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ABSTRACT

Diet monitoring is an important component of interventions
in type 2 diabetes, but is time intensive and often inaccu-
rate. To address this issue, we describe an approach to mon-
itor diet automatically, by analyzing fluctuations in glucose
after a meal is consumed. In particular, we evaluate three
standardization techniques (baseline correction, feature nor-
malization, and model personalization) that can be used to
compensate for the large individual differences that exist in
food metabolism. Then, we build machine learning models
to predict the amounts of macronutrients in a meal from the
associated glucose responses. We evaluate the approach on a
dataset containing glucose responses for 15 participants who
consumed 9 meals. Three techniques improve the accuracy
of the models: subtracting the baseline glucose, performing
z-score normalization, and scaling the amount of macronutri-
ents by each individuals’ body mass index.

Index Terms— Continuous glucose monitors, diet moni-
toring, meal macronutrients, machine learning

1. INTRODUCTION

An essential component of clinical interventions for type-2
diabetes is monitoring dietary intake. However, this requires
manual entry of each meal’s nutritional content, which is time
consuming and often inaccurate [1, 2]. Various technologies
have been explored to capture dietary intake, such as wearable
sensing [3] or computer vision [4, 5]. These methods reduce
the burden to the user, but at present they are inaccurate and
unreliable [6].

A unique and unexplored opportunity to solve the prob-
lem of automatic diet monitoring is the use of continuous
glucose monitors (CGMs). A CGM measures glucose in the
interstitial fluid every 5-15 minutes, thus providing a detailed
pattern of fluctuations in glucose levels throughout the day.
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These glucose fluctuations in response to a meal, known as
the post-prandial glucose response (PPGR), depend on the
macronutrient composition of the meal (i.e., carbohydrates,
protein, fat). Specifically, adding protein, fat, or fiber to a
meal generally yields smaller spikes and lengthier responses
[7, 8]. This suggests that the shape of the PPGR can be used
to estimate the macronutrients in the meal. In what follows,
we will refer to such models as inverse metabolic models
(IMMs), in contrast with direct models that predict PPGRs
given the macronutrients in a meal; see Related Work section.

A major hurdle to develop IMMs is that there exists signif-
icant inter-individual variability in the glucose response to a
meal. In a landmark study, Zeevi et al. [9] tracked the glucose
response of 800 participants for one week while participants
kept detailed records of their diet, and found significantly dif-
ferent responses to identical meals. To address this issue, one
might be inclined to build a personalized IMM for each in-
dividual. However, this requires a large amount of training
data for each person, in the form of a variety of meals with
the corresponding PPGRs, which may be impractical. In-
stead, we explore three complementary approaches (baseline
correction, feature normalization, and personalization) to re-
duce individual differences in PPGRs, so that data from mul-
tiple participants can be pooled to train subject-independent
IMMs. In baseline correction, we account for the pre-meal
glucose levels, either by subtraction or division. In feature
normalization, we scale the range of the feature space relative
to the minima/maxima of the data or their mean/standard de-
viation. Finally, in model personalization we account for the
body composition of each person, by using their body mass
index as an auxiliary input to the model or as a scaling vari-
able. We evaluated the approaches on a dataset consisting of
PPGRs of 15 participants who consumed 9 meals of known
macronutrient composition1. Our results show that the three
approaches significantly improve the accuracy of IMMs using
a leave-one-subject-out cross-validation procedure.

1A preliminary version of this study, involving 9 subjects, showed poor
results due to individual variability [10]. Here, we increase the number of
subjects, address individual variability, and propose an updated IMM.



2. RELATED WORK

To our knowledge, ours is the first attempt at building inverse
metabolic models. In contrast, much interest has recently
been raised in the direct problem: predicting the PPGR to
a meal given its macronutrient composition. The most well-
known study is Zeevi et al. [9]. In this study, the authors de-
veloped a machine learning model (based on boosted decision
trees) that could predict the PPGR of a meal given its contents.
To account for individual differences, the model used pheno-
type variables (e.g., anthropometric variables, blood panels,
gut microbiota) as additional inputs. Motivated by these find-
ings, Tily et al. [11] tracked the glycemic response of 550
adults for up to two weeks, while they consumed a set of stan-
dardized meals carefully designed to cover a broad range of
proportions of carbohydrates, proteins, fats, and fiber. Then,
they built a multilevel mixed-effects regression model to pre-
dict PPGRs. This allowed the authors to quantify the rela-
tive influence of meal composition, anthropometric, gut mi-
crobiome and lifestyle variables in postprandial glucose.

