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ABSTRACT

Measuring dietary intake is a major challenge in the management
of chronic diseases. Current methods rely on self-report measures,
which are cumbersome to obtain and often unreliable. This article
presents an approach to estimate dietary intake automatically by ana-
lyzing the post-prandial glucose response (PPGR) of a meal, as mea-
sured with continuous glucose monitors. In particular, we propose
a sparse-coding technique that can be used to estimate the amounts
of macronutrients (carbohydrates, protein, fat) in a meal from the
meal’s PPGR. We use Lasso regularization to represent the PPGR
of a new meal as a sparse combination of PPGRs in a dictionary,
then combine the sparse weights with the macronutrient amounts
in the dictionary’s meals to estimate the macronutrients in the new
meal. We evaluate the approach on a dataset containing nine stan-
dardized meals and their corresponding PPGRs, consumed by fifteen
participants. The proposed technique consistently outperforms two
baseline systems based on ridge regression and nearest-neighbors,
in terms of correlation and normalized root mean square error of the
predictions.

Index Terms— Continuous glucose monitors, macronutrient
prediction, sparse coding.

1. INTRODUCTION

Diet plays a major role in the development of chronic diseases, such
as type 2 diabetes, obesity and heart disease [1]. Thus, monitoring
diet is an essential component of many clinical interventions. Un-
fortunately, conventional methods for tracking dietary intake rely on
self-report tools, such as food diaries and 24-hour recall, which are
problematic. Food diaries require manual input, which is tedious
and often leads to low adherence rates. Further, 24-hour records
suffer from memory recall, which can lead to severe over and under-
reporting [2l]. To address this issue, several technologies have been
explored to facilitate diet monitoring. For example, wearable sensors
have been used to detect eating behaviors [3]], and computer vision
has been used to estimate nutritional content from food photographs
[4}15]. These methods can reduce burden to the user, but at present
they are inaccurate [6]]. As such, accurately measuring dietary intake
remains a major challenge in dietary research [2].

This article examines a potential solution to this problem based
on continuous glucose monitors (CGMs) and machine learning. A
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CGM consists of a small electrode inserted in the skin, which mea-
sures glucose in the interstitial fluid. The use of CGMs has tradi-
tionally been limited to type 1 diabetes or poorly-controlled type 2
diabetes, but CGMs are at an inflection point due to cost reductions
and improvements in accuracy [7], so their use in other applications,
such as obesity and pre-diabetes, is promising. The mechanism by
which CGMs may be used to monitor diet is based on the fact that
the evolution of blood glucose after a meal, also known as the post-
prandial glucose response (PPGR), depends on the macronutrients in
the meal (e.g., carbohydrates, protein, fat, fiber). The major determi-
nant of PPGRs is the amount of carbohydrates, but adding protein,
fat, or fiber to a meal generally yields smaller spikes and lengthier
responses [8, 9. This suggest that the shape of the PPGR can be
used to recover the macronutrient composition of the meal.

To test this hypothesis, we propose a sparse coding technique
to predict macronutrients by analyzing PPGRs. The technique uses
a dictionary of meals, each meal defined by its macronutrients and
the corresponding PPGR. Given the PPGR of a new meal, the tech-
nique uses the PPGR dictionary to generate a sparse code via Lasso
regularization [10], and then combines the sparse weights with the
known macronutrients of the meals in the library. We validate the
approach on a database consisting of PPGRs for fifteen individuals
who consumed nine different meals of known macronutrients. The
proposed approach outperforms two baseline techniques (ridge re-
gression, nearest neighbors) in both subject-dependent and subject-
independent scenarios.

2. RELATED WORK

Hundreds of studies have been conducted over the past 50 years
to understand the effect of various macronutrients on PPGRs. The
main determinant of PPGRs is the amount and type of carbohydrates.
Carbohydrates are generally described by their glycemic index (GI)
[11], which measures the potential for a carbohydrate to raise glu-
cose levels compared to a reference food (typically glucose, defined
as having a GI=100). However, the GI is controversial because it
does not account for the influence of other macronutrients that are
typically present in mixed meals.

Recent work has focused on individual differences in food
metabolism. As an example, Zeevi et al. [12] tracked 800 par-
ticipants for a week using CGMs, and found high inter-personal
variability in the glucose response to identical meals. To address
this issue, the authors developed a machine-learning model that
could predict the PPGR of a meal for each participant by accounting
for individual factors (e.g., anthropometric variables, gut micro-
biota). Also recently, Tily et al. [13] tracked 550 adults for two
weeks with CGMs, while they consumed a set of standardized meals



Carbohydrate

PPGR

Protein

Fat

Time
Fig. 1. The hypothesized effect of meal macronutrients on post-
prandial glucose

designed to cover a broad range of carbohydrates, proteins, fats and
fiber. Then, they built a multilevel mixed-effects regression model
to predict PPGRs. This allowed the authors to quantify the influence
of meal composition, anthropometric, gut microbiome and lifestyle
variables on PPGRs.

