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Abstract

This article provides an up-to-date review of technological advances in
three key areas related to diet monitoring and precision nutrition. First,
we review developments in mobile applications, with a focus on food
photography and artificial intelligence to facilitate the process of diet
monitoring. Second, we review advances in two types of wearable and
handheld sensors that can potentially be used to fully automate certain
aspects of diet logging: physical sensors to detect moments of dietary
intake, and chemical sensors to estimate the composition of diets and
meals. Finally, we review new programs that can generate
personalized/precision  nutrition = recommendations  based  on
measurements of gut microbiota and continuous glucose monitors with
artificial intelligence. The article concludes with a discussion of potential

pitfalls of some of these technologies.
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1 Introduction

A recent survey examining the consumption of major foods and nutrients among adults
aged 25 or older in 195 countries has estimated that improving diet can potentially prevent
one in every five deaths globally [1]. Using a number of dietary risk factors (e.g., diet high
in sodium, or low in fiber), the study concluded that poor diet was responsible for more
deaths than any other risks globally, including tobacco smoking [1]. An essential step to
improve diet is to monitor food intake and eating behaviors. However, conventional
methods for monitoring diet are based on self-report measures (e.g., food diaries, 24-hour
recall), which are problematic. For example, food diaries require manual input, which is
burdensome [2] and often leads to low adherence rates [3]. Further, 24-hour records suffer
from memory recall, which can lead to severe over and under-reporting [4]. Compounding
the problem are the very large inter-individual differences in the response to the same foods
[5], which puts into question the utility of universal dietary recommendations. Thus, there
is a need for new techniques that can reduce the burden of monitoring food intake and also

allow individuals to personalize their diets to achieve optimum health.

To address these issues, this article provides an overview of current technology in three
key areas related to precision nutrition, as illustrated in Figure 1: advances in mobile
applications for diet logging, new wearable sensors to detect dietary behaviors, and
personalized nutrition programs based on analyzing biochemical markers (gut microbiome,
blood glucose) through artificial intelligence (Al) techniques. The article concludes with a
discussion of potential pitfalls when relying excessively on technology to solve the
problems of diet monitoring and personalized nutrition, and other important health

problems.
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Advances in mobile apps Sensors for diet monitoring Personalized nutrition

Figure 1. Overview of the chapter in three key areas. advances in mobile apps for
diet monitoring, wearable and handheld sensors, and personalized nutrition. (a)
Snapshot of the Undermyfork app [6], which tracks glucose patterns (top) and aligns
them with food photographs (bottom). (b) Recognition of foods from photographs [7].
(c) Tooth-mounted sensor (from [8]). (d) Smart fork utensil [9]. (e¢) Epidermal sweat
sensor (from [10]). Personalized nutrition is achieved by combining (f) continuous
glucose monitors, (g) microbiome information and (h) machine learning techniques.
(a) provided, with permission, by Undermyfork, (b) Reprinted (adapted) with
permission from authors [7] (c) Reprinted (adapted) with permission from [8], (d)
Reprinted (adapted) with permission from [9], (e) Reprinted (adapted) with
permission from [10], Copyright 2020 American Chemical Society, (f) photo credit:
iStock.com/AzmanJaka, (g) photo credit: iStock.com/Design Cells, (h) photo credit:

iStock.com/KENGKAT.

2 Mobile applications for diet monitoring

A major step in reducing the burden of diet monitoring has been the replacement of paper-
based journals with smartphone apps. The ubiquity of smartphones makes dieting apps
very convenient, since the user does not need to carry around a physical log book or diary.

Further, dieting apps provide access to databases containing the nutritional content of a
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very large number of foods and meals. As an example, one of the most popular dieting
apps, MyFitnessPal [11], has over 11 million food items, though not all of its entries are
verified for accuracy (to our knowledge, the largest verified nutrition database is
Nutritionix, with nearly 800,000 grocery items and 170,000 restaurant items). Having
access to such massive databases can greatly simplify guesswork for users (i.e., by
providing precise nutritional information of meals) and guide them when choosing portion
sizes and meals. An additional advantage of mobile apps is their ability to scan barcodes
for packaged foods, which reduces the need to look up the food in a database or enter food
nutrients manually. Finally, dieting apps can also be integrated with external devices, such
as smart scales, fitness trackers, and continuous glucose monitors (CGMs) to help users

understand the effect of diet and exercise on their weight trends and glucose patterns.

