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ABSTRACT
In commercial buildings, occupant thermal comfort is a key factor
that must be optimized to provide a comfortable and productive
work environment. However, current methods largely estimate
thermal comfort based on preset models which do not incorporate
real-time measurements or individual thermal preferences. In this
work, we present a scalable system for estimating personalized
thermal comfort using low-cost thermal camera based sensor nodes.
This system extracts non-intrusive thermal measurements, is robust
to di�erent perspectives and environments, is easily deployable
and low-cost, and can incorporate individual thermal feedback for
more personalized thermal comfort estimates. In comparison with
baseline methods, our system is able to improve thermal comfort
estimates on the ASHRAE 7-point thermal sensation scale by 64%
over baseline methods.
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1 INTRODUCTION
In commercial buildings, research has largely focused on energy
optimization [4, 25, 26]; however, occupant thermal comfort is also
a critical factor that impacts both health and productivity [9]. For
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example, studies such as [1, 22] have shown that changes in per-
ceived thermal comfort can indicate changes in mental awareness
and arousal, which are key factors in productivity. However, [10]
found that only 2% surveyed of buildings meet the 80% occupant
thermal satisfaction requirement de�ned by ASHRAE Standard
55 [21], suggesting that for most buildings, both measurement and
optimization of thermal comfort can still be improved.

Standard methods for measuring occupant thermal comfort, such
as Fanger’s predicted mean vote model [7], or more recent adaptive
models [6, 14], rely on estimates for di�erent environmental factors
to estimate average occupant thermal comfort. These environmen-
tal factor estimates, such as metabolic rate, clothing insulation, and
air temperature, are estimated beforehand and not representative of
actual conditions. Furthermore, these methods provide an average
thermal comfort, not accounting for individual thermal preferences.

Studies such as [15, 23] have shown that various personal fac-
tors, such as clothing, metabolic level, and thermal preferences
can cause di�erences in perceived thermal comfort. Recent studies
have attempted to incorporate real-time environmental measure-
ments and personalized measurements to build better models for
personalized thermal comfort estimation. As an example, some
studies [13, 17] have used thermal cameras to measure facial tem-
perature features to estimate individual thermal comfort; however,
these studies have left unaddressed challenges such as scalability
to larger deployments, personalized thermal comfort models, and
robustness against occupant behavior.

In this work, we develop a novel thermal comfort estimation
system that is easily scalable, learns general as well as personal
comfort models, and is robust to di�erent facial perspectives. This
system can be easily deployed in indoor spaces such as commercial
buildings and used in a variety of thermal comfort related applica-
tions, such as HVAC control or comfort-based recommendations.
As an example, personalized comfort estimates can allow systems to
group occupants with similar thermal preferences to reduce overall
thermal discomfort. Our contributions in this work are:

(1) We present the architecture, design, and implementation
of a real-time comfort estimation system that extracts and
integrates facial temperature features with environmental
sensing to provide personalized comfort estimates.

(2) We present a novel facial temperature feature pipeline which
is robust to changes in facial perspectives.

(3) We evaluate our system using a two-week thermal comfort
study in a commercial building deployment and demonstrate
accuracy improvements of up to 64% over baseline methods.
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2 RELATEDWORKS
For many years, thermal comfort has been estimated by the widely
accepted models such as the predicted mean vote (PMV) [7], and
adaptive models [6, 14], and have been integrated into the ASHRAE
Standard [21]. However, one major drawback of these models is that
these models estimate the average thermal comfort, and does not
di�erentiate for individual occupants. Di�erent studies have shown
that individuals have di�erent thermal preferences [19, 24], and
thus an aggregate model may achieve an average thermal comfort
without satisfying individual thermal comfort preferences.