Much of the signal-processing work for glucose analytics has fo-
cused on time-series forecasting. This is an important problem, since
the ability to predict future glucose levels based on past measure-
ments can lead to a number of therapeutic solutions, e.g., warning
patients of future hypoglycemic events, delivering insulin automati-
cally, i.e., the artificial pancreas [14]. A vast pool of techniques have
been used for this purpose, including autoregressive models, neural
networks, random forests, Kalman filters and support vector regres-
sion, to mention a few [15]. These models may be trained to predict
the actual glucose level at a future time or to generate hypoglycemia
alerts [[16].

3. METHODS

Figure [1] illustrates the prototypical PPGR to a meal. Depending
on the amount of carbohydrates, blood glucose starts to rise 15-30
minutes after the meal, reaches a peak within the first 1-2 hours, and
returns to pre-prandial levels within 3-4 hours [[17]. [llustrated in the
figure is also the hypothesized effect of adding protein and fat to a
meal.

Let us denote by ms(t) the post-prandial glucose level of
subject s time ¢ units after consuming meal m, and by zps(?) the
amount of the i-th macronutrient in the meal, where i e {C, P, F'}.
The PPGR can then be characterized by a vector X s = {Zms(1),

., &ms(T)} , where T is the length of the recording. Consider a
dictionary X containing the PPGRs of S subjects after consuming
M different meals, each meal with its corresponding macronutrient
stored in Z. Assume that a new subject s’ has consumed meal m/,
which has resulted in a PPGR defined by the vector X,,,/s/. Our ap-
proach starts by representing this new meal as a linear combination
of the PPGRs in the dataset X:

S M

Xorst = Zzwmsxms (D
s m

where wn,,s are the weights learnt by the model. Further assume that
the distance between meals in PPGR space is correlated with the
distance between them in macronutrient space; that is, for any two
meals i and j, we assume || X; — X;||> ~ ||Z; — Z;||. From this,
it follows that the macronutrient composition of the test meal Z,,,/ s
can be approximated as a linear combination of the macronutrients
in the training meals, using the linear weights in equation (I).
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Fig. 2. Illustration of the sparse-coding approach

Table 1. Macronutrient composition of nine meals

Meal Carbs (g) | Protein (g) | Fat (ml)
CIP1F1 52.25 15 13
C1P2F2 52.25 30 26
C2P2F1 94.75 30 13
C2P1F2 94.75 15 26
C2P2F2 94.75 30 26
C2P2F3 94.75 30 52
C2P3F2 94.75 60 26
C3P2F2 179.75 30 26
C3P3F3 179.75 60 52

The approach preserves local neighbourhoods as illustrated in Fig-
ure 2| The plot on the left shows the meals that are close to the test
meals in the PPGR space. The same meals are still close to the test
meal in the macronutrient space on the right, even though the posi-
tion of the meals changes. Similar techniques, known as exemplar-
based, have been used with success in the voice-conversion literature
[18L [19], where the feature vectors X,,s and Z,,s represent time-
aligned vectors of acoustic features (e.g., MFCCs) from a source
and a target speaker, respectively. Work in exemplar-based methods
has shown that improved reconstruction can be achieved by forc-
ing most of the weights to become zero. Accordingly, we enforce a
sparse non-negativity constraint on the weights w.,s by solving the
minimization problem:

Wms = argmin|| X,/ s — wmsXmSH2 + AMUmsS.tWms > 0

(3)
where )\ prevents overfitting by penalizing the L1 norm of the
weights, w.,,s. We use Lasso regularization to learn these weights.
It is possible that one of the weights learnt using Lasso becomes
very large which may cause the predicted macronutrients to become
unbounded. We therefore bound the predicted macronutrients using
a normalization step that forces the weights to add up to one before
making a prediction with equation (2).

