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Abstract—Managing diabetes requires following a healthy
lifestyle, including monitoring dietary intake. Prior work has
shown that meals with different macronutrient composition can
have distinct postprandial glucose responses (PPGR), therefore
suggesting that PPGRs may be used to monitor diet automati-
cally. Yet, PPGRs shown large variability across individuals. This
paper proposes a metric-learning approach to achieve personal-
ized meal macronutrient estimation from PPGRs. The metric
learning approach utilizes a Siamese neural network (SNN)
architecture, which learns a PPGR embedding via a contrastive
loss function adapted to the task of interest. Specifically, the
proposed contrastive loss is designed so that it maximizes the
distance between meals of similar macronutrient composition and
minimizes the distance between meals with different macronu-
trients. This loss is further computed within each individual,
therefore reducing individual differences in PPGRs. Our results
show that the proposed metric learning approach outperforms
a feedforward neural network when estimating the amount of
protein, carbohydrate, and fat in a meal. These suggest the fea-
sibility of using PPGRs to track meal macronutrient composition,
supporting dietary informatics applications for precision health
and nutrition.

Index Terms—Diabetes mellitus, personalized diet tracking,
postprandial glucose response, metric learning, siamese network

I. INTRODUCTION

Diabetes mellitus (DM) is a heterogeneous metabolic dis-
order [1]] with increasing prevalence that is intensified by
sedentary lifestyles, carbohydrate-rich diets, and lack of aware-
ness [2f, [3]. Diabetic patients suffer from irregular blood
glucose levels [1]], which over time can increase the risk of
other diseases (e.g., cardiovascular disease, neuropathy) [3].
Leading a healthy lifestyle and consuming a balanced diet is
essential to preventing or controlling DM [3]].

Continuous glucose monitors (CGM) record postprandial
glucose responses (PPGR) at regular intervals over an extended
period of time. CGMs measure glucose in the interstitial
fluid, which is subsequently transmitted and stored in mobile
devices and servers for further analysis [[14]]. Collecting PPGRs
and other contextual information (e.g., meal intake, physical
activity) can provide valuable insights for properly managing
diet and avoiding extreme glycemic events. Previous work has
used CGMs to predict PPGRs in response to food intake [J]],
[15]], predict hyperglycemic and hypoglycemic events [16],

and estimate the type and macronutrient composition of a
meal [17]-[20]. PPGRs depict distinct patterns in response
to different meals. For instance, meals that are rich in carbo-
hydrates lead to sharp increases in PPGR with high peak [11]],
whereas meals rich in protein or fat do not reflect such a
drastic change, yielding lower and potentially wider PPGR
peaks [12]. Such observations can serve as the foundation for
diet monitoring applications based on PPGR data.

However, the shape of the PPGR is influenced by multiple
factors, such as patients’ anthropomorphic features, metabolic
characteristics, lifestyle, and physical activity. Thus, PPGRs
exhibits large inter-individual variability [8], [9]]. This calls
for the design of models that can effectively reduce the effect
of patient-specific information in the PPGRs, while retaining
information related to the macronutrient composition. Toward
this goal, Sajjadi et al investigated three types of stan-
dardization techniques, including baseline correction, feature
normalization, and integrating information about participants’
anthropometric characteristics [[19]]. Paromita et al. further pro-
posed a metric learning technique to account for the large inter-
individual differences in PPGRs for the purpose of meal classi-
fication [[17]]. In the same study, anthropometric and metabolic
characteristics were further considered as an additional input
to the machine learning models in combination with the PPGR
itself. Results from both studies demonstrate the importance
of accounting for inter-individual differences in PPGRs in
order to make it possible ot monitor diet automatically with
CGMs [17], [19].

In this paper, we propose a metric learning approach to
tackle the large inter-individual variability in PPGR, for the
purpose of personalized estimation of meal macronutrients.
The proposed metric learning approach models the relative dif-
ference of PPGRs between different meals within an individual
through a Siamese neural network (SNN). The SNN takes a
pair of PPGRs from the same participant as an input and learns
a transformation of the PPGR (i.e., a PPGR embedding) via a
contrastive loss function appropriately designed for the task of
interest. According to the proposed contrastive loss, pairs of
samples corresponding to meals with proximal macronutrient
composition are projected to the same neighborhood of the
PPGR embedding, while the opposite occurs for samples with



distinctively large difference in their composition. In this way,
the distance between the PPGR embedding learned by the
SNN is a function of the difference in macronutrient com-
position of the corresponding pairs of samples. Our approach
is evaluated on 15 healthy participants, who consumed 9 stan-
dardized meals with different composition of carbohydrates,
proteins, and fats. Results indicate that metric learning can
estimate meal macronutrients whith higher accuracy than a
comparable feedforward network, achieving Pearson’s cor-
relation of 0.55, 0.42, and 0.55 between ground truth and
prediction of carbohydrates, proteins, and fats, respectively.

