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Abstract While the majority of research only differentiates between intracloud (IC) and cloud-to-ground

(CG) flashes, there exists a third flash type, known as hybrid flashes. These flashes have extensive IC

components as well as return strokes to ground but are misclassified as CG flashes in current flash type

analyses due to the presence of a return stroke. In an effort to show that IC, CG, and hybrid flashes should be

separately classified, the two-sample Kolmogorov-Smirnov (KS) test was applied to the flash sizes, flash

initiation, and flash propagation altitudes for each of the three flash types. The KS test statistically showed

that IC, CG, and hybrid flashes do not have the same parent distributions and thus should be separately

classified. Separate classification of hybrid flashes will lead to improved lightning-related research, because

unambiguously classified hybrid flashes occur on the same order of magnitude as CG flashes for

multicellular storms.

1. Introduction

Traditionally, lightning is classified into two major types: intracloud (IC) and cloud-to-ground (CG). This

classification has been used in a variety of applications, such as their relationship to kinematic and microphy-

sical properties of convective storms, severe weather forecasting, climatological research, and more. Further,

lightning modeling studies and their related lightning-produced nitrogen oxides (LNOx) have relied on this

classification. Past LNOx modeling studies suggest that there is either roughly an order of magnitude differ-

ence in LNOx production between IC and CG flashes or IC and CG flashes produce the same amount of LNOx.

Specifically, Pickering et al. (1998) showed that IC and CG flashes produced 113 and 1,113 moles flash�1,

respectively; Koshak et al. (2014) obtained values of 34.78 and 484.15 moles flash�1, respectively; and

Carey et al. (2016) obtained values of 116 and 919 moles flash�1, respectively. Conversely, Barthe and

Barth (2008), DeCaria et al. (2005), and Ott et al. (2007) showed that IC and CG flashes produced the same

amount of LNOx. However, these and other studies only compared IC to CG flashes, but a third type of flash,

called hybrid flashes, exists, e.g., Bitzer et al. (2013), Boggs et al. (2016), Maggio et al. (2005), Lang et al. (2013),

Lu et al. (2012), and Mecikalski and Carey (2017). Maggio et al. (2005) compared Lightning Mapping Array

(LMA) data to electric field change sensors for various flashes, including hybrid flashes, while Lu et al.

(2012) found that negative strokes with the largest impulse charge moment changes were mostly produced

by hybrid flashes that had an initial, extensive IC component located at higher altitudes than observed for CG

flashes; these hybrid flashes would thus be more likely to produce sprites than CG flashes (Boggs et al., 2016;

Lang et al., 2013). Therefore, although the lightning community is aware of hybrid flashes, the LNOx commu-

nity has not yet included hybrid flashes in their studies (e.g., Barthe & Barth, 2008; Barth et al., 2007;

Cummings et al., 2013; Ott et al., 2007). Nevertheless, while Carey et al. (2016) only compared IC and CG

flashes in their LNOx analysis, they mentioned that hybrid flashes occurred during periods of larger CG

LNOx production. These hybrid flashes are a combination of an IC and a CG flash; they usually travel large

horizontal distances within a cloud (the IC component) and have a return stroke to ground (the CG compo-

nent). Thus, hybrid flashes are grouped in the CG category in current LNOxmethodologies due to their return

strokes to ground. If the above LNOx parameterization studies (e.g., Carey et al., 2016; DeCaria et al., 2005;

Koshak et al., 2014; Ott et al., 2007; Pickering et al., 1998) were reanalyzed using hybrid flashes as the third

flash type, instead of grouping hybrid flashes with CGs, significantly different LNOx per flash type could

be obtained.

There is a renewed interest in how lightning characteristics influence NOx and other chemical species, includ-

ing recent studies emanating from the Deep Convective Cloud and Chemistry (DC3) experiment (e.g., Barth

et al., 2015; Carey et al., 2016; DiGangi et al., 2016; Mecikalski et al., 2015; Mecikalski & Carey, 2017; Pollack

et al., 2016; Stith et al., 2016). However, as mentioned, only Mecikalski and Carey (2017) separately classified

hybrid flashes from CG flashes in their study. They showed through use of histogram analyses that (1) IC, CG,
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and hybrid flashes have different peaks in their distributions, both as a function of altitude and reflectivity; (2)

hybrid flashes occur more often than CG flashes in stronger convective storms such as mesoscale convective

systems (MCSs) and supercells; and (3) hybrid flashes have larger spatial extents than IC and CG flashes.

