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Abstract 

This article provides an up-to-date review of technological advances in 

three key areas related to diet monitoring and precision nutrition.  First, 

we review developments in mobile applications, with a focus on food 

photography and artificial intelligence to facilitate the process of diet 

monitoring.  Second, we review advances in two types of wearable and 

handheld sensors that can potentially be used to fully automate certain 

aspects of diet logging: physical sensors to detect moments of dietary 

intake, and chemical sensors to estimate the composition of diets and 

meals. Finally, we review new programs that can generate 

personalized/precision nutrition recommendations based on 

measurements of gut microbiota and continuous glucose monitors with 

artificial intelligence.  The article concludes with a discussion of potential 

pitfalls of some of these technologies. 



 

Page 3 of 18 

 

1 Introduction 

A recent survey examining the consumption of major foods and nutrients among adults 

aged 25 or older in 195 countries has estimated that improving diet can potentially prevent 

one in every five deaths globally [1]. Using a number of dietary risk factors (e.g., diet high 

in sodium, or low in fiber), the study concluded that poor diet was responsible for more 

deaths than any other risks globally, including tobacco smoking [1]. An essential step to 

improve diet is to monitor food intake and eating behaviors.  However, conventional 

methods for monitoring diet are based on self-report measures (e.g., food diaries, 24-hour 

recall), which are problematic. For example, food diaries require manual input, which is 

burdensome [2] and often leads to low adherence rates [3]. Further, 24-hour records suffer 

from memory recall, which can lead to severe over and under-reporting [4].  Compounding 

the problem are the very large inter-individual differences in the response to the same foods 

[5], which puts into question the utility of universal dietary recommendations.   Thus, there 

is a need for new techniques that can reduce the burden of monitoring food intake and also 

allow individuals to personalize their diets to achieve optimum health.  

To address these issues, this article provides an overview of current technology in three 

key areas related to precision nutrition, as illustrated in Figure 1: advances in mobile 

applications for diet logging, new wearable sensors to detect dietary behaviors, and 

personalized nutrition programs based on analyzing biochemical markers (gut microbiome, 

blood glucose) through artificial intelligence (AI) techniques. The article concludes with a 

discussion of potential pitfalls when relying excessively on technology to solve the 

problems of diet monitoring and personalized nutrition, and other important health 

problems. 
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Figure 1.  Overview of the chapter in three key areas.  advances in mobile apps for 

diet monitoring, wearable and handheld sensors, and personalized nutrition. (a) 

Snapshot of the Undermyfork app [6], which tracks glucose patterns (top) and aligns 

them with food photographs (bottom). (b) Recognition of foods from photographs [7].  

(c) Tooth-mounted sensor (from [8]). (d) Smart fork utensil  [9]. (e) Epidermal sweat 

sensor (from [10]).  Personalized nutrition is achieved by combining (f) continuous 

glucose monitors, (g) microbiome information and (h) machine learning techniques. 

(a) provided, with permission, by Undermyfork, (b) Reprinted (adapted) with 

permission from authors [7] (c) Reprinted (adapted) with permission from [8], (d) 

Reprinted (adapted) with permission from [9], (e) Reprinted (adapted) with 

permission from [10], Copyright 2020 American Chemical Society, (f) photo credit: 

iStock.com/AzmanJaka, (g) photo credit: iStock.com/Design Cells, (h) photo credit: 

iStock.com/KENGKAT. 

2 Mobile applications for diet monitoring 

A major step in reducing the burden of diet monitoring has been the replacement of paper-

based journals with smartphone apps.  The ubiquity of smartphones makes dieting apps 

very convenient, since the user does not need to carry around a physical log book or diary.  

Further, dieting apps provide access to databases containing the nutritional content of a 
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very large number of foods and meals.   As an example, one of the most popular dieting 

apps, MyFitnessPal [11], has over 11 million food items, though not all of its entries are 

verified for accuracy (to our knowledge, the largest verified nutrition database is 

Nutritionix, with nearly 800,000 grocery items and 170,000 restaurant items).  Having 

access to such massive databases can greatly simplify guesswork for users (i.e., by 

providing precise nutritional information of meals) and guide them when choosing portion 

sizes and meals. An additional advantage of mobile apps is their ability to scan barcodes 

for packaged foods, which reduces the need to look up the food in a database or enter food 

nutrients manually.  Finally, dieting apps can also be integrated with external devices, such 

as smart scales, fitness trackers, and continuous glucose monitors (CGMs) to help users 

understand the effect of diet and exercise on their weight trends and glucose patterns. 