II. PRIOR WORK

Recent work has examined the potential of utilizing PPGRs
collected via CGM devices for meal monitoring purposes. Huo
et al. designed a multitask neural network to estimate the
macronutrient composition of a meal [20]. Das et al. proposed
a sparse decomposition model for representing PPGR signals
for the same purpose [18]]. According to this, a new meal was
represented as a combination of PPGRs from a set of training
samples in a dictionary. To mitigate the large inter-individual
variability in PPGRs and reduce subject dependencies, Sajjadi
et al. explored three different techniques, including baseline
correction of the PPGR, normalization of the PPGR feature
space, and integration of antrhopometric features in the ma-
chine learning models [19]]. Paromita er al. further used a
metric learning approach to reduce inter-individual differences
in PPGRs [17]]. This approach learned a transformed glycemic
embedding from PPGRs, such that different meals were placed
in a large distance apart in the transformed glycemic space,
while the opposite occurred for similar meals. This work was
evaluated in terms of its performance on classifying between
three different meals (i.e., cornflakes and milk, peanut butter
sandwich, protein bar), while metric learning has not been
formulated for the more complex task of meal macronutrient
estimation.

Metric learning has been used with great success in the
field of computer vision for the purposes of object classifi-
cation [21f], [27] and tracking [24]]. Because of its ability to
model the relative distance between input samples (e.g., pairs,
triplets), metric learning has shown remarkable performance
with a small (or even non-existent) number of training data, in
what is known as zero-shot and few-shot learning [27]. In the
domain of signal and audio processing, metric learning imple-
mented with a SNN architecture has been effectively utilized
to detect acoustic events based on solely a single exemplar
target sample [22]. A similar architecture implemented with a
triplet loss has been employed in speaker recognition, where
audio embeddings for a target speaker were learned using a
small number of input samples [28]].

The contributions of this research to the existing body of
literature are as follows: (1) In contrast to prior work, which
investigated distribution-based learning methodologies (e.g.,
K-nearest neighbor, feedforward neural network (FNN)) that
model the absolute patterns of PPGRs in relation to a given
macronutrient composition [18]-[20], we examine a metric

TABLE I
MACRONUTRIENT COMPOSITION OF STANDARDIZED MEALS FOR
CARBOHYDRATE, PROTEIN, AND FAT.

Meal ID | Carbohydrate | Protein Fat

A cl (52.25g) pl (15g) | fI (13g)
B cl (52.25g) p2 (30g) | f2 (26g)
C c2 (94.75g) p2 (30g) | fl (13g)
D c2 (94.75g) pl (15g) | f2 (26g)
E c2 (94.75g) p2 (30g) | f2 (26g)
F c2 (94.75g) p2 (30g) | 3 (52g)
G c2 (94.75g) p3 (60g) | f2 (26g)
H c3 (179.75g) p2 (30g) | f2 (26g)
1 c3 (179.75g) p3 (60g) | f3 (52g)

learning approach for jointly estimating the level of carbo-
hydrate, protein, and fat in a meal from PPGR signals. The
proposed metric learning algorithm models the relative differ-
ence in PPGRs between pairs of meals, therefore—grounded
on evidence from prior work on speech and image process-
ing [21], [25], [27], [28]-has the potential to perform well in
our domain of interest. (2) We propose a novel loss function
that compares two meals in terms of their macronutrient
composition and their distance in the PPGR embedding space.
In contrast to implementing metric learning for the purposes
of meal classification, the implementation of regression with
metric learning is more complex, since we need to define an
appropriate loss function that models pairwise distances with
respect to both the PPGR embedding space and the continuous
label space that describes the macronutrient composition.

III. DATA DESCRIPTION

The dataset used for this study was collected from 15
healthy participants 60-85 years of age, with BMI ranging
from 25-35. The study spanned 9 days, in which each par-
ticipant came to the lab for 8 hours. PPGRs were measured
throughout the duration of the study every 15 minutes using
a commercial CGM device (Abbott Freestyle Libre Pro).
Participants were asked to fast for at least eight hours prior to
meal consumption, which gave us the opportunity to observe
the fasting blood glucose level before the start of the study.
After recording the fasting blood glucose level, participants
consumed a standardized meal and were asked to remain
sedentary in the lab for the next 8 hours without any additional
meal consumption. The standardized meals were administered
to each participant at a randomized order and consisted of
different levels of carbohydrate (C), protein (P), and fat (F),
as described in Table [I} The study was approved by the Texas
A&M Institutional Review Board (IRB #2017-0886).

