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—— Abstract

Recent years have witnessed a tremendous growth using topological summaries, especially the
persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes.
Intuitively, persistent homology maps a potentially complex input object (be it a graph, an image,
or a point set and so on) to a unified type of feature summary, called the persistence diagrams. One
can then carry out downstream data analysis tasks using such persistence diagram representations.
A key problem is to compute the distance between two persistence diagrams efficiently. In particular,
a persistence diagram is essentially a multiset of points in the plane, and one popular distance is
the so-called 1-Wasserstein distance between persistence diagrams. In this paper, we present two
algorithms to approximate the 1-Wasserstein distance for persistence diagrams in near-linear time.
These algorithms primarily follow the same ideas as two existing algorithms to approximate optimal
transport between two finite point-sets in Euclidean spaces via randomly shifted quadtrees. We
show how these algorithms can be effectively adapted for the case of persistence diagrams. Our
algorithms are much more efficient than previous exact and approximate algorithms, both in theory
and in practice, and we demonstrate its efficiency via extensive experiments. They are conceptually
simple and easy to implement, and the code is publicly available in github.
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1 Introduction

Recent years have witnessed a tremendous growth using topological summaries, especially
the persistence diagrams (encoding the so-called persistent homology) for analyzing complex
shapes. Indeed, persistent homology is one of the most important development in the field
of topological data analysis in the past two decades [11, 10]. Given an object, e.g, a mesh,
an image, a point cloud, or a graph, by taking a specific view of how the object evolves
(more formally, a filtration of it), persistent homology maps the input, a potentially complex
object, to a topological summary, called the persistence diagram, which captures multiscale
features of this objects w.r.t. this view. Persistent homology thus provides a unifying way of
mapping complex objects to a common feature space: the space of persistence diagrams. One
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can then carry out data analysis tasks of the original objects, e.g, clustering or classifying a
collection of graphs, in this feature space. Indeed, in the past decade, persistence diagram
summaries have been used for a range of applications in various domains, e.g, in material
science [5, 14, 23], neuroanatomy [17, 24|, graphics [8, 29], medicine /biology [13, 27], etc.

A key component involved in such a persistent-homology based data analysis framework
is to put a suitable metric on the space of persistence diagrams, and compute such distances
efficiently. One classic distance measure developed for persistence diagrams is the p-th
Wasserstein distance, and in practice, a popular choice for p is p = 1, i.e, the 1-Wasserstein
distance. This paper focuses on developing efficient, practical and light-weight algorithms to
approximate the 1-Wasserstein distance for persistence diagrams.

In particular, a persistence diagram consists of a multiset of points in the plane, where
each point (b,d) corresponds to the creation and death of some topological feature w.r.t.
some specific filtration (view) of the input object. Given two persistence diagrams P and Q,
the 1-Wasserstein distance between them, denoted by dg&fl(P, Q), is similar to the standard 1-
Wasserstein distance (also known as the earth-mover distance) between these two multisets of
planar points, but with an important distinction where points are also allowed to be matched
to points in the diagonal £ (the line defined by equation y = z) in the plane. Intuitively, the
topological features associated to points matched to the diagonal are considered as noise.

The 1-Wasserstein distance for persistence diagrams can be computed using the Hungarian
algorithm [20] in O(n?) time where n is the total number of points in the two persistence
diagrams. This algorithm is implemented in the widely used Dionysus package [26]. In
[18], Kerber et al. develops a more efficient algorithm to approximate the 1-Wasserstein
distance between finite persistence diagrams within constant factors. Their algorithm is
based on the auction algorithm of Bertsekas [4], but with a geometric twist: given that
points in the persistence diagrams are all in the plane, they use the weighted kd-tree to
provide more efficient search inside the auction algorithm. In [4], the time complexity of
the auction algorithm is stated to be O(A - n'/?log (nC))) where, in the case of persistence
diagrams, A is the number of possible pairings of points between persistence diagrams
(A = O(n?) in the worst case) and C is max{||z — y||,} over all possible pairings between
persistence diagrams. While Kerber et al. did not provide an asymptotic time complexity for
their approximation algorithm, they provided an empirical estimation of O(n'-®) (not true
asymptotic time complexity) by using linear regression on the observed running time versus
the size of problems. They further show via extensive experiments that their approximation
algorithm has a speed-up factor of 50 for small instances to a speed-up factor of 400 for
larger instances in comparison to the Hungarian algorithm based implementation.

