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ABSTRACT

Knowledge Graph (KG) is a flexible structure that is able to describe
the complex relationship between data entities. Currently, most
KG embedding models are trained based on negative sampling,
i.e., the model aims to maximize some similarity of the connected
entities in the KG, while minimizing the similarity of the sampled
disconnected entities. Negative sampling helps to reduce the time
complexity of model learning by only considering a subset of nega-
tive instances, which may fail to deliver stable model performance
due to the uncertainty in the sampling procedure. To avoid such de-
ficiency, we propose a new framework for KG embedding—Efficient
Non-Sampling Knowledge Graph Embedding (NS-KGE). The basic
idea is to consider all of the negative instances in the KG for model
learning, and thus to avoid negative sampling. The framework
can be applied to square-loss based knowledge graph embedding
models or models whose loss can be converted to a square loss. A
natural side-effect of this non-sampling strategy is the increased
computational complexity of model learning. To solve the problem,
we leverage mathematical derivations to reduce the complexity
of non-sampling loss function, which eventually provides us both
better efficiency and better accuracy in KG embedding compared
with existing models. Experiments on benchmark datasets show
that our NS-KGE framework can achieve a better performance on
efficiency and accuracy over traditional negative sampling based
models, and that the framework is applicable to a large class of
knowledge graph embedding models.
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1 INTRODUCTION

Nowadays, Knowledge Graph (KG) is an important structure to
store and process structured information, and has been widely used
as an advanced knowledge interlinking solution in many appli-
cations. Concretely, KG is a collection of interlinked descriptions
of entities. For example, Freebase, which is regarded as a practi-
cal and massive tuple database used to structure general human
knowledge, is powered by KG algorithms [4]. Yet another Great
Ontology (YAGO) also benefits from KG structures when building
its light-weight and extensible ontology with high coverage and
quality [35]. Moreover, DBpedia builds a large-scale, multilingual
knowledge base by extracting structured data from Wikipedia edi-
tions in 111 languages [26]. These knowledge bases power a wide
range of intelligent systems in practice.

Although KG has been proved as an effective method to rep-
resent large-scale heterogeneous data [23], it suffers from high
computation and space cost when searching and matching the enti-
ties in a discrete symbolic space. In order to leverage the power of
KG more efficiently, researchers have proposed Knowledge Graph
Embedding (KGE), which represents and manipulates KG entities
in a latent space [6]. In particular, KGE techniques embed the com-
ponents of KG, including entities and relations, into a continuous
vector space, so as to simplify the manipulation while preserving
the inherent structure of the KG [41]. With the help of KGE, im-
plementing knowledge graph operations to a large scale becomes
practical.

Over the past few years, a lot of efforts have been put into devel-
oping embedding algorithms, and a growing number of embedding
models are proven effective. Most of the current embedding meth-
ods, however, depend on a very basic operation in model training
called negative sampling [6, 34], which randomly or purposely sam-
ples some disconnected entities as negative samples (compared
to the connected entities as positive samples), and the embedding
model aims to distinguish positive vs. negative samples in the loss
function for embedding learning. Typical examples include Dist-
Mult [48], SimplE [24], ComplEx [37], TransE [6], RESCAL [31],
etc. While negative sampling increases the training efficiency, it
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also brings several drawbacks in model accuracy. On one hand,
only considering part of the negative instances weakens the predic-
tion accuracy of the learned embeddings. And on the other hand,
it also makes model training unstable because the sampled nega-
tive instances may vary in different runs. Previous studies have
shown that negative sampling keeps bringing fluctuations since
the result highly relies on the selection of negative samples [38],
and these fluctuations cannot be removed by doing more updating
steps [10]. Some research tried to overcome this problem by using
carefully designed sampling strategies instead of random sampling
[7, 52]. However, all of these models can only consider part of the
information from the training dataset due to negative sampling.

Inspired by recent progress on non-sampling recommendation
and factorization machines [8, 9, 11-13, 32, 33], we make an attempt
to apply the non-sampling approach to KGE. We propose a Non-
Sampling Knowledge Graph Embedding (NS-KGE) framework. The
framework can be applied to square loss based KGE models. To ap-
ply this framework to models with other loss functions, we need to
transform the loss function to square loss. The framework allows us
to skip the negative sample selection process and thus take all of the
positive and negative instances into consideration when learning
the knowledge graph embeddings, which helps to increase the em-
bedding accuracy. A problem that naturally arises from this strategy
is the time and space complexity increase dramatically when con-
sidering all instances for embedding learning. To solve the problem,
we offer a mathematical derivation to re-write the non-sampling
loss function by dis-entangling the interaction between entities,
which gives us better time and space complexity without sacrificing
of mathematical accuracy. Eventually, non-sampling based KGE
achieves better prediction accuracy with similar space and much
shorter running time than existing negative sampling based KGE
models. To evaluate the performance of our NS-KGE framework, we
apply the framework on four KGE models, including DistMult [48],
SimplE [24], ComplEx [37], and TransE [6]. Experimental results
show that the NS-KGE framework outperforms most of the models
in terms of both prediction accuracy and learning efficiency.