However, written food diaries —whether paper-based or electronic, require a high level of
engagement that can lead to fatigue and reduced adherence over time [12]. An alternative
that has gained popularity over the past decade are photographic food diaries [13].
Photographic food diaries offer several advantages over written diaries. They can reduce
data hording, the situation where the user completes multiple entries at once, typically at
the end of each day. Because photographs have to be taken at the point of consumption,
they tend to encourage in-the-moment awareness and more accurate recalls (e.g. the
context in which the meal was eaten, the preparation and makeup of the food, and how
much of the food was eaten). In addition, studies with adult and pediatric populations have
shown that photographic diaries are preferred to paper diaries, and are easier to use.
Further, previous studies have shown that combining images with other forms of
information (e.g., written, verbal) can increase retention, understanding and future problem

solving [14]. An interesting example in this direction is Undermyfork [15], a diabetes app
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that combines photo-based food logging with glucose data from CGMs . The app shows
food photographs with the corresponding glucose responses, which helps users identify
foods that lead to high postprandial glucose, and foods that keep glucose within a more
normal range. A further advantage of photo-based food diaries is they can be combined
with Al techniques to detect and identify foods, and estimate the nutritional content of
foods [16]. An increasing number of commercial apps use these techniques to track
nutrition from food photographs, e.g., Lose It! [17], CalorieMama [18], Snaq [19],
Undermyfork, and several software libraries for food image recognition are available for

integration with mobile apps, e.g., bite.ai [20], FoodAI [21].

3 Sensors for tracking eating and nutrition

In parallel with advances in mobile apps, a number of sensor-based approaches are being
developed to automate the process of tracking eating behaviors, thus reducing user burden
and increasing measurement accuracy. We organize these various sensing modalities into

two broad categories: physical sensors and chemical sensors.

3.1 Physical sensors

Physical sensors have been a popular approach to tracking diet in an automated fashion [4],
either with wearable sensors or smart utensils. Wearable sensors containing inertial
measurement units are often used to log food intake by detecting the specific gestures that
accompany eating [22]. These gestures could be generic hand-to-mouth movements or
more specific actions, including using a specific utensil or even eating with one’s hands
directly [23]. While these sensing systems provide accurate results in laboratory settings,

accounting for accurate results in real-life environments remains a challenge using only
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wearable motion sensors [24], though recently, some success has been found in moving

these motion sensors from the wrist to the head and mouth area (e.g., jawbone) [25].

In order to enhance food intake detection, additional wearable sensors are used, including
electromyography (EMG), piezoelectric, and acoustic sensors, to sense the movement of
muscles around the jaw and identify chewing and swallowing sounds. EMG sensors
attached to eyeglasses are able to detect chewing and swallowing motions through muscle
activation [26]. Similarly, a combination of piezoelectric sensors and accelerometers can
also track muscle movement to differentiate between eating actions and motions related to
talking [27]. As these approaches to combine information across multiple sensors expand,
some have even worked on integrating cameras, either within the environment or directly
on the body, to help segment the data captured by the wearable sensors [28]. As wearing a
large number of sensors may be uncomfortable, physical sensors have also been placed in
plates and utensils. These “smart utensils” can detect eating and, if embedded with

additional sensors, also to recognize the food and its composition [29].