IV. METHODOLOGY

Here, we will outline the features extracted from the PPGR
(Section [IV-A). We will further describe the proposed metric
learning approach for meal macronutrient estimation (Sec-
tion [IV-B)), as well as the baseline models and evaluation
methods for the same task (Section [IV-C)).
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Fig. 1. Family of Gaussian kernels (dashed red line) used to calculate the
area under the curve around 8 distinct time points, and example PPGR signal
(solid black line).

A. Feature extraction

Baseline correction based on the fasting blood glucose
measurements (Section [[II) was first applied to the collected
PPGRs in order to reduce participant-dependent differences
with respect to overall glucose levels. The area under curve
(AUC) of the PPGR-corrected signals was further calculated
at 8 distinct time points equally distributed within the 8-
hour analysis window (Figure [I)), resulting in 8 total features
per PPGR. Then, feature normalization was performed by
subtracting the mean of each feature and dividing by its
standard deviation, computed within subject. The normalized
PPGR features comprised the input to our experiments. This
feature extraction approach is similar to prior work [[17], [19],
[20] and has been found useful for accurately characterizing
the PPGR shape.

B. Metric learning of PPGR embeddings

We designed a metric learning algorithm to model the
pairwise distance between meals with respect to the PPGR
space within each participant. Let ¢ and j be two different
meals consumed by a given participant. The PPGR features
of the two meals are represented by vectors x; € R® and
x; € R®, which correspond to the 8 Gaussian AUC features
(Section . Also let y; € R? and y; € R? be the macronu-
trient label of meals ¢ and j, respectively. The label vector
is defined as y = [c,p, f] € R?, where ¢,p, f € {1,2,3},
depending on whether the corresponding meal has a low (i.e.,
cl, pl, f1; Table [[), medium (i.e., c2, p2, f2; Table [I), or high
(i.e., c3, p3, {3; Table level of carbohydrate, protein, and fat,
respectively. For example, the label of meal A is y4 = [1,1,1],
since it contains a low amount of carbohydrate, protein, and
fat, while the label of meal B is yp = [1, 2, 2], since it is low
on carbohydrate and medium on protein and fat (Table [T).

Metric learning was implemented via a SNN (Figure [2)).
The SNN takes as an input the PPGR features x; and x;

from the pair of meals (¢, j), and transforms these via a non-
linear function f : R® — R, implemented via two fully
connected layers with 16 neurons each. The output of the fully-
connected layers contains the transformed PPGR feature (i.e.,
PPGR embedding) f(x;) € R'6 and f(x;) € R!6 from meals
1 and j, respectively. We introduce a custom loss function to
learn the PPGR embedding f, which ensures that the distance
between meals in the PPGR embedding space f (i.e., f(x;)
and f(x;)) is proportional to the corresponding distance in
the macronutrient space (i.e., y; and y;), according to the
following equation:

Le=Y " Y [di(f(xa), f(x5)) = dalysys) | (D)
s {i,j}EXs

where X is the set of meal samples from participant s.
In (I), di represents the distance of meals ¢ and j with
respect to the embedding space via the the [2-norm between
f(xi) and f(x;), and do represents the distance of the two
meals with respect to the macronutrient labels via the [1-
norm between y; and yj. For instance, the distance of meals
A and B with respect to the macronutrient space will be
da(ya,ys) = [|I[1,1,1] — [1,2,2]||; = 2 (Table [I).

In addition to modeling the pairwise distance between
meals, we further impose another constraint in the proposed
SNN architecture, that adds an extra level supervision to
the task of interest. We achieve this by learning another
transformation g € R'6 — R3 that takes as an input the
PPGR embedding f(x) and outputs the label vector y, which
contains the carbohydrate, protein, and fat composition. The
transformation ¢ is implemented via a fully connected layer,
learned using the regression error:

Le=Y Y llvi—g(f(a))l3 )
s i€Xs
where X is the set of meal samples from participant s.

The SNN was trained to minimize the combined contrastive
and regression error loss, L = L.+ L., for 200 epochs using a
batch size of 64. A dropout of 0.3 and [2 kernel regularization
of 1075 were used. ADAM was selected as the optimizer, with
an accompanying learning rate of 1073,

C. Baseline and evaluation method

We used a conventional distribution-based learning, imple-
mented by a FNN, as a baseline method to compare with the
proposed metric learning approach. The FNN architecture was
chosen to be comparable to the SNN, and comprised of 8
neurons at the input layer, 16 neurons at the subsequent two
hidden layers, and 3 neurons at the final regression output
layer. As with the SNN, the normalized 8 AUC features
(Section served as the input to the FNN, and the level
of the three macronutrients served as the output. The FNN
was trained for 200 epochs with a learning rate of 0.001 and
batch size of 16. Mean squared error was used for the loss.