Specifically, Mecikalski and Carey (2017) showed that when hybrid flashes are separately classified from CG

flashes, the peak of the distribution for CG flash initiation altitudes is roughly 5°C in multicells and �5°C in

MCSs and supercells compared to the �15°C used in, e.g., DeCaria et al. (2000, 2005) and Ott et al. (2010),

when hybrid flashes were not separately classified. Further, CG flashes propagate within regions of higher

radar reflectivities as compared to hybrid flashes (Mecikalski & Carey, 2017). Therefore, if hybrid flashes are

grouped with CG flashes, then the altitudes where CG flashes initiate and propagate will be erroneously

biased to higher altitudes, while also leading to errors in model output related to flash size and radar reflec-

tivity values. The research herein is therefore focused on statistically showing that IC, CG, and hybrid flashes

do not have the same parent distribution relative to their respective flash sizes, and where these flashes initi-

ate and propagate, suggesting that hybrid flashes need to be separately classified from CG flashes, which has

not been done in prior LNOx studies.

2. Data and Methodology

Hybrid flashes can be classified by using a combination of data from electric field waveforms in the very low

frequency to low frequency (VLF/LF) range (such as the Huntsville Alabama Marx Meter Array (HAMMA) and

the National Lightning Detection Network™ (NLDN)) and by using data from the very high frequency (VHF)

range, such as LMA or lightning detection and ranging instruments. As such, three data sets were used in this

study: (1) The North Alabama LMA (NALMA) (Goodman et al., 2005; Koshak et al., 2004), (2) NLDN (Cummins &

Murphy, 2009; Cummins et al., 1998, 2006), and (3) HAMMA (Bitzer et al., 2013). NALMA detects radiation from

leader breakdown processes in the VHF range. The flash detection efficiency (DE) is >90% (Chmielewski &

Bruning, 2016) and horizontal and vertical location accuracy (LA) is ≤0.5 km and on the order of 1 km,

respectively, within 100 km of the center of NALMA (Koshak et al., 2004). Thus, only flashes that initiated

within 100 km of the center of NALMA were used. NLDN operates in the VLF/LF range and detects radiation

from discharges whose magnetic field amplitudes exceed certain sensor thresholds, such as return strokes

(and K changes). NLDN has flash DE of ~95% and LA <0.5 km across the continental United States

(Cummins et al., 2006; Cummins & Murphy, 2009; Mallick et al., 2014). HAMMA is an array of broadband

electric field change meters that also operates in the VLF/LF range; it records the radiation, induction, and

electrostatic components of the electric field from nearby lightning (Bitzer et al., 2013). HAMMA archives

the electric field waveforms, making it a beneficial data set to compare to other flash classification algorithms

in postprocessing.

HAMMA can be used to classify flashes due to variations in the electric field waveforms for IC, CG, and hybrid

flashes. For instance, IC flashes have mostly unipolar pulses during the preliminary breakdown (PB) process,

while the initial half cycles of the pulses are usually positive (for normal IC flashes) with much larger ampli-

tudes compared to the second half cycles. IC flashes also do not have a return stroke to ground (an example

of what this looks like in HAMMA is shown in Figure 1a herein). CG flashes have bipolar pulses during the PB

process, with negative initial half cycles (for a �CG flash), while the amplitudes of the pulses in the second

half cycles are comparable to the amplitudes of the initial half cycles and eventually have at least one return

stroke (Figure 1b). Hybrid flashes are a combination of IC and CG flashes; initially multiple unipolar pulses

(with positive initial half cycles) similar to ICs are detected, while eventually, there would also be at least

one return stroke to ground (Figure 1c).