Related work in optimal transport for Euclidean point sets. As we will formally introduce
in Section 2), 1-Wasserstein distance for persistence diagrams can be viewed as the standard
1-Wasserstein distance for discrete planar point sets with special inclusion of points in the
diagonal. In what follows, to avoid confusion, we refer to the standard 1-Wasserstein distance
between point sets as the optimal transport (OT) distance. Starting from [2] and [3], there
has been a long line of work to approximate the OT-distance for Euclidean point sets using
randomly shifted quadtrees (e.g, [7, 19, 15, 22, 28, 1]). In particular, we consider two such
approaches, the Li-embedding approach by [15], and the flowtree approach by [1]. The
former maps an input point set P to a certain count-vector V¥ with the help of a randomly
shifted quadtree, and uses the L, distance ||[V¥ — V@||; between two such count-vectors to
approximate the OT-distance between P and ). The latter also uses a randomly shifted
quadtree and embeds input points to quadtree cells. It then shows that a certain distance
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computed from an optimal OT-flow induced by the tree metric (which can be computed by a
greedy algorithm in linear time) can approximate the OT-distance between the original point
sets. Let A denote the spread of the union of two input point sets. Both approaches give an

O(log A)-approximation of the OT-distance between original point sets, in time O(nlog A).

Recently, the idea of using metric trees to approximate OT-distance has also been
extended to a more general unbalanced optimal transport problem (where |P| # |Q]) in
[28]. In [28], Sato et al. develops an O(nlog®n) time algorithm to approximate unbalanced
optimal transport on tree metrics using dynamic programming.

New work. In practice, for applications such as nearest neighbor search, clustering and

classification on large data sets, huge numbers of distance computations will be needed.

The time complexity of the aforementioned algorithms for persistence diagrams using the
Hungarian algorithm or the geometric variant of the Auction algorithm still causes a significant
computational burden. In this paper, we aim to develop near-linear time approximation
algorithms for the 1-Wasserstein distance between persistence diagrams. Specifically:
In Section 3, we show how to modify the algorithms of [15] and [1] to approximate the
1-Wasserstein distances between persistence diagrams within the same approximation
factor (Theorems 7 and 10). Note that in the literature (e.g, [18]), it is known that
dg&rl(P, Q) between two persistence diagrams can be computed by (i) first augmenting P
and Q to be P =P U m(Q) and Q=QuU 7(P), respectively, where m(x) projects a point
to its nearest neighbor in the diagonal £; and then (ii) compute the OT-distance between
P and CAQ, although it is important to note that the cost of matching two diagonal points
needs to be set to be 0, instead of the standard Euclidean distance. However, this requires
the modification of the cost for diagonal points; in addition, this also needs to modify a
diagram P depending on which other diagram Q it is to be compared with. We instead
develop a modification where such projection is not needed.
Our modified approaches maintain the simplicity of the original approximation algorithms
and are easy to implement. In comparison to approximation for unbalanced optimal
transport presented in [28], our modified approaches are specific to persistence diagrams
and the data structures needed for both of our approaches are much simpler than those
of [28]. Our code is publicly available in github. In Section 4, we present various
experimental results of our new algorithms. We show that both are orders of magnitude

faster than previous approaches, although at the price of worsened approximation error.

However, note that in practice, the approximate factors are rather small, not as large as
the worst case approximation factor. We also note that the modified flowtree algorithm
achieves a more accurate approximation of the 1-Wasserstein distance for persistence
diagrams than the modified Li-embedding approach empirically, although the latter is
significantly faster than the former. However, the L;-embedding approach is easier to
combine with proximity search data structures e.g, locality sensitive hashing (LSH), given
that each input persistence diagram is mapped to a vector and the distance computation
is the Li-distance between two such vectors.

2 Preliminaries

In this section, we first introduce the persistence diagrams and the 1-Wassertein distance
between them, which is related to the optimal transport distance (standard 1-Wasserstein
distance) for Euclidean point sets. We next describe two existing approximation algorithms
for optimal transport distance [1, 15] based on the use of randomly shifted quadtrees. Our
new algorithms (in section 3) will be based on these two approximation algorithms.