Wms

S wms @

Wms =

3.1. Baseline models and performance measures

We evaluate the sparse-coding approach against two baseline tech-
niques: (1) ridge regression (RR), as a representative of regulariza-
tion methods, and (2) a Nearest-Neighbor classifier operating in a
Linear Discriminant Analysis subspace (LDA-kNN), as a represen-
tative of distance-based classifiers. We do not consider more com-
plex techniques due the small size of the dataset. The RR baseline
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Fig. 3. (a) Glucose response at increasing levels of C, with P and F at fixed levels. (b) Glucose response at increasing levels of P, with C and
F at fixed levels. (c) Glucose response at increasing levels of F, with C and P at fixed levels.

consists of three separate models, one for each of the three macronu-
trients. In contrast, LDA-kNN is a joint model for the three macronu-
trients. Namely, we use LDA to find an 8-dim projection (i.e., the
number of classes minus one) of the PPGRs that maximizes sepa-
rability among the 9 meals; then, we use the kNN rule to classify a
new meal in the LDA subspace. Note that, in contrast with the two
baselines, the sparse-coding technique is unsupervised since it does
not use class information to learn the weights.

‘We evaluate the models using two measures: (1) the Pearson cor-
relation between ground truth and predicted amounts of macronutri-
entsEI, and (2) the normalized root mean squared error, NRM SE =

\/ % >o(7 — y)?/y? where § and y are the predicted and ground

truth amount of macronutrient, respectively, and N is the number of
samples.

4. EXPERIMENTAL SETUP
4.1. Dataset

To test the proposed model, we recruited 15 healthy subjects ages 60-
85 years and Body Mass Index(BMI) of 25-35. Each subject partici-
pated in 9 study days in which they consumed a predefined meal in a
randomized design. Subjects were asked to be overnight fasted prior
to the meal intake on each study day so that the first blood glucose
reading would be their fasting glucose level. After taking a baseline
blood sample the morning of a study visit, each subject consumed
a predefined meal. Subjects remained in a sedentary state and were
not allowed to consume any other food for the next 8 hours. This
study was approved by the Texas A&M Institutional Review Board
(IRB #2017-0886). Tablemshows the composition of the nine meals.
Each meal had a known amount of the same carbohydrates (C: Mal-
todextrine), protein (P: Whey Protein), and fat (F: Sunflower Oil),
which we denote as CxPxFx, where x represents the amount of each
macronutrient in the meal (1: low; 2: medium; 3: high). For the
duration of the study, participants wore a CGM (Abbott Freestyle
Libre Pro), which measured interstitial glucose every 15 minutes.
We perform our analysis using the first 32 PPGR readings (8 hours)
from the time the meal was consumed. To account for differences in
fasting glucose levels across participants, we subtracted the baseline
glucose of each PPGR prior to performing the sparse reconstruction.

Figure[3[a) shows the average response across subjects as we in-
crease the amount of carbohydrates (C1, C2, C3) while maintaining

'We calculate the correlation by collecting the predicted and ground truth
macronutrients for all test subjects and meals and then calculate a single value
(i.e., a pooled correlation)

the other two macronutrients at a fixed level (P2, F2). The PPGR
becomes more pronounced at higher levels of carbohydrates, both in
terms of the maximum value and the overall area under the curve.
Figure Ekb) shows the average response across subjects as we in-
crease the amount of protein (P1, P2, P3) while maintaining the
other two macronutrients fixed (C2, F2). As we increase the amount
of protein, the glucose response becomes more moderate, with lower
maximum levels and slower return to the baseline. Figure[3[c) shows
a similar effect as we increase the amount of fat (F1, F2, F3) while
maintaining the other two macronutrients fixed (C2, P2). These re-
sults provide support to our overall strategy, as they show that the
shape of the glucose response depends on the constituents of the
meal.

4.2. Hyperparameter selection

We used a two-step cross-validation procedure to optimize model
hyperparameters: a regularization term A for the sparse coding
method and RR, and the number of neighbors k for LDA-kKNN.
Namely, given a test subject and a validation subject (different from
the test subject), we train a model on the remaining set of 13 sub-
jects for all possible hyperparameter Valueﬂ. Then, we evaluate the
model on the validation subject and record the NRMSE. Keeping
the test subject fixed, we repeat this procedure until all combinations
of validation and training subjects are covered. Finally, we evaluate
the test subject using the hyperparameter value that yields the lowest
average NRMSE across all validation subjects. In this way, the test
set is never used to optimize the models’ hyperparameters.