3.2 Chemical sensors

While physical sensors can be used to detect moments of dietary intake, in most cases they
have limited ability to estimate the nutritional content of foods. The latter requires
measuring dietary biomarkers that are associated with intake of nutrients. A number of
biomarkers have been identified that correlate with intake of various foods, such as fruits
and vegetables (e.g., vitamin C and carotenoids in blood), sugar (e.g., urinary sucrose and
fructose), or protein (e.g., urinary nitrogen), to mention a few [30, 31]. Here we focus on

dietary biomarkers that can be measured with wearable or handheld sensors.
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CGMs have gained acceptance to manage type 1 diabetes, but also offer promise for
monitoring dietary intake. The mechanism by which CGMs may be used to monitor diet
is based on the fact that the change in blood glucose after a meal, also known as the post-
prandial glucose response (PPGR), depends on the macronutrients in the meal (e.g.,
carbohydrates, protein, fat, fiber). The major determinant of post-prandial glucose is the
amount of carbohydrates, but adding protein, fat, or fiber to a meal generally yields smaller
increases and lengthier responses; see Figure 2 . This suggest that the shape of the PPGR
can be used to recover the macronutrient composition of the meal through the use of
machine learning techniques. To test this hypothesis, we recently conducted a study in
which 15 healthy participants (not diagnosed with prediabetes or type 2 diabetes, 60-85
years, body mass index 25-35 kg/m?) consumed nine different meals over the course of 2-
3 weeks while wearing a CGM. Each meal had a known but varying amount of CHO (low
Cl1: 42.5 g, medium C2: 85 g, high C3: 170 g), protein (low P1: 15 g, medium P2: 30 g,
high P3: 60 g), and fat (low F1: 13 g, medium F2: 26 g, high F3: 52 g). Then, we trained
several machine learning models to predict the amount of macronutrients from the PPGRs
in a leave-one-participant-out fashion, e.g., using data from 14 participants for training and
the remaining participant for testing [32, 33]. The best performing models were able to
predict the amount of macronutrients in the meal with a normalized root mean squared
error (NRMSE) of 22% for carbohydrates, 50% for protein and 40% for fat, a promising
result given the large inter-individual differences in food metabolism [5] and the fact that

the models were not customized for each participant.
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Figure 2. PPGRs to mixed meals with carbohydrates (C), protein (P) and fat (F),
denoted as CxPxFx, where x represents the amount of each macronutrient in the meal
(1: low; 2: medium; 3: high). (a) Average PPGR across subjects as the amount of
carbohydrates increases (C1, C2, C3) while the other two macronutrients remain
fixed (P2, F2). The PPGR becomes more pronounced at higher levels of C. (b)
Average PPGR protein increases (P1, P2, P3) while the other two macronutrients are
fixed (C2, F2). As protein increases, the PPGR decreases, with lower maximum levels
and slower return to baseline. (c) Average PPGR as fat increases (F1, F2, F3) while
the other two macronutrients are fixed (C2, P2). As with protein, as fat increases,
the PPGR also decreases, with lower maximum levels and slower return to the

baseline (from [32]).

Handheld devices are also available to analyze breath biomarkers associated with
metabolism. A primary target of these devices are ketones (e.g., acetone). During
prolonged fasting or carbohydrate restriction, the body resorts to burning fat in order to
produce ketones, which are then used as an alternative source of energy instead of glucose
[34]. This results in elevated values of ketones in the breath, which can serve as an
indicator of whether the body has reached ketosis (i.e., the metabolic state where the body

generates energy primarily from fat). Several breath ketone meters exist currently in the
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market, including the Ketonix analyzer [35], and the Biosense monitor [36]. These devices
are aimed at people attempting to lose weight through ketogenic diets, but may also be
beneficial for people with diabetes who may be at risk of ketoacidosis (this type of breath
analyzers provide a single-point measurement of ketones; for continuous measurement,
several recent studies have proposed the development of continuous ketone monitors

(CKMs) to measure ketones in interstitial fluid [37, 38])

Another metabolic biomarker that can be derived from breath analysis is metabolic fuel, a
parameter that reflects the body’s fuel preference for energy production (i.e., carbohydrates
vs. fat). Metabolic fuel is generally estimated as the respiratory exchange ratio (RER), the
ratio of CO2 produced during metabolism and oxygen used. But this requires the use of
metabolic carts, which are only available in specialized clinics and thus are unsuited for
regular use. To address this issue, a hand-held device by Lumen [39] has become available
that estimates metabolic fuel by measuring CO2 while the user performs a brief breath
maneuver. This information is then used to provide personalized nutrition and exercise

recommendations.