However, written food diaries –whether paper-based or electronic, require a high level of 

engagement that can lead to fatigue and reduced adherence over time [12].  An alternative 

that has gained popularity over the past decade are photographic food diaries [13].  

Photographic food diaries offer several advantages over written diaries.  They can reduce 

data hording, the situation where the user completes multiple entries at once, typically at 

the end of each day. Because photographs have to be taken at the point of consumption, 

they tend to encourage in-the-moment awareness and more accurate recalls (e.g. the 

context in which the meal was eaten, the preparation and makeup of the food, and how 

much of the food was eaten).  In addition, studies with adult and pediatric populations have 

shown that photographic diaries are preferred to paper diaries, and are easier to use.  

Further, previous studies have shown that combining images with other forms of 

information (e.g., written, verbal) can increase retention, understanding and future problem 

solving [14].  An interesting example in this direction is Undermyfork [15], a diabetes app 
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that combines photo-based food logging with glucose data from CGMs . The app shows 

food photographs with the corresponding glucose responses, which helps users identify 

foods that lead to high postprandial glucose, and foods that keep glucose within a more 

normal range. A further advantage of photo-based food diaries is they can be combined 

with AI techniques to detect and identify foods, and estimate the nutritional content of 

foods [16].  An increasing number of commercial apps use these techniques to track 

nutrition from food photographs, e.g., Lose It! [17], CalorieMama [18], Snaq [19], 

Undermyfork, and several software libraries for food image recognition are available for 

integration with mobile apps, e.g., bite.ai [20], FoodAI [21]. 

3 Sensors for tracking eating and nutrition 

In parallel with advances in mobile apps, a number of sensor-based approaches are being 

developed to automate the process of tracking eating behaviors, thus reducing user burden 

and increasing measurement accuracy.  We organize these various sensing modalities into 

two broad categories: physical sensors and chemical sensors.    

3.1 Physical sensors  

Physical sensors have been a popular approach to tracking diet in an automated fashion [4], 

either with wearable sensors or smart utensils. Wearable sensors containing inertial 

measurement units are often used to log food intake by detecting the specific gestures that 

accompany eating [22]. These gestures could be generic hand-to-mouth movements or 

more specific actions, including using a specific utensil or even eating with one’s hands 

directly [23]. While these sensing systems provide accurate results in laboratory settings, 

accounting for accurate results in real-life environments remains a challenge using only 
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wearable motion sensors [24], though recently, some success has been found in moving 

these motion sensors from the wrist to the head and mouth area (e.g., jawbone) [25]. 

In order to enhance food intake detection, additional wearable sensors are used, including 

electromyography (EMG), piezoelectric, and acoustic sensors, to sense the movement of 

muscles around the jaw and identify chewing and swallowing sounds. EMG sensors 

attached to eyeglasses are able to detect chewing and swallowing motions through muscle 

activation [26]. Similarly, a combination of piezoelectric sensors and accelerometers can 

also track muscle movement to differentiate between eating actions and motions related to 

talking [27]. As these approaches to combine information across multiple sensors expand, 

some have even worked on integrating cameras, either within the environment or directly 

on the body, to help segment the data captured by the wearable sensors [28]. As wearing a 

large number of sensors may be uncomfortable, physical sensors have also been placed in 

plates and utensils. These “smart utensils” can detect eating and, if embedded with 

additional sensors, also to recognize the food and its composition [29]. 