14:3

SEA 2021



14:4

Approx. Algorithms for W3 Distance

2.1 Persistence Diagrams and 1-Wasserstein distance

We first give a brief introduction of persistent homology and its associated persistence
diagram summary. See [10] for a more detailed treatment of these topics. Suppose we are
given a topological space X. A filtration of X is a growing sequence of sub-spaces

I [Z):X()gxlgngxmzx

which can be viewed as a specific way to inspect X. For example, a popular way to generate
a filtration of X is by taking some meaningful descriptor function f : X — R on X, and
take the growing sequence of sub-level sets X, := f~!(—o0,a] = {z € X | f(z) < a} as a
increases to be the filtration. Now given a filtration F, through its course, new topological
features (e.g, components, independent loops and voids, which are captured by the so-called
homology classes) will sometimes appear and sometimes disappear. The persistent homology
encodes the birth and death of such features in the persistence diagram dgmF. In particular,
dgm[F consists of a multiset of points in the plane, that is, a set of points with multiplicities,
where each point (b, d) with multiplicity m intuitively means that m independent topological
features (homology classes) are created in X, and killed in Xgz. Thus, we also refer to b and
d as the birth-time and death-time. The persistence of this feature is |d — b| which is the
lifetime of this feature. We refer to points in the persistence diagram as persistent-points.

Note that, in general, persistent-points lie above the diagonal £ = {(z,z) | x € R} in the
plane. Points closer to the diagonal £ have lower lifetime (persistence) and thus are less
important, with a point (z,z) € L intuitively meaning a feature with persistence 0.

To compare two persistence diagrams P and Q, intuitively, we wish to find a one-to-
one correspondence between their multiset of points (and thus between the features they
capture). However, the two sets may be of different cardinality, and we also wish to allow a
persistent-point from one diagram to be “noise” and not present in the other diagram, which
can be captured by allowing this point p = (p.z,p.y) to be matched to its nearest neighbor
projection 7(p) in £. Let 7 : R? — £ be this projection, where 7(p) := (R2F2Y PIXPY),

)

The following p-th Wasserstein distance essentially captures this intuition [10].

» Definition 1 (p-Wasserstein distance for persistence diagrams). Given a persistence diagram
P, its augmentation aug(P) consists of P together with all points in L each with infinite
multiplicity. Given two persistence diagrams P and Q, with their augmentations aug(P) and
aug(Q), respectively, the p-Wassertein distance between them is

1/p
A (P, Q) = inf ( > IIP—M(p)If;) : (1)

p:aug(P)—aug(Q) peaug(P)

where p : aug(P) — aug(Q) ranges over all possible bijections among the two sets.

Note that ¢ is used to denote the inner L,-norm. If p = oo, the oo-Wasserstein distance is
the classic bottleneck distance between persistence diagrams [9][18]. In this paper, we are
interested in the case when p = 1. It turns out that an equivalent definition (which we will
use in this paper) is as follows:

» Definition 2 (1-Wasserstein distance for persistence diagrams, version 2). Given two point
sets A and B in R?, an augmented (perfect) matching for them is a subset I' C (AU (B)) x
(BUT(A)) such that (i) each a € A or b € B appears in exactly one pair in T, and (ii) each
(a,b) € T is of the following three forms: (1) a € A,b€ B, (2) a € A,b=7(a) € w(A), or
(3) a =m(b) € m(B),be€ B.
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Given two persistence diagrams P and Q, the 1-Wasserstein distance between them is:

Ay (P.Q) ==min Y [lp—qll,, 2)
(p,q)€T

where I' ranges over all possible augmented matchings for P and Q.

2.2 Relation to optimal transport

Readers may have already noticed the similarity between Definition 1 with the standard p-th
Wasserstein distance between two probability measures. To avoid confusion, from now on
we refer to 1-Wassertein distance as optimal transport so as to differentiate from the use of
1-Wasserstein distance of persistence diagrams.

» Definition 3 (Optimal transport). Given a finite metric space (X,dx) and two measures
w,v € X = R, the optimal transport between them is

dOT(uay) = T:XI§<11)I(1~>R XE:XT(x7y) 'dX(ZU,y), (3)
z7y

where T, called a transport plan or a flow, is a measure on X x X whose marginals equal to
w and v, respectively; that is, 7(-,Y) = u(:) and 7(X,-) = v(-).

Given a multiset of points A in the plane, note that we can view this as a discrete measure
supported on points in A, such that for each subset S of A, us(S) =3 ,cq
is the multiplicity of a in A, while J, is the Dirac measure supported at a. Hence in what
follows, we sometimes abuse the notations and equate a multiset of points with the discrete
measure induced by it, and talk about optimal transport between two multisets of points.

As shown in [18], one can consider P := P U7(Q) and Q := QU 7(P) and modify the
Euclidean distance so that d(z,y) =0 for z,y € m(P) Un(Q) to obtain a modified pseudo-
metric space (R?,d). In this case, dg&fl(ﬂ Q) becomes the optimal transport between the

c,0, where ¢,

discrete measures induced by P and CA) under this modified pseudo-metric.
We can also relate d@ﬁ,ﬁ(P’ Q) to the optimal transport between the discrete measures

induced by P and Q with the following observation (simple proof is in Appendix A):

> Observation 4. Let i be the discrete measure induced by P and Vs be the discrete measure
induced by Q. Then dOT(ME, ”6) <2. d@&ﬁ(P, Q).

