

1 **Chemically-Induced Cell Wall Stapling in Bacteria**

2 Sylvia L. Rivera^{1,9}, Akbar Espaillat^{2,9}, Arjun K. Aditham^{3,4,9}, Peyton Shieh⁵, Chris Muriel-
3 Mundo¹, Justin Kim^{6,7}, Felipe Cava^{2,*}, M. Sloan Siegrist^{1,8,10,*}

4 ¹Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA

5 ²Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå
6 University, Umeå 90187, Sweden

7 ³Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

8 ⁴Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford
9 University, Stanford, CA 94305, USA

10 ⁵Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
11 Avenue, Cambridge, MA 02139, USA

12 ⁶Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

13 ⁷Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical
14 School, Boston, Massachusetts 02115, USA

15 ⁸Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA
16 01003, USA

17 ⁹These authors contributed equally

18 ¹⁰Lead contact

19 *Correspondence: siegrist@umass.edu (M.S.S), felipe.cava@umu.se (F.C.)

20 **Summary**

21

22 Transpeptidation reinforces the structure of cell wall peptidoglycan, an
23 extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical
24 success of transpeptidase-inhibiting β -lactam antibiotics illustrates the essentiality of
25 these cross-linkages for cell wall integrity, but the presence of multiple, seemingly
26 redundant transpeptidases in many bacterial species makes it challenging to determine
27 cross-link function. Here we present a technique to covalently link peptide strands by
28 chemical rather than enzymatic reaction. We employ bio-compatible click chemistry to
29 induce triazole formation between azido- and alkynyl-D-alanine residues that are
30 metabolically installed in the cell walls of Gram-positive and Gram-negative bacteria.

31 Synthetic triazole cross-links can be visualized by substituting azido-D-alanine with
32 azidocoumarin-D-alanine, an amino acid derivative that undergoes fluorescent
33 enhancement upon reaction with terminal alkynes. Cell wall stapling protects
34 *Escherichia coli* from β -lactam treatment. Chemical control of cell wall structure in live
35 bacteria can provide functional insights that are orthogonal to those obtained by
36 genetics.

37

38 **Introduction**

39

40 Cell wall peptidoglycan is a mesh-like biopolymer that surrounds nearly all
41 bacteria and is required to resist turgor pressure. The macromolecule consists of a
42 glycan backbone and peptides, containing both L- and D-amino acids (Figure 1A), that

43 are cross-linked by D,D- and L,D-transpeptidases (Egan et al., 2015). The degree of
44 transpeptidation can vary with species, growth phase and environmental conditions
45 (Vollmer and Seligman, 2010). For example, the peptidoglycan of slow- or non-growing
46 *E. coli* is more highly cross-linked and less susceptible to *in vitro* enzymatic turnover
47 than that of actively-replicating *E. coli* (Glauner et al., 1988; Goodell and Tomasz, 1980;
48 Lee et al., 2013; Pisabarro et al., 1985; Tuomanen and Cozens, 1987; Tuomanen et al.,
49 1988). Cross-linking abundance is also predicted to impact the overall strength and
50 stiffness of the cell envelope (Auer and Weibel, 2017; Huang et al., 2008; Loskill et al.,
51 2014; Vollmer and Bertsche, 2008), cell shape (Huang et al., 2008; Sycuro et al., 2010;
52 Yang et al., 2019), and assembly of macromolecular structures (Scheurwater and
53 Burrows, 2011). The clinical success of transpeptidase-inhibiting β -lactam antibiotics
54 highlights the importance of peptidoglycan cross-linking in bacterial physiology.

55

56 Despite the biological and medical significance of peptidoglycan transpeptidation,
57 unraveling the roles of these linkages is challenging. Currently, the standard ways to
58 manipulate cross-linking are to mutate or deplete the expression of the transpeptidase
59 genes or to inhibit these enzymes with small molecules like β -lactams. However, the
60 functional redundancy of transpeptidases and promiscuity of β -lactams (Spratt, 1975)
61 pose challenges to rational control of peptidoglycan connectivity.

62

63 D-amino acids bearing reactive groups such as cysteines, alkynes, azides and
64 tetrazines have been used to metabolically label the peptidoglycan stem peptide (de
65 Pedro et al., 1997; Kuru et al., 2012; Pidgeon et al., 2015; Radkov et al., 2018; Siegrist

66 et al., 2015; Siegrist et al., 2013). Once embedded, the presence of these probes can
67 be revealed by chemical reaction with an exogenous label that bears a complementary
68 reactive group (Siegrist et al., 2015). We hypothesized that we might also use
69 functionalized peptide strands to manipulate cell wall cross-linking. More specifically, we
70 reasoned that co-incubation of bacteria with azido- and alkynyl-D-amino acids would
71 result in a subpopulation of labeled muropeptide strands in close enough proximity to
72 undergo copper-catalyzed azide-alkyne cycloaddition (CuAAC) upon introduction of the
73 appropriate reagents (Figure 1B). Such structures would serve as synthetic, triazole
74 cross-links.

75

76 **Results and Discussion**

77

78 We first tested our hypothesis using a loss-of-fluorescence assay. In this
79 approach, bacteria are co-incubated in the presence of azido- and alkynyl-D-amino
80 acids, washed and subjected to CuAAC (Figure 2A, left). We reasoned that the
81 peptidoglycan-embedded functional groups should either react with each other or with
82 the alkynyl- or azido-fluorophores in CuAAC solution. Bacteria incubated with a single D-
83 amino acid probe, by contrast, should have muropeptides decorated with just one
84 functional group, which in turn should react only with the complementary reactive
85 fluorophore. In this assay, we interpret decreased labeling of co-incubated relative to
86 singly-incubated bacteria to indicate that there are fewer peptidoglycan-embedded
87 functional groups available to react with the fluorophores. This may occur because the
88 reaction between azido- and alkynyl-muropeptides is favored or because there is

89 competition between the D-amino acids for initial incorporation into the muropeptide. To
90 control for the latter possibility, we also subjected metabolically-labeled bacteria to
91 strain-promoted azide-alkyne cycloaddition (SPAAC; Figure 2A, right) with a
92 cyclooctyne-appended fluorophore. In the absence of copper and other reagents,
93 peptidoglycan-embedded azides and alkynes should not react with each other at an
94 appreciable rate and only the azide-cyclooctyne reaction should occur. In the SPAAC
95 reactions, therefore, we interpret changes in labeling to mean that the azido-D-amino
96 acid outcompetes or is outcompeted by other D-amino acids for initial incorporation into
97 the cell wall.

98

99 We used the loss-of-fluorescence approach to ask whether we could introduce
100 triazole cross-links into the cell wall of *Listeria monocytogenes*, a Gram-positive, food-
101 borne pathogen. We initially used *pbp5::tn L. monocytogenes*, a D,D-carboxypeptidase-
102 deficient mutant that we previously showed has high levels of D-amino acid labeling
103 (Siegrist et al., 2013). After incubating the bacteria in the presence of equal amounts of
104 D-alanine (Dala), azido-D-amino acid (azDA or azDlys, the R groups of which
105 respectively have one and four carbons), alkynyl-D-alanine (alkDA) or mixtures thereof,
106 we washed away unincorporated amino acid and subjected the bacteria to CuAAC with
107 either an alkynyl- (Figure 2B) or azido-fluorophore (Figure 2C). We assessed cellular
108 fluorescence by flow cytometry. In both cases, the bacteria that were co-incubated in
109 alkDA/azDlys had lower amounts of fluorescence than those incubated in azDlys
110 (Figure 2B) or alkDA (Figure 2C) alone. We obtained similar results with the more bio-
friendly CuAAC reaction (Yang et al., 2014) that employs the 3-[4-(bis[(1-tert-butyl-1H-

112 1,2,3-triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]propanol (BTTP) ligand
113 (Wang et al., 2011) (Figure 2D) or in wild-type *L. monocytogenes* (Figures S1A and
114 S1B). These data suggested that bacteria co-incubated in azDlys and alkDA had fewer
115 peptidoglycan-embedded functional groups available to react with complementary
116 reactive fluorophores in solution (Figure 2A). Moreover, in bacteria subjected to SPAAC
117 with cyclooctyne-fluorophore, the signal after alkDA/azDlys incubation was similar to
118 that of azDlys alone or Dala/azDlys (Figures 2E and S1C). The SPAAC control reactions
119 suggested that there was no appreciable competition between the D-amino acids for
120 initial incorporation into the peptidoglycan. Taken together these data suggest that cell
121 wall-embedded azides and alkynes can react with each other by CuAAC.

122

123 We next sought a more direct read-out for triazole cross-links. Fluorogenic
124 molecules undergo a fluorescence enhancement upon chemical or enzymatic reaction.
125 For example, CuAAC reaction of the non-fluorescent 3-azido-7-hydroxycoumarin (azido-
126 coumarin) with terminal alkynes yields fluorescent triazole products (Sivakumar et al.,
127 2004). As D-amino acids appended to fluorophores, including hydroxycoumarin,
128 incorporate efficiently into peptidoglycan (Kuru et al., 2012), we decided to test whether
129 swapping an azido-coumarin D-amino acid (azcDA) for an azido-D-amino acid would
130 allow us to mark the presence of triazole cross-links (Figure 2F).

131

132 We began by synthesizing azcDA, which could be accessed readily by coupling
133 *N*^α-Boc-D-2,3-diaminopropionic acid to azidocoumarin acid **1** (Weineisen et al., 2017)
134 via pentafluorophenyl ester **2**. Trifluoroacetic acid-mediated Boc deprotection afforded

135 azcDA (Scheme 1). Next we co-incubated *pbp5::tn L. monocytogenes* with Dala/azcDA
136 or alkDala/azcDA, washed, and subjected the bacteria or not to a BTTP CuAAC
137 reaction that lacked a complementary alkynyl-fluorophore. By microscopy we found that
138 fluorescence of live, azcDA-labeled bacteria required the inclusion of alkDA in the initial
139 metabolic labeling step as well as the subsequent CuAAC reaction (Figure 2G). These
140 gain-of-fluorescence data were consistent with the loss-of-fluorescence results (Figures
141 2B-2D, S1A, S1B) and supported the notion that a CuAAC reaction can covalently join
142 azides and alkynes metabolically installed in *L. monocytogenes* peptidoglycan to form
143 synthetic cross-links.