3.2 Chemical sensors 

While physical sensors can be used to detect moments of dietary intake, in most cases they 

have limited ability to estimate the nutritional content of foods. The latter requires 

measuring dietary biomarkers that are associated with intake of nutrients. A number of 

biomarkers have been identified that correlate with intake of various foods, such as fruits 

and vegetables (e.g., vitamin C and carotenoids in blood), sugar (e.g., urinary sucrose and 

fructose), or protein (e.g., urinary nitrogen), to mention a few [30, 31].  Here we focus on 

dietary biomarkers that can be measured with wearable or handheld sensors. 
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CGMs have gained acceptance to manage type 1 diabetes, but also offer promise for 

monitoring dietary intake.  The mechanism by which CGMs may be used to monitor diet 

is based on the fact that the change in blood glucose after a meal, also known as the post-

prandial glucose response (PPGR), depends on the macronutrients in the meal (e.g., 

carbohydrates, protein, fat, fiber).  The major determinant of post-prandial glucose is the 

amount of carbohydrates, but adding protein, fat, or fiber to a meal generally yields smaller 

increases and lengthier responses; see Figure 2 . This suggest that the shape of the PPGR 

can be used to recover the macronutrient composition of the meal through the use of 

machine learning techniques.  To test this hypothesis, we recently conducted a study in 

which 15 healthy participants (not diagnosed with prediabetes or type 2 diabetes, 60-85 

years, body mass index 25-35 kg/m2) consumed nine different meals over the course of 2-

3 weeks while wearing a CGM. Each meal had a known but varying amount of CHO (low 

C1: 42.5 g, medium C2: 85 g, high C3: 170 g), protein (low P1: 15 g, medium P2: 30 g, 

high P3: 60 g), and fat (low F1: 13 g, medium F2: 26 g, high F3: 52 g). Then, we trained 

several machine learning models to predict the amount of macronutrients from the PPGRs 

in a leave-one-participant-out fashion, e.g., using data from 14 participants for training and 

the remaining participant for testing [32, 33]. The best performing models were able to 

predict the amount of macronutrients in the meal with a normalized root mean squared 

error (NRMSE) of 22% for carbohydrates, 50% for protein and 40% for fat, a promising 

result given the large inter-individual differences in food metabolism [5] and the fact that 

the models were not customized for each participant.  
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Figure 2.  PPGRs to mixed meals with carbohydrates (C), protein (P) and fat (F), 

denoted as CxPxFx, where x represents the amount of each macronutrient in the meal 

(1: low; 2: medium; 3: high). (a) Average PPGR across subjects as the amount of 

carbohydrates increases (C1, C2, C3) while the other two macronutrients remain 

fixed (P2, F2).  The PPGR becomes more pronounced at higher levels of C. (b) 

Average PPGR protein increases (P1, P2, P3) while the other two macronutrients are 

fixed (C2, F2).   As protein increases, the PPGR decreases, with lower maximum levels 

and slower return to baseline. (c) Average PPGR as fat increases (F1, F2, F3) while 

the other two macronutrients are fixed (C2, P2).   As with protein, as fat increases, 

the PPGR also decreases, with lower maximum levels and slower return to the 

baseline (from [32]). 

Handheld devices are also available to analyze breath biomarkers associated with 

metabolism.  A primary target of these devices are ketones (e.g., acetone).  During 

prolonged fasting or carbohydrate restriction, the body resorts to burning fat in order to 

produce ketones, which are then used as an alternative source of energy instead of glucose 

[34].  This results in elevated values of ketones in the breath, which can serve as an 

indicator of whether the body has reached ketosis (i.e., the metabolic state where the body 

generates energy primarily from fat).  Several breath ketone meters exist currently in the 
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market, including the Ketonix analyzer [35], and the Biosense monitor [36]. These devices 

are aimed at people attempting to lose weight through ketogenic diets, but may also be 

beneficial for people with diabetes who may be at risk of ketoacidosis (this type of breath 

analyzers provide a single-point measurement of ketones; for continuous measurement, 

several recent studies have proposed the development of continuous ketone monitors 

(CKMs) to measure ketones in interstitial fluid [37, 38])  

Another metabolic biomarker that can be derived from breath analysis is metabolic fuel, a 

parameter that reflects the body’s fuel preference for energy production (i.e., carbohydrates 

vs. fat). Metabolic fuel is generally estimated as the respiratory exchange ratio (RER), the 

ratio of CO2 produced during metabolism and oxygen used. But this requires the use of 

metabolic carts, which are only available in specialized clinics and thus are unsuited for 

regular use.  To address this issue, a hand-held device by Lumen [39] has become available 

that estimates metabolic fuel by measuring CO2 while the user performs a brief breath 

maneuver.  This information is then used to provide personalized nutrition and exercise 

recommendations.  