In this study, xlma (Thomas et al., 2003) was used for flash sorting and classification, and the convex hull area

(Bruning & MacGorman, 2013; Mecikalski et al., 2015; Mecikalski & Carey, 2017) was used for flash area and

extent calculations. NALMA VHF sources were clustered into flashes using ≥10 VHF sources with spatial and

temporal constraints of no more than 3 km in the x, y, and z directions and 0.15 s between VHF sources,

with a maximum of 3 s for an entire flash. For the xlma flash type classification, only NLDN CG return strokes

were used and all CG return strokes between 0 and +15 kA were removed (Biagi et al., 2007; Cummins et al.,

1998, 2006). Xlma classifies flashes by incorporating leader direction and speed, breakdown location (single

versus bilevel), the location where 75% of the sources occurred and NLDN return stroke information

(Thomas et al., 2003). For instance, xlma would classify a flash as a normal IC if it initiated at higher

Geophysical Research Letters 10.1002/2017GL075003

MECIKALSKI ET AL. WHY FLASH TYPE MATTERS 2



altitudes (usually >6 km), the initial leader moved in the positive (upward) direction, there was bilevel

breakdown in the VHF (NALMA) data, i.e., leader breakdown occurred in the lower positive and main

negative charge regions of a cloud, and there was no NLDN return stroke to ground (Figure 1a). In

contrast, a flash would be classified as a �CG if it initiated at lower altitudes (usually <6 km), the initial

leader moves in the negative (downward) direction, there was single-level breakdown, i.e., leader

breakdown occurred only in the lower positive charge region, and a negative NLDN return stroke to

ground occurred (Figure 1b) (Thomas et al., 2003). Hybrid flashes are classified as such when the flash

initiated at higher altitudes, the initial leader moved in the positive (upward) direction, there was bilevel

breakdown in the VHF data, and there was an NLDN return stroke to ground, all of which occur within

the spatial and temporal limits stated earlier (Figure 1c). Only flashes that were unambiguously classified

as IC flashes (including both normal and inverted polarity), CG flashes (including both �CG and +CG)

and hybrid flashes (of both negative and positive polarity) were used in the results herein in an effort to

avoid including biases from “unclassified” IC or CG flashes.

In order to verify whether the output from the classified xlma flashes were the same as those observed by

HAMMA, a total of 440 unambiguously xlma classified flashes (thus, IC, CG, and hybrid) were compared to

the HAMMA electric field waveforms for multicell flashes that occurred on 21 May 2012. Each flash was

visually inspected by colocating the xlma classified VHF NALMA sources and HAMMA electric field waveforms

(as described above), and “zooming” in and out of certain parts of each flash (as in Figure 1). Repeating this

process for the 440 flashes, it was determined that HAMMA confirmed the xlma classification for 96.5%

(274/284) of the IC flashes, 97.1% (100/103) of the CG flashes and 98.0% (50/51) of the hybrid flashes. Ten

of the flashes classified as IC’s by xlma were hybrid flashes with definitive return strokes in HAMMA, while

two of the xlma classified CG flashes were IC flashes and one was a hybrid flash according to HAMMA.

There was also one flash that was classified as a hybrid flash by xlma, but HAMMA did not record a return

stroke; this flash was an IC flash.

Figure 1. Examples of HAMMA electric field waveforms (black lines) and xlma NALMA VHF sources (color-coded circles

according to time) for an (a) IC, (b) CG, and (c) hybrid flash. For each flash, the inset figure shows the first 2 ms of the

flash, highlighting the PB period.
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Based on the above results, the automated xlma classification has considerable skill when using LMA and

NLDN data. As such, the scheme was applied to all unambiguously classified flashes that occurred within

100 km of the NALMA center during the month of May 2012, but taking care to only include flashes that

occurred within multicellular convection. Mecikalski and Carey (2017) showed that flash characteristics vary

as a function of flash type as well as storm type, and therefore, we wanted to ensure that the results pre-

sented herein were not biased due to variations in storm type. By expanding the data set, a total of 20,363

IC, 2,397 CG, and 2,200 hybrid flashes were compared to each other relative to their (1) flash sizes, (2) flash

initiation altitude, and (3) all VHF source altitudes per flash type (i.e., where the flash propagates) using the

two-sample Kolmogorov-Smirnov (KS) test as described in Press et al. (1992) and Wilks (2006). Thus, from this

comparison of unambiguously classified flashes from May 2012, hybrid flashes occur on the same order of

magnitude as CG flashes for multicellular storms.