144

145 We were initially unable to identify peptidoglycan modifications that were specific
146 to alkDA/azDlys-treated, CuAAC-subjected bacteria and that had the exact mass of a
147 triazole cross-link (Figure S2). We hypothesized that our ability to detect such
148 modifications—which theoretically could include muropeptides with additional,
149 transpeptidase-mediated linkages—was complicated by the pre-existing complexity of
150 *L. monocytogenes* peptidoglycan, which is both highly-cross-linked and tailored by *N*-
151 deacetylases, O-acetyltransferases and amidotransferases (Aubry et al., 2011; Boneca
152 et al., 2007; Rae et al., 2011). Therefore, we turned our attention to the model, Gram-
153 negative bacterium *Escherichia coli*, as its peptidoglycan composition is considerably
154 less complex (Vollmer et al., 2008). To simplify our analysis even more, we employed a
155 strain, CS802-2, in which most of the genes encoding peptide-acting cell wall enzymes
156 were deleted, including all 6 carboxypeptidases (Denome et al., 1999). The lack of
157 tetrapeptides in this background prevents L,D-transpeptidation, so we expected D-amino

158 acid incorporation to occur at the 5th position of the stem peptide (Cava et al., 2011). We
159 first verified that CuAAC-subjected, alkDA/azDA-labeled CS802-2 *E. coli*, like wild-type
160 *E. coli*, were less fluorescent than those labeled by azDA or alkDA alone (Figures 3A,
161 3B, S3) The decrease in D-amino acid concentration and labeling time compared to *L.*
162 *monocytogenes* (described further below) correlated with a more modest reduction in
163 fluorescence. We next metabolically labeled CS802-2 *E. coli* with different combinations
164 of D-amino acids, washed away unincorporated amino acid, and performed BTTP
165 CuAAC reactions in the absence of fluorophore. We then separated digested
166 peptidoglycan by ultra-performance liquid chromatography (UPLC) and used MS/MS to
167 identify molecules with the exact masses that corresponded to azDA- and alkDA-
168 terminating pentapeptides in the appropriate samples. We identified peaks that were
169 specific to alkDA/azDA-treated, CuAAC-subjected bacteria (Figure 3C) and had the
170 exact masses of a 5-5 triazole dimer, trimer (+/- anh) or tetramer (Figures 3D-E, S4, S5,
171 and Table S1). The presence of these species increased the total cross-linking by
172 approximately 20% (Table 1). We note that muropeptide incorporation of azDA was ~2-
173 fold more efficient than alkDA and associated with a general decrease in cross-linking
174 (Tables 1 and S2). Exogenous D-amino acids, including both Dala and non-canonical D-
175 amino acids, have been shown or hypothesized to inhibit D,D-transpeptidation (Caparros
176 et al., 1992; Lam et al., 2009). Importantly, however, CuAAC-dependent cross-linking
177 occurred only in alkDA/azDA-treated samples (Table 1) and not in controls that had
178 been treated with equimolar amounts of Dala/azDA (Table S2) or Dala alone (Table 1).
179 These data confirmed our ability to introduce synthetic cross-links into bacterial
180 peptidoglycan in a CuAAC-inducible manner.

181

182 Cell wall homeostasis is a balance between synthesis and turnover.

183 Peptidoglycan-cleaving enzymes have been implicated directly (Park and Strominger,

184 1957; Schwarz et al., 1969; Tomasz et al., 1970; Tomasz and Waks, 1975) and

185 indirectly (Cho et al., 2014; Kohlrausch and Höltje, 1991) in β -lactam cidalty. Slow- or

186 non-replicating, β -lactam-tolerant *E. coli* have highly cross-linked cell walls that are

187 more resistant *in vitro* to lytic enzymes (Glauner et al., 1988; Goodell and Tomasz,

188 1980; Lee et al., 2013; Pisabarro et al., 1985; Tuomanen and Cozens, 1987; Tuomanen

189 et al., 1988). We wondered whether β -lactam susceptibility might be influenced by pre-

190 existing cell wall cross-linking, either in addition to, or as part of, the well-documented

191 effect of bacterial growth rate (Eng et al., 1991; Lee et al., 2018; Lee et al., 1944;

192 Toumanem et al., 1986). Since exogenous D-amino acids can modify the structure,

193 amount and strength of peptidoglycan and inhibit bacterial growth (Caparros et al.,

194 1992; Cava et al., 2011; Lam et al., 2009), and growth rate in turn correlates with β -

195 lactam lethality (Eng et al., 1991; Lee et al., 2018; Lee et al., 1944; Toumanem et al.,

196 1986), we first optimized D-amino acid concentration and incubation time (Figures S6A

197 and S6B). We then labeled *E. coli* with different combinations of D-amino acids, washed

198 and performed BTTP CuAAC. After CuAAC reagent washout, bacteria were

199 resuspended in growth medium and challenged with the β -lactam ampicillin. Without

200 CuAAC, ampicillin treatment resulted in similar killing regardless of what D-amino acid(s)

201 the bacteria had been metabolically labeled with (Figure 4A). In *E. coli* subjected to

202 CuAAC, ampicillin caused ~2-3 logs of killing for bacteria labeled with Dala, Dala/alkDA

203 or Dala/azDA but less than 1 log for those labeled with alkDA/azDA (Figure 4B). These
204 data suggested that triazole cross-links protect *E. coli* from ampicillin.

205

206 BTTP-ligated CuAAC (Wang et al., 2011) is more biocompatible than traditional
207 TBTA CuAAC (Yang et al., 2014). While the BTTP CuAAC reaction that we previously
208 optimized for mycobacterial species (Garcia-Heredia et al., 2018) did not change *L.*
209 *monocytogenes* cell counts (Figure S7), they partially inhibited the recovery of *E. coli* on
210 solid medium (Figure 4). However the effect was consistent across the different D-amino
211 acid combinations, indicating that the synthetic cross-links, not the CuAAC, were
212 responsible for antibiotic rescue. In liquid medium, *E. coli* subjected to CuAAC had a
213 distinct lag in growth relative to mock-reacted controls (Figures S6C-S6E). The length of
214 the lag phase was significantly enhanced in CS802-2 *E. coli* that had been incubated in
215 both azDA and alkDA e.g. bacteria with triazole linkages. Since longer lag phases are
216 associated with antibiotic tolerance (Bertrand, 2019; Fridman et al., 2014) we asked
217 whether the apparent protection afforded by alkDA/azDA labeling followed by CuAAC
218 was transient and whether it was specific to β -lactams. During the post-CuAAC lag
219 phase, synthetic cross-links protected bacteria from ampicillin and the closely-related
220 antibiotic carbenicillin (Figures 4B, S7A, S7B) but not the translation-inhibiting
221 aminoglycoside kanamycin (Figure 4C). This protection was lost following resumption of
222 growth (Figure S7C). Thus an extended, post-CuAAC lag phase correlates with, but is
223 likely not responsible for, the enhanced tolerance of alkDA/azDA-labeled *E. coli* to β -
224 lactams.

225

226 Taken together, our data suggest that synthetic peptidoglycan cross-links protect
227 against β -lactam-induced lethality. The total cross-linking density across CuAAC-treated
228 bacteria is similar (Tables 1 and S2), suggesting that the unusual linkage (triazole) or
229 position on the stem peptide (5-5) is instead responsible for protection. The classic view
230 of β -lactam activity is that transpeptidase inhibition damages the cell wall by disrupting
231 the balance between peptidoglycan synthases and hydrolases (Park and Strominger,
232 1957; Schwarz et al., 1969; Tomasz et al., 1970; Tomasz and Waks, 1975). β -lactams
233 also induce a metabolically-taxing, futile cycle of cell wall synthesis and turnover (Cho et
234 al., 2014; Kohlrausch and Höltje, 1991). Both models for β -lactam cidalty posit that
235 lethality directly or indirectly depends on the activity of peptidoglycan-degrading
236 enzymes. An artificially-reinforced cell wall may resist β -lactam-induced damage
237 because its structure is partially independent from transpeptidase-mediated synthesis.
238 Additionally, or alternatively, synthetic cross-links may regulate peptidoglycan turnover.
239 Indeed, while this manuscript was under review, Dik and colleagues proposed that non-
240 canonical cell wall cross-links (derived from the reaction of exogenously-incorporated
241 sulfonyl fluoride D-amino acids with endogenous *m*-DAP) can impede the processivity of
242 lytic transglycosylases (Dik et al., 2020), enzymes that cleave the carbohydrate
243 backbone of peptidoglycan. While we cannot rule out pleiotropic effects on other cell
244 envelope or periplasmic structures, we hypothesize that synthetic triazole cross-links act
245 as molecular speed bumps for lytic transglycosylases, blunting β -lactam cidalty by
246 keeping peptidoglycan degradation at bay. Consistent with the diverse roles for these
247 enzymes in peptidoglycan homeostasis (Dik et al., 2017), the prolonged, post-CuAAC
248 recovery in liquid medium of synthetically cross-linked *E. coli* (Figures S6D-E) may also

249 reflect slowed cell wall turnover. Treatment with unnatural D-amino acids alone modestly
250 enhanced both lag phase and β -lactam tolerance (Figure S6D, S6E, S8), although the
251 effects were not statistically significant. As noncanonical D-amino acid incorporation is
252 not expected to alter cell wall turnover by lytic transglycosylases (Caparros et al., 1992),
253 we speculate that these more-subtle peptidoglycan modifications impact *E. coli*
254 physiology by a different mechanism(s) than the synthetic cross-links.

255

256 Given the promiscuity with which D-amino acids incorporate into the bacterial
257 peptidoglycan (Radkov et al., 2018; Siegrist et al., 2015) stapling can be readily adapted
258 for a wide variety of species. Molecular control of synthetic cross-link positioning may
259 also be possible. The effect(s) of 5-5 cross-links on cell wall structure may be different
260 from native, 4,3 or 3,3 cross-links. For example, 5,5 cross-links likely allow more
261 flexibility and/or more space between glycan strands, which could in turn change the
262 physical properties of the peptidoglycan. Unlike monopeptides, which can incorporate
263 into the 4th or 5th positions (or both) of stem peptides (Kuru et al., 2012; Siegrist et al.,
264 2013), D-amino acid dipeptides with functional groups on their N- or C-terminus are
265 predicted to install these groups specifically at 4th or 5th position, respectively (Liechti et
266 al., 2013). Our loss-of-fluorescence assay suggests that dipeptides functionalized with
267 N-terminal azides and alkynes permit the introduction of synthetic, 4-4 cross-links into
268 CS802-2 *E. coli* (Figure S9), in addition to the 5-5 linkages afforded by monopeptide
269 labeling. The development of alkyne- and azide-bearing DAP derivatives may also
270 enable the introduction of triazole linkages at the 3rd position of the muropeptide. Finally,
271 pulse-chase labeling in species with defined modes of growth can offer sub-cellular

272 control of synthetic cross-links. Independent from and complementary to genetics, cell
273 wall stapling is an orthogonal assay for dissecting the roles of peptidoglycan structure in
274 bacterial physiology.