Additional dietary biomarkers can be extracted ambulatorily with wearable sensors from 

other bodily fluids.  A primary target of these devices is sweat, since it can be measured at 

convenient body locations and is ideal for continuous monitoring.  A variety of analytes 

present in sweat may be of interest for metabolic disorders, including various electrolytes, 

glucose, lactate, ammonia, ethanol, cortisol, and hydration markers [10, 40]. As an 

example, Sempionatto, Khorshed [10] developed an epidermal biosensor to track the 

dynamics of vitamin C in sweat.  The device is in the form of a flexible tattoo, and uses 

iontophoresis stimulation to draw sweat and an enzymatic process for detection.  Along the 

same lines, Yang, Song [41] developed a sweat sensor that can detect uric acid and tyrosine, 
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analytes that are well established for metabolic and nutritional management.  For 

personalized nutrition, another interesting target is saliva, since it can be highly informative 

of eating behaviors (e.g., increase in salivary secretion with eating) and the nutritional 

composition of the meals.  Kim, Valdés-Ramírez [42] developed a non-invasive 

mouthguard biosensor that was capable of monitoring lactate continuously during sport 

activities.  However, wearing a large mouthguard is impractical for long studies, so better 

mounting solutions have also been investigated, such as tooth-mounted sensors.  Along 

these lines, Tseng, Napier [8] developed a hydrogel-based sensor that, attached to a tooth, 

could track glucose, salt and alcohol intake. However, in contrast with CGMs and breath 

analyzers, which are already available commercially, many of these sweat/saliva sensing 

devices are still at the research stage. 

4 Technologies for personalized nutrition 

Finally, we describe how technologies are being used to develop personalized nutrition 

programs.  Here we discuss measurements of gut microbiome (i.e., collection of 

microorganisms, such as bacteria, viruses and fungi, and their genetic material present in 

the gastrointestinal tract) and blood glucose to develop personalized nutrition 

recommendations. In a seminal study on personalized nutrition, Zeevi et al. [5] used CGMs 

to track the glucose response of 800 participants (healthy and with prediabetes) for one 

week while participants kept detailed records of their diet. The authors then developed a 

machine-learning model (gradient boosting regression) that could predict the glucose 

response of a meal for each participant based on individual factors, such as anthropometric 

variables, blood panels, and gut microbiome.  Note that after the machine-learning model 

is trained, CGMs are no longer needed to make predictions (i.e., CGMs only provide the 
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outputs of the model during training).  When tested on an independent cohort of 100 

participants, the model was able to generate personalized diets that led to improved glucose 

responses (i.e., reduced postprandial hyperglycemia). In a related study, Hall et al. [43] 

used CGMs to estimate the frequency of hyperglycemia among healthy adults (not 

previously diagnosed with diabetes). Surprisingly, they found glucose levels that reached 

prediabetes and diabetes ranges 15% and 2% of the time, respectively, suggesting that 

glucose dysregulation is more prevalent than commonly assumed. 

A number of companies have emerged that seek to provide personalized recommendations 

of diet intake to improve glucose control and weight loss. As an example, the company 

DayTwo [44] measures gut microbiome to provide nutrition recommendations using the 

machine-learning model developed in the study by Zeevi et al. [5]. The company Thryve 

[45] also uses gut microbiome measurements to customize probiotics and food 

recommendations to improve health. The gut microbiome company Viome [46] conducted 

a study that tracked the glycemic response of 550 adults for up to two weeks, while they 

consumed a set of standardized meals carefully designed to cover a broad range of 

proportions of carbohydrates, proteins, fats and fiber [47]. Then, they built a multilevel 

mixed-effects regression model to predict PPGRs.  This allowed the authors to quantify 

(for the first time) the relative influence of meal composition, anthropometric, gut 

microbiome and lifestyle variables to postprandial glucose. Based on a proprietary analysis 

of the gut microbiome, Viome also makes recommendations about the likely positive, 

neutral, or negative impact that certain dietary choices will have on individual’s health.  