Recently, there have been a few works utilizing RGB-thermal
cameras for comfort sensing [3, 8, 12, 13, 17]. However, each of
these works have drawbacks which limit adoption in real buildings.
In [13], the authors require the thermal cameras to be placed in
front of the occupants at less than 2 meters away, thus restrict-
ing scalability to sense multiple occupants’ thermal comfort. The
authors also only utilize average face temperature, regardless of
the perspective of the face; this can result in thermal measurement
di�erences depending on which parts of the face are in view of
the thermal camera. In [12, 17], the thermal cameras are required
to be even closer to the occupants, and require the occupants to
modify their behavior to allow for speci�c thermal measurement
readings (such as directly facing the camera). In [3], the authors
focus on accurately extracting facial thermal features, and use an
o� the shelf landmark detection algorithm from [11] which relies
on a frontal view of the face for detection.

Alternatively, there are a number of studies which have achieved
high comfort sensing accuracy using contact sensors. [5] used skin
temperature sensors with environmental sensors to train a model
for comfort estimation; [20] relies on a wrist temperature sensor
to predict thermal sensation; [8] uses infrared sensors mounted
on wearable glasses to measure facial skin temperatures. In these
studies, sensors need to be contacted with each occupant, which is
a major disadvantage for adoption in real deployments.

3 SYSTEM DESIGN
As shown in Figure 1, the system consists of a number of sensor
nodes collecting thermal and RGB images at various locations, as
well as environmental sensors to provide additional features such
as temperature and humidity. These data streams constitute the
main features for estimating personal thermal comfort. We include
a web interface for occupants to provide perceived thermal comfort
feedback, which is used as the target for training comfort models.
The features and feedback are processed at a central server, which is
responsible for learning general and personalized comfort models.

Figure 1: System Architecture, consisting of sensor nodes,
comfort feedback interface, environmental sensing, and a
central comfort server.

Figure 2: Web and mobile interface for submitting thermal
comfort feedback.

3.1 Thermal Comfort Sensor Node
There are two criteria which are emphasized to improve deploy-
ability. First, each sensor node should be low-cost, to allow for
the deployment of multiple sensors throughout a space. Second,
each sensor node should require minimal con�guration to allow
for quick setup and easy addition of additional sensors nodes.

To minimize cost of deployment, the sensor node is composed
of two main components: a FLIR One Pro thermal camera, and an
NVIDIA Jetson Nano board. The FLIR One Pro thermal camera is
signi�cantly lower cost than most commercial thermal cameras,
which often cost upwards of 1, 000$. In addition, the Jetson Nano
board replaces the typical mobile device interface for the FLIR One
Pro to further reduce the cost of each individual sensor node.

To reduce the overhead of deployment, a software library was
developed for the Jetson Nano to continuously receive thermal and
RGB images from the FLIR One Pro, encrypt the images, and trans-
mit the images securely to a cloud server for processing. Features
of this library include parsing of raw data from the FLIR One Pro,
encryption of the thermal and RGB images, and con�guration �les
for quick setup for communicating with the server.

3.2 Environmental Sensing
From studies such as [6, 7], ambient temperature, and humidity are
important features in estimating comfort. These features are also
used in the ASHRAE 55 Standard for estimating thermal comfort.
To incorporate these features in our system, we deploy environ-
mental sensors consisting of a TMP35 sensor and a Huzzah Feather
board to measure ambient temperature and humidity time series
data, which is transmitted to the server every 15 seconds. Thermal
measurements are associated with ambient temperature and hu-
midity measurements based on the environmental sensors nearest
to the comfort sensor node.

3.3 Thermal Comfort Feedback
Obtaining thermal comfort feedback from occupants is important,
as it acts as a target for training comfort models, and provides
insight into personal preferences to aid in personalizing comfort
estimates. From the ASHRAE 55 Standard, occupants provide their
perceived thermal comfort feedback on a 7-point thermal sensation
scale. As shown in Figure 2, we provide a web interface where
occupants can easily submit thermal comfort feedback. Thermal
comfort feedback is submitted with an ID, which can be associated
with identi�ed thermal measurement data in Section 3.5.4.
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Figure 3: The feature extraction pipeline outputs participant
ID, distance estimate, and facial thermal features for each
detected occupant in the RGB and thermal images.