275

276 **Significance**

277 Bacteria are surrounded by cell wall heteropolymers that are essential for viability
278 under most circumstances. The structure of the cell wall is well-conserved and consists
279 of a glycan backbone cross-linked by D-amino acid-containing peptides. Cross-link-
280 inhibiting β -lactams account for two-thirds of the global antibiotic market, underscoring
281 the general importance of these linkages to bacterial physiology. For a given species,
282 the density of cross-linking can vary with replication rate and environmental conditions.
283 These changes in cell wall connectivity in turn correlate with other phenotypic properties
284 of the bacterium. However most species have multiple, closely-related enzymes that
285 catalyze cross-links, each with varying susceptibility to different β -lactams, making it
286 difficult to control the density of these linkages by genetics or small molecule inhibition
287 alone. In this work, we present a chemical technique to introduce synthetic cross-links
288 to the cell walls of live bacteria. We use bio-compatible click chemistry to induce a
289 reaction between azido- and alkynyl-D-alanine residues that are metabolically
290 incorporated in the cell wall peptides of Gram-positive and Gram-negative species. The
291 resulting triazole linkages can be visualized by substituting azido-D-alanine with
292 azidocoumarin-D-alanine, an amino acid analogue that becomes more fluorescent after
293 reacting with an alkyne. Stapling the cell wall of *Escherichia coli* enhances its tolerance
294 to β -lactams. Chemical manipulation complements genetic and small molecule

295 perturbations as an independent means of investigating the role of cell wall connectivity
296 in bacterial physiology.

297

298 **Acknowledgments**

299 No competing financial interests have been declared. This work was supported by NSF
300 RAISE Convergence 1848065 (M.S.S. under “Palmore”), NSF GRFP (A.K.A.), Stanford
301 ChEM-H Chemistry/Biology Interface Predoctoral Training Program (A.K.A.), American
302 Cancer Society Postdoctoral fellowship PF-18-011-01-CDD (P.S.), NIH R25 GM086264
303 (C.M.-M.) as well as the Swedish Research Council (VR), Knut and Alice Wallenberg
304 Foundation, Laboratory of Molecular Infection Medicine Sweden (MIMS) and Kempe
305 Foundation (F.C.). We gratefully acknowledge K. Young for *E. coli* strain CS802-2, C.
306 Hill for *pbp5::tn* (*lmo2754::tn*) EGD-e *L. monocytogenes*, and A. Burnside for technical
307 assistance.

308

309 **Authors Contributions**

310 Conceptualization M.S.S., F.C., S.L.R, A.E., A.K.A.; Investigation, S.L.R., A.E., A.K.A.,
311 P.S., C.M.-M. and J.K.; Writing - Original Draft, M.S.S. and S.L.R.; Writing - Review &
312 Editing M.S.S., S.L.R., A.E., and F.C.; Visualization S.L.R.; Funding Acquisition, M.S.S.,
313 A.K.A., P.S., F.C.; Supervision, M.S.S., F.C.

314

315 **Declaration of Interest**

316 The authors declare no competing interests.

317

318 **Main figure titles and legends**

319

320 **Figure 1.** Native (A) and synthetic (B) cross-linking of the bacterial cell wall. Native
321 cross-links are catalyzed by transpeptidases. Synthetic cross-links are introduced by
322 metabolic labeling with azido- and alkynyl-D-alanine (azDA and alkDA, respectively)
323 followed by CuAAC.

324

325 **Figure 2.** Loss (A-E) and gain (F and G) of fluorescence strategies for detection of
326 synthetic cross-links. (A) Loss-of-fluorescence logic, including SPAAC control (details in
327 SI Methods). (B-E) *pbp5::tn L. monocytogenes* was incubated with the indicated D-
328 amino acids, washed and subjected to CuAAC with TBTA ligand and alkyne-
329 carboxyrhodamine 110 (CR110) (B); TBTA ligand with azido-CR110 (C); BTTP ligand
330 with alkyne-CR110 (D); SPAAC with DBCO-CR110 (E). Fluorescence was quantified by
331 flow cytometry and data are representative of 2-6 biological replicates performed in
332 triplicate. MFI, mean fluorescence intensity. Error bars, +/- standard deviation. (F), Intra-
333 peptidoglycan reaction between alkDA and azidocoumarin-D-alanine (azcDA) results in
334 the fluorescent triazole product. (G) *pbp5::tn L. monocytogenes* was incubated in the
335 presence of indicated D-amino acids, washed and subjected to BTTP CuAAC with no
336 exogenous fluorescent label. Of the 327 alkDA/azcDA-treated, CuAAC-subjected cells
337 observed in two independent experiments, 310 were fluorescent above Dala/azcDA-
338 treated, CuAAC-subjected background levels. PG, fluorescence derived from
339 peptidoglycan labeling. Scale bar, 1 μ M. Images are representative of 4 biological
340 replicates.

341

342 **Figure 3.** Indirect (A-B) and direct (C-E) identification of synthetic triazole cross-links.

343 CS802-2 *E. coli* was incubated +/- D-alanine alone (Dala) or equimolar combinations of
344 D-alanine, azido-D-alanine (azDA), and alkynyl-D-alanine (alkDA) as indicated, washed
345 and subjected to CuAAC with BTTP ligand and complementary fluorophore (A-B) or
346 with the detection reagent omitted (C-E). Peptidoglycan was extracted, digested with
347 mutanolysin and lysozyme, and separated by ultra-performance liquid chromatography
348 (UPLC). We identified several peaks from alkDA/azDA-labeled bacteria that were
349 specific to CuAAC treatment (red and blue boxes, (C)). Chemical structure for 5-5
350 triazole dimer (D) identified by mass spectrometry (MS) from red boxed peak in (C). (E)
351 Ion detection (left) and MS profile (right) for 5-5 triazole dimer. MS/MS profile and
352 fragmentation shown in Figure S4 and Table S1, respectively. Ion detection and MS
353 profiles for 5-5 triazole trimers and tetramer from blue boxed peaks in (C) shown in
354 Figure S5. Fluorescence in (A-B) was quantified by flow cytometry and data are
355 representative of 2-6 biological replicates performed in triplicate. MFI, mean
356 fluorescence intensity. Error bars, +/- standard deviation. UPLC analysis in (C) was
357 performed on two biological replicates.

358 **Figure 4.** Synthetic cross-links protect CS802-2 *E. coli* from ampicillin (B) but not from
359 kanamycin (C). CS802-2 *E. coli* was incubated +/- the indicated D-amino acids for 6 hrs,
360 washed and subjected (B, C) or not (A) to CuAAC with BTTP ligand (no complementary
361 fluorophore) as in Figure 3. Bacteria were then challenged with antibiotic for 1 hr at 37
362 °C and plated for colony forming units (CFUs). Data are from three biological replicates
363 performed in triplicate. Error bars, +/- standard deviation. Statistical significance was
364 assessed by two-way ANOVA with Tukey's multiple comparison test. ns, ≥ 0.05 ; *,
365 $p < 0.05$; **, $p < 0.005$.

366

367

368

369

370

371

372

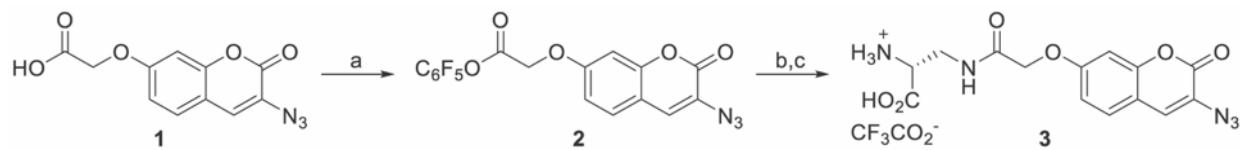
373

374

375

376

377


378

379

380

381 **Main tables/schemes and legends**

382 **Scheme 1.** 3-Azido-7-hydroxycoumarin D-alanine synthesis.

384 ^aConditions: (a) Pentafluorophenyl trifluoroacetate, N,N-diisopropylethylamine, THF, rt,
385 45%. (b) Na-Boc-D-2,3-diaminopropionic acid, N,N-diisopropylethylamine, 4:1
386 THF:DMF, 67%. (c) 1:1 TFA:dichloromethane, rt, 79%.

387

388

389

390

391

392

393

394

395

396

397

398 **Table 1. Quantification of muropeptides from CS802-2 *E. coli* treated with Dala or**
399 **a combination of alkDA/azDA then subjected or not to CuAAC.**

400

	Dala		alkDA/azDA	
	-CuAAC	+CuAAC	-CuAAC	+CuAAC
azDA	-	-	8.21 ± 4.26	2.92 ± 0.11
alkDA	-	-	4.04 ± 2.38	1.23 ± 1.32
% PG Modification	-	-	12.24 ± 1.42	11.44 ± 3.39
% Cross-linkage	53.05 ± 2.04	54.31 ± 3.33	42.76 ± 1.57	51.04 ± 0.23
% Triazole Cross-linkage	-	-	-	9.98 ± 1.42

401

402 ^bData from two biological replicates. One of the alkDA/azDA UPLC traces is shown in
403 Figure 3C. Compare to data for bacteria treated with Dala/alkDA or Dala/azDA, Table
404 S2.