This paper makes the following key contributions:

e We propose a Non-Sampling Knowledge Graph Embedding
(NS-KGE) framework for learning effective knowledge graph
embeddings.

e We derive an efficient method to mitigate the time and space
bottlenecks caused by the non-sampling strategy.

o We demonstrate how the framework can be mathematically
applied to existing KGE models by using DistMult [48], Sim-
pIE [24], ComplEx [37], and TransE [6] as examples.

e We conduct comprehensive experiments—including both
quantitative and qualitative analyses—to show that the frame-
work increases both accuracy and efficiency for knowledge

graph embedding.

In the following part of this paper, we first introduce the related
work in Section 2. In Section 3, we introduce our NS-KGE frame-
work in detail, and in Section 4 we show how the framework can
be applied to different KGE models. We provide and analyze the
experimental results in Section 5, and conclude the work together
with future directions in Section 6.
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2 RELATED WORK

During recent years, Knowledge Graph Embedding (KGE) has pre-
vailed in the field of huge structured knowledge interlinking [42],
and its effectiveness has been shown in many different scenar-
ios such as search engine [2, 15, 46], recommendation system
[1, 16, 29, 39, 44, 45, 49], question answering [22, 27, 47], video
understanding [18], conversational Al [17, 53] and explainable Al
1,2, 51].

Since knowledge graph embedding has extraordinary advan-
tages in practical applications, many KGE models have been pro-
posed. For example, Translational Embedding (TransE) model [6]
takes vector translation on spheres to model entity relationships,
Translation on Hyperplane (TransH) model [43] enables vector
translation on hyperplanes for embedding, while Translation in
Relation spaces (TransR) model [28] conducts vector translation in
relation-specific entity spaces for embedding. Later, DistMult [48]
uses a diagonal matrix to represent the relation between head and
tail entities, and the composition of relations is characterized by
matrix multiplication, while ComplEx [37] puts DistMult into the
complex domain and uses complex numbers to represent the head-
relation-tail triples in the knowledge graph. More recently, SimplE
[24] provides a simple enhancement of the Canonical Polyadic (CP)
[20] tensor factorization for interpretable knowledge graph embed-
ding. More comprehensive review of knowledge graph embedding
techniques can be seen in [21, 42].

Most of the existing KGE models rely on negative sampling for
model learning, which randomly sample some disconnected entities
to distinguish with connected entities, and meanwhile reduce the
training time compared with using all negative samples. However,
due to the uncertainty of sampling negative instances, the results
of embedding learning may fluctuate greatly in different runs. Be-
sides, some models only produce satisfying embedding results when
the number of negative samples is large enough [37, 48], which
increases the time needed for model training.

In previous works, some methods [40, 50] have been developed
to mitigate the above problems, mostly by sampling the negative
instances purposely rather than randomly. For example, dynamic
negative sampling [50] chooses negative training instances from
the ranking list produced by the current prediction model, so that
the model can continuously work on the most difficult negative
instances. Generative Adversarial Networks (GAN) are also used
to generate and discriminate high-quality negative samples [40],
which take advantage of a generator to obtain high-quality nega-
tive samples, and meanwhile the discriminator in GAN learns the
embeddings of the entities and relations in knowledge graph so as
to incorporate the GAN-based framework into various knowledge
grahp embedding models for better ability of knowledge represen-
tation learning. Ultimately, these models still rely on the sampled
negative instances instead of all instances for model training and
the model accuracy still has room for improvement.

Recently, researchers have explored whole-data based approaches
to train recommendation models [8, 11, 12], which improve the rec-
ommendation accuracy without negative sampling. By separating
the users and items in optimization, the computational bottlenecks
has been resolved in a large extent in training the recommendation
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models. However, these methods can only be applied to recom-
mendation models, while we would like to build a general frame-
work that can be applied to square-loss-based knowledge graph
embedding models. Besides, although these models achieve better
recommendation performance and efficiency, they do not consider
improving the space complexity but only focus on the time com-
plexity, and thus they still need to use batch learning during the
training process. On the contrary, we aim to improve both the space
and time complexity in this work. Based on this, we can achieve
three benefits: better entity ranking accuracy, better computational
efficiency, and better space efficiency.

3 NON-SAMPLING KGE FRAMEWORK

In this section, we will first introduce the notations that will be used
in this paper. Then, we will introduce the Non-Sampling Knowledge
Graph Embedding (NS-KGE) framework step by step. In particular,
we will first provide a general formulation of the framework, and
then devote two subsections to show how to improve the time and
space efficiency in the framework. We will show how the framework
can be applied to different specific knowledge graph embedding
models in the next section.