To increase the amount of training data that can be collected
with less ground truth data (which requires human interaction),
each comfort feedback response is used to label data in a small time
window around the feedback response. We make the assumption
that perceived thermal comfort does not change drastically for
small time windows. Not only does this increase the amount of
training data, but also provides multiple measurements to reduce
e�ects of measurement error in single measurements.

3.4 Comfort Server
The comfort server is the central component of the system. The
server is responsible for receiving RGB and thermal image streams,
extracting thermal features and face identi�cation information, and
incorporating thermal comfort feedback and environmental sensing
to learn comfort models. To receive data from the thermal comfort
sensor nodes, Redis is used in a publish and subscribe pattern.
RGB and thermal images can be continuously sent to independent
streams set up for each sensor node. The server polls each stream via
round robin scheduling, using the most recently published images
from each stream in feature extraction. This design allows the
�exibility to easily add additional sensor nodes.

RGB and thermal images from each stream are processed through
a thermal feature extraction pipeline, described in Section 3.5. The
pipeline outputs thermal comfort features, face identi�cation and a
distance estimate for each occupant detected in the images. This
information is associated with relevant thermal comfort feedback
and environmental sensing, and provided to the comfort models
described in Section 3.6.

3.5 Thermal Feature Extraction
One of the most important features for personal comfort estimation
is skin temperature measurements, which is useful for indicating
the perceived comfort level of individual occupants. To extract
these thermal features, the cloud server processes the RGB and
thermal images through an image processing pipeline to extract
the facial skin temperature features, distance, and the identity of
each occupant in view of the sensor nodes.

As shown in Figure 3, there are �ve components in the thermal
feature extraction pipeline: head detection, using a retrained YOLO
v3 model; head orientation estimation, using a retrained state-of-
the-art model; distance estimation; facial identi�cation, using a
custom convolutional neural network; and model mapping, using
point clouds to produce a 3D thermal map for each occupant.

3.5.1 Head Detection. Studies such as [17] have utilized measure-
ments from the hands and neck as features for predicting thermal

comfort; however, these measurements are not always in view and
can be di�cult to detect. Detection of the head, on the other hand,
providesmore consistent measurement. Althoughmany pre-trained
object detection models are readily available, these models are not
immediately applicable in our system for a variety of reasons. Firstly,
models are often trained to detect faces, rather than heads; this is
an important distinction, as faces that are not directly facing the
camera result in lower detection accuracy. Secondly, models are
not trained on datasets including people wearing face masks due
to the onset of SARS-CoV-2. Finally, our thermal feature extraction
pipeline requires head detection in thermal images as well, which
is a domain not well explored in pre-trained models.

To overcome these limitations, we procured a custom train-
ing dataset consisting of two separate datasets. The �rst is a pre-
existing head dataset from the South China University of Technol-
ogy (SCUT) [16], which consists of over 100,000 labeled bound-
ing boxes of heads from di�erent perspectives and distances. The
second is a hand labeled dataset from our own deployment in a
commercial building, which provides data samples which are simi-
lar to our anticipated conditions, such as image quality and facial
coverings. For this dataset, we hand labeled heads in 1000 RGB and
thermal images each. After trying di�erent state-of-the-art models,
we chose to use YOLO v3 [18], as it meets the accuracy and la-
tency requirements for our system. We retrained the network using
the SCUT and hand labeled dataset, which outputs head bounding
boxes in the RGB and thermal images, which are further processed
for head orientation and facial identi�cation.

3.5.2 Head Orientation Estimation. In [13], temperature features
are extracted from the entire face, such as average or maximum tem-
perature. However, temperature measurements vary for di�erent
parts of the face, which can result in major variations in tempera-
ture measurements depending on which parts of the face are visible
to the thermal camera. Furthermore, face masks and other face ob-
scurities can also change the measurements. One method to combat
this source of error is to map temperature measurements to speci�c
locations on the face, so that features can be extracted from more
uniform surfaces (such as from the forehead region).

To determine the mapping from thermal image measurements to
facial regions, we only require an estimate of the head orientation.
With head orientation information, we can correctly orient a 3D
head model, apply the measurements in the thermal image, and
�nally extract thermal features. To estimate head orientation, we
retrain a state-of-the-art head orientation model, FSA-Net [27]. As
is the case in head detection, a custom dataset is required to adapt
the model to face masks and extreme angle perspectives.