405

406

407

408

409

410

411

412

413

414

415

416

417

418 **STAR * Methods**419 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and Virus Strains		
<i>L. monocytogenes</i> EGDe	Siegrist et. al, 2013	N/A
<i>L. monocytogenes</i> EGDe <i>pbp5::tn</i> (<i>lmo2754::tn</i>)	Siegrist et. al, 2013	N/A
CS802-2 <i>E. coli</i>	Demone et. al, 1999	N/A
Chemicals, Peptides, and Recombinant Proteins		
D-alanine (Dala)	Sigma-Aldrich	Cat# A7377
(R)- α -Propargylglycic (alkDA)	Acros Organics	Cat# 441221000
3-Azido-D-alanine HCl (azDA)	Jena Bioscience	Cat# CLK-AA004
azDlys	Jena Bioscience	
Azido-Coumarin-D-alanine (azcDA)	This paper	N/A
azDADA (ADADA)	Liechti et. al, 2013	https://www.einstein.yu.edu/research/shared-facilities/chemical-biology/
alkDADA (EDADA)	Liechti et. al, 2013	https://www.einstein.yu.edu/research/shared-facilities/chemical-biology/
BTTP	Chemical Synthesis Core Facility, Albert Einstein College of Medicine, Bronx, NY	https://www.einstein.yu.edu/research/shared-facilities/chemical-biology/
TBTA	Click Chemistry Tools, Scottsdale, AZ	Cat# 1061
Copper (II) Sulfate, Anhydrous	Alfa Aesar	Cat# 33308
L-Ascorbic Acid Sodium Salt	Alfa Aesar	Cat# A17759
Carboxyrhodamine 110 Azide (Azide-CR110)	Click Chemistry Tools, Scottsdale, AZ	Cat# AZ105

Carboxyrhodamine 110 Alkyne (Alkyne-CR110)	Click Chemistry Tools, Scottsdale, AZ	Cat# TA106
Carboxyrhodamine 110 DBCO (DBCO-CR110)	Click Chemistry Tools, Scottsdale, AZ	Cat# A127
AFDye 488 Picolyl Azide	Click Chemistry Tools, Scottsdale, AZ	Cat# 1276
Ampicillin Sodium Salt	Fisher Scientific	Cat# BP1760
Kanamycin	Sigma-Aldrich	Cat# K1377
Carbenicillin Disodium Salt	Sigma-Aldrich	Cat# C3416
dichloromethane	Fisher Scientific	
tetrahydrofuran	Fisher Scientific	
<i>N,N</i> -dimethylformamide	Fisher Scientific	
<i>N</i> ^a -Boc-D-2,3-diaminopropionic acid	Chem-Impex International, Inc	
potassium carbonate	Fisher Scientific	
<i>N,N</i> -diisopropylethylamine	Acros Organics	
trifluoroacetic acid	Sigma-Aldrich	
Software and Algorithms		
ImageJ	Schneider et al., 2012	https://imagej.nih.gov/ij/
GraphPad Prism 8.4.0	GraphPad	https://www.graphpad.com/scientific-software/prism/
ChemDraw 18.1	PerkinElmer Informatics	https://www.perkinelmer.com/es/category/chemdraw

420

421 **RESOURCES AVAILABILITY**

422

423 **Lead Contact**

424 Further information and requests for resources and reagents should be directed to Lead

425 Contact, M. Sloan Siegrist (siegrist@umass.edu)

426

427 **Material Availability**

428 All unique/stable reagents generated in this study are available from the Lead Contact.

429

430 **Data and Code Availability**

431 Unpublished custom code, software, or algorithm were not used on this publication.

432

433 **METHODS DETAILS**

434 **Culture conditions**

435 *E. coli* was grown in Luria-Bertani Broth (LB) at 37 °C. *L. monocytogenes* was grown in

436 Brain Heart Infusion Broth (BHI) at 37 °C.

437

438 **Metabolic labeling and CuAAC**

439 *E. coli* were grown overnight at 37 °C. The next day cultures were back-diluted between

440 1:50 and 1:500 and D-amino acids (1.25 mM total per sample for monopeptides and 2.5

441 mM per sample for dipeptides) were added directly in the LB medium. Cells were grown

442 until log phase (OD₆₀₀ 0.6-0.8) then centrifuged for 5 min at 5,000 x g at room

443 temperature (RT). They were then washed with sterile-filtered PBS and subjected to

444 BTTP CuAAC (200 µM CuSO₄, 800 µM BTTP [Chemical Synthesis Core Facility, Albert

445 Einstein College of Medicine, Bronx, NY], 2.5 mM sodium ascorbate (freshly prepared),

446 with or without 25 µM of azido or alkynyl fluorescent dye as appropriate) or TBTA

447 CuAAC (1 mM CuSO₄, 128 µM TBTA [Click Chemistry Tools, Scottsdale, AZ], 1.2 mM

448 sodium ascorbate (freshly prepared), with or without 25 μ M of azido or alkynyl
449 fluorescent dye [Click Chemistry Tools]) for 1 hr at room temperature, shaking. Samples
450 were then centrifuged, washed thrice with PBS, and either fixed with 2% (v/v)
451 formaldehyde or used in assays described below.

452

453 *L. monocytogenes* were grown overnight at 37 °C with the D-amino acids (2.5 mM total
454 per sample) then centrifuged for 5 min at 5,000xg at RT. They were washed with PBS
455 and subjected to CuAAC as described for *E. coli*.

456

457 **General fluorescence analysis**

458 Mean fluorescence intensities (MFI) of bacterial cell populations were obtained by flow
459 cytometry from a BD DUAL LSRFortessa instrument.

460

461 Samples were imaged on an inverted Nikon Eclipse Ti microscope equipped with a
462 Hamamatsu Orca Flash 4.0 camera and reconstructed with NIS Elements.

463

464 **Peptidoglycan composition analysis**

465 200 mL cultures of log-phase CS802-2 *E. coli* were treated with D-amino acids and
466 subjected to BTTP CuAAC as describe above. Bacteria were centrifuged for 5 minutes
467 at 5,000 x g at RT, wash twice with MilliQ water, resuspended in 1 mL MilliQ water then
468 added drop-wise into 80 mL of boiling 4% SDS. Samples were vigorously stirred for 1.5
469 hr then cooled to RT. The insoluble fraction (PG) was pelleted at 400,000 x g, 15 min,
470 30 °C (TLA-100.3 rotor; OptimaTM Max ultracentrifuge, Beckman). SDS was washed

471 out and the PG was resuspended in 200 μ l of 50 mM sodium phosphate buffer pH 4.9
472 and digested overnight with 30 μ g/mL muramidase (Cellosyl). Samples were incubated
473 at 37 °C. PG digestion was stopped by 5 min incubation in a boiling water bath.
474 Coagulated protein was removed by centrifugation. The supernatants were mixed with
475 150 μ L 0.5 M sodium borate pH 9.5, and subjected to reduction of muramic acid
476 residues into muramitol by sodium borohydride treatment (10 mg/mL final concentration,
477 30 min at RT). Samples was adjusted to pH 3.5 with phosphoric acid. Chromatographic
478 analyses of muropeptides were performed on AQUITY Ultra Performance Liquid
479 Chromatography (UPLC) BEH C18 column (130 Å, 1.7 μ m, 2.1 mm by 150 mm;
480 Waters), and peptides were detected at Abs. 204 nm using ACQUITY UPLC UV-Visible
481 Detector. Muropeptides were separated using a linear gradient from buffer A (0.1% of
482 Formic acid in water) to buffer B (0.1% of Formic acid in acetonitrile) in 218 min, and
483 flow 0.25 mL/min. Muropeptide identity was confirmed by MS/MS analysis, using a Xevo
484 G2-XS QTof system (Waters Corporation, USA). Quantification of muropeptides was
485 based on their relative abundances (relative area of the corresponding peak). Cross-
486 linking was determined by the following formula; crosslinking=dimmer+(trimmer/2).
487

488 **Antibiotic challenge**

489 CS802-2 *E. coli* that had been pre-labeled with D-amino acids for 6 hrs (OD₆₀₀ 0.6) or
490 overnight and subjected or not to BTTP CuAAC were washed with PBS and
491 resuspended in LB medium to a normalized OD₆₀₀ of 0.3 with or without 125 μ g/mL
492 ampicillin, 125 μ g/mL carbenicillin, or 6.25 μ g/mL kanamycin. After 1-5 hrs incubation at

493 37 °C, bacteria were washed twice with PBS and plated as 10-fold serial dilutions on LB
494 agar.

495

496 **Chemical Synthesis and Characterization**

497 **Synthesis of azidocoumarin-D-alanine (azcDA)**

498 **General Procedures.** Reactions were performed in round bottom flasks fitted with
499 rubber septa under a positive pressure of nitrogen. Gas-tight syringes with stainless
500 steel needles or cannulae were used to transfer air- and moisture-sensitive liquids.

501 Flash column chromatography was performed as described by Still *et al.* using granular
502 silica gel (60-Å pore size, 40–63 µm, 4–6% H₂O content, Silicycle)(Still *et al.*, 1978).

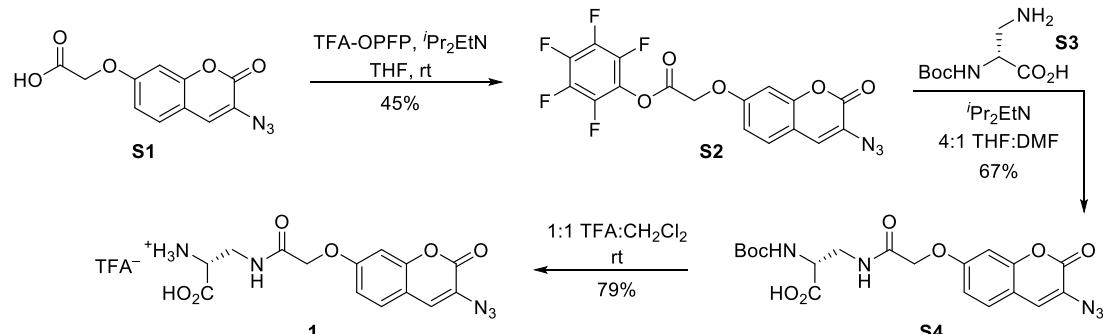
503 Analytical thin layer chromatography (TLC) was performed using glass plates pre-
504 coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator
505 (254 nm). TLC plates were visualized by short wave ultraviolet light (254 nm).

506 Concentration of solutions under reduced pressure were carried out on rotary
507 evaporators capable of achieving a minimum pressure of ~2 torr at 29–30 °C unless
508 noted otherwise.

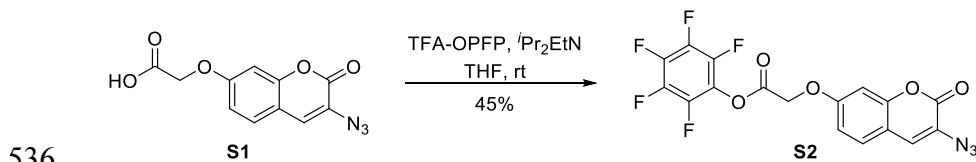
509

510 Dichloromethane, tetrahydrofuran, and *N,N*-dimethylformamide were were purified by
511 the method of Grubbs *et al.* under a positive pressure of nitrogen(Pangborn *et al.*,
512 1996).