3.1 Problem Formalization and Notations

In this section, we provide a square-loss based formalization of
the Knowledge Graph Embedding (KGE) problem, which will be
used in the following parts of the paper. However, we acknowledge
that not all of the existing KGE methods can be represented by this
square loss formalization. In this paper, we consider those KGE
methods whose loss function is a square loss or can be converted
into a square loss format for non-sampling KGE learning. Table
1 introduces the basic notations that will be used in this paper.
We first provide a general formulation for the knowledge graph
embedding problem. Given a knowledge graph G, our goal is to train
a scoring function fr (h, t), which is able to distinguish whether the
head entity h and tail entity ¢ should be connected by relation r in
the knowledge graph. Suppose f;(h, t) is the ground-truth value of
the triplet (h, r, t), generated from training sets, and fr (h,t) is the
predicted value by the knowledge graph embedding model, where
fr(h,t) = 1 represents the connected entities, and f,(h,t) = 0
denotes dis-connected entities. Based on these definition, a general
KG embedding model aims to minimize the difference between the
ground-truth and the predicted values based on a loss function L.
For example, we can use square loss to train the model:

L= 3 3 e (B0~ fothn)) "

reR heE teE

where the three summations enumerate all of the possible (h, r, t)
triplet combinations in the knowledge graph, and cj,,; represents
the importance (i.e., weight score) of the corresponding triplet. In
traditional negative sampling-based KGE models such as TransE,
cpry = 11is set as the positive instances and the sampled negative
instances, while for all other negative instances, cj,; = 0. In our
non-sampling KGE framework, however, all ¢j,,.; values are non-
zero. In the simplest case, cp,; = 1 for all instances, regardless of
positive or negative.
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Symbol ‘ Description

G A knowledge graph
E The set of entities in a knowledge graph
R The set of relations in a knowledge graph
h,t A head (h) or a tail (¢) entity in a knowledge graph
r A relation in a knowledge graph
ey, e; | Embedding vector of the entity h and ¢
r Embedding vector of the relation r
en,i>et,i | The i-th dimension of entity embedding e, and e;
ri The i-th dimension of relation embedding r
d Dimension of the embedding vectors
Chrt The weight of the triplet (h, r, t)
fr(h,t) | Ground-truth value of the triple (A, r, t)
fr(h, t) | Predicted value of the triple (h, r, t)

Table 1: Summary of the notations in this work.

Many knowledge graph embedding models can be regarded
as a special case of this formulation. For example, TransE uses
fr(h, t) = |ley + r — e;|| as the scoring function. For connected
entities, the ground-truth value f,(h, t) would be 0, and for dis-
connected entities, the ground-truth value would be a constant
value greater than 0 (e.g., it would be 3 when ey, r and e; are
regularized as unit vectors). Similar to TransE, many other KG
embedding models can be represented by Eq.(1) with no or only a
little trivial transformation, as we will show later in Section 4.

3.2 Non-sampling KG Embedding

The adoption of square loss in Eq.(1) makes it possible to simplify
the model learning and increase the time and space efficiency based
on mathematical re-organization of the loss function. In the first
step, we can re-write the loss function as following:

L= enre (b - ot 1))’

r€R heE teE

= 2T e (Frlhs 07 4 frlhy 0 = 2 (h, 0)fr(h, 1)

reR heE teE

@)

From Eq.(2), we can see that the time complexity of calculating
the loss is huge. The time complexity of calculating fr (h, t) is O(d),
where d is the dimension of embedding vectors, and thus the time
complexity of calculating the whole loss function is O(d|R||E|?). If
we implement this loss function on real-world knowledge graphs,
we would have to conduct trillions of times of computation to cal-
culate the loss function within one epoch. Depending on the size
of the training data, this may take days, weeks or even longer to
train a model. Even if using all of the (both positive and negative)
samples in the dataset for model training can bring us better accu-
racy, such training time is not affordable. As a result, we need to
mathematically derive more efficient implementations for Eq. (2).

3.3 Improving Time Efficiency

To reduce the time complexity, the first thing we need to consider is
to find out the most time-consuming part of the loss function. With-
out loss of generality and to simplify the model computation, we
assume ground-truth value f;(h, t) = 1 for positive instances and
fr(h,t) = 0 for negative instances. Besides, we set a uniform coeffi-
cient ¢* for all positive instances and ¢~ for all negative instances.
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In this case the loss function can be re-organized as:

L= > > chrelfr(h )= fulh, 1))’

reR heE teE

DIPH PN

reR heE zeE*

+ Cfr(ht)]

IEE7

=ZZ[Z

r€ER heE tecET
h,r

(et = Y )]

teE +
tEEh,r

Y 2 e (0 = 2f s f e 1)) = it ]

r€R heE teE*

[t 0 + fy(h 0 =26, f (B, 1)

¢ frth, 0 + fo(h 1 = 26 (. £)fs (b 1)

LP
SN R P+ >SS

r€R heE teE reR heE teE;: .

A
L constant

G
where E+ , represents the set of entities in the KG that are connected

to head entlty h by relation r, while E, _is the set of entities that

are not connected to h through r. We have EZ ,UE, =EInthe
step 1 above, we split the loss function by considering E; . and
E;’r separately. In step 2, we replace the E}_l‘r term by subtracting
E; , from the total summation, and in step 3, we re-organize the

loss function into the positive term L, all entity term L4, and a
constant value term. In the loss function, we separate the positive
entities and the constant value, and we use all of the data to replace
the negative samples. In the next step, we will introduce how to
optimize the time complexity after such transformation.