We collected and hand labeled a dataset consisting of over 1000
head images with pitch, roll, and yaw angles. As discussed in Sec-
tion 4.2, we found signi�cant improvement in error after training
with the hand labeled dataset.

3.5.3 Distance Estimation. As noted in [12, 13] the distance from
the thermal camera a�ects surface temperaturemeasurement. Rather
than calibrate the temperature measurements based on distance, we
include distance as an additional feature to comfort estimation. Our
method to estimate the distance from the FLIR camera is based on
the fact that the further the distance of an object from the camera,
the smaller the object area in the image and vice versa. If we make
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Figure 4: Face recognition convolutional neural network ar-
chitecture, with VGG-16 backbone.

the assumption that a bounding box of a head projected in reality
does not change signi�cantly for perspectives or di�erent people,
a relationship between the area of the bounding box in the image
(�), and the distance to the view plane containing the projected
bounding box (⇡), can be derived as: �⇡2 = constant.

We �t a numerical constant based on multiple ground truth mea-
surements. From distance, the height and width of the view plane
can be derived using horizontal and vertical �eld of view (HFOV
and VFOV). Subsequently, the horizontal and vertical displacement
(-1 and .1 ) in the view plane can be derived from the height and
width of the view plane. Finally, the distance from the camera (')
can be estimated as '2 = - 2

1 + . 2
1 + ⇡2.

3.5.4 Face Identification. To associate comfort estimates to spe-
ci�c occupants, some method of identi�cation is necessary. As our
system already extracts bounding boxes of occupant heads, we can
utilize a convolutional neural network to di�erentiate occupants
and associate comfort estimates. Face recognition is a well studied
�eld which has produced highly accurate models such as FaceNet
and OpenFace [2]. As our deployment only requires a low latency
and lightweight model for a select number of occupants, we de-
veloped a smaller VGG-16 based CNN. However, a state-of-the-art
model can be substituted for larger numbers of occupants.

As shown in Figure 4, our network uses a VGG-16 backbone
which feeds into a convolutional layer and dense layers for clas-
sifying occupants. To train the model to di�erentiate between oc-
cupants, head bounding boxes for each occupant are hand labeled
using over 100 examples for each occupant. As described in Sec-
tion 4.2, even with a low number of training samples, our system is
able to di�erentiate well between occupants due to the low number
of occupants and �xed positions of the cameras and workspaces.
With larger numbers of occupants, larger datasets may be required
to train a facial recognition classi�er.

We note that privacy is a major concern, especially for camera
based systems. There exist other methods for associating comfort
estimates that are more privacy preserving, such as mobile de-
vice localization through WiFi or Bluetooth �ngerprinting. One
advantage of the sensor node design is the potential for moving
privacy-sensitive operations, such as head detection, head orienta-
tion estimation, and face identi�cation, onto the edge device. This
is an important future work that can both preserve privacy as well
as provide accurate comfort estimate association.

3.5.5 Model Mapping. The �nal step in feature extraction is the
mapping of thermal measurements in the thermal image to a head
model. At shown in Figure 5, this involves selecting the points
that are visible to the camera based on the orientation estimate,
�attening the points onto a plane, mapping the 2D thermal mea-
surements to the �attened points, and reprojecting the �attened

Figure 5: Mapping of thermal image data to a 3D point cloud
head model.

points to recover the thermal measurement mapping. To manage
the point cloud and project the thermal measurements, we utilize
the C++ Point Cloud Library.

