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ABSTRACT 

There is increasing recognition of the need for human-centered 

AI that learns from human feedback. However, most current AI 

systems focus more on the model design, but less on human partic­

ipation as part of the pipeline. In this work, we propose a Human­

in-the-Loop (HitL) graph reasoning paradigm and develop a cor­

responding dataset named HOOPS for the task of KG-driven con­

versational recommendation. Specifically, we first construct a KG 

interpreting diverse user behaviors and identify pertinent attribute 

entities for each user-item pair. Then we simulate the conver­

sational turns reflecting the human decision making process of 

choosing suitable items tracing the KG structures transparently. 

We also provide a benchmark method with reported performance 

on the dataset to ascertain the feasibility of HitL graph reasoning 

for recommendation using our developed dataset, and show that it 

provides novel opportunities for the research community. 
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1 INTRODUCTION 

Given the increasing recognition of human-centered Al as a new 

paradigm for Al, Human-in-the-Loop (HitL) learning has emerged 
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Figure 1: We regard conversational recommendation as a 

typical concretization of the HitL graph reasoning para­

digm, aiming to predict the next suitable question and make 

recommendations in multi-round dialogue. The user feed­

back allows pruning off irrelevant candidates. 

as an essential way of leveraging the power of both machine in­

telligence and human intelligence to enable collaborative human­

machine-driven reasoning and decision making [6, 12, 30]. An intu­

itive example is the Guess the Number game [13, 14]. In this game, 

the user has a secrete number in mind. The system interacts with the 

user through conversation by asking questions in multiple rounds 

to narrow down the range of possible numbers until the correct 

answer is identified, while the user responds to the questions by 

telling the system whether the current guess is too low or too high. 

In this process, the human user serves as the supervision to the 

system. The benefit of such human-involved feedback is that it 

substantially reduces the search space in the guessing process and 

improves the efficiency of algorithms. 

In real-world human-centered tasks such as conversational rec­

ommendation, one can analogously consider a graph reasoning 

problem that involves guessing what might be the ideal item in 

a user's mind by asking the user questions and searching over a 

heterogeneous user-item-attribute graph [31, 45]. As illustrated in 

Fig. 1, starting from a user node, the system, at every step, needs 
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to determine how to move to a promising neighboring node and
finally arrives at a potential item node of interest. For traditional
graph reasoning problems, the search space is often prohibitively
large [38, 49], which makes it rather challenging and inefficient to
guess a correct answer (i.e., arrive at a correct target node in the
graph). Therefore, in this work, we propose the novel HitL graph
reasoning paradigm, where the human is allowed to provide feed-
back to help the system prune irrelevant actions and quickly locate
a correct path towards a target node.

The HitL graph reasoning paradigm possesses the following
properties. First, unlike the traditional decision making process that
heavily relies on past interaction history, HitL should be hybrid by
integrating static features as well as real-time human intervention
as essential forms of inputs. Second, in practice, humans often pro-
ceed in a coarse-to-finemanner to gradually make their decisions.
For example, people answer questions by first skimming the text,
identifying key ideas, and then carefully reading specific parts to
obtain an answer [22, 39]. Similarly, HitL graph reasoning will first
pursue attribute nodes describing broader concepts. Subsequently,
with more interaction loops with the user, the system will gradu-
ally gain a better understanding of the specific user requirements
and preferences pertaining to the relevant goal entity to be cho-
sen. Third, path reasoning through the HitL paradigm is expected
to highlight the transparency of the decision making process in
the sense that the system exposes its reasoning process with user
feedback by revealing the corresponding paths in the graph [38].
This sort of transparency enables users to witness not only what
the systems provides in response to their input but also how it
updates its reasoning and whether their input is incorporated as
they expect.

In this work, we consider the task of product recommendation
as a concrete example to demonstrate how intelligent systems can
benefit from our HitL graph reasoning framework, and we also
provide a new benchmark dataset to study the problem. In order to
incorporate the human participation in the system, we consider a
multi-round conversational recommender system (CRS) as a typical
implementation. Our novel dataset integrates product information
as well as diverse user participation and historical records. At the
same time, our dataset follows natural coarse-to-fine conceptual
resolution to gradually infer the user interests starting from broader
interests, e.g., categories or brands. Through multiple rounds of
interaction, the system gradually gains a more detailed understand-
ing of specific user requirements and preferences pertaining to the
relevant products to be chosen. Last but not least, in order to make
the user–agent interaction loop more transparent, we draw on a
unified knowledge graph based on the Amazon review corpus [26]
such that the conversational system can better assist users to re-
trieve the best-suited products through an explicit graph reasoning
process. To show the applicability of the datasets, we also provide
a baseline method with reported performance over three tasks. The
contributions of this paper are threefold. 1) We propose a novel
human-in-the-loop (HitL) graph reasoning paradigm with three
important properties. 2) We construct a new dataset for conver-
sational recommendation under the proposed framework. 3) We
provide a new method and its performance on the dataset, which
can be used for future research on human-in-the-loop learning.