Our work is related to artificial pancreas research [12]:
to infer food intake from CGM data. In the artificial pan-
creas, the goal is to control an insulin pump, which admin-
isters doses of insulin according to a preestablished insulin-
to-carbohydrate ratio. In contrast, we aim to estimate not
just carbohydrates, but also protein and fat, which also affect
the glycemic response of a meal. In addition, being a con-
trol problem, the artificial pancreas is sensitive to lags [13]:
to prevent large glucose responses after a meal, an artificial
pancreas must make a decision based on the early part of the
glucose response. In contrast, we can afford to exploit in-
formation in the entire glucose response curve to predict the
full macronutrient composition of a meal. While precise es-
timates are the goals, coarse estimates may still be suitable
for meal macronutrients (i.e., low, medium, high) similar to
suitable findings in caloric estimation work [14, 15].

3. METHODS

3.1. Dataset

Before presenting the computational methods, we describe
the experimental dataset of PPGRs that was used in this study,
as we believe this helps fully appreciate the problem. To col-
lect the dataset, we recruited 15 healthy subjects, ages 60-85
years and BMI of 25-35. Each subject participated in 9 study
days in which they consumed a predefined meal in a random-
ized design. Each study day lasted approximately 8 hours.
The procedures on the study days were identical, with the
only change being the macronutrient composition of the meal
taken (e.g., varying amounts of carbohydrates, proteins, and
fats). Subjects were asked to fast for at least 8 hours prior to
the meal intake on each study day so that the first blood glu-
cose reading would be their fasting glucose level. After tak-
ing a baseline blood sample the morning of a study visit, each
subject consumed a predefined meal. Subjects remained in a

Table 1. Composition of meals for C, P, and F
Meal C (g) P (g) F (ml)

C1P1F1 52.25 15 13
C1P2F2 52.25 30 26
C2P2F1 94.75 30 13
C2P1F2 94.75 15 26
C2P2F2 94.75 30 26
C2P2F3 94.75 30 52
C2P3F2 94.75 60 26
C3P2F2 179.75 30 26
C3P3F3 179.75 60 52

Fig. 1. (a) PPGR at increasing levels of C (P and F fixed). (b)
PPGR at increasing levels of P. (c) PPGR at increasing levels
of F. (d) PPGR of C2P2F2 meal for all participants

sedentary state and were not allowed to consume any other
food for the next 8 hours. This study was approved by the
Texas A&M Institutional Review Board (#2017-0886). Ta-
ble 1 shows the composition of each of the nine meals. Each
meal had a known amount of carbohydrates (C), protein (P),
and fat (F), which we denote as CxPxFx, where x represents
the amount of each macronutrient in the meal (1: low; 2:
medium; 3: high). A total of 4 meals (from the total set of
135 meals) were excluded due to missing and noisy data.

Fig. 1 illustrates the average PPGR across all participants
while we change the C, P, and F concentrations from low to
medium to high (leaving the others fixed). This result shows
that increasing the amount of macronutrients alters the shape
of the PPGR, which supports our hypothesis that the PPGR
may be used to estimate macronutrients. On the flip side,
Fig. 1(d) shows the PPGR to the intermediate meal (C2P2F2)
of all 15 participants, which illustrates the significant inter-
subject variability and the challenge of developing an accu-
rate, subject-independent model.

3.2. Overview of signal processing methods

Our computational approach to analyzing PPGRs consists of
four steps: data preprocessing, feature extraction, standard-
ization, and model training. In a first step, we preprocess the



Fig. 2. Extraction of gAUC features using 5 kernels

raw PPGRs with a Kalman filter [16] to de-noise the signal
and handle missing values. Next, we extract features to cap-
ture the shape of the PPGRs. Namely, we place a family of
Gaussian kernels uniformly over the time axis in the PPGR,
and compute the Gaussian area-under-the-curve (gAUC) [17],
as illustrated in Fig. 2 and defined as:

x(i) =

∫︂ T

0

g(t)e
1

2σ2
k

(t−Tk)
dt (1)

where each gAUC feature x(i) is computed from PPGR g(t),
T is the duration of the PPGR, Tk is the center position of the
kernel in the time domain, and σ2

k is its spread. These gAUC
features capture the initial rise time in glucose, duration of the
elevated glucose levels, and the recovery back to the baseline
glucose level. We evaluated families of 3, 5, and 9 kernels as
well as their combinations, and found the combination of 3
+ 5 kernels yield the best performance. Thus, the rest of this
paper uses 3 + 5 kernels. 2