As we can see, the LP term enumerates over all of the connected
triplets in the KG, and its time complexity is O(dx# positive triples),
which is an acceptable complexity. However, since most of the KG
datasets are highly sparse, L4, even with pretty concise form, con-
tributes the most significant time complexity to the loss function.
Actually, the time complexity of L4 is O(d|R||E|?), which is very ex-
pensive. We hope the time complexity of L4 can be further reduced.
As a result, we will take a closer look at the fr (h, £)? term.

Fortunately, NS-KGE can be applied to most of the factorization-
based KG embedding models. For these models, we can conduct
certain transformations over the scoring function fr(h, t) to reduce
the time complexity. For a factorization-based KG embedding model,
the scoring function fr (h, t) can be represented as the following
general formulation:

d
frihty=el(roe) = Z eniTier,i ()

1
where ey, r and e; are the head entity embedding, relation em-
bedding, and tail entity embedding, respectively, and the symbol
© denotes element-wise product. Besides, ey, ;, r; and e; ; denote
the i-th element of the corresponding embedding vector. Since our
NS-KGE framework is based on square loss, we calculate the square
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of fr (h, t). By manipulating the inner-product operation, the square
of fr(h,t) can be rearranged as:

fr(ht)? = (ieh,iriet,i) ( i eh,jrjet,j)

i J

= (Z{j:ieh,ieh,j)(iZj:rzrj)(iiet,iet,j)

In this case, e, r and e; are separated from each other, and
thus Z? Zj'?l en,ieh, js Zfl Z}i rirj and Z? Z}j er,iez,j are indepen-
dent from each other. Therefore, we can disentangle the parameters
and calculate f,(h, t)? in a more efficient way. We thus apply Eq.(5)
to the LA term of the loss function Eq.(3) and we have:

SEDININIUP DI [ [ty

®)

reR heE teE i i
LA
d d
P —_
v (3 ensens) (3 0) (3 esen)
i j heE reR teE
Ly Lr Lt

(6)

In the second step of Eq.(6), the reason that we can reorganize the
summary of i, j and the summary over h, r, t is because the Ly, Lg
and L7 terms are independent from each other. We also leave out
the constant term since it does not influence the optimization result.

As noted before, L* contributes the most significant complexity
to the loss function. Based on the above operation, the complexity
of L4 is reduced from O(d|E||R||E|) in Eq.(3) to O(d?(|E| +|R| +|E]))
in Eq.(6). In Section 4, we take the Bilinear-Diagonal embedding
model (DistMult), the Simple enhancement of Canonical Polyadic
model (SimplE), the Complex Embedding model (ComplEx) and the
Translational Embedding model (TransE) as examples to show how
the NS-KGE framework can be applied to different models.

3.4 Improving Space Efficiency

Apart from time complexity, we also provide a method to reduce
the space complexity which is still based on the factorization-based
scoring function fr(h, t) in Eq.(4). The models that will be studied
in Section 4 satisfy this form or could be extended with some simple
transformations.

First, we use two |E| X d matrices, He and T, to store the em-
bedding vectors of all head entities and tail entities, respectively.
Similarly, we store the embedding vectors of all relations in the
matrix R, with the size of |R| X d. According to Eq.(6), the calcula-
tion of Ly, Lg and LT are independent from each other with the
calculation of each term only relies on the corresponding He, R, or
T, matrix. For example, given the index i and j, the value of the Ly
term is equal to the inner product of the i-th column vector and the
Jj-th column vector of matrix H,. As a result, we can construct three
intermediate matrices denoted as My, MT, and Mg with the size
d x d to record the intermediate results for each term. The details
are displayed in Eq.(7).

My = H H,, Mg = RIR., My =TI T, ()
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Note that Mg [i][/] is equal to the inner product of the i-th and the
Jj-th column vector of He, similar for Mg[i][j] and Mr|[i][j]. Based
on this, the calculation of the LA term in Eq.(6) can be simplified as:

A = ¢ sum(Myg © Mg © Mr) 8)

where © means element-wise product of matrices, and sum means
adding up all elements of a matrix. In this way, we can calculate
L4 in the space complexity of O (d x (|R| + |E| + d)), so that we do
not need to use any batch optimization for standard knowledge
graph benchmarks such as the FB15K237 and WN18RR datasets (to
be introduced in Section 5), since we can directly use the whole
training data to calculate the loss function within reasonable time
and space complexity.

As will be shown in the following section, for different models
we may need to construct the My, Mg and M matrices in different
ways, but this does not increase the space complexity. Besides, for
extremely large datasets that cannot be loaded into memory as a
whole, our framework with smaller space complexity can use fewer
batches to train the model, which results in less training epochs.

4 APPLY NS-KGE ON DIFFERENT MODELS

In this section, we will show how our NS-KGE framework can be
applied over different KGE models. As mentioned before, we will
take the Bilinear-Diagonal embedding model (DistMult) [48], the
Simple enhancement of Canonical Polyadic model (SimplE) [24], the
Complex Embedding model (ComplEx) [37] and the Translational
Embedding model (TransE) [6] as examples.