Given two discrete measures p, v € X X R on a finite metric space (X, dx), computing the
optimal transport distance can be reduced to finding the optimal min-cost flow on a complete
bipartite graph using combinatorial flow algorithms as described in [20]. In our setting later,
1 and v will both be induced by point sets in R?, and dx is the standard Euclidean distance.

2.3 Quadtree-based approximation algorithms for optimal transport

In this section, we briefly review two algorithms to approximate the optimal transport for
two discrete measures p and v. Both of these algorithms use a randomly shifted quadtree,
which we introduce first.

14:5
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Randomly-shifted quadtree. Let X C R? be a finite set of points (for our setting, d = 2
for persistence diagrams). To simplify the description, we will assume that the minimum
pairwise distance between any two points in X is 1 and that X is contained in [0, A]¢ (where
A, the ratio of the diameter of X over the minimum pairwise distance, is also called the
spread of X). First, let Hy = [~A, A]? be the hypercube with side length 2A which is
centered at the origin. Now shift Hy by a random vector whose coordinates are from [0, A]
to obtain H. Note that H still encloses X as H has side length 2A.

Construct a tree of hypercubes by letting H be associated to the root and halving H
along each dimension. Recurse on the resulting sub-hypercubes that contain at least one
point from X, and stop when a hypercube contains exactly one point from X. Each leaf
node of resulting quadtree Ty contains exactly one point in X, and there are exactly |X]|
leaves. The resulting quadtree Tx has at most O(log(dA)) levels. To see that Tx has at
most O(log(dA)) levels, consider the depth ¢ of some internal node. We know that the
hypercube associated with the node has a side length of % and the distance between any
two points in the hypercube, ¢, is less than or equal to AZ‘Z/E. Then i < log(dA) so there are
at most O(log(dA)) levels in Tx. Additionally, the size of Tx is O(|X|log(dA)). It can be
constructed in O(| X |log(dA)) time where O includes term polynomial in log | X|. We set the

root level as level log A 4+ 1 and subsequent levels are labeled as log A;log A —1,.... The
weight of each tree edge between level £+ 1 and level £ is 2¢. Note that the quadtree cell has
side length 2¢ at level £.

Approximation algorithm 1: L -embedding via Tx. Given two discrete measures p and
v, let X be the union of their support !. Construct the randomly shifted quadtree Tx as
described above; X is sometimes omitted from the subscript when its choice is clear from the
context. Given a tree node v € Ty, its level is denoted by ¢(v). We will abuse the notation
slightly and use v also to denote the quadtree cell (which is a hypercube of size length 2¢(*)).
Given a discrete p, then p(v) denotes the total measure of points from p contained within
this quadtree cell, namely, the total size of points with multiplicity counted from g within
this quadtree cell. We can now map u to a vector V# where each index corresponds to
a tree node v € Tx, and V#[v] has coordinates 2“*)y(v). Similarly, map v to vector VV.
Then Indyk and Thaper [15] showed that [[V# — V¥[[y = ¢ 2¢0) | u(u) — v(v)| gives an
approximation to the optimal transport dor(u, V) in expectation.

» Theorem 5 ([15]). Given two discrete measures u,v such that supp(u) Usupp(v) C R? and
s = |supp(p) Usupp(v)|, using a randomly shifted quadtree, ||[V* —V¥||1 can be calculated in
time O(slog A) and there are constants Cy,Cy such that Cy - dor(p,v) < E[||[VF = V¥ |1] <
Cy -log Ador(u,v). Here, E[-| stands for the expectation.

We note that it also turns out that |[V# — V”||; gives exactly the optimal transport
between p and v along the tree metric induced by Tx. Specifically, for each v € Tx, set its
weight to be w(v) = 2¢"). Then for any x,2’ € X, define dr(z,z') to be the total weight of
the unique tree path connecting the quadtree leaf v, (containing x) and leaf v,/ (containing
x'). Then the optimal transport between p and v w.r.t. metric dr, denoted by dor, 4, (1, V),
satisfies that dor,a, (1, v) = [|[V# — VY||1.