In a third step, we apply the standardization methods to re-
duce individual differences in these PPGR features, which we
describe in the next section. In a final step, we train an IMM
to predict the macronutrient composition of the meals from
the resulting features. In this work, we use gradient descent
boosting (XGBoost) [18] to build the IMMs, and we compare
it against Linear Regression (LR) as a baseline technique. We
evaluate the various IMMs through Pearson’s correlation co-
efficient and Root Mean Squared Relative Error. Since the
three macronutrients have different ranges of quantities, us-
ing the RMSRE (instead of the more conventional RMSE)
aids in comparing performance across the three macronutri-
ents. We trained IMMs in a leave-one-subject-out fashion and
performed a training-set cross-validation for hyperparameter
tuning {estimators: 1-300, learning rate: 0.1-0.15, and maxi-
mum depth: 1-4}.3

3.3. Reducing individual differences in post-prandial glu-
cose responses

3.3.1. Baseline Correction

The first technique consists of correcting for the pre-meal glu-
cose level, which is unique to each individual. The rationale

2kernels out of this range did not have significant impact on the results.
3We also experimented using Neural networks [10] and Adaboost models,

but there was no significant difference in the results.

Table 2. Results of the base models using LR and XGBoost
Correlation Mean RMSRE (std)

Model C P F C P F
LR 0.40 0.15 0.31 0.44(0.18) 0.57(0.21) 0.55(0.21)
XGBoost 0.55 0.42 0.39 0.41(0.17) 0.51(0.15) 0.51(0.16)

Correlation significance: p < 0.001, except LR-P p < 0.05, and LR-F p < 0.1

Table 3. Results of baseline correction using XGBoost
Correlation Mean RMSRE (std)

Model C P F C P F
None 0.55 0.42 0.39 0.41(0.17) 0.51(0.15) 0.51(0.16)
Subtraction 0.61 0.48 0.48 0.35(0.20) 0.50(0.13) 0.49(0.15)
Division 0.59 0.49 0.47 0.34(0.21) 0.49(0.12) 0.51(0.13)

Correlation significance: p < 0.001

behind this method is that differences in PPGRs when two
individuals eat the same meal may be due to differences in
fasting glucose. Thus, these baseline correction techniques al-
low the gAUC features to represent relative changes to blood
glucose, rather than absolute quantities. Following [17], we
consider two baseline correction techniques: subtracting the
fasting glucose from all readings, and dividing all readings
by the fasting glucose level. In our study, the fasting (or base-
line) glucose level is computed as the average of the last three
measurements before the meal is consumed.

3.3.2. Feature normalization

A complementary approach is to perform feature normaliza-
tion [19]. In this study, we consider two techniques: min-max
normalization and z-score normalization. Briefly, min-max
normalization scales each feature (i.e., a gAUC) between 0
and 1 by subtracting its minimum value and dividing by the
range, whereas z-score normalization subtracts the mean of
each feature and divides it by the standard deviation. The
normalizing variables (i.e., minimum, maximum, mean and
standard deviation) can also be computed across all features
(i.e., a common mean for all 8 gAUC features). We shall refer
to the former form of normalization as feature-wise normal-
ization, and the latter as curve-wise normalization.

3.3.3. Personalization

Our third standardization approach attempts to account for
differences in body composition, which is known to impact
the absorption rate of macronutrients [9, 11] and therefore
can lead to differences in PPGRs across individuals. As an
example, a given meal is likely to result in a larger glucose
excursion on a 5’2” 120 lb person than on a 6’5” 220 lb per-
son. We consider two measures of body composition: Lean
Body Mass (LBM) and Body Mass Index (BMI), and exam-
ine two approaches to incorporate this information into the
models: (1) adding these variables as auxiliary inputs, and (2)
dividing the amount of macronutrients by them. Note that,
in the second approach, we are then predicting the amount of
macronutrients relative to an individual’s body composition,
rather than the absolute macronutrient amount.



Table 4. Results of feature normalization using XGBoost
Correlation Mean RMSRE (std)

Model C P F C P F
None 0.61 0.48 0.48 0.35(0.20) 0.50(0.13) 0.49(0.15)
min-max* 0.77 0.48 0.64 0.28(0.16) 0.47(0.17) 0.41(0.14)
min-max 0.76 0.38 0.49 0.27(0.12) 0.51(0.16) 0.51(0.19)
z-score* 0.83 0.43 0.65 0.22(0.10) 0.50(0.12) 0.40(0.14)
z-score 0.79 0.46 0.63 0.26(0.08) 0.51(0.14) 0.46(0.14)

*: Feature-wise, Correlation significance: p < 0.001

Table 5. Results of two meal-normalization using XGBoost
Correlation Mean RMSRE (std)

Model C P F C P F
None 0.61 0.48 0.48 0.35(0.20) 0.50(0.13) 0.49(0.15)
all meals 0.83 0.43 0.65 0.22(0.10) 0.50(0.12) 0.40(0.14)
two meals 0.74 0.57 0.67 0.28(0.12) 0.47(0.19) 0.40(0.15)