The two-sample KS test is a nonparametric test (i.e., there is no dependency on a particular parameter, such as

the mean, variance, and standard deviation, and therefore no assumptions need to be made regarding the

probability distribution function type) and measures the maximum distance between the cumulative distri-

bution function (CDF) of the two samples (Press et al., 1992; Wilks, 2006). For the two-sample KS test, the CDFs

of the two samples are compared to each other; the null hypothesis is that the two samples are drawn from

the same “parent” distribution (i.e., the samples have the same distribution). Hence, if the two samples have

the same parent distribution, then the null hypothesis is not rejected, but if the two samples have different

distributions, then the null hypothesis is rejected. The critical distance (D) is themaximum absolute difference

between the empirical CDFs from the two samples; D will vary between 0 (if the samples are identical) and 1

(if there is no overlap between the samples). There are various advantages to using the two-sample KS test

including as follows: (1) no assumption of the underlying distribution is required; (2) unequal sample sizes

can be used because the empirical CDFs are step functions; (3) it is sensitive to differences in the location

and the shape of the empirical CDFs and is thus one of the most useful and general nonparametric methods

for comparing two samples, making it appropriate to use (Grenier et al., 2013; Maia et al., 2007; Press et al.,

1992; Wilks, 2006).

3. Results and Discussion

The two-sample KS test was applied to IC, CG, and hybrid flashes relative to their size (Figures 2a and 2b), flash

initiation altitude (Figure 2c), and flash propagation altitudes (Figure 2d); Table 1 shows the D values and the

probability that these flashes come from the same parent distribution. For IC, CG, and hybrid flash compar-

isons, the null hypothesis for all three tests (i.e., flash size, flash initiation altitude, and flash propagation alti-

tude) is rejected at the 99% confidence level. Therefore, IC, CG, and hybrid flashes do not have the same

parent distribution, and consequently, these flashes are statistically, significantly different. In fact, Figure 2

and Table 2 show that while IC and CG flashes have similar flash areas and extents (the extent is the square

root of the area), hybrid flashes have flash areas almost 3 times larger than IC and CG flashes, and flash

extents almost double that of IC and CG flashes.

As an example of how LNOx calculations can be influenced when hybrid flashes are not separately classified,

Table 2 also shows the total amount of NO (inmoles) that each flash typewould produce when using lower end

values from prior research (DeCaria et al., 2005 and Skamarock et al., 2003, as listed in Schumann & Huntrieser,

2007). If only flash count is considered (at 460 moles per flash, as in DeCaria et al., 2005), then CG and hybrid

flashes will produce approximately the same amount of NO; thus, one would double the amount of NO that is

produced by CG flashes if hybrid flashes are not separately classified. If, on the other hand, one considers flash

size (at 1.7 moles km�1 of flash, as in Skamarock et al., 2003, which is a conservative number compared to

others listed in Schumann & Huntrieser, 2007), then it is clear from the flashes analyzed herein that hybrid

flashes produce 1.59 times more total NO than CG flashes. Therefore, if hybrid flashes are not separately clas-

sified, one would artificially increase the total amount of NO produced by CG flashes by 159%, where

P(LNOx) = Total flash size (km) × 1.7 mol NO km�1. Moreover, if one compares the median and mean amount

of NO that would be produced per flash if one considers themedian/mean flash size per flash type, then hybrid

flashes would produce ≥159% and ≥170% more NO than IC and CG flashes, respectively, on a per flash basis.