! Note that in general, X can be a superset of the support of y and v. Indeed, if there are a set of m
measures and we perform kNN queries for a query measure, it is more convenient to set X as the union
of support of all these measures and build only a single quadtree Tx.
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Furthermore, we can consider that this optimal transport dor.q, is generated by a
following greedy-flow f& : X x X — R: Starting from leaf-nodes, we will match up as many
unmatched points g N v to ¥ N v as we can within each node v, and pass the remaining
unmatched portion to its parent. In general, each tree node v € T will have a y-demand

fi(v) and 7(v), which collect all unmatched measure from its 2¢ child nodes. pu-demand (resp.

v-demand) at a leaf node v is initialized to be u(v) (resp. v(v)). We then match these
demand as much as we can and pass on |fi(v) — D(v)| to its parent as unmatched p-measure,
or unmatched v-measure, whichever is left. Note that a greedy-flow fg is not unique, but it
tuns out that any such greedy-flow (greedy transport plan) gives rise to the optimal transport
distance between p and v w.r.t. the tree metric dr (See [16] for more detail): i.e,

(IV* = V¥l =) domar(m,v) = > féle,2')dr(x, ). (4)
z,x'eX

Approximation algorithm 2: Flowtree. The flowtree algorithm by [1] is based on the
previous approach. The only modification is that, consider a greedy-flow fZ% as described
above. Instead of using the tree metric dp to compute the optimal transport distance, the
flowtree estimate computes the cost of this flow using the standard Euclidean distance:

dfy (mov) = Y falza)|e —2'|. ()

z,x’eX

Comparing Equation (4) to the above equation, the difference is minor (dr(x,2’) versus
|z — 2'|)). However, in practice, do¥ appears to provide a much more accurate estimate to
the optimal transport distance dot(u, v) w.r.t. the Euclidean distance. Unfortunately, unlike
doT,dr, which can be computed as a L;-distance between two specific vectors, to compute
dg‘a‘iv, we now have to compute a greedy-flow f¢, explicitly (which can be done linear in the
size of quadtree; however conceptually, this is not as simple as Li-distance). Overall, we
have the following result:

» Theorem 6 ([1]). Given two discrete measures p, v such that supp(u) Usupp(r) C R? and
s = |supp(p) Usupp(v)|, using a randomly shifted quadtree, A3 (u,v) can be computed in
time O(slog A) and there are constants Cy,Cy such that Cy - dor(p, v) < E[dI%Y (u,v)] <

Cy-log A - dot(p,v). Here, E[] stands for the expectation.

3 Approximating 1-Wasserstein distances for persistence diagrams

We now present two algorithms to approximate the 1-Wasserstein distance for persistence
diagrams, based on the approximation schemes of optimal transport in Section 2.3. Note
that the results here are developed for the Ls norm and through the equivalence of norms,
can be generalized to any L, norm and only changes the constant factor in the distortion
induced by each approximation.

3.1 Approximation algorithms via L; embedding

3.1.1 Description of the new quadtree-based L.-embedding

Let P and Q be two persistence diagrams and let X = P W Q, the disjoint union of P and
Q. In what follows, for simplicity of presentation, we assume that the minimum distance
between any two distinct points in X, as well as between any point in X with a point in the

14:7
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diagonal £, is 1. The latter constraint can be removed with some extra care on handling leaf
nodes in the quadtree. Assume w.l.o.g that A is a power of 2.

Partition the (randomly shifted) hypercube H described in section 2.3 into grids where
the cells have side length A, A/2 ..., 21 ... 2.1, % Note that each cell at the lowest level
can contain at most one point, and if a leaf contains a point then it cannot intersect the
diagonal L. Let Tx be the resulting quadtree, where leaves are all cells that contain exactly
one point from X. We further use G; to denote the set of quadtree cells with side-length 2¢
(i.e, those in level-i); we refer to G; as the level-i grid. Note that the size of the quadtree
is O(|X|log A). Additionally, we call a cell a terminal cell if it intersects the diagonal £;
otherwise, it is non-terminal.

Now for each grid G, construct a vector VP with one coordinate per cell, where each
coordinate counts the number of points in the corresponding cell. The vector representation
VP for P is then the concatenation of all these vectors 2¢VF where 2¢ is the cell side length
for grid Gi:

1 .
VP = [ivil,vg’,wi’, 2P

Construct the vector V® similarly. We use pj to denote the value of coordinate k in Vf and
qr to denote the value of coordinate k in V?. Now, we will describe a modified-Li distance
|VP — VQ| for these vectors, which is similar to the L; norm. To compute [VF — V|7, we
will define |pr — qx|r. There are two cases for the |py — qx|r to consider:

Case 1: if coordinate k is not associated with a terminal cell, then use |py — gi| for |pr — qx|7-
Case 2: if coordinate k is associated with a terminal cell, then set |py — qx|r = 0.