4.1 Bilinear-Diagonal Embedding (DistMult)

DistMult is a representative factorization-based multi-relation rep-
resentation learning model [48]. It learns each entity as a vector
embedding, and learns each relation as a diagonal matrix. For a
triplet (h, r, t), DistMult trains the model based on the following
scoring function:

d
frlht) = ef - diag(r) - e; = ) e iriet,; ©)

1

We can see that the scoring function of DistMult is the same as
our framework (Eq.(4)). As a result, we can directly apply the loss
function of the NS-KGE framework (Eq.(6)) for model learning, and
use Eq.(8) for better space complexity. The final time complexity is
O(d2(|E| + |R| + |E])). In the experiments, we will show that our
Non-sampling DistMult is both more efficient and more effective
that the original sampling-based DistMult model.

4.2 Simple Enhancement of CP (SimplE)

Canonical Polyadic (CP) decomposition is one of the earliest work
on tensor factorization approaches [20]. Since CP learns two inde-
pendent embedding vectors for each entity, it performs poorly in
KG link prediction tasks. The SimplE [24] embedding method pro-
vides a simple improvement of CP by learning the two embeddings
of each entity dependently, which gains much better performance
on link prediction.
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For SimplE, its scoring function is a little bit more complex than
DistMult. The scoring function is a combination of two parts:

fr(h,t) = %(eZ(r Oe)+el(rto eh))

d d (10)

1
-1
= 5 Zeh’iriet,i + Zet,jrj eh’j
=

i=1

To apply the NS-KGE framework on SimplE, we need to consider
fr(h, )2, which consists of three terms:

d d
Flht? = (D5 D ensen e sen)
i

d d
+ZZZ(eh,ieh,j)(rirfl)(et,iet,j) (11)

j
d d
—1,-1
+ZZ(9h,ieh,j)(ri ri Newier,j)
i

We can see that for each term in Eq.(11), its structure is the
same as that in Eq.(5). As a result, the rest of the work is similar
to what we did in Eq.(6). The only difference is that we result in
three L4 terms in Eq.(6), but the time and space complexity remain
unchanged.

4.3 Complex Embeddings (ComplEx)

The ComplEx embedding model learns KG embeddings in a complex
number space [37]. It adopts the Hermitian dot product to construct
the scoring function. But we can still do similar rearrangements for
non-sampling knowledge graph embedding. The scoring function
of ComplEx is:

fr(h,t) :hze(rre Qtre)"'hiTm(rre O tim) (12)

+ hze(rim Otim) - hlrm(rim O tre)
where h,., rre, tre are the real part of the head, relation, and tail
embedding vectors, while h;p, ¥im, tim are the imaginary part of
the head, relation, and tail embedding vectors. There will be six
terms for f(h, t)z. In the following, we would only show the expan-
sion result of the first term Lfl‘\ = h,Te(rre O tre) - hl.Tm(rre O tim),
since the other terms look similar.

Lf‘ =c” Z Z Z (Zd: hre,irre,itre,i)(ihim,j’re,jtim,j)
J

reR heE teE i

=c Z(j: Zd: ( Z hre,ihim,j)( Z Tre.is rre,j)( Z tre,is l‘im,j)

J heE reR teE
(13)

In this way, we can calculate the loss of non-sampling ComplEx
within O(d?(|R| + |E|)) time complexity and O(d(|R| + |E| +d)) space
complexity.

4.4 Translational Embedding (TransE)

Unlike the previous factorization-based knowledge graph embed-
ding models, TransE [6] is a translation-based embedding model.
As a result, the NS-KGE framework cannot be directly applied to
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TransE. However, we will show that by applying very minor modi-
fications to the scoring function without changing the fundamental
idea of translational embedding, the NS-KGE framework can still
be applied to TransE.

The original scoring function of TransE is fr(h, t)=|lh+r—tl,
which calculates the distance between h + r and t. For positive ex-
amples, we hope the distance would be as small as possible, which
could be 0 in the most ideal case. For negative examples, we hope
the distance would be as far away as possible. In many implementa-
tions of TransE, to avoid over-fitting, we usually apply unit-vector
constraints to the embedding vectors, i.e., h, r and t are regularized
as length-one vectors. In this case, the maximum possible distance
between h+r and t would be 3, as a result, the optimal value for neg-
ative examples would be 3. However, the mathematical derivation
of our framework in Eq.(3) relies on the assumption that the ground-
truth value for positive instances is 1 and for negative instances it is
0. As a result, we slightly modify the scoring function of TransE to a
new function fr’(h, H=1- %fr(h, H=1- %||h+r —t||. In this way,
the ground-truth value satisfy our assumption meanwhile it does
not influence the optimization of TransE. The only difference is
that instead of minimizing fr (h, t) for positive examples in TransE,
we aim to maximize f/(h, ), which is basically the same in terms
of optimization.

