C 5D 9C 9D 20C

. rarely . sometimes mostly always

In the same module? . never

Figure 1. Previous results from applying module analysis to PIQL data (Smith et al., in press). The heat map shows
the average cooccurrence matrix from the three data sets (yellow indicating responses that are always in the same
module, dark blue indicating responses that are never in the same module). The bright squares along the diagonal

are used to identify the consistent “submodules” across data sets. Questions intended to probe ratio and proportion

are shown in bold in the definition list, questions for covariation are in italics, and questions for negativity are
underlined. Response 94 fits equally with two submodules.

select a bottle to match a given graph (11) or select a graph to match a given bottle (12), and
question 14 asks students to interpret a ratio expression with a variable in the numerator and
denominator to make claims about both the rate of change of the ratio and its limiting value (in
the context of fish in a lake). Question 7 is a variation on the students-professors question in
which students must select an equation to represent the statement “There are three times as many
quarks as nucleons.” Question 9 tells students that the length and width of a flag both increase by
a factor and asks which, if any, of the following quantities also increase by the same factor:
perimeter, area, length of diagonal, and/or length of curve superimposed on the diagonal. For
question 10 students must compare the distances traveled by two joggers who run at different
speeds for different amounts of time, and for question 13 students are given the equation

m=k 3% and asked what happens to m if both » and p double (with & held fixed).

As seen in Figure 1, these questions show up in five out of the nine submodules, but only two
submodules include only covariation questions (ii and viii). We identify commonalities between
the questions that appear in covariation-only submodules. Questions 8, 11, and 12 (submodule ii)
all require students to interpret graphs, and these are the only such questions on the PIQL.
Questions 10 and 13 (submodule viii) both require students to determine the output of a known
function with two input variables. The questions in each of these submodules test students’
abilities to use a unique and somewhat sophisticated type of reasoning.

It is more difficult to identify why other questions/responses group together (or don’t). It
makes sense that students would choose 9C (the curve along the diagonal of the flag) at similar
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rates as they choose 9D (the diagonal itself). But why is 9A (the perimeter of the flag) more
strongly connected to questions 7 and 15 (both of which require students to select an equation
based on a description) or to questions 18 and 19 (which involve interpreting negative vector
quantities)? Questions 2, 4, and 14 all involve ratios, but 16C requires students to correctly
compare a positively charged sphere and a negatively charged sphere, which does not (on the
surface) seem to be related. More work is needed to reveal why students’ responses group in
these particular ways.

Summary and Future Directions

As mentioned above, the submodules identified by module analysis do not correspond with
the groups defined by our PQL constructs. This suggests that either a) students’ PQL cannot be
separated into skills regarding ratio and proportion, covariation, and negativity, or b) their skills
in these areas have developed similarly such that they are functionally equivalent. Regardless of
the interpretation, module analysis reveals complexity and structure that changes over time as
students progress through the introductory physics course sequence.

Several questions still remain:

e How do the modules identified by students’ responses to PIQL questions change over
time throughout the undergraduate curriculum?

e How sensitive are these modules to different forms of instruction? Are they the same
at different institutions or in different courses?

e How do students’ choices of incorrect responses relate to their choices of correct
responses (especially for MCMR questions)? How often do students contradict
themselves?

e Are there underlying commonalities that we can identify in each module? How do
these relate to previous literature on quantification and quantitative reasoning or
students’ conceptual understanding of physics?

Module analysis opens the possibilities for future work that goes beyond analysis of only
correct responses by identifying modules of incorrect responses as well (Brewe et al., 2016).
Including incorrect responses in the module analysis could provide evidence to explain why
some questions and responses group together in unexpected ways. This is particularly important
for interpreting responses to MCMR questions, as different (in)correct responses can reveal
insights into different aspects of a student’s understanding regarding both physical concepts and
mathematical reasoning. This interplay is essential to measuring PQL.

We plan to look more closely at the dynamics of the defined modules over time by using
matched sets of responses collected from the same students at different times, and by expanding
data collection beyond the introductory sequence. These longitudinal data will allow us greater
confidence in claims regarding how students’ response patterns change over time. Future work
will also include expanding data collection beyond a single university. The coupling of PIQL
MCMR questions with module analysis shows promise for finding patterns of emergent expertise
in mathematical reasoning in introductory physics, and beyond, on a scale that cannot be
achieved using qualitative research methods.
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