Then we have |[VF — VZ-Q|T = LCill Pr — qk|T, and

log, A
dr,(P,Q) == [VP =V = >~ 21VP - V. (6)

i=—1

An equivalent L;-distance formulation. We introduce the above vector representation
and the modified Li-distance as it is more convenient for later theoretical analysis. However,
algorithmically, we wish to have a true L;-embedding. It turns out that an equivalent
formulation is as follows: Let @l denote the level-i quadtree cells that do not intersect the
diagonal L. We then compute a vector representation VP (resp. VQ) restricted only to cells in
U CAL In other words, all entries corresponding to cells intersecting the diagonal are ignored
in constructing VP and VQ. We then have that

VP =V, = VP = VO = dp,, (P, Q). (7)

That is, our quadtree-induced distance JLI (P,Q) is a Ly-distance for suitably constructed
vectors. Nevertheless, we use the definition as in Equation (6) to simplify proofs later.

It is easy to see that the construction takes the same time as the L;-embedding approach
described in Section 2.3. We now show that the L;-distance d, L, (P, Q) approximates the
1-Wasserstein distance dgs’rl(P, Q) for the persistence diagrams. The main results for this
Li-embedding approach are summarized as follows, and we prove the approximation bound

in Section 3.1.2.

» Theorem 7. Given persistence diagrams P and Q such that s = |P| +|Q|, we can compute
dr,(P,Q) = |[VP = VQ|1 in time O(slog A) using the randomly shifted quadtree. Furthermore,
the expected value of dr,, (P, Q) is an O(log A)-approzimation of the 1-Wasserstein distance
dp\,\,e,rl(P7 Q); i.e, there are constants ¢ and cz such that ¢ -dgsfl(P, Q) < E[VP -V <
calog A - dyy' (P, Q).
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Figure 1 A simple example of the vector and quadtree representations of the persistence diagrams
P ={p1,p2} and Q = {q1, g2}

3.1.2 Approximation guarantees

Our approximation bound in Theorem 7 follows from Lemmas 8 and 9 below. To prove these
lemmas, we will first introduce a greedy augmented matching.

Greedy augmented matching T. We construct the following augmented matching (recall
Definition 2) T c (PUT(Q)) x (QU(P)) in a bottom-up greedy manner: Starting from
the level i = —1, we will aim to match points in P W Q as much as we can within each
level G;. Those remaining unmatched points will then be considered at the next level G;1:
in particular, within each non-terminal cell in G;y1, we will match the maximal possible
unmatched points in P to unmatched points in Q so far, and pass the remainder unmatched
points (which can now only come from either P or Q, but not both) to its parents. Within
a terminal cell v in G;41, we match every unmatched point p from P N v and from Q Nw
to its closest point 7(p) € £ in the diagonal. Finally, at the root cell (in level log A), any
unpaired points from either P or Q will be paired to the diagonal, as the root is a terminal
cell. Note that by construction, at any level i, |Vf — V?|T is exactly the number of points
from P W Q that could not be matched at level ¢ or below under such a greedy augmented
matching and will subsequently need to be matched in grid G, j > 7 + 1. See Figure 1 for a
simple illustration.

» Lemma 8. There is a constant C such that dig"; (P,Q) < C - [VP — V9|7,

Proof. Consider the greedy augmented matching T we described above, induced by pairing
points or pairing points with their diagonal projection greedily within the same cells of the
grids G_1,Go,Gq, ... in a bottom-up manner. First, given (p, q) € T, we say that (p,q) is
paired in level-7, if the lowest level any quadtree cell containing both p, ¢ is level-i; intuitively,
(p, q) are paired greedily in this cell in level-i. We now use fz - T to denote the set of pairs
from level-i. For each level 4, let cost(i) = Z(p,q)eﬁ [lp — ¢gll2 be the total cost incurred by

all those pairs from fi, and obviously,

D cost(i)= > lp—aqll2 > d§,(P,Q), (8)
: (p.a)eT

per

where the right inequality holds as dw,1( P,Q) is the smallest total cost of any augmented

matching and the greedy augmented matching [ is an augmented matching.
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There are no pairings induced in the grid G_; (of size 1/2) since the minimum inter-point
distance is 1 and the minimum distance between a point and its diagonal is 1 as well. Hence
we have that [VP, — V|7 = [P| +|Q|. Since all points from P and Q will remain unpaired
in level —1 (i.e, within cells of grid G_1), we then have that there are exactly