By inserting f/(h, t) into Eq.(3), we have:

L=+ 3 S e (1= L)

r€R heE teE
2
=LP+ZZZC’(%(hTt+rT(t—h)))
r€R heE teE N
=LY Y (BT TR + (TR -2 Ter Th)
re€R heE teE
4c- d d d d
:LP+T(Z NEDILTDITEDIPNED I IDICT
rJ reR teE iJ heE reR
d d d d
+ZZ|R|Zh,-hthit,»—zzZZrirjZhiij)
i heE teE i j rerR heE teE
- d d
:LP+%ZZ(|E|ZriertithEthiher,-rj
i reR teE heE reR
—_—— —_——
Lg Lt Ly Lg
+|R|Zhihjztitj—zzrirjZhiztj>
heE teE reR heE teE
—_——— ——— —— ——
Ly Lt LR SH St

(14)
We can see that similar to Eq.(6), the final loss can also be de-
composed to the Ly, Lg and LT terms, which are independent from
each other for better time complexity, and can be calculated with
better space complexity (Section 3.4). The Sy and St terms are just
summation of the entity embedding matrix, whose calculation is
even easier than the Ly and Lt terms. The final time complexity
of non-sampling TransE is O (d2(|R| + |E])).

5 EXPERIMENTS

In this section, we conduct experiments to evaluate both the effi-
ciency and effectiveness of the NS-KGE framework.!

1Source code available at https://github.com/rutgerswiselab/NS-KGE.
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Dataset ‘ #entities #relations  #train #test
FB15K237 14,541 237 272,115 20,466
WN18RR 40,943 11 86,835 3,134

Table 2: Basic statistics of the datasets

5.1 Experimental Setup

5.1.1 Dataset Description. We conduct the experiments on two
benchmark datasets for knowledge graph embedding research,
namely, FB15K237 and WN18RR. The detailed statistics of the
datasets are shown in Table 2, and we will briefly introduce these
two datasets in the following.

FB15K237: One of the most frequently used dataset for KGE.
The original version of the FB15K dataset is generated from a subset
of the Freebase knowledge graph [5]. However, in the original
FB15K dataset, a large number of the test triplets can be obtained
by simply reversing the triplets in the training set, as shown in
[3, 36]. For example, the test set may contain a triplet (home, car,
work), while the training set contains a reverse triplet (work, car,
home). The existence of such cases make the original dataset suffer
from the test leakage problem. As a result, the FB15k237 [36] dataset
is introduced by removing these reverse triplets, which mitigates
the test leakage problem in a large extend. In this paper we use
FB15k237 for evaluation.

WN18RR: WN18 is also a standard dataset for KGE. The original
WN18 dataset is a subset of WordNet [30], which is an English lexi-
cal database. Similar to FB15K, WN18 is also corrected to WN18RR
[14] by removing the reverse triplets to avoid test leakage. In this
work, we use WN18RR for evaluation.

We use the default train-test split of the original datasets. Both
the training set and the testing set are a set of (h, r, t) triplets. The
number of training and testing triplets of the two datasets are shown
in Table 2.

5.1.2 Baselines. We study the performance of the NS-KGE frame-
work by comparing the performance of a KGE model with or with-
out using the framework. Similar to what we have introduced before,
we consider the following KGE models.

o DistMult [48]: The bilinear-diagonal embedding model, which
uses diagonal matrix to represent the relation between head
and tail entities.

o SimplE [24]: The model is a simple enhancement of the
Canonical Polyadic (CP) decomposition model [20] by learn-
ing two dependent embeddings for each entity.

e ComplEx [37]: The model learns KG embedding in a com-
plex number space, which uses complex number vectors to
represent the entities and relations.

o TransE [6]: The translational embedding model, which mini-
mizes the distance between head and tail entities after trans-
lation by the relation vector.

All of the models are implemented by PyTorch, an open source
library. And we use the baselines implemented by OpenKE? [19],
an open source tool-kit for knowledge graph embedding.

5.1.3 Evaluation Metrics. For each triplet (h, r, t) in the testing
set, we first use h and r to rank all tail entities, and evaluate the

Zhttps://github.com/thunlp/OpenKE
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Dataset | FB15K237 | WN18RR

Metric | MRRT | MR| | HR@107 | HR@3 1 | HR@11 || MRRT | MR| | HR@107 | HR@3 T | HR@1 T
DistMult 0177 | 43015 | 0.345 0.198 | 0.010 0.320 | 4019.98* | 0.461 0371 | 0.240
NS-DistMult | 0.227* | 361.61* | 0.373* | 0.248* | 0.155* || 0.411* | 7456.29 | 0.462 0.424* | 0.384*
SimplE 0.183 | 387.90 | 0.355 0207 | 0.099 0.329 | 3950.82* | 0.463 0.378 | 0.253
NS-SimplE | 0.222* | 364.31% | 0.370* | 0.246* | 0.159* || 0.406* | 741831 | 0.459 0.415* | 0.377*
ComplEx 0.240 | 52942 | 0.415* | 0.271* | 0151 0.390 | 4673.35* | 0.474 0422|0339
NS-ComplEx | 0.243 | 326.57* | 0.390 0256 | 0.163* | 0.429* | 7649.34 | 0.485* | 0.449* | 0.396*
TransE 0.178 | 337.86 | 0.316 0192 | 0.108 0.079 | 2900.32* | 0.145 0.084 | 0.044*
NS-TransE | 0.261* | 336.71 | 0.447* | 0.296* | 0.167* || 0.156* | 3948.07 | 0.437* | 0.256* | 0.007

Table 3: Result on prediction accuracy. NS-X means the non-sampling version of model X under our NS-KGE framework. T
means the measure is the higher the better, while | means the measure is the lower the better. Bold numbers represent better
performance, and * indicates its performance is significantly better at p < 0.01 than the other model.

position of the correct tail entity t. And then we use t and r to
rank all head entities, and evaluate the position of the correct head
entity h. As a result, if there are |S| triplets in the testing set, we
will conduct 2|S| evaluations.