Additional dietary biomarkers can be extracted ambulatorily with wearable sensors from
other bodily fluids. A primary target of these devices is sweat, since it can be measured at
convenient body locations and is ideal for continuous monitoring. A variety of analytes
present in sweat may be of interest for metabolic disorders, including various electrolytes,
glucose, lactate, ammonia, ethanol, cortisol, and hydration markers [10, 40]. As an
example, Sempionatto, Khorshed [10] developed an epidermal biosensor to track the
dynamics of vitamin C in sweat. The device is in the form of a flexible tattoo, and uses
iontophoresis stimulation to draw sweat and an enzymatic process for detection. Along the

same lines, Yang, Song [41] developed a sweat sensor that can detect uric acid and tyrosine,
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analytes that are well established for metabolic and nutritional management. For
personalized nutrition, another interesting target is saliva, since it can be highly informative
of eating behaviors (e.g., increase in salivary secretion with eating) and the nutritional
composition of the meals. Kim, Valdés-Ramirez [42] developed a non-invasive
mouthguard biosensor that was capable of monitoring lactate continuously during sport
activities. However, wearing a large mouthguard is impractical for long studies, so better
mounting solutions have also been investigated, such as tooth-mounted sensors. Along
these lines, Tseng, Napier [8] developed a hydrogel-based sensor that, attached to a tooth,
could track glucose, salt and alcohol intake. However, in contrast with CGMs and breath
analyzers, which are already available commercially, many of these sweat/saliva sensing

devices are still at the research stage.

4  Technologies for personalized nutrition

Finally, we describe how technologies are being used to develop personalized nutrition
programs. Here we discuss measurements of gut microbiome (i.e., collection of
microorganisms, such as bacteria, viruses and fungi, and their genetic material present in
the gastrointestinal tract) and blood glucose to develop personalized nutrition
recommendations. In a seminal study on personalized nutrition, Zeevi et al. [5] used CGMs
to track the glucose response of 800 participants (healthy and with prediabetes) for one
week while participants kept detailed records of their diet. The authors then developed a
machine-learning model (gradient boosting regression) that could predict the glucose
response of a meal for each participant based on individual factors, such as anthropometric
variables, blood panels, and gut microbiome. Note that after the machine-learning model

is trained, CGMs are no longer needed to make predictions (i.e., CGMs only provide the

Page 11 of 18



outputs of the model during training). When tested on an independent cohort of 100
participants, the model was able to generate personalized diets that led to improved glucose
responses (i.e., reduced postprandial hyperglycemia). In a related study, Hall et al. [43]
used CGMs to estimate the frequency of hyperglycemia among healthy adults (not
previously diagnosed with diabetes). Surprisingly, they found glucose levels that reached
prediabetes and diabetes ranges 15% and 2% of the time, respectively, suggesting that

glucose dysregulation is more prevalent than commonly assumed.

A number of companies have emerged that seek to provide personalized recommendations
of diet intake to improve glucose control and weight loss. As an example, the company
DayTwo [44] measures gut microbiome to provide nutrition recommendations using the
machine-learning model developed in the study by Zeevi et al. [S]. The company Thryve
[45] also uses gut microbiome measurements to customize probiotics and food
recommendations to improve health. The gut microbiome company Viome [46] conducted
a study that tracked the glycemic response of 550 adults for up to two weeks, while they
consumed a set of standardized meals carefully designed to cover a broad range of
proportions of carbohydrates, proteins, fats and fiber [47]. Then, they built a multilevel
mixed-effects regression model to predict PPGRs. This allowed the authors to quantify
(for the first time) the relative influence of meal composition, anthropometric, gut
microbiome and lifestyle variables to postprandial glucose. Based on a proprietary analysis
of the gut microbiome, Viome also makes recommendations about the likely positive,
neutral, or negative impact that certain dietary choices will have on individual’s health.
Note that these companies do not require CGM use: nutrition recommendations are based
on information from the gut microbiome and other individual factors; as noted earlier,