513


514 **Instrumentation.** Proton nuclear magnetic resonance (¹H NMR) spectra were recorded
515 with a Bruker Avance III 500 MHz spectrometer, are reported in parts per million, and

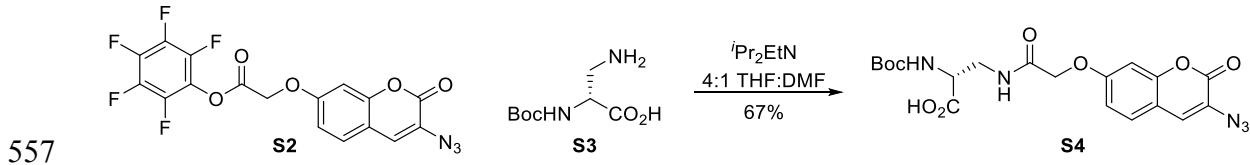
516 are referenced to the residual protium in the NMR solvent (CDCl_3 : δ 7.24 (CHCl_3),
 517 CD_3OD : δ 3.31 (CHD_2OD), $\text{DMSO-}d_6$: δ 2.50 ($\text{DMSO-}d_5$)). Data are reported as follows:
 518 chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, sp = septet, m = multiplet),
 519 coupling constant(s) in Hertz, integration]. Carbon-13 nuclear magnetic resonance (^{13}C
 520 NMR) spectra were recorded with a Bruker Avance III 500 MHz spectrometer, are
 521 reported in parts per million, and are referenced from the carbon resonances of the
 522 solvent (CDCl_3 : δ 77.23, CD_3OD : δ 49.15, $\text{DMSO-}d_6$: δ 39.51). Data are reported as
 523 follows: chemical shift. Infrared data (IR) were obtained with a Cary 630 Fourier
 524 transform infrared spectrometer equipped with a diamond ATR objective and are
 525 reported as follows: frequency of absorption (cm^{-1}), intensity of absorption (s = strong,
 526 m = medium, w = weak, br = broad). Optical rotations were measured on a P-2000
 527 JASCO polarimeter and compound concentrations are expressed in units of g/100 mL.
 528 High resolution mass spectra (HRMS) were recorded by the Harvard University Small
 529 Molecule Mass Spectrometry facility on an Agilent 6210 time-of-flight LCMS using an
 530 electrospray ionization (ESI) source.


531

532 **Overall synthetic scheme.**

533

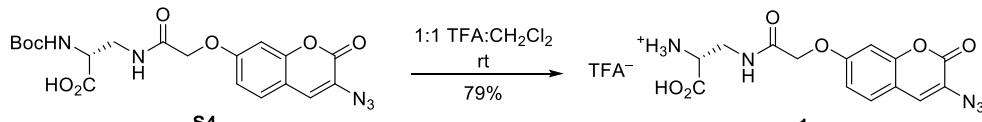
535



537

538 **Azidocoumarin pentafluorophenyl ester S3**

539 To a 25 mL round bottom flask charged with azidocoumarin acid **S1** (Weineisen et al.,
 540 2017) (56.0 mg, 214 μ mol, 1 equiv) under a nitrogen atmosphere was added
 541 tetrahydrofuran (2 mL) at room temperature. *N,N*-diisopropylethylamine (74.5 μ L, 428
 542 μ mol, 2.00 equiv) was added to the dark brown solution via syringe. This was followed
 543 immediately by addition of pentafluorophenyl trifluoroacetate (73.5 μ L, 428 μ mol, 2.00
 544 equiv) via syringe and stirred at room temperature. After 30 min, the reaction mixture
 545 was concentrated under reduced pressure and the brown residue was purified by flash
 546 column chromatography on silica gel (eluent: 10% ethyl acetate in hexanes) to provide
 547 the azidocoumarin pentafluorophenyl ester **S2** (41.0 mg, 45%) as a white solid. ^1H
 548 NMR (500 MHz, CDCl_3 , 25 °C): δ 7.37 (d, J = 8.6 Hz, 1H), 7.15 (s, 1H), 6.93 (dd, J =
 549 8.7, 2.5 Hz, 1H), 6.87 (d, J = 2.5 Hz, 1H), 5.04 (s, 2H). ^{13}C NMR (126 MHz, CDCl_3 , 25
 550 °C): δ 164.5, 159.1, 157.6, 152.9, 142.2, 141.2, 140.2, 139.2, 137.2, 128.7, 125.9,
 551 124.7, 114.3, 113.3, 102.2, 64.8. ^{19}F NMR (471 MHz, CDCl_3 , 25 °C): δ -152.2 (m), -
 552 156.4 (m), -161.3 (m). FTIR (thin film, cm^{-1}): 2128 (s), 1804 (m), 1722 (m), 1618 (m),
 553 1521 (s), 1334 (m), 1118 (m), 1070 (m), 995 (m). HRMS (ESI, m/z): 428.0294
 554 (calculated for $\text{C}_{17}\text{H}_7\text{F}_5\text{N}_3\text{O}_5$ $[\text{M}+\text{H}]^+$: 428.0300). TLC (15% ethyl acetate in hexanes, R_f):
 555 0.32 (UV).


556

558

559 **Boc-D-Ala-azidocoumarin S5**

560 To a 25 mL round bottom flask charged with azidocoumarin pentafluorophenyl ester **S2**
 561 (30.0 mg, 70.2 μ mol, 1 equiv) and *N*^a-Boc-D-2,3-diaminopropionic acid (**S3**) (28.6 mg,
 562 140 μ mol, 2.00 equiv) under a nitrogen atmosphere was added tetrahydrofuran (2 mL)
 563 at room temperature. *N,N*-diisopropylethylamine (14.7 μ L, 140 μ mol, 2.00 equiv) was
 564 then added to the solution via syringe followed by *N,N*-dimethylformamide (500 μ L).
 565 After 20 min, the reaction mixture was concentrated under reduced pressure and the
 566 residue was purified by flash column chromatography on silica gel (eluent: 20%
 567 hexanes, 75% ethyl acetate, 5% acetic acid) to provide Boc-D-Ala-azidocoumarin **S4**
 568 (21.0 mg, 67%) as a white solid. ¹H NMR (500 MHz, *d*₆-DMSO, 25 °C): δ 8.20 (t, *J* = 6.0
 569 Hz, 1H), 7.63 (s, 1H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.07–6.98 (m, 3H), 4.60 (s, 2H), 4.13–
 570 4.05 (m, 1H), 3.57–3.48 (m, 1H), 3.44–3.36 (m, 1H), 1.38 (s, 9H). ¹³C NMR (126 MHz,
 571 *d*₆-DMSO, 25 °C): δ 172.2, 167.5, 159.7, 157.2, 155.4, 152.4, 128.9, 127.1, 122.6,
 572 113.3, 113.1, 101.7, 78.4, 67.2, 53.4, 39.6, 28.2. FTIR (thin film, cm^{-1}): 3366 (br-s),
 573 2989 (br-m), 2128 (s), 1737 (m), 1670 (m), 1618 (m), 1521 (m), 1148 (m), 1055 (m).
 574 HRMS (ESI, m/z): 446.1324 (calculated for C₁₉H₂₀N₅O₈ [M–H][–]: 446.1317). TLC
 575 (20:75:5 hexanes:ethyl acetate:acetic acid, R_f): 0.18 (UV). [α]_D²³ = +78 (c 0.25, DMSO).
 576

599 Involved in *Listeria monocytogenes* Immune Escape, Is Critical for Virulence. The
600 Journal of Infectious Diseases 204, 731-740.

601

602 Auer, G.K., and Weibel, D.B. (2017). Bacterial Cell Mechanics. Biochemistry 56, 3710-
603 3724.

604

605 Bertrand, R.L. (2019). Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable
606 Period That Prepares Bacteria for Cell Division. Journal of Bacteriology 201.
607

608 Boneca, I.G., Dussurget, O., Cabanes, D., Nahori, M.-A., Sousa, S., Lecuit, M.,
609 Psylinakis, E., Bouriotis, V., Hugot, J.-P., Giovannini, M., *et al.* (2007). A critical role for
610 peptidoglycan N-deacetylation in *Listeria* evasion from the host innate immune system.
611 Proceedings of the National Academy of Sciences 104, 997.

612

613 Caparros, M., Pisabarro, A.G., and de Pedro, M.A. (1992). Effect of D-amino acids on
614 structure and synthesis of peptidoglycan in *Escherichia coli*. Journal of Bacteriology
615 174, 5549-5559.

616

617 Cava, F., de Pedro, M.A., Lam, H., Davis, B.M., and Waldor, M.K. (2011). Distinct
618 pathways for modification of the bacterial cell wall by non-canonical D-amino acids. The
619 EMBO Journal 30, 3442-3453.

620

621 Cho, H., Uehara, T., and Bernhardt, T.G. (2014). Beta-lactam antibiotics induce a lethal
622 malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300-1311.

623

624 de Pedro, M.A., Quintela, J.C., Höltje, J.V., and Schwarz, H. (1997). Murein segregation
625 in *Escherichia coli*. Journal of Bacteriology 179, 2823.

626

627 Denome, S.A., Elf, P.K., Henderson, T.A., Nelson, D.E., and Young, K.D. (1999).
628 *Escherichia coli* Mutants Lacking All Possible Combinations of Eight Penicillin Binding
629 Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis.
630 Journal of Bacteriology 181, 3981.

631

632 Dik, D.A., Marous, D.R., Fisher, J.F., and Mobashery, S. (2017). Lytic
633 transglycosylases: concinnity in concision of the bacterial cell wall. Critical Reviews in
634 Biochemistry and Molecular Biology 52, 503-542.

635

636 Dik, D.A., Zhang, N., Chen, J.S., Webb, B., and Schultz, P.G. (2020). Semisynthesis of
637 a Bacterium with Non-canonical Cell-Wall Cross-Links. Journal of the American
638 Chemical Society 142, 10910-10913.

639

640 Egan, A.J., Biboy, J., van't Veer, I., Breukink, E., and Vollmer, W. (2015). Activities and
641 regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci 370.

642

643 Eng, R.H., Padberg, F.T., Smith, S.M., Tan, E.N., and Cherubin, C.E. (1991).

644

645 Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. *Antimicrob*
646 *Agents Chemother* 35, 1824-1828.

647

648 Fridman, O., Goldberg, A., Ronin, I., Shores, N., and Balaban, N.Q. (2014).
649 Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations.
650 *Nature* 513, 418-421.