Cellphones Grocery Toys & Games Automotive

#Entities 278,198 271,855 437,897 444,545
#Relations 45 45 71 73
#Triples 3,724,724 4,452,234 6,705,842 5,703,094
#Interactions 607,673 709,280 1,178,943 1,122,776
#Utterances 2,043,988 2,424,103 3,339,771 3,830,556

Table 1: Statistics of our dataset on four domains.

2 HITL GRAPH REASONING PARADIGM
A unified knowledge graph G = {(𝑒, 𝑟, 𝑒 ′) | 𝑒, 𝑒 ′ ∈ E, 𝑟 ∈ R} is
defined to be a set of triples with an entity set E and relation set R.
The entity set consists of three types of nodes, source nodes (U ⊆
E), target nodes (V ⊆ E) and descriptive nodes (A = E \ U ∪V).
A path 𝐿 over the graph is a sequence of entities and relations, i.e.,
𝐿 = {𝑒0, 𝑟1, 𝑒1, . . . , 𝑒 |𝐿 |−1, 𝑟 |𝐿 |, 𝑒 |𝐿 |}. For traditional graph reasoning
tasks, given a source node 𝑢 ∈ U, the goal is to find a multi-step
path 𝐿 whose end node 𝑒 |𝐿 | ∈ V is regarded as the prediction. To
facilitate human interaction in the graph reasoning, at each step
𝑡 , the agent generates a question 𝑄𝑡 based on the traversed path
to solicit help from the user. The user provides a response 𝑅𝑡 that
may be a direct answer to the question but may also consist of
ambiguous statements or other arbitrary dialogue discourse. Given
a vocabulary 𝑉 , we define 𝑄𝑡 , 𝑅𝑡 ∈ 𝑉𝑑𝑤 with 𝑑𝑤 as the maximum
length of a question or response. Given a source node 𝑢 ∈ U and
an unknown target node 𝑣 ∈ V , the workflow of the HitL graph
reasoning paradigm is defined as follows. At every step 𝑡 + 1, given
the traversed path 𝐿𝑡 = {𝑢, 𝑟1, 𝑒1, . . . , 𝑟 |𝐿𝑡 |, 𝑒 |𝐿𝑡 |} (|𝐿𝑡 | ≥ 𝑡 ) and past
human–agent interactions 𝑄0, 𝑄1, 𝑅1, . . . , 𝑄𝑡 , 𝑅𝑡 , the agent aims to
(i) find a 𝑘-hop path 𝐿 (𝑡+1) from 𝑒 |𝐿𝑡 | to a descriptive node in A,
(ii) ask the user a question𝑄𝑡+1 conditioned on 𝐿 (𝑡+1) and receive a
response 𝑅𝑡+1, and (iii) make a decision by predicting top 𝐾 target
nodes {𝑣 (1)𝑡 , . . . 𝑣