The experiments for both the SNN and baseline FNN
were performed using leave-one-participant-out-cross valida-
tion. The experiments for both the SNN and FNN were
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Fig. 2. Schematic representation of the proposed metric learning approach for meal macronutrient estimation implemented with a Siamese network.

TABLE II
NORMALIZED ROOT MEAN SQUARED ERROR (NRMSE) AND CORRELATION VALUES OF MEAL MACRONUTRIENT ESTIMATION VIA METRIC LEARNING
(STIAMESE NEURAL NETWORK) AND DISTRIBUTION-BASED LEARNING (FEEDFORWARD NEURAL NETWORK), FOLLOWED BY T-TEST RESULTS
COMPARING THE TWO.

repeated 20 times. Pearson’s and Spearman’s correlation were
calculated between the estimated and actual value of each
macronutrient. Additionally, the normalized root-mean-square
error was computed (NRMSE). Paired t-tests were performed
comparing the SNN and FNN performance with respect to
these metrics. Each t-test compared the corresponding metrics
yielding by the 20 repetitions of running the SNN and FNN
models.

V. RESULTS

Table @ presents the evaluation metrics (i.e., Pearson’s
correlation, Spearman’s correlation, NRMSE; Section
for the metric learning approach (i.e., SNN) and baseline
distribution-based learning (i.e., FNN), as well as the t-test
results comparing the two approaches. We observe that the
proposed metric learning approach yields significantly higher
correlation coefficients and significantly lower NRMSE com-
pared to the baseline distribution-based learning for all three
macronutrients. Furthermore, the level of carbohydrates and fat
is more accurately estimated compared to the level of protein.

Our results are comparable to prior work, which explored
the task of meal macronutrient estimation on the same dataset.
The sparse-coding approach proposed in [18] achieved a
correlation coefficient of 0.49, 0.28, and 0.39 for carbohy-
drate, protein, and fat, respectively, therefore yielding a worse
performance compared to this paper. However, the combina-
tion of macronutrient value normalized through z-score with
XGBoost yielded better results (i.e., 0.83, 0.43, and 0.65 for

Evaluation FNN SNN T-test
Metric Proteins | Carbs Fats Proteins Carbs Fats Proteins Carbs Fats
Pearson’s correlation 0.379* 0.465* | 0.510* 0.429* 0.556* | 0.571* t(19)=-4.06* | t(19)=-6.99* | t(19)=-5.18*
Spearman’s correlation 0.376* 0.474* | 0.458* 0.429* 0.594* | 0.556* t(19)=-4.87* | t1(19)=-9.74* | t(19)=-8.22*
Normalized root-mean-square error 0.567 0.524 0.490 0.517 0.453 0.452 t(19)=3.70* t(19)=4.25* t(19)=3.04*
*:p<0.01

carbohydrate, protein, and fat, respectively). Given that our
data is collected in a controlled environment with a participant
pool with little variation in demographics, it is reasonable to
anticipate good performance from advanced distribution based
approaches, such as XGBoost. We anticipate that our proposed
approach would be able to better handle the large variability
of data and perform equally well in less constrained settings.

Despite the encouraging results, this work presents the fol-
lowing limitations. First, our approach was evaluated on data
from a limited number of participants, therefore potentially
reducing the generalizability of the study. As the time of
this writing, we are in the planning stages for collecting data
from 90 participants, which will provide the opportunity to
evaluate the proposed algorithm at a larger scale. Second,
the data were recorded in a laboratory environment, where
we were able to control for confounding factors that can
potentially affect PPGRs (e.g., consecutive meals consumed at
proximal time points, physical activity). Finally, we employed
a conventional distribution-based learning method as a baseline
approach to compare our algorithm with. As part of our future
studies, we will evaluate the proposed SNN implementation
against additional metric learning approaches (e.g., maximum
independence domain adaptation [29]).

VI. CONCLUSION

We have proposed a metric learning method to learn subject-
independent PPGR embeddings for estimating the macronutri-
ent composition of a meal. Results indicate that our approach



outperforms distribution-based learning approaches for the
task of predicting the amounts of carbohydrate, protein and fat.
As a part of the future work, we will evaluate our algorithm
with additional participants in more realistic settings, and
examine participants’ anthropometric and metabolic charac-
teristics as additional input features.
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