651

652 Garcia-Heredia, A., Pohane, A.A., Melzer, E.S., Carr, C.R., Folek, T.J., Rundell, S.R.,
653 Lim, H.C., Wagner, J.C., Morita, Y.S., Swarts, B.M., *et al.* (2018). Peptidoglycan
654 precursor synthesis along the sidewall of pole-growing mycobacteria. *Elife* 7.

655

656 Glauner, B., Holtje, J.V., and Schwarz, U. (1988). The composition of the murein of
657 *Escherichia coli*. *J Biol Chem* 263, 10088-10095.

658

659 Goodell, W., and Tomasz, A. (1980). Alteration of *Escherichia coli* murein during amino
660 acid starvation. *Journal of Bacteriology* 144, 1009-1016.

661

662 Huang, K.C., Mukhopadhyay, R., Wen, B., Gitai, Z., and Wingreen, N.S. (2008). Cell
663 shape and cell-wall organization in Gram-negative bacteria. *Proceedings of the National
664 Academy of Sciences*, pnas.0805309105.

665

666 Kohlrausch, U., and Höltje, J.V. (1991). Analysis of murein and murein precursors
667 during antibiotic-induced lysis of *Escherichia coli*. *Journal of Bacteriology* 173, 3425.

668

669 Kuru, E., Hughes, H.V., Brown, P.J., Hall, E., Tekkam, S., Cava, F., de Pedro, M.A.,
670 Brun, Y.V., and VanNieuwenhze, M.S. (2012). In Situ probing of newly synthesized
671 peptidoglycan in live bacteria with fluorescent D-amino acids. *Angew Chem Int Ed Engl*
672 51, 12519-12523.

673

674 Lam, H., Oh, D.C., Cava, F., Takacs, C.N., Clardy, J., de Pedro, M.A., and Waldor, M.K.
675 (2009). D-amino acids govern stationary phase cell wall remodeling in bacteria. *Science*
676 325, 1552-1555.

677

678 Lee, A.J., Wang, S., Meredith, H.R., Zhuang, B., Dai, Z., and You, L. (2018). Robust,
679 linear correlations between growth rates and β -lactam-mediated lysis rates.
680 *Proceedings of the National Academy of Sciences* 115, 4069-4074.

681

682 Lee, M., Hesek, D., Llarrull, L.I., Lastochkin, E., Pi, H., Boggess, B., and Mobashery, S.
683 (2013). Reactions of All *Escherichia coli* Lytic Transglycosylases with Bacterial Cell
684 Wall. *Journal of the American Chemical Society* 135, 3311-3314.

685

686 Lee, S.W., Foley, E.J., and Epstein, J.A. (1944). Mode of Action of Penicillin. *Journal of*
687 *Bacteriology* 48, 393.

688

689 Liechti, G.W., Kuru, E., Hall, E., Kalinda, A., Brun, Y.V., VanNieuwenhze, M., and
690 Maurelli, A.T. (2013). A new metabolic cell-wall labelling method reveals peptidoglycan
691 in *Chlamydia trachomatis*. *Nature* 506, 507.

692

693 Loskill, P., Pereira, P.M., Jung, P., Bischoff, M., Herrmann, M., Pinho, M.G., and
694 Jacobs, K. (2014). Reduction of the Peptidoglycan Crosslinking Causes a Decrease in
695 Stiffness of the *Staphylococcus aureus* Cell Envelope. *Biophys J* 107, 1082-1089.

696

697 Pangborn, A.B., Giardello, M.A., Grubbs, R.H., Rosen, R.K., and Timmers, F.J. (1996).
698 Safe and Convenient Procedure for Solvent Purification. *Organometallics* 15, 1518-
699 1520.

700

701 Park, J.T., and Strominger, J.L. (1957). Mode of Action of Penicillin. *Science* 125, 99.

702 Pidgeon, S.E., Fura, J.M., Leon, W., Birabaharan, M., Vezenov, D., and Pires, M.M.
703 (2015). Metabolic Profiling of Bacteria by Unnatural C-terminated D-Amino Acids.
704 *Angew Chem Int Ed Engl* 54, 6158-6162.

705

706 Pisabarro, A.G., de Pedro, M.A., and Vázquez, D. (1985). Structural modifications in the
707 peptidoglycan of *Escherichia coli* associated with changes in the state of growth of the
708 culture. *Journal of Bacteriology* 161, 238.

709

710 Radkov, A.D., Hsu, Y.-P., Booher, G., and VanNieuwenhze, M.S. (2018). Imaging
711 Bacterial Cell Wall Biosynthesis. *Annual Review of Biochemistry* 87, 991-1014.

712

713 Rae, C.S., Geissler, A., Adamson, P.C., and Portnoy, D.A. (2011). Mutations of the
714 *Listeria monocytogenes* Peptidoglycan N-Deacetylase and O-Acetylase Result in
715 Enhanced Lysozyme Sensitivity, Bacteriolysis, and Hyperinduction of Innate Immune
716 Pathways. *Infection and Immunity* 79, 3596.

717

718 Scheurwater, E.M., and Burrows, L.L. (2011). Maintaining network security: how
719 macromolecular structures cross the peptidoglycan layer. *FEMS Microbiology Letters*
720 318, 1-9.

721

722 Schwarz, U., Asmus, A., and Frank, H. (1969). Autolytic enzymes and cell division of
723 *Escherichia coli*. *J Mol Biol* 41, 419-429.

724

725 Siegrist, M.S., Swarts, B.M., Fox, D.M., Lim, S.A., and Bertozzi, C.R. (2015).
726 Illumination of growth, division and secretion by metabolic labeling of the bacterial cell
727 surface. *FEMS Microbiology Reviews* 39, 184-202.

728

729 Siegrist, M.S., Whiteside, S., Jewett, J.C., Aditham, A., Cava, F., and Bertozzi, C.R.
730 (2013). (D)-amino acid chemical reporters reveal peptidoglycan dynamics of an
731 intracellular pathogen. *ACS Chemical Biology* 8, 500-505.

732

733 Sivakumar, K., Xie, F., Cash, B.M., Long, S., Barnhill, H.N., and Wang, Q. (2004). A
734 fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. *Org*
735 *Lett* 6, 4603-4606.

736

737 Spratt, B.G. (1975). Distinct penicillin binding proteins involved in the division,
738 elongation, and shape of *Escherichia coli* K12. *Proceedings of the National Academy of*
739 *Sciences* 72, 2999.

740

741 Still, W.C., Kahn, M., and Mitra, A. (1978). Rapid chromatographic technique for
742 preparative separations with moderate resolution. *The Journal of Organic Chemistry* 43,
743 2923-2925.

744

745 Sycuro, L.K., Pincus, Z., Gutierrez, K.D., Biboy, J., Stern, C.A., Vollmer, W., and
746 Salama, N.R. (2010). Peptidoglycan Crosslinking Relaxation Promotes *Helicobacter*
747 *pylori*'s Helical Shape and Stomach Colonization. *Cell* 141, 822-833.

748

749 Tomasz, A., Albino, A., and Zanati, E.V.E. (1970). Multiple Antibiotic Resistance in a
750 Bacterium with Suppressed Autolytic System. *Nature* 227, 138-140.

751

752 Tomasz, A., and Waks, S. (1975). Mechanism of action of penicillin: triggering of the
753 pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. *Proc Natl Acad Sci*
754 *U S A* 72, 4162-4166.

755

756 Toumanem, E., Cozens, R., Tosch, W., Zak, O., and Tomasz, A. (1986). The Rate of
757 Killing of *Escherichia coli* by B-Lactam Antibiotics Is Strictly Proportional to the Rate of
758 Bacterial Growth. *Journal of General Microbiology* 132, 1297-1304.

759

760 Tuomanen, E., and Cozens, R. (1987). Changes in peptidoglycan composition and
761 penicillin-binding proteins in slowly growing *Escherichia coli*. *J Bacteriol* 169, 5308-
762 5310.

763

764 Tuomanen, E., Markiewicz, Z., and Tomasz, A. (1988). Autolysis-resistant
765 peptidoglycan of anomalous composition in amino-acid-starved *Escherichia coli*. *Journal*
766 *of Bacteriology* 170, 1373-1376.

767

768 Vollmer, W., and Bertsche, U. (2008). Murein (peptidoglycan) structure, architecture and
769 biosynthesis in *Escherichia coli*. *Biochim Biophys Acta* 1778, 1714-1734.

770

771 Vollmer, W., Blanot, D., and de Pedro, M.A. (2008). Peptidoglycan structure and
772 architecture. *FEMS Microbiol Rev* 32, 149-167.

773

774 Vollmer, W., and Seligman, S.J. (2010). Architecture of peptidoglycan: more data and
775 more models. *Trends Microbiol* 18, 59-66.

776

777 Wang, W., Hong, S., Tran, A., Jiang, H., Triano, R., Liu, Y., Chen, X., and Wu, P.
778 (2011). Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. *Chem*
779 *Asian J* 6, 2796-2802.

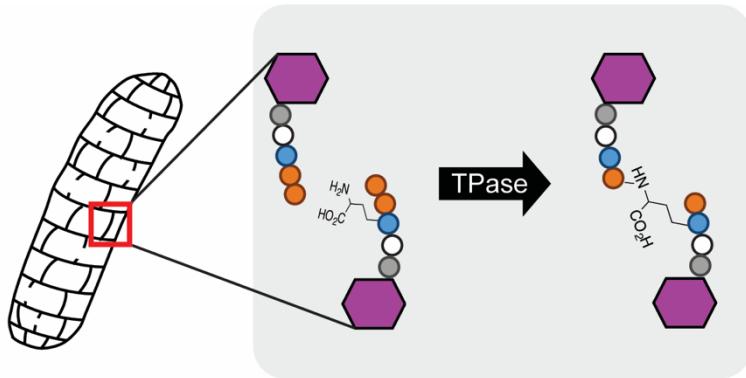
780

781 Weineisen, N.L., Hommersom, C.A., Voskuhl, J., Sankaran, S., Depauw, A.M.A.,
782 Katsonis, N., Jonkheijm, P., and Cornelissen, J.J.L.M. (2017). Photoresponsive,
783 reversible immobilization of virus particles on supramolecular platforms. *Chemical*
784 *Communications* 53, 1896-1899.

