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ABSTRACT
In this poster abstract, we present a thermal comfort estimation
system using low-cost thermal camera based sensor nodes. This
system extracts perspective invariant, non-intrusive thermal mea-
surements, is easily deployable and low-cost, and can incorporate
individual thermal feedback for more personalized thermal com-
fort estimates. In comparison with baseline methods, our system is
able to improve thermal comfort estimates on the ASHRAE 7-point
thermal sensation scale by up to 64% over baseline methods.
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1 INTRODUCTION
In commercial buildings, research has largely focused on energy
optimization [1, 9]; however, occupant thermal comfort is also a
critical factor that impacts both health and productivity [2]. In [3],
authors found that only 2% of surveyed buildings meet the 80%
occupant thermal satisfaction requirement de�ned by ASHRAE
Standard 55 [8], suggesting that for most buildings, both measure-
ment and optimization of thermal comfort can still be improved.

Recent studies [4, 6] have used thermal cameras to measure
facial temperature statistics to estimate individual thermal comfort;
however, these studies have left unaddressed challenges such as
model personalization and robustness against occupant behavior.
In this work, we develop a novel thermal comfort estimation system
that is easily scalable, learns general as well as personal comfort
models, and is robust to di�erent facial perspectives.

2 SYSTEM DESIGN AND EVALUATION
2.1 Thermal and Environmental Sensing
To predict thermal comfort, we utilize thermal and environmental
sensing features. The thermal sensing node is composed of a FLIR
One Pro thermal camera (lower cost than most commercial thermal
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cameras, often 1, 000$+), and an NVIDIA Jetson Nano board, to
minimize cost. To reduce the overhead of deployment, a software
library was developed for the Jetson Nano to continuously receive
thermal and RGB images from the FLIR One Pro, encrypt and trans-
mit the images securely to a cloud server. Future works can process
images directly on the Jetson Nano, to preserve privacy.

We also collect ambient temperature and humidity features,
which are noted to be important in various studies and are used
in the ASHRAE 55 Standard for estimating thermal comfort. We
deploy environmental sensors consisting of a TMP35 sensor and a
Huzzah Feather board to measure and transmit ambient tempera-
ture and humidity time series data to the server every 15 seconds.

2.2 Comfort Feedback
In our deployment at Columbia University, we provide occupants
with a web interface for submitting thermal comfort feedback on
the ASHRAE 7-point thermal sensation scale. This feedback is sub-
mitted along with an ID for later association with identi�ed thermal
measurement data. To increase the amount of training data that
can be collected with less ground truth data (which requires human
interaction), each comfort feedback response is used to label data
in a small time window around the feedback response.

2.3 Personalized Thermal Comfort
The thermal sensing node provides RGB and thermal images to our
feature extraction pipeline (Figure 1), which is composed of �ve
components: head detection, head orientation estimation, distance
estimation, facial identi�cation, and model mapping.

Figure 1: The thermal feature extraction pipeline outputs ID,
distance estimate, and facial thermal features for each de-
tected occupant in the RGB and thermal images.

2.3.1 Head Detection and Orientation Estimation. To detect oc-
cupants in the RGB and thermal images, we procured a custom
training dataset of 100,000 labeled head bounding boxes from the
South China University of Technology (SCUT) [5], and a hand
labeled dataset of 1,000 RGB and thermal images from our deploy-
ment in a commercial building, which provides data similar to our
anticipated conditions such as image quality and facial coverings.
We retrained YOLO-v3 [7] on this dataset and can achieve over
98.0% and 91.0% precision and recall respectively. To estimate head
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orientation, we retrain a state-of-the-art head orientation model,
FSA-Net [10] using a hand labeled dataset consisting of over 1,000
head images with pitch, roll, and yaw angles. We found improve-
ment of 48.8% and 56.1% in average yaw and pitch error over the
pre-trained model after retraining with the hand labeled dataset.

2.3.2 Distance Estimation. As temperature measurements from
the thermal camera vary with distance, we utilize distance as a
feature in estimating comfort. Our method to estimate the distance
from the FLIR camera is based on a relationship between the area
of the detected bounding box in the image (�), and the distance
to the view plane containing the projected bounding box (⇡), as:
�⇡2 = constant. We �t a numerical constant based on multiple
ground truth measurements. From distance, we can also derive the
horizontal and vertical displacement (-1 and .1 ) in the view plane
from the height and width of the view plane. Finally, the distance
from the camera (') can be estimated as '2 = - 2

1 + . 2
1 + ⇡2.

2.3.3 Face ID. To associate comfort estimates to speci�c occupants,
our network uses a VGG-16 backbone which feeds into a convolu-
tional layer and dense layers for classifying occupants. To train the
model to di�erentiate between occupants, head bounding boxes are
hand labeled using over 100 examples for each occupant.

2.3.4 Model Mapping. We performmapping of thermal imagemea-
surements to a head model using the C++ Point Cloud Library. This
involves selecting the points that are visible to the camera based on
the orientation, �attening the points onto a plane, mapping the 2D
thermal measurements to the �attened points, and reprojecting to
recover the thermal measurement mapping. For comfort estimation,
we extract median, maximum, and mean temperature features from
the forehead, left and right temple, left and right cheek, and nose
areas by computing these statistics over the temperature values of
points on the head model that correspond to each region.

2.3.5 Personal Thermal Comfort Estimation. Once data has been
collected, we train a general comfort model, using all of the labeled
data from all occupants. For more personalized comfort estimates,
personal comfort models are trained on labeled data for each oc-
cupant based on submitted comfort feedback. As thermal comfort
preferences may vary between di�erent people, it is important that
each model is tuned to the speci�c preferences of the occupant.

2.3.6 Thermal Feature Extraction Pipeline Applications. The ther-
mal feature extraction pipeline can also be used as a backbone in
other applications such as fever screening, which can utilize temper-
ature estimation to screen for febrile humans. Di�erent architecture
and prediction models are required, but the pipeline can serve as a
critical component of future application speci�c systems.

2.4 Preliminary Results
Weobtained approval from the Columbia University IRB (AAAS9589)
to conduct a two week study in a commercial building on 10 oc-
cupants. We trained a random forest regressor (RF), and a linear
regressor (LR) general comfort model; personal comfort models
with random forest regressors, separated by occupant ID; and two
baselinemodels: the ASHRAE 55 Standard [8], and Li et al. [4] which
is a trained linear regression model on maximum and average ther-
mal measurement statistics. Evaluation error on the second week

Figure 2: Comfort estimation error for the general and per-
sonal comfort models, Li et al., and ASHRAE 55 PMV.

data is shown in Figure 2. This study indicates that the ASHRAE 55
Standard, which doesn’t use realtime measurements, has the high-
est error, while personalized comfort models achieve the lowest
error, suggesting that occupant variations in thermal preferences
are important and can be learned with personalized models.

3 CONCLUSION
Preliminary results show that personal comfort estimation has
the potential to capture di�erences in thermal preferences and
improve thermal comfort estimates over general models.We present
a low-cost thermal comfort estimation system that is invariant to
occupant perspectives, and demonstrate a 64% improvement in
thermal comfort estimation error over baseline methods.
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