Correlation significance: p < 0.001

4. RESULTS

In a first step, we compared XGBoost against LR. For this
purpose, no standardization was applied to the data. We used
a Fisher r-to-z transformation to compare the statistical sig-
nificance between correlations, and a difference of means test
to compare RMSRE. Results are shown in Table 2. XG-
Boost outperformed LR, implying a higher-dimensional, non-
linear relationship between PPGRs and macronutrients. The
increase in correlation had p-values of p=0.057, p=0.009, and
p=0.230 for C, P, and F, respectively. This shows a statis-
tically significant improvement in P, with the F correlation
moving from the p < 0.05 to the p < 0.001 significance level.
Similarly, the RMSRE improvements had p=0.16, p=0.007,
and p=0.08 for C, P, and F, respectively. Therefore, all sub-
sequent evaluations will use XGBoost. The number of esti-
mators was around 200 for C and 60 for P and F. Also, depth
of the trees were 1 for C and 3 for P and F. The learning rate
varied between 0.1 to 0.12.

4.1. Baseline Correction

Results for baseline correction are shown in Table 3, and
compared against performing no correction. Both methods
moderately improve model performance, and the subtraction
method modestly outperforms the division method. Sub-
traction increases the correlation for C from 0.55 to 0.61
(p=0.23), and F from 0.42 to 0.48 (p=0.27), and also reduces
the relative error (difference in mean RMSRE with p=0.008,
p=0.56, and p=0.29 for C, P, and F respectively). In summary,
accounting for fasting glucose, whether by subtraction or di-
vision, improves correlation and reduces error. While both
are sufficient, we use subtraction moving forward.

4.2. Normalization

Results with feature normalization are shown in Table 4. Nor-
malization sees large improvements in the prediction of C and
F, and marginal improvements for P, with feature-wise nor-
malization providing larger improvements than curve-wise.

Table 6. Results of BMI/LBM utilization using XGBoost
BMI/LBM Correlation Mean RMSRE (std)
Inclusion C P F C P F
None 0.61 0.48 0.48 0.35(0.20) 0.50(0.13) 0.49(0.15)
As inputs 0.60 0.51 0.52 0.35(0.19) 0.48(0.13) 0.47(0.15)
Scale by LBM 0.61 0.47 0.56 0.32(0.09) 0.49(0.18) 0.48(0.16)
Scale by BMI 0.68 0.55 0.56 0.31(0.04) 0.39(0.10) 0.39(0.10)

Correlation significance: p < 0.001

This suggests that each gAUC has variation that differs sig-
nificantly for feature-wise versus curve-wise normalization.
The improvements in correlation and RMSRE for C and F
are statistically significant (p < 0.001). The results in Ta-
ble 4 were normalized by using all the meals. Table 5 nor-
malizes using only two meals, selected for calibration with
widest variation in gAUC features: C1P1F1 and C3P3F3. The
RMSRE improvements for C and F are still statistically sig-
nificant (p < 0.001) over no normalization.

4.3. Personalization

Table 6 shows the results of using BMI and LBM to personal-
ize the IMMs. Adding these physiological features as auxil-
iary inputs to XGBoost does not improve performance. How-
ever, scaling the target values by BMI enhances both the cor-
relation and RMSRE for all macronutrients (p=0.16, p=0.22,
p=0.19 for correlation of C, P, and F, respectively; p=0.02,
p < 0.001, p < 0.001 for RMSRE of C, P, and F, respec-
tively). However, when scaling by BMI after z-score normal-
ization of all meals, we see a drop in performance for C and
F. Although label scaling does not perform as well as normal-
ization, the improvement of results suggests it as a substantial
cause of inter-subject variability.

5. LIMITATIONS AND FUTURE WORK

Our study was conducted in a controlled setting, where partic-
ipants remained stationary following a meal’s consumption.
Therefore, the model does not account for physical activity
that may follow a meal, which is known to reduce postpran-
dial glucose. Thus, future work is needed to evaluate our ap-
proach in more naturalistic settings and with a larger variety
of meals. Work is underway to conduct experiments in which
participants consume multiple solid and liquid meals over an
extended period while carrying out their daily lives.

6. CONCLUSION

This work examined several techniques to reduce individual
differences in PPGRs towards estimating meal macronutri-
ents. We evaluated techniques to correct baseline glucose,
normalize features and personalize models to account for
physiological variables. Our results show promise for three
techniques: subtracting baseline glucose, computing z-scores
and scaling the amount of macronutrients by BMI. These
models may eventually help health practitioners to monitor
diet without adding burden to their patient’s lives.
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