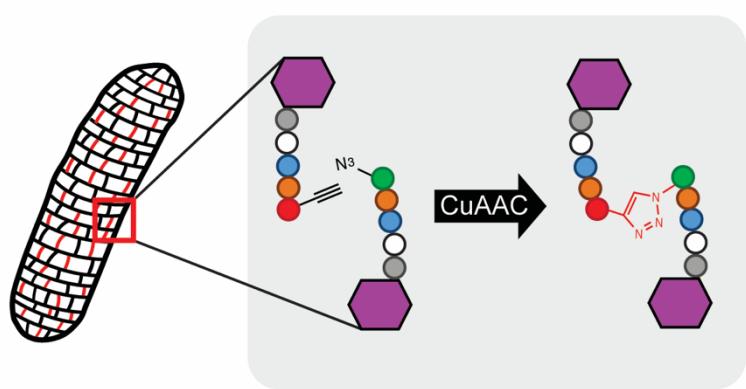
785

786 Yang, D.C., Blair, K.M., Taylor, J.A., Petersen, T.W., Sessler, T., Tull, C.M., Leverich,
787 C.K., Collar, A.L., Wyckoff, T.J., Biboy, J., *et al.* (2019). A Genome-Wide *Helicobacter*
788 *pylori* Morphology Screen Uncovers a Membrane-Spanning Helical Cell Shape
789 Complex. *J Bacteriol* 201.

790


791 Yang, M., Jalloh, A.S., Wei, W., Zhao, J., Wu, P., and Chen, P.R. (2014). Biocompatible
792 click chemistry enabled compartment-specific pH measurement inside *E. coli*. *Nat*
793 *Commun* 5, 4981.

794


795

796

Native cross-link

Synthetic cross-link

797

Cellular View

Molecular View

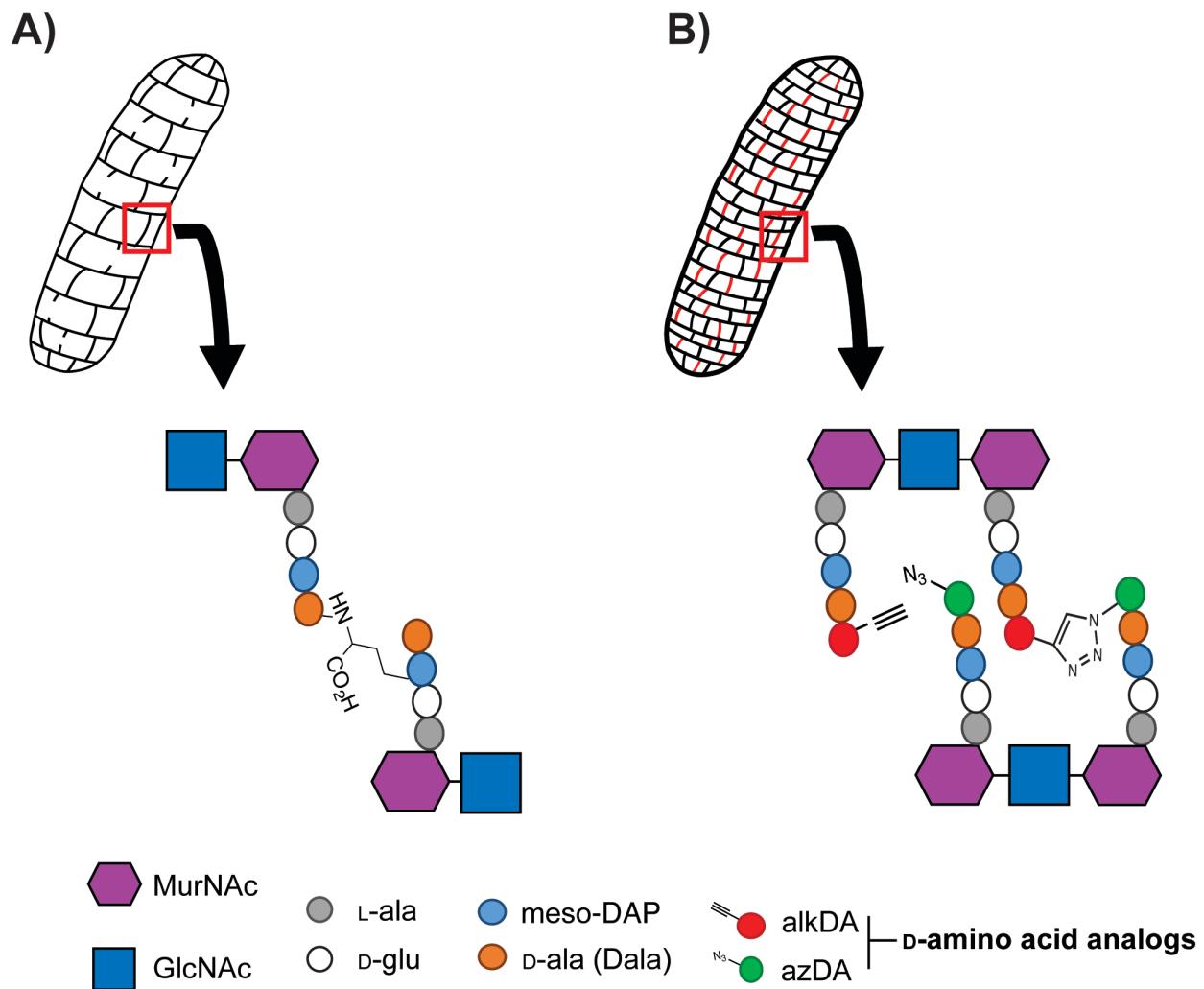
798

799 **Graphical Abstract**

800

801

802

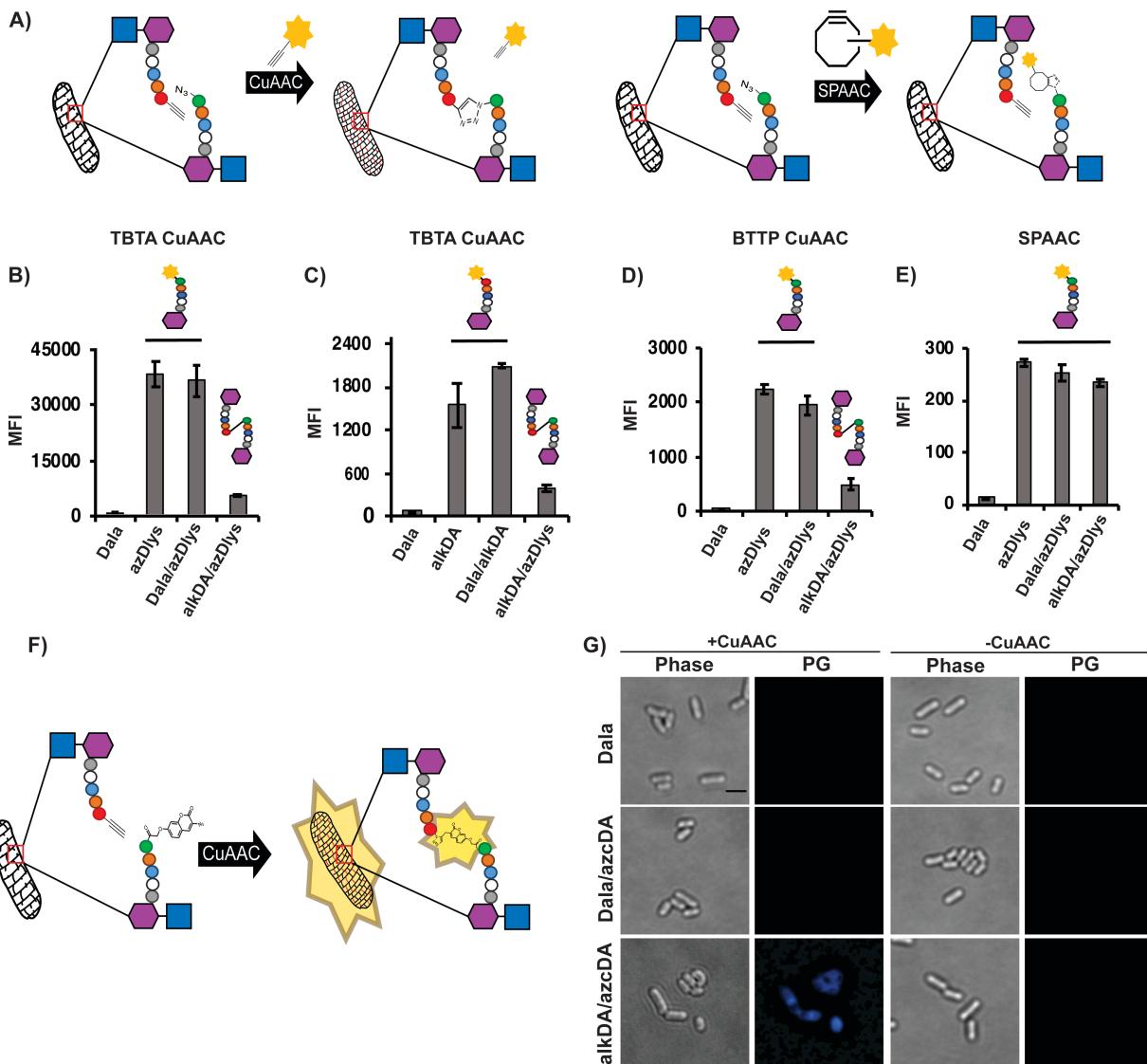

803

804

805

806

807


808

809 **Figure 1.** Native (A) and synthetic (B) cross-linking of the bacterial cell wall. Native
 810 cross-links are catalyzed by transpeptidases. Synthetic cross-links are introduced by
 811 metabolic labeling with azido- and alkynyl-D-alanine (azDA and alkDA, respectively)
 812 followed by CuAAC.

813

814

815

816

817 **Figure 2.** Loss (A-E) and gain (F and G) of fluorescence strategies for detection of
 818 synthetic cross-links. (A) Loss-of-fluorescence logic, including SPAAC control (details in
 819 SI Methods). (B-E) *pbp5::tn L. monocytogenes* was incubated with the indicated D-amino
 820 acids, washed and subjected to CuAAC with TBTA ligand and alkyne-carboxyrhodamine
 821 110 (CR110) (B); TBTA ligand with azido-CR110 (C); BTTP ligand with alkyne-CR110 (D);
 822 SPAAC with DBCO-CR110 (E). Fluorescence was quantified by flow cytometry and data
 823 are representative of 2-6 biological replicates performed in triplicate. MFI, mean

824 fluorescence intensity. Error bars, +/- standard deviation. (F), Intra-peptidoglycan reaction
825 between alkDA and azidocoumarin-D-alanine (azcDA) results in the fluorescent triazole
826 product. (G) *pbp5::tn L. monocytogenes* was incubated in the presence of indicated D-
827 amino acids, washed and subjected to BTTP CuAAC with no exogenous fluorescent
828 label. Of the 327 alkDA/azcDA-treated, CuAAC-subjected cells observed in two
829 independent experiments, 310 were fluorescent above Dala/azcDA-treated, CuAAC-
830 subjected background levels. PG, fluorescence derived from peptidoglycan labeling.
831 Scale bar, 1 μ M. Images are representative of 4 biological replicates.