We use Hit Ratio (HR), Mean Rank (MR) and Mean Reciprocal
Rank (MRR) to evaluate the models. HR is used to measure whether
the correct entity is in the Top-K list. MR is the mean of the correct
entity’s rank, defined as MR = ﬁ 2 (h,r,t)es(ranky +rank;). MRR
is defined as MRR = ﬁ 2(hr, t)es(m + m). These three
metrics are widely used in KG embedding evaluation [6, 24, 28]. For
HR and MRR, larger value means better performance, and for MR,
smaller value means better performance.

5.1.4 Parameter Settings. We set the default embedding dimen-
sion as 200, the number of training epochs as 2000, initial learning
rate as 0.0001, and use Adam optimizer [25] for all models. To avoid
over-fitting, we apply {2 normalization over the parameters for all
models, and we conduct grid search to find the best coefficient of
regularization for each model in [10_1, 1072, 1073, 10_4]. We also
conduct grid search to find the best learning rate decay for each
model in [0.1, 0.3, 0.5, 0.7].

For negative sampling-based models, we set the number of nega-
tive samples as 25; the batch size is 4000. For non-sampling models,
we do not split training data into batches, because our model has
lower space complexity; the coefficient of positive instances ¢ is
set to 1, and the coefficient of negative instances ¢ is grid searched
in [1071,1072,1073, 1074, 107%, 107°]. The default setting of ¢~
is 0.001 in all experiments except when we are tuning ¢~ to see
its influence. For each model on each dataset, we run the model 5
times and report the average result of the 5 times. We use paired
t-test to verify the significance of the results.

5.2 Performance Comparison

We apply NS-KGE to DistMult, SimplE, ComplEx and TransE. The
experimental results on prediction accuracy are shown in Table 3,
and more intuitive comparison are shown in Figure 1. We have the
following observations from the results.

First and most importantly, compared to the four baselines, in
most cases, our NS-KGE framework achieves the best performance
on both of the two datasets. Although some baselines are slightly

1733

better than NS-KGE in some cases, for example, on the WN18RR
dataset, SimplE’s HR@10 has a slightly better performance, but we
can see the results are comparable. For HR@1 and HR@3, NS-KGE
has 9.78% and 49.01% improvement on average, respectively.

We also conducted some qualitative analysis of the entity ranking
results, as shown in Table 4. First, for the same entity and relation,
we see that the correct prediction gains higher rank in our non-
sampling models. Second, compared to the sampling-based model,
the top-10 ranked entities by our non-sampling model tend to be
intuitively more relevant to the given entity and relation.

The reason why applying the NS-KGE framework can improve
the performance of sampling-based methods (DistMult, SimplE,
Complex and TransE) is that, the sampling-based methods only
use part of the negative instance information in the dataset, and
these models may ignore some important negative instances. How-
ever, our NS-KGE framework makes it possible to use all of the
information in the dataset and brings better computational time
and space consumption at the same time(to be discussed in the
following experiments). Therefore, NS-KGE can avoid the problem
of sampling-based methods and thus improve the performance.

One interesting observation is that on the WN18RR dataset, our
NS-KGE framework is consistently better on the MRR measure, but
is worse on the MR measure. The difference between MRR and MR
is that MR is more sensitive to bad cases. Due to the large number
of entities in the WN18RR dataset, if the correct entity is ranked
to lower positions in some lists, it will have a huge influence on
the MR measure, but not too much on the MRR measure due to
the reciprocal operation. The result implies that our framework
may rank the correct entity to very low positions in some cases.
However, since our performance on MRR is better, it means that in
most cases our framework ranks the correct entity to top positions.

Besides, the observation that NS-KGE improves the performance
of both factorization-based (DistMult, SimplE, ComplEx) models
and translation-based (TransE) models indicates the effectiveness
of the NS-KGE framework, and also shows the potential of applying
the framework on other KG embedding models.