First, points that are visible to the camera are identi�ed for
mapping. To increase speed, this is approximated by bisecting the
point cloud with a plane oriented by the orientation estimate. From
the orientation estimation described in Section 3.5.2, we estimate a
pitch, roll, and yaw for each detected head, which can be converted
to a normal vector in Euclidean space Æ= = h=1,=2,=3i. The equation
of the plane that separates visible and invisible points to the camera
is described as:

=1 (G � G0) + =2 (~ � ~0) + =3 (I � I0) + ⇡ = 0

where ⇡ = 0 assuming the point cloud is centered at the origin.
Note that a more precise selection of points can be obtained with
methods such as raytracing; however, this increases computation
time signi�cantly. Once the points have been selected, the mapping
between the 2D thermal image and the 3D points can be done in
two steps. We �rst project the 3D points onto the prior de�ned 2D
plane, and then change the basis of the plane into the cartesian
coordinate space with a transformation matrix M. Let the point we
want to project be de�ned as: ? = (G,~, I). then the projected point
and matrix M can be computed as follows:

??A> 9 = ? � Æ= ⇤ Æ= · Æ?, " =
266664
=1G =2G =3G
=1~ =2~ =3~
=1I =2I =3I

377775
After the change of basis, the points will be aligned along one of

the cartesian axes (G); thus, the thermal image can be �t onto the
projected points by �rst �nding the minimum and maximum of the
other two axes, ~<8=, I<8=,~<0G , I<0G . Each point corresponds to
a pixel in the thermal image (?G , ?~ ) as in the equation:

?~ =
(~ �<8=~) ⇤F83C⌘

<0G~ �<8=~
, ?I =

(I �<8=I) ⇤ ⌘486⌘C
<0GI �<8=I

Lastly, the thermal measurements can be associated to each
point’s original locations in 3D space to complete the model map-
ping. With a 3D representation of the thermal measurements, fea-
tures can be extracted by computing statistics of groups of points
based on their location on the 3D head model. For this system, we
extract median, maximum, and average temperature features from
six locations: forehead, left and right temple, left and right cheek,
and nose areas. These features are calculated by selecting the points
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on the head model that correspond to each region, and computing
the statistics over the mapped temperature values of those points.

Note that until this point, the the system output is the 3D head
model. The purpose of the pipeline is to provide an accurate temper-
ature model to recover more precise facial temperature statistics.

3.6 Comfort Estimation
The goals of comfort estimation are to both provide comfort esti-
mates for all occupants (a general comfort model), and to utilize
human feedback to provide more accurate personalized comfort es-
timates (personal comfort models). There are twomodes for comfort
estimation: comfort training and comfort estimation. Initially, the
system undergoes a training period involving collection of features
and ground truth data (perceived comfort feedback).

One challenge that is present in our system is missing data. As
described in Section 3.5.5, we extract features from six locations on
the face, and some locations are hidden from view of the camera
resulting in missing data in our dataset. To enable the use of this
data, we utilize multiple imputation to �ll in the missing values.
This method enables us to use a signi�cantly larger dataset for
training, which aids in model accuracy.

Once data has been collected, a general comfort model is trained
to provide comfort estimates even for occupants who have not given
any comfort feedback, using all of the labeled data from all occu-
pants. For more personalized comfort estimates, personal comfort
models are trained for each occupant who has submitted comfort
feedback. As thermal comfort preferences may vary between peo-
ple, each model should be tuned to the speci�c preferences of the
occupant. For these models, if a threshold value of comfort feedback
has been received, only the labeled data for the occupant is used to
train the personal comfort model.

4 EVALUATION
4.1 Experimental Setup
To evaluate our system, we deployed eight sensor nodes in eight
distinct locations throughout two �oors in the Northwest Corner
Building at Columbia University to maximize spatial coverage. We
obtained approval from the Columbia University Internal Review
Board (IRB) to conduct this human research study.We collected data
for ten occupants over the course of two weeks, with the �rst week
as a training period and the second week as an evaluation period.
For ground truth, we provided occupants with a web interface to
input their perceived thermal comfort on the ASHRAE thermal
sensation scale, as described in Section 3.3. In total, we collected
over 2000 thermal measurements over two weeks.

4.2 Microbenchmarks
We �rst evaluate individual components of the feature extraction
pipeline. We evaluated head detection by hand labeling bounding
boxes of over 1000 heads, and compared with the output of the
head detection network, as shown in Table 1. We achieved high
precision, although the recall suggests that heads are not detected
in all frames. This may be acceptable for our study, as multiple
thermal measurements can be captured from each occupant. How-
ever, additional training data can improve the recall to provide even
more robust comfort estimates.