P+ QI = [V§ = VGIr = V2, = V|7 — [V§ = V§|r

total number of points from P W Q that can either be paired to each other or matched to
the diagonal in grid cells Gy. As the maximal distance between any pair of matched points
is 2'4/2 within a cell in G;, the maximum cost incurred by all matched points in Gy is
cost(0) < V2([VP, = V|7 — |VE = V|7). In general, the maximum cost of the matched
points in G; is

cost(i) <2 V2(IV_y = V| — [V = V1),

Hence combining Equation (8), the total cost (i.e, > (p.g)eT [lp—qll2) of the greedy augmented

matching f, is bounded from above by:

logy A+1
> lp—dllz < Z 2 — V& | = VP = V&|7) < 2v2VF = V.
(p,q)€T
By the right inequality of Equation (8), the claim then follows. <

» Lemma 9. There is a constant C' such that the expected value of JLI(P, Q) is bounded by
Eldz, (P, Q)] = E[IVP - V7] < C' - log A - &5, (P, Q).

Proof. Set P = P U m(Q) and Q=Qu m(P) as before. For a given grid G; and some
coordinate k in VP and VQ let pr be the value of coordinate k in VP and ¢ be the value of
coordinate k in VQ Analogously, let VP and VQ be the vector representations w.r.t multisets
P and Q, respectively, and let py (resp. @) be the value of coordinate k in Vf (resp. V?)
Note that p > px and g > qx.

(i) Now if pp, > pr or qr > qx, then there exists at least one point z € 7(P) U m(Q) in the
cell v associated with coordinate k. In other words, this cell v must be a terminal cell, and
Pk — gkl = Pk — QT = 0.

(ii) Otherwise if the conditions in (i) do not hold, it must be that py = pr and g = g,
in which case we also have that |px — qx|r = |Dk — Qk|7- R R

Combining (i) and (ii) we then have that |[VP — VQ|p < [VP — VQ|p.

On the other hand, by the definition of metric | - |1, we know that [pr — qk|r < [Pk — k|,
implying that |VP VQ|T < ||VP VQ||1. Let i and v be the discrete measures induced by
P and Q respectively. By Theorem 5, there is some constant C' such that E[||[VP — VQ||;] <

C-log A-dor(pp, vg). From Observation 4, dor(pp,vg) <2+ dyy' (P, Q). Therefore,

E[IVF = VOyz) < BIIVF = VO|z] < E[IVP = VO[] 2. C - log AdYy', (P, Q).

The lemma then follows. |

3.2 Approximation algorithm via flowtree

We now propose an alternative approximation algorithm for d{’,\?fl(R Q). The high level idea
is the same as the flowtree algorithm described in Section 2.3: in particular, we first compute
the optimal flow for points in P and Q along the randomly shifted quadtree T as constructed
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earlier, but now with the modification that a point can be paired to diagonal. It turns out
that this leads to the same greedy augmented matching T we described at the beginning of
Section 3.1.2. Then, similar to flowtree, under this greedy augmented matching f, we use the
Euclidean distance between a pair of matched points (instead of using the tree-distance as
for d, 1, (P,Q)) to measure the cost of each pair of matched points. This leads to the following
modified flowtree estimate:

W P.Q = D lp—alls 9)

(p,q) €

and in our second algorithm, we will use dg\(;)rl F(P, Q) as an approximation of the true

1-Wasserstein distance dg&)rl (P, Q).

From an implementation point of view, unlike d, 1, (P, Q), which can be computed as the
Lq-distance between two vectors, we now must explicitly compute the greedy augmented
matching, T between P and Q. (Note that this greedy augmented matching was only used in
proving the approximation guarantee for JLI (P,Q), and not needed for its computation.)
Computing this greedy augmented matching (and calculating its cost) takes the same time
as computing the greedy flow in the original flowtree algorithm 2.3. Furthermore, it is easy
to see that in the proof of Lemma 8, we in fact showed that dsf,:,rl(P, Q) < d{)}STlF(P, Q) <
C - |VP —V@|r (see Eqn (8)). Combining this with Theorem 5, we thus obtain the following
approximation result for this modified flowtree estimate.

» Theorem 10. Given two persistence diagrams P and Q where s = max(|P|,|Q|) and A
is the spread of point set P U Q, we can compute dg&’le(P,Q) in time O(slog A) using a
randomly shifted quadtree. Additionally, the expected value of dg\%F(Pv Q) is an O(log A)-
approzimation of the 1-Wasserstein distance ds\?fl(P, Q); i.e. there are constants C; and Cy
such that Cy - dyy; (P, Q) < E[dyy (P, Q)] < C2 -log A - dyy, (P, Q).