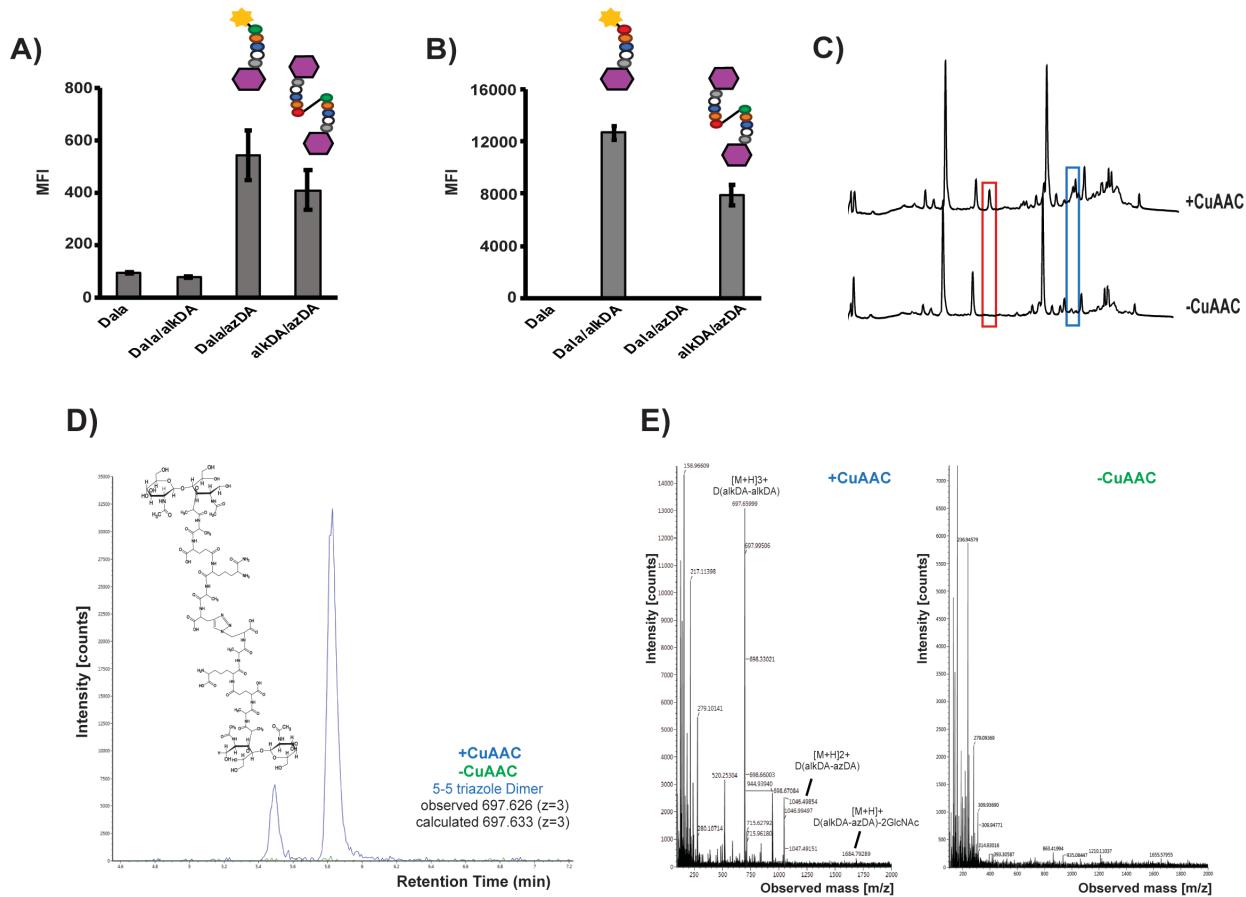
832

833

834

835

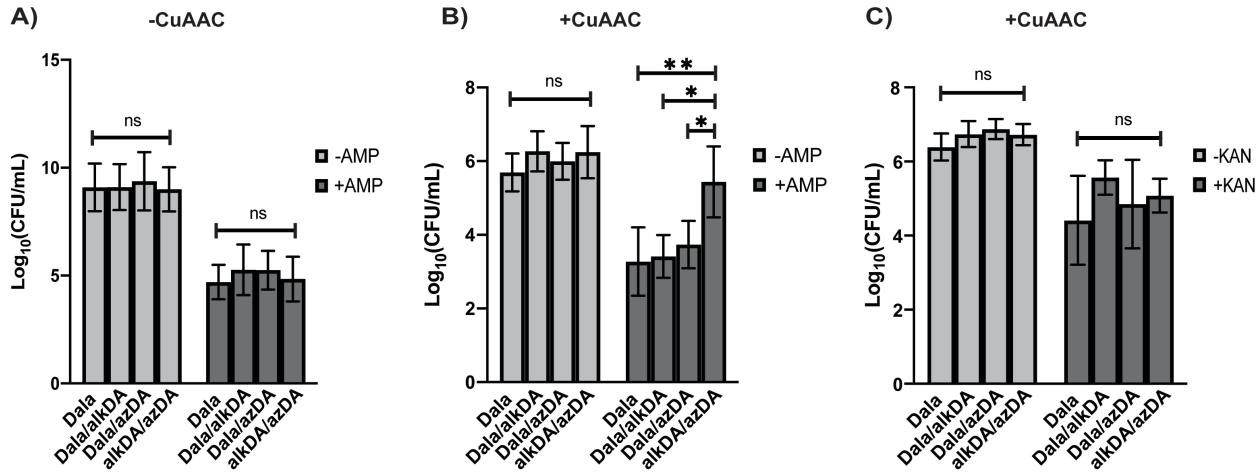
836


837

838

839

840


841

842

843 **Figure 3.** Indirect (A-B) and direct (C-E) identification of synthetic triazole cross-links.
844 CS802-2 *E. coli* was incubated +/- D-alanine alone (Dala) or equimolar combinations of
845 D-alanine, azido-D-alanine (azDA), and alkynyl-D-alanine (alkDA) as indicated, washed
846 and subjected to CuAAC with BTTP ligand and complementary fluorophore (A-B) or with
847 the detection reagent omitted (C-E). Peptidoglycan was extracted, digested with
848 mutanolysin and lysozyme, and separated by ultra-performance liquid chromatography
849 (UPLC). We identified several peaks from alkDA/azDA-labeled bacteria that were specific
850 to CuAAC treatment (red and blue boxes, (C)). Chemical structure for 5-5 triazole dimer
851 (D) identified by mass spectrometry (MS) from red boxed peak in (C). (E) Ion detection
852 (left) and MS profile (right) for 5-5 triazole dimer. MS/MS profile and fragmentation shown

853 in Figure S4 and Table S1, respectively. Ion detection and MS profiles for 5-5 triazole
854 trimers and tetramer from blue boxed peaks in (C) shown in Figure S5. Fluorescence in
855 (A-B) was quantified by flow cytometry and data are representative of 2-6 biological
856 replicates performed in triplicate. MFI, mean fluorescence intensity. Error bars, +/-
857 standard deviation. UPLC analysis in (C) was performed on two biological replicates.

859 **Figure 4.** Synthetic cross-links protect CS802-2 *E. coli* from ampicillin (B) but not from
860 kanamycin (C). CS802-2 *E. coli* was incubated +/- the indicated D-amino acids for 6 hrs,
861 washed and subjected (B, C) or not (A) to CuAAC with BTTP ligand (no complementary
862 fluorophore) as in Figure 3. Bacteria were then challenged with antibiotic for 1 hr at 37 °C
863 and plated for colony forming units (CFUs). Data are from three biological replicates
864 performed in triplicate. Error bars, +/- standard deviation. Statistical significance was
865 assessed by two-way ANOVA with Tukey's multiple comparison test. ns, ≥ 0.05 ; *, $p < 0.05$;
866 **, $p < 0.005$.

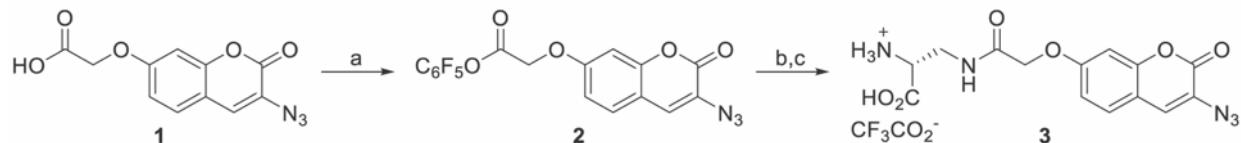
867

868

869

870

871


872

873

874

875 **Main tables/schemes and legends**

876

877 **Scheme 1.** 3-Azido-7-hydroxycoumarin D-alanine synthesis.

878

879 ^aConditions: (a) Pentafluorophenyl trifluoroacetate, N,N-diisopropylethylamine, THF, rt,
 880 45%. (b) Na-Boc-D-2,3-diaminopropionic acid, N,N-diisopropylethylamine, 4:1 THF:DMF,
 881 67%. (c) 1:1 TFA:dichloromethane, rt, 79%.

882

883

884

885 **Table 1. Quantification of muropeptides from CS802-2 *E. coli* treated with Dala or**
 886 **a combination of alkDA/azDA then subjected or not to CuAAC.**

887

	Dala		alkDA/azDA	
	-CuAAC	+CuAAC	-CuAAC	+CuAAC
azDA	-	-	8.21 ± 4.26	2.92 ± 0.11
alkDA	-	-	4.04 ± 2.38	1.23 ± 1.32
% PG Modification	-	-	12.24 ± 1.42	11.44 ± 3.39
% Cross-linkage	53.05 ± 2.04	54.31 ± 3.33	42.76 ± 1.57	51.04 ± 0.23
% Triazole Cross-linkage	-	-	-	9.98 ± 1.42

888

889 ^bData are average of two biological replicates. One of the alkDA/azDA UPLC traces is
 890 shown in Figure 3C. Compare to data for bacteria treated with Dala/alkDA or
 891 Dala/azDA, Table S2.

892
893