(𝐾)
𝑡 } ⊆ V . By the end of turn 𝑡 + 1, based on the

user response, the agent can form the new reasoning path by either
extending the path with 𝐿𝑡+1 = 𝐿𝑡 ∪ 𝐿 (𝑡+1) (i.e., move to the next
descriptive node) or keeping the old one 𝐿𝑡+1 = 𝐿𝑡 (i.e., stay at node
𝑒 |𝐿𝑡 | ). Note that when 𝑘 = 1, the agent simply finds the neighboring
nodes of 𝑒 |𝐿𝑡 | . The interaction will terminate if the user refuses to
continue or the maximum step 𝑇 is reached.
Conversational Recommendation. The HitL graph reasoning
paradigm can be instantiated as follows in this scenario. We con-
sider a source node from the set of users U, a target node from
the set of items I, and descriptive nodes A as attribute entities
that either denote properties of items or descriptive words that
a user mentions in the conversational turns. When users start a
conversation with the agent, thereby initializing the HitL graph
reasoning, it is reasonable to expect that they typically begin with
broader requirements, such as the preferred category and brand
within the descriptive nodes. As illustrated in Figure 1, the agent
asks questions based on both hybrid user behaviors that integrate
past user activity and current user feedback in conjunction with
item attribute knowledge, aiming at more engaging and informa-
tive entities as the conversation progresses. The entities in A are
transformed into human-readable questions to identify the user
needs. Thus, the HitL graph reasoning is expected to find a path
that leads to the next potential descriptive node aiming to follow
natural coarse-to-fine conceptual resolution to gradually narrow
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down the user interests. On the one hand, the ultimate goal of HitL
graph reasoning is to reach a target node inV , which also corre-
sponds to recommending an item to the user. On the other hand,
the system needs to select suitable questions to ask in each round
and traverse the graph. This explicit graph traversal also ensures
that the reasoning is transparent.

3 DATASET CONSTRUCTION
Data Source. To construct a dataset that facilitates this new HitL
graph reasoning paradigm,we draw on a recent compilation of Ama-
zon review data [26] that includes extensive user reviews and rich
item information. It is subdivided into several categories, each of
which covers a separate sub-domain of items from the e-commerce
platform and hence can be regarded as an independent benchmark
for the task. We pick four categories to construct the datasets, en-
compassing Cellphones & Accessories, Grocery & Gourmet, Toys
& Games, and Automotive (see Table 1).
Graph Construction. To enable graph reasoning, we first con-
struct a knowledge graph (KG) with rich meta-information of user
behavior and item meta-data. First, we extract the keywords from
user reviews following Zhang et al. [45] and identify appreciated
aspects of items from a user’s historical records on Amazon. This
yields multiple categories of user records (purchases, comments,
etc.). We consider the following abundant information as itemmeta-
data: item category, brand, listed features, predefined styles, etc.
These two parts constitute the descriptive nodes in the KG. Unlike
previous works that simply tie existing recommendation datasets
(e.g., MovieLens, LFN-1b, etc.) to a knowledge base (e.g., Freebase
[47]) to enrich the item information [34, 35], our constructed KG
not only captures copious amounts of item meta-information but
also incorporates abundant user interactions with items to support
HitL graph reasoning for recommendation. We leverage explicit
semantics from user interactions extracted as structured informa-
tion and KG relations between source nodes, descriptive nodes, and
target nodes. Hence, the constructed KG with source nodes as user
entities and target nodes as item entities can provide more relevant
and supportive information for systems to ask suitable questions
regarding the attributes of potential items and drive the transparent
graph reasoning paradigm for recommendation.
Coarse-to-Fine Extraction. Instead of providing a correct path
for graph reasoning, we generate a sequence of ground-truth at-
tribute nodes that describe target item properties. The underlying
intuition is that since the conversational system aims to help users
gradually figure out their preferences, we assume the system starts
from the descriptive nodes with larger degrees, as these are more
prominent, well-known, and often more generic. As the conver-
sation loop proceeds, the latent needs of users are progressively
clarified such that it becomes easier to consider the descriptive
nodes with a smaller degree, i.e., more particular fine-grained ones.
In graph theory [25], node degree centrality is among the most
prominent measures of node importance over the graph structure.
Therefore, we first extract the descriptive entities that are reachable
from the given user and item within one or two hops as attribute
entities, and then sort them according to the node degrees. The
intuition behind this is that a larger degree indicates that the en-
tity carries broader information [27] and is easier for the model to
predict, while a smaller degree implies the entity is more specific