Note that these companies do not require CGM use: nutrition recommendations are based 

on information from the gut microbiome and other individual factors; as noted earlier, 

CGMs are only needed to build the machine-learning model. 
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Alternatively, the company NutriSense [48] relies on CGMs to develop personalized 

nutrition recommendations. NutriSense combines CGMs with a smartphone application 

that integrates diet logging and physical activity, and allows the user to interact with 

nutritionists that provide recommendations to improve health through a balance of food, 

exercise and rest. While CGMs are primarily prescribed for people with diabetes (PwD), 

this is (to our knowledge) the first company to provide CGMs and integrate them with an 

application for personal health. Other companies in this space also exist, e.g., Signos [49], 

Levels [50], but at the time of this writing they appear to be in the early-access stage. These 

nascent companies and technologies are laying the groundwork for personalized nutrition 

and health, through improved logging of meals through intelligent smartphone applications 

and CGMs, and through individualized reporting and recommendation with the 

measurement of the gut microbiome. 

5 Discussion 

We have reviewed a number of technologies and digital tools that can significantly reduce 

the burden of dietary monitoring, compared to traditional methods that require users to 

look up the nutritional content of foods in a calorie book and then manually enter the 

information in a log book. We have also reviewed innovative personalized-nutrition 

approaches that overcome the limitations of universal dietary recommendations by 

modeling the unique metabolism of each individual through machine learning techniques.  

These advances in precision nutrition can be invaluable tools in the fight against diabetes 

and other metabolic diseases, if used properly.  Accordingly, and in the interest of 

providing a balanced treatment of this field, we wish to close this article by highlighting 

some potential pitfalls of these tools, and also highlight the need to engage behavior-
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modification researchers to help design interventions with the highest likelihood of 

adherence and lifestyle modification. 

With diet monitoring tools, the hope is that reducing burden will result in increased 

adherence and eventually better clinical outcomes (e.g., weight loss, glucose control).  

However, there is a well-established “law of attrition” [51] in eHealth trials, which tend to 

experience significantly higher dropout rates than drug trials. Thus, it seems likely that 

adherence to dietary monitoring tools will decrease with time, no matter how low-burden 

the tool is.  A further issue is whether full automation of diet monitoring (i.e., no burden) 

is desirable, as it may prevent users from developing the in-the-moment awareness that 

comes with food logging [12]. As an example, Turner-McGrievy, Boutté [52] conducted a 

study (DIET) where participants were randomly assigned to two different diet-monitoring 

methods, a standard diet tracking app (high burden), and a wearable bite tracking device 

(low burden).  After 6 months, participants in the high-burden group lost significantly more 

weight (−6.8±0.8 kg) than those in the low-burden group (−3.0±0.8 kg; p < 0.001).  In a 

follow up study (2SMART), the authors compared the standard diet tracking app (high 

burden) against a photo-based app (low burden) [53].  At 6 weeks and at 6 months, both 

apps were equally effective in reducing weight. However, weight loss was correlated with 

adherence only for the high-burden app (i.e. counting calories more often was associated 

with more weight loss, but taking more food photographs was not). Further, at 6 weeks 

participants in the two low-burden groups (bite-tracking device in DIET, photo-based app 

in 2SMART) found it more “difficult to remember to use [their] assigned diet tracking 

device on a regular basis” than participants in the high-burden condition.  Thus, there 

appears to be a tradeoff between developing tools that reduce user burden and preventing 

the users from forming the critical habit of monitoring their diet [54].  
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Some concerns have also been raised about personalized- or precision-nutrition programs 

that rely on CGMs.  In a recent study, Howard et al. [55] asked participants to wear two 

CGM devices simultaneously (Dexcom G4 Platinum, Abbott Freestyle Libre Pro) for 28 

days while they consumed ad libitum meals. Then, meals for each participant were ranked 

according to their corresponding post-prandial glucose (e.g., from low to high). 

Surprisingly, the authors found a low degree of concordance between the meal rankings 

obtained from the two CGM devices.  While some of these discrepancies could be 

explained by the fact that the two CGMs were placed at different anatomical locations 

(upper arm for Abbott, lower abdomen for Dexcom), this result raises important questions 

about the effectiveness of personalized dietary recommendations based on CGM 

measurements that are imprecise.  
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