CGMs are only needed to build the machine-learning model.
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Alternatively, the company NutriSense [48] relies on CGMs to develop personalized
nutrition recommendations. NutriSense combines CGMs with a smartphone application
that integrates diet logging and physical activity, and allows the user to interact with
nutritionists that provide recommendations to improve health through a balance of food,
exercise and rest. While CGMs are primarily prescribed for people with diabetes (PwD),
this is (to our knowledge) the first company to provide CGMs and integrate them with an
application for personal health. Other companies in this space also exist, €.g., Signos [49],
Levels [50], but at the time of this writing they appear to be in the early-access stage. These
nascent companies and technologies are laying the groundwork for personalized nutrition
and health, through improved logging of meals through intelligent smartphone applications
and CGMs, and through individualized reporting and recommendation with the

measurement of the gut microbiome.

5 Discussion

We have reviewed a number of technologies and digital tools that can significantly reduce
the burden of dietary monitoring, compared to traditional methods that require users to
look up the nutritional content of foods in a calorie book and then manually enter the
information in a log book. We have also reviewed innovative personalized-nutrition
approaches that overcome the limitations of universal dietary recommendations by
modeling the unique metabolism of each individual through machine learning techniques.
These advances in precision nutrition can be invaluable tools in the fight against diabetes
and other metabolic diseases, if used properly. Accordingly, and in the interest of
providing a balanced treatment of this field, we wish to close this article by highlighting

some potential pitfalls of these tools, and also highlight the need to engage behavior-
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modification researchers to help design interventions with the highest likelihood of

adherence and lifestyle modification.

With diet monitoring tools, the hope is that reducing burden will result in increased
adherence and eventually better clinical outcomes (e.g., weight loss, glucose control).
However, there is a well-established “law of attrition” [51] in eHealth trials, which tend to
experience significantly higher dropout rates than drug trials. Thus, it seems likely that
adherence to dietary monitoring tools will decrease with time, no matter how low-burden
the tool is. A further issue is whether full automation of diet monitoring (i.e., no burden)
is desirable, as it may prevent users from developing the in-the-moment awareness that
comes with food logging [12]. As an example, Turner-McGrievy, Boutté [52] conducted a
study (DIET) where participants were randomly assigned to two different diet-monitoring
methods, a standard diet tracking app (high burden), and a wearable bite tracking device
(low burden). After 6 months, participants in the high-burden group lost significantly more
weight (—6.84+0.8 kg) than those in the low-burden group (—3.0+0.8 kg; p < 0.001). Ina
follow up study (2SMART), the authors compared the standard diet tracking app (high
burden) against a photo-based app (low burden) [53]. At 6 weeks and at 6 months, both
apps were equally effective in reducing weight. However, weight loss was correlated with
adherence only for the high-burden app (i.e. counting calories more often was associated
with more weight loss, but taking more food photographs was not). Further, at 6 weeks
participants in the two low-burden groups (bite-tracking device in DIET, photo-based app
in 2SMART) found it more “difficult to remember to use [their] assigned diet tracking
device on a regular basis” than participants in the high-burden condition. Thus, there
appears to be a tradeoff between developing tools that reduce user burden and preventing

the users from forming the critical habit of monitoring their diet [54].
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Some concerns have also been raised about personalized- or precision-nutrition programs
that rely on CGMs. In a recent study, Howard et al. [55] asked participants to wear two
CGM devices simultaneously (Dexcom G4 Platinum, Abbott Freestyle Libre Pro) for 28
days while they consumed ad libitum meals. Then, meals for each participant were ranked
according to their corresponding post-prandial glucose (e.g., from low to high).
Surprisingly, the authors found a low degree of concordance between the meal rankings
obtained from the two CGM devices. While some of these discrepancies could be
explained by the fact that the two CGMs were placed at different anatomical locations
(upper arm for Abbott, lower abdomen for Dexcom), this result raises important questions
about the effectiveness of personalized dietary recommendations based on CGM

measurements that are imprecise.
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