to a user or item but is harder to predict. The sorted sequence of at-
tribute entities serves as a skeleton for the corresponding dialogue,
guiding a coarse-to-fine selection process in which the entities
determine which feature is considered in each conversational turn.
Conversation Generation. Instead of directly extracting utter-
ances from user reviews [45], we employ the template approach
of Wiseman et al. [36] based on a large data-driven dialogue cor-
pus [5, 10]. We compose the corresponding conversations based
on the skeleton formed by the respective sequence of attribute
entities, transforming each attribute entities into questions via
human-specified English language templates generated from Wise-
man et al. [36]. We then randomly determine the user response
to the question with clarified answer “Yes/No” or unclear answer
“I’m not sure/I don’t know” etc. with some predefined probability
to mimic real conversations, especially for the sake of modeling
users in practical HitL scenarios, where typically they are unclear
about their preferences with regard to potential items. It also makes
sense to assume that those users seeking assistance rather than
directly selecting an item tend to be unfamiliar with the product
details and are unable to provide detailed requirements. Therefore,
we envision this benchmark as serving as an initial milestone for a
practical HitL graph reasoning for recommender systems to tackle
before moving on to even more challenging real-life dialogue with
disfluencies, ambiguity, inconsistent preferences, and backtracking.
DatasetConstruction. Theworkflow of constructing our dataset
is as follows. For each user 𝑢 ∈ U and an item 𝑣 ∈ V purchased
by the user, we take as input a sequence of 𝑇 + 1 attribute en-
tities {𝑒0, . . . , 𝑒𝑇 }, as obtained in the previous step, along with
a sequence of corresponding responses {𝑅1, . . . , 𝑅𝑇 }. Here, 𝑒0 is
the attribute entity identified from the user’s initial query in the
conversational loop. We first construct the 𝑇 -turn conversation:
{𝑄0, (𝑄1, 𝑅1, 𝑒1), . . . , (𝑄𝑇 , 𝑅𝑇 , 𝑒𝑇 )}, where each question 𝑄𝑡 is gen-
erated via a predefined template and associated with corresponding
entity 𝑒𝑡 ∈ E for 𝑡 = 0, 1, . . . ,𝑇 . Then, we build three candidate
sets via negative sampling. For the item candidate set, we randomly
sample a subset of 𝑁𝑉 items that the user has not purchased. To
construct the attribute candidate set at the 𝑇 + 1-th turn, we first
sample a set of paths from the user 𝑢 to item 𝑣 and randomly re-
trieve 𝑁𝐴 nodes from these paths, denoted by 𝑒−1 , . . . , 𝑒

−
𝑁𝐴

. Thus,
the candidate set can be formed as {𝑒𝑇+1, 𝑒

−
1 , . . . , 𝑒

−
𝑁𝐴

}, where 𝑒𝑇+1
is the ground-truth attribute entity previously obtained. The corre-
sponding question candidate set is then generated via the templates
and the set of attribute candidates. Since we know the ground-truth
of the next question 𝑄𝑇+1 = 𝑄 (𝑒𝑇+1), the next entity 𝑒𝑇+1, and
the purchased item 𝑣 , binary labels can also be provided indicating
whether or not a model makes a correct prediction.
HumanValidation. In order to validatewhether the constructed
conversations follow the coarse-to-fine property, as shown in Figure
2, we illustrate with box plots the degree of entities in coarse-to-
fine extracted entities associated with the 𝑁 -th turn. Specifically,
we sampled 40 sub-dialogues from the dataset and shuffled their
original order. 20 human raters were asked to rank the questions
according to their preference of correct question orders. The ob-
served trends justify our dataset construction. As the dialogue turns
increase, the degree of the entity within the turn decreases. There-
fore, it is natural to start with broader, more general questions, and
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For model parameters in the recommender 𝑓rec, including user
and item embeddings, we adopt SGD for optimization with a learn-
ing rate of 10−3 and weight decay of 10−4. For the remaining param-
eters, we rely on Adam optimization with a learning rate of 5×10−4

and weight decay of 102. Since two optimizers may converge with
different speeds, we make Adam backpropagate gradients every
other epoch, while SGD updates across all 10 epochs. We set the
batch size to 256. For model parameters, the sizes of word embed-
ding, KG embedding, and user/item embedding are 200, 100, 100,
respectively, and the latent vector dimensionality is 𝑑 = 100. The
multi-head attention size in the Transformer encoder is set to 4.