DeCaria et al. (2000) noted that one of the largest sources of uncertainty in themodeling of LNOx is due to the

sensitivity of LNOxmixing ratios (which is inversely proportional to the horizontal area of a flash), while Ridley
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et al. (1996) stated that knowing the vertical distribution of LNOx is just as important as knowing the amount

of LNOx that is produced, due to the lifetime of NOx increasing as a function of increasing altitude. Therefore,

the results herein could have significant impacts on how lightning is analyzed in observational studies and

how it is applied in chemistry and modeling studies. As stated by Mecikalski and Carey (2017) if hybrid

flashes are grouped with CG flashes (purely due to the presence of an NLDN return stroke), then the

altitudes where CG flashes initiate and propagate will be biased to higher altitudes, while their flash sizes

will be biased to larger sizes. Also, it is important to note that although this study was based on

multicellular storms over northern Alabama, these hybrid flashes are not limited to only Alabama; hybrid

flashes have been noted in other regions, e.g., in Florida, USA (Boggs et al., 2016), New Mexico, USA

(Maggio et al., 2005), China (Qie et al., 2013), and Beijing (Zhang et al., 2015). In fact, out of 185 +CG flashes

(they specifically focused on positive polarity return strokes), Qie et al. (2013) found that 36.22% were hybrid

flashes. Furthermore, Mecikalski and Carey (2017) showed that these hybrid flashes are not only limited to

multicellular storms but also occur in MCSs and supercells. Moreover, it was found that hybrid flashes actually

occurred more often than CG flashes in MCSs and in supercells (Mecikalski & Carey, 2017), while in MCSs,

Table 1

Results From the KS Test

Property

IC versus CG CG versus hybrid IC versus hybrid

D Probability D Probability D Probability

Size 0.0814 0.00% 0.4575 0.00% 0.3828 0.00%

Initiation 0.5623 0.00% 0.3865 0.00% 0.1940 0.00%

Propagation 0.7384 0.00% 0.6806 0.00% 0.0669 0.05%

Note. Relative to flash size (km), flash initiation altitude (km), and flash propagation altitude (km), for IC, CG and hybrid flashes.

Figure 2. CDF’s of IC (solid line), CG (dashed line), and hybrid (dot-dashed line) flashes comparing the (a) flash area that

comprise a particular flash type for the entire distribution for all points while (b) is limited to a subset of the flash areas

(emphasizing the differences between the flash types), (c) flash initiation altitudes and (d) flash propagation altitudes.
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hybrid flashes also had average flash extents almost double that of CG flashes. These studies show that hybrid

flashes occur in a variety of environments globally and that depending on the storm type (i.e., multicellular,

MCS, supercellular), their frequency of occurrence could be much higher than shown herein. Therefore, it is

imperative to separately classify hybrid flashes from CG flashes.

4. Conclusions

The KS test was applied to IC, CG, and hybrid flashes relative to their size, flash initiation altitude, and flash

propagation altitudes; the null hypothesis is that the two samples have the same parent distribution. It

was shown that these flash types do not have the same parent distribution because the null hypothesis

was rejected at the 99% confidence level for all cases. Therefore, if improved lightning and lightning-related

chemistry modeling is required, or if any kind of flash type analysis is done, it is imperative that IC, CG, and

hybrid flashes be separately classified and analyzed. Specifically, if hybrid flashes are grouped with CG flashes

(as is currently done in most flash classification analyses), then the analyses could lead to misleading results

(Table 2).

In order for more accurate flash typing and LNOx analyses to occur, it may be necessary to have data from

NALMA, NLDN, and HAMMA (or similar instruments) so that more data can be tested and compared between

the various lightning networks. The purpose of this would be to develop an improved methodology to clas-

sify flashes by doing multiple comparisons between what is observed by NALMA, NLDN, and HAMMA net-

works. While it was shown herein that xlma performed well for flashes that could be compared to

HAMMA, there were several thousands of xlma classified flashes that could not be included in this study

due to these flashes being ambiguously classified (i.e., they were classified as “unclassified IC,” “unclassified

CG,” or “unclassified flash”—these flashes could be either IC, CG, or hybrid flashes). Thus, in order to reduce

the number of ambiguously classified flashes, it is important to improve the classification methodologies,

which would only be feasible once more comparisons, such as those presented herein, are performed.
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