5.3 Analyses of Hyper Parameters

In this section, we will analyze the impact of different dimension
size d and the negative instance weight ¢™.
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Dataset FB15K237
Relation media common/netflix genre/titles
Entity The Notebook | Funny Girl
Model NS-DistMult | DistMult | NS-SimplE SimplE
comedy comedy comedy United States of America
historical period drama | drama historical period drama | drama
fantasy thriller fantasy romance film
. drama romance film drama thriller
Predicted . . . . .
biography musical film musical film psychological thriller
Top-10 : . .
. thriller fantasy biography DVD
Entities S . s . . .
musical film suspense political drama historical period drama
psychological thriller historical period drama | psychological thriller crime fiction
suspense mystery thriller mystery fiction
mystery United States of America | suspense United Kingdom

Table 4: Qualitative results on entity ranking. NS-X means the non-sampling version of model X under our NS-KGE framework.
Bold entities are the ground truth. Common entities between model X and NS-X are in gray to highlight the difference entities.
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Impact of dimension size. Figure 2 shows the performance
of our NS-KGE framework under different choices of embedding
dimension size d. We can see that in most cases, the performance
becomes better when the embedding dimension size increases. It
indicates that higher model expressiveness power contributes to
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better performance in the NS-KGE framework. However, a larger
dimension size can also cost more computing time in model training.
As we have shown in Section 3.3, the training time is proportional
to the square of dimension size. Therefore, we need to trade-off
between the training time and the performance. As we can see in
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Figure 2, in most cases, the performance tends to be stable at round
200 dimensions. As a result, we choose 200 as the default dimension
size for all of the models.

Impact of negative instance weight. In this experiment, we
fix the positive instance weight in the NS-KGE framework as ¢* = 1,
and we tune the negative instance weight ¢~ to analyze its influence.
Figure 3 shows the results when we change the negative instance
weight ¢~ on the two datasets. We see that for all models on both
datasets, when the value of ¢~ increases, the performance tends to
increase first and then decreases when ¢~ is too large. This shows
that a proper selection of ¢~ value is important to the model perfor-
mance. If ¢~ is too small (e.g., close to 0), the model would not be
able to leverage the information included in the negative instances
of the KG. However, the information in negative instances is also
noisy, e.g., if two entities are not connected, this may not directly
indicate they are irrelevant, instead, this may be caused by the noise
in data collection process. As a result, negative instance information
is not as reliable as positive instances, and if ¢~ is too large, it may
decrease the performance. Because negative samples are usually
much more than positive samples, to avoid class imbalance, the
weight of negative instances ¢~ should be smaller than ¢*. In most
cases, the optimal selection of ¢~ is 0.001.

5.4 Efficiency Analyses

In this section, we will discuss the training efficiency of our NS-KGE
framework. We will compare the training time of the four sampling-
based models DistMult, SimplE, Complex, TransE and their non-
sampling versions. For fairness of comparison, all experiments run
on a single NVIDIA Geforce 2080Ti GPU. The operating system
is Ubuntu 16.04 LTS. For all models, the embedding dimension is
set as 200 and number of training epochs is 2000. Results on model
training time is shown in Table 5.

‘ FB15K237 Speed-up ‘ WN18RR Speed-up

DistMult 3546s 1.00 1922s 1.00
NS-DistMult 53s 66.91 57s 33.72
SimplE 4447s 1.00 2450s 1.00
NS-SimplE 73s 60.92 77s 31.82
TransE 2353s 1.00 673s 1.00
NS-TransE 107s 21.99 86s 7.83
ComplEx 67365 1.00 3346s 1.00
NS-ComplEx 157s 42.90 158s 21.18

Table 5: Experimental results on model training time. The
models are ordered from top to bottom in ascending order
of the training time on each dataset. Speed-up shows how
many times NS-X is faster than the corresponding model X.

We can see that the training efficiency of our NS-KGE framework
is significant better than the baseline models. For example, if we
apply NS-KGE to the DistMult model on the FB15K237 dataset,
it only takes 53s to finish training the model, while the original
sampling-based DistMult model takes 3546s. The acceleration is
about 70 times. For other models and datasets, we also get 20 ~ 60
times acceleration. This is not surprising because for the sampling-
based KGE models, a lot of computational time needs to be spent on
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sampling the negative examples, while our framework eliminates
the sampling procedure. In our implementation, we used in-memory
sampling instead of on-disk sampling for the baselines, however,
our NS-KGE framework is still much faster than the baselines.

Another intersting observation from Table 5 is that on each
dataset, the computational time of our NS-KGE models are NS-
DistMult < NS-SimplE < NS-TransE < NS-ComplEx. This is consis-
tent with the mathematical analysis in Section 3 and Section 4. For
the NS-DistMult model, its final loss function has one L4 term (see
Eq.(6)). For the NS-SimplE model, its final loss function has three
LA terms (Eq.(11)). For the NS-TransE model, its final loss function
has four L4 terms (Eq.(14)). While for the NS-ComplEx model, it
final loss function has six L4 terms (see Section 4.3, we only show
one of terms in Eq.(13)). As we have shown in Section 3.3, the L4
term(s) take the most significant computational time in the loss
function. As a result, the final model training time is proportional
to the number of L4 terms in the loss function.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposes NS-KGE, a non-sampling framework for
knowledge graph embedding, which leverages all of the positive
and negative instances in the KG for model training. Besides, we
provided mathematical methods to reduce the time and space com-
plexity of the framework, and have shown how the framework can
be applied to various KGE models. Experiments on two benchmark
datasets demonstrate that the framework is able to enhance both
the model performance and the training efficiency.

In the future, we will consider applying our framework on more
complex KGE models such as neural network-based models, as
well as more complex graph structures such as attributed graphs.
We also plan to apply our framework to other graph computation
models beyond KGE, such as graph neural networks.
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