5 EXPERIMENTS
We extensively evaluate the proposed benchmark method over the
HOOPS benchmark data. First of all, the model should be able to
accurately conduct the next attribute prediction within the graph,
to demonstrate the capability of pruning off irrelevant candidates
within the HitL graph reasoning paradigm. Moreover, we expect the
proposed HitL conversational recommendation to not only facilitate
offering accurate recommendations but also to properly select the
next questions to ask with user feedback, which correspond to
the recommendation task and the next question prediction tasks,
respectively. For each of these tasks, we compare our model against
several state-of-the-art baselines.
Experimental Settings. Recall that ourHOOPS dataset includes
Cellphones & Accessories, Grocery & Gourmet, Toys & Games, and
Automotive. Each provides a unique KG and a set of conversa-
tions, implying that results are not necessarily comparable across
different domains. We split the conversations into training (60%),
validation (20%), test (20%) portions. For each user–item pair, we
take one conversation with a maximum utterance length of 50 and
a maximum conversation length of 10, applying zero-padding if the
number of utterances is less than 10. There are 10 question candi-
dates to predict, out of which only one is the correct ground truth
choice. The same setup also applies for next-hop entity prediction.
For recommendation, we sampled 100 items with which the user
has not interacted as negative candidates. Our goal is to retrieve 1
correct labeled item out of a pool of 100 candidates, 1 question out
of 10 question candidates, as well as 1 entity out of 10.
Baselines. For recommendation task, we consider Bayesian per-
sonalized ranking BPR [29], collaborative knowledge base embed-
dingCKE [43],RippleNet [33], and the knowledge graph attention
network KGAT [35] as baselines. For next-question prediction, we
compare popular response ranking methods, including the deep
matching network DMN [40], deep attention matching network
DAM [48], and multi-hop selector network MSN [48]. The base-
lines above each either yield recommendations or address the next
question prediction task. However, none of them is able to accom-
modate both tasks. Hence, we implement the following modified
baselines targeted at jointly conducting both tasks.KBRD [7]: This
is a conversational recommender system that originally couples
recommendation with dialogue generation. We applied Transform-
ers [32] with a decoder designed for our response selection down-
stream task. OpenDialKG [24]: The DialKG Walker model is able
to conduct conversational reasoning. The original version supports
predicting a KG entity via an attention-based graph path decoder.

We modified the model by encoding the target question with an
LSTM, which enables next question prediction.
Next Attribute Prediction. We study the performance of de-
scriptive attribute prediction to justify whether the HitL graph
reasoning is able to correctly predict the next attribute entity. Since
the KG incorporates meta-information of both users and items,
predicting the most relevant entities manifests a proper user partic-
ipation that enables pruning off irrelevant candidates. The results
in Table 2 indicate that our baseline approach obtains the best re-
sults compared to all prior baselines. Seq2Seq and LSTM are typical
methods designed for sequential prediction, but they are unable
to perform well with the aid of graph structures. Moon et al. [24]
deployed a graph decoder by walking over knowledge graphs. How-
ever, without considering the hybrid user behavior in the modeling,
it remains less convincing in terms of the transparency.
Next Question Prediction. In our benchmark dataset, we as-
sume users may occasionally struggle to provide useful requests
to the agent, since they initially may not be entirely aware of their
preferences. Thus, learning to ask the right question given the past
conversation context reveals whether the model successfully pre-
dicts user preferences. The benchmark results are shown in Table 2.
In our HitL graph reasoning for conversational recommendation
scenario, next question prediction closely resembles response rank-
ing. The OpenDialKG and KBRD baselines exploit KGs in order to
leverage sentence, dialogue, and KG structural features. Our pro-
posed benchmark method not only takes advantage of the extracted
coarse-to-fine entities within the KG, but also models the user feed-
back within the conversational turns. This enables it to outperform
other baselines in most of the evaluation results.
Recommendation. We adopt standard metrics to evaluate the
recommendations of each user in the testset, including Normalized
Discounted Cumulative Gain (NDCG), Recall, and Mean Average
Precision (MAP). The top-10 recommendation results of different
models are given in Table 2. The benchmark method is able to
outperform other approaches, as it draws on human feedback and
HitL graph reasoning to enhance the recommendation quality.
Ablation Study. We show the influence of different modules tak-
ing care of corresponding inputs on the three sub-tasks to demon-
strate the effectiveness of our designed framework. As shown in
Figure 3(a), we first consider the recommendation performance
with each input separately with abbreviations Hist. = User History,
Dial. = dialogue, and Attr. = descriptive attributes. While keeping
all other parameters unchanged, we observe that each input con-
tributes substantially to the performance, but retaining only one of
them leads to a performance drop. This suggests that each ingredi-
ent of our HitL approach is complementary rather than redundant.
Themodel is almost equal to user-based collaborative filtering when
the input is solely user behavior, which takes the dominant role for
personalized recommendation. In contrast, although the dialogue
provides more semantics than pure attributes, it is worth noting
that the conversational utterances may also introduce noise in the
input. Therefore, there is a slight recommendation performance
gap between dialogue-alone and attribute-alone as input.

Furthermore, we also evaluate how the various inputs contribute
to the next question prediction and next attribute prediction sub-
tasks in Figures 3(b) and (c). We find that user-readable dialogue is
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