5. RESULTS

In a first step, we evaluate the sparse-coding model using the leave-
one-subject-out (LOSO) procedure outlined above, where we train
the models on 14 subjects and test on the held-out subject. We re-
peat this procedure until all subjects are tested. Because the models
are trained on data from multiple subjects, they can be thought of
being subject-independent. Results for the sparsity parameter \ are
illustrated in Figure[d] The lowest error is achieved for values of A =
5, 15 and 10, for C, P and F, respectively, which confirms that there is
an advantage to imposing a sparsity constraint on the representation.
Note that, for A = 0, the model becomes equivalent to least-squares
regression.

reconstruction:
regression:
neighbors:

>The hyperparameter ranges are (1) sparse
2={0,0.05,0.5,1,1.5,2.5,5,10,15,25,50,100}, (2)  ridge
2={0.05,0.5,1,1.5,2.5,5,10,15,25,50,100} (3)  nearest
k={1,3,5,7,9}.
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Fig. 4. NRMSE for the sparse reconstruction model, as a function of the regularization parameter A
0.7 Table 2. Pooled correlation and NRMSE using LOSO
' Pooled Correlation Average NRMSE
0.6 Method C P F C P F
05 Proposed | 0.49%%* | 0.28%* | 0.39*** | 0.37 | 0.49 | 0.48
B94 RR 0.39%** | 0.12 0.24** | 045 | 0.71 | 0.60
S LDA-kNN | 0.36%** | 0.05 0.28** | 048 | 0.64 | 0.67
g 0.3 Rk p <0.001, **: 0.001 <p <0.05, *: 0.05 <p <0.1
0.2
Table 3. Pooled correlation and NRMSE of the predicted macronu-
01 trients using LOSO and LOMO cross-validation procedures
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Fig. 5. Distribution of non-zero weights as a function of the distance
between a test meal and those in the dictionary.

Further, we examined the distribution of sparse weights as a
function of the distance ||X; — X|| between a PPGR in the test
set and those in the dictionary. Results are shown in FigureEl Meals
with similar PPGRs (i.e., smaller distances) tend to receive higher
weights. In other words, as illustrated in Figure[2] the sparse repre-
sentation is locally linear.

Next, we compared the performance of the approach against the
two baselines. Results are summarized in Table 2] Sparse coding
consistently outperforms the two baselines, for all three macronutri-
ents, achieving higher correlation and lower NRMSE. Further, pre-
dictions for carbohydrates are more accurate than for fats and pro-
teins. This is an intuitive result since the largest determinant of post-
prandial glucose is the amount of carbohydrates in the meal.

In a final analysis, we evaluate the sparse representation model
when only meals within each subject are used. This analysis is moti-
vated by the fact that there exist large individual differences in food
metabolism; see section 2.1. Thus, it is possible that forcing the
model to only use data from each subject could lead to higher accu-
racy. To answer this question, we use a leave-one-meal-out (LOMO)
procedure, as follows. For each participant, we build a model using 8
of the meals as training data and the remaining meal as the test sam-
ple. We repeat this process until all 9 meals are tested for each par-
ticipant and all participants are covered. As such, this can be thought
of as a subject-dependent model. Results are shown in Table[3] Both
models perform comparably in the case of carbohydrates, but per-
formance degrades markedly for the subject-dependent model in the
case of protein and fat. This result suggests that, despite large inter-
individual differences in food metabolism, the sparse representation
model can take advantage of having training data from multiple par-

Method C P F C P F

LOSO | 0.49%** | 0.28* | 0.39%** | 0.37 | 0.49 | 0.48

LOMO | 0.50%** | 0.07 0.24**% | 0.41 | 0.70 | 0.64
*EEp <0.001, **: 0.001 <p <0.05, *: 0.05 <p <0.1

ticipants.
6. DISCUSSION

We have proposed a sparse-coding approac}ﬂ to predict meal
macronutrients based on PPGRs. First, we represent the PPGR
of a new meal as a sparse combination of other meals in a dictionary.
Then, we “transfer” the sparse weights onto the macronutrients of
the selected meals. On a subject-independent task, we find that
the sparse method clearly outperforms two supervised techniques,
despite the fact that the sparse weights are selected without using
class label information. We also find that the sparse method predicts
carbohydrates more accurately than protein and fat, and that it per-
forms better on a subject-independent task (where it can leverage
meals from multiple participants) than on a subject-dependent task
(where it is constrained to only use meals from the test subject). The
improved prediction suggests that higher accuracy may be obtained
by having access to a larger dataset containing PPGRs from a large
number of participants.

Our approach implicitly assumes that the distance between pairs
of meals in the PPGR space is correlated with their distance in the
macronutrient space. This suggests a potential improvement where
the model would first learn to transform the PPGR space so that it
captures pair-wise distances in the macronutrient space, as in multi-
dimensional scaling. Improved performance may also be achieved
by augmenting PPGRs with physiological variables that impact
metabolism, such as body composition. In this way, the model could
learn to focus on meals from participants with similar metabolism
as the test subject.

30ur implementation of the sparse coding approach is available at:
https://github.com/dasanurag/CGM-Sparse/tree/master
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