Metric Precision Recall RGB IOU Thermal IOU
YOLO-v3 98.0% 91.0% 77.6% 80.3%

Table 1: Head detection precision, recall, and intersection
over union on RGB and thermal images.

Metric Pitch MAE Yaw MAE Roll MAE
FSA-Net (Retrained) 10.4° 6.4° 1.6°
Baseline FSA-Net 23.7° 12.5° 7.0°

Table 2: Head orientation estimation comparison between
baseline and retrained FSA-Net models.

We evaluated head orientation estimation by hand labeling pitch,
roll, and yaw of over 600 heads, and computing the mean average
error (MAE) and root mean squared error (RMSE) of our retrained
FSA-Net model and the baseline FSA-Net model as shown in Ta-
ble 2. For all three angles, retraining reduced MAE, suggesting that
retraining can help mitigate factors such as face coverings.

Metric MAE RMSE
Distance Estimation 11.2 cm 15.5 cm
Table 3: Distance estimation error.

For distance estimation, we computed MAE and RMSE for 500
detected heads. Table 3 suggests that while our method for esti-
mating distance produces reasonable error, additional hardware
(such as a depth camera) can be added to further reduce distance
error. Finally, we found that our CNN with VGG-16 backbone was
able to achieve a face recognition accuracy of 96.8%. This network
works well in our system with a low number of occupants, but
larger deployments may require more complex models.

Figure 6: Histogram of thermal comfort measurements la-
beled with perceived thermal comfort feedback.

4.3 Comfort Estimation
To evaluate comfort estimation, we constructed training and eval-
uation datasets during the �rst and second weeks of the study by
associating thermal comfort feedback with the collected thermal
features. Models were trained on the training dataset and evaluated
on the evaluation dataset. The ground truth data collected from ten
occupants ranges from �2 to +2 on the 7-point thermal sensation
scale and are shown as the histogram in Figure 6.

To evaluate comfort estimation of our system, we trained two
di�erent general comfort models: a random forest regressor with
depth 4 (RF), and a linear regressor (LR). For the personal comfort
models, we separated the dataset by occupant ID and trained a
separate random forest regressor with depth 4 for each occupant.
We also compare our systemwith two baselinemodels: the ASHRAE
55 Standard, and [13]. We calculate mean comfort votes to compare
with the PMVmodel from ASHRAE 55. To replicate [13], we replace
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the thermal features in the dataset with the maximum and average
statistics, and train a linear regression model. The evaluation error
on the second week data is shown in Figure 7.

Figure 7: Comfort estimation error (PMV) for the general
and personal comfortmodels, Li et al., andASHRAE55 PMV.

There are a few key takeaways from this study. Our system, as
well as [13] achieves much lower MAE and RMSE than the ASHRAE
55 Standard, which suggests that directly measuring thermal fea-
tures from occupants reduces thermal comfort estimation error
signi�cantly. Second, our system achieves lower MAE and RMSE
than [13], suggesting that aggregating thermal features over the en-
tire face may result in higher feature error. Finally, the personalized
comfort models further reduce MAE and RMSE over the general
comfort models. We observed up to a 2° F di�erence in what is
considered cool thermal comfort between occupants, in similar
environmental conditions. This suggests that individual comfort
models can better capture variations in occupant thermal prefer-
ences. Note that we only measure temperature and humidity for the
ASHRAE 55 baseline; future work can better capture improvements
with additional measurements.

5 CONCLUSION
In this work, we describe the architecture, design, and implemen-
tation of a personalized comfort estimation system. The system
extracts facial temperature features and is robust to changes in
occupant facial perspectives to the camera. The system is scalable,
allowing additional sensing nodes to be quickly deployed and in-
tegrated. We enable personalized comfort estimation by training
individual comfort models, achieving lower comfort estimation
error than general comfort models trained with data from all oc-
cupants. Over a two week study with ten occupants, our system
reduced comfort estimation error by 64% over baseline methods.
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