Remark. We remark that while these two approximation schemes, d, ., (P,Q) and
diy, F(P7 Q), have similar approximation guarantees for dy', (P, Q), in practice, the modified
flowtree based approach has much higher accuracy. This is consistent with the performance
of flowtree algorithm versus the L;-embedding approach for general optimal distance [1]. In
contrast, the benefit of the L; embedding approach is that it is easy to compute c/i\Ll (P, Q).
Also, each persistence diagram is now mapped to a vector representation, and the distance
is Li-distance among these vector representations. One could combine this with methods
such as locality-sensitive-hashing for more efficient approximate k-nearest neighbor queries.
In general, such a L;-norm also makes C/Z\Ll (+,+) potentially more suitable for downstream
machine learning pipelines.

4 Experimental results

We evaluate both the runtime and accuracy of the modified flowtree and L;-embedding
against the Hera method of [18]. We use the implementation of Hera provided in the GUDHI
library [25] for testing. We run the experiments using an Intel Core i7-1065G7 CPU @ 1.30
GHz and 12.0GB RAM. Additionally, the implementations for both the modified flowtree
and Li-embedding were done in C++ (wrapped in python for evaluation) and are based on
the code provided in [1].
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Datasets. For our experiments, we use both synthetic persistence diagrams, as well as
persistence diagrams generated from real data. For synthetic data, we generate two sets
of persistence diagrams: called “synthetic-uniform” and “synthetic-Gaussian”, which are
generated by a uniform sample and a sample w.r.t. a Gaussian distribution on the birth-death
plane to obtain the persistence diagrams, respectively. For real datasets, we use persistence
diagrams generated from the so-called Reddit data sets (which is a collection of graphs) [6],
and from the ModelNet10 [30] dataset of shapes. Details of these datasets are in Appendix
B.

Speed comparison. We compare the running time of our new approximation algorithms
with that of Hera [18] — note that we do not directly compare with the exact algorithm by
Dionysus, because as reported by [18], Hera is 50 times to 400 times faster than Dionysus.
Note that Hera is also an approximation algorithm, and there is a parameter ¢ to adjust
its approximation factor (1 4 ). By setting this parameter to be very small (¢ = 0.01), we
use the distance computed by Hera as ground truth later when we measure approximation
accuracy; see Table 1.

The comparison of the running times of our approaches with that of Hera (for a range of
different approximation factors) can be found in Figure 2, which summarizes the runtime
for each method on a log-scale using both randomly generated diagrams as well as the
reddit-binary dataset (real persistence diagrams from graphs). We compare the speed of
our modified flowtree and L; embedding against Hera where the parameter ¢ for Hera is
set to be 300000. However, note that as one relaxes the approximation parameter ¢, the
speed of Hera in fact does not improve much (as shown in Figure 2). Thus our speed gains
remain no matter which choice of £ we use for Hera. Additionally, the true approximation
error for Hera also does not decrease much; see Table 1. To get the approximation error for
Hera, we find the true Wasserstein distance by using the wasserstein_distance function
from the GUDHI library which uses the Python Optimal Transport library [12] and is based
on ideas from [21]. The results in Figure 2 indicate that the modified flowtree approach is
between 50 and 1000 times faster than Hera and the difference increases as the size of the
diagrams increases. Similarly, the L; embedding approach is between 150 and 4900 times
faster than Hera. Both are order of magnitudes faster than Hera; but the price to pay is
that the approximation factor is worse for our approach as shown in Appendix C Figure 3.

Approximation accuracy comparison. To measure the accuracy of the approximation of
both the modified flowtree and L, embedding approach, we first measure the average relative
error and standard deviation of both methods on all datasets using L1, Lo, and L., as the
ground metrics. In particular, given a ground truth distance d and an approximate distance
d, the relative error is p(d) = @. As mentioned earlier, we use the output of Hera for
€ = 0.01 as ground truth, and compare our approximated distance with that. The results
are summarized in Figure 3 and a detailed table of the average relative error and standard
deviation is in Table 2. Overall, while our modified flowtree is slower than the L;-embedding
approach, it achieves much better approximation error. For our experiments, we generate a
quadtree only once for all persistence diagrams in a given dataset and calculate error for the
approximated distances for the single quadtree. However, note that by constructing several
quadtrees and averaging the distance estimates or taking the smallest estimated, we could
potentially reduce the approximation error.

In addition to the average error of our approximate distances, we can also consider the
efficacy of both methods in terms of nearest neighbor search and ranking accuracy. To
evaluate nearest neighbor search, we first split the set of persistence diagrams into query
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diagrams and candidate diagrams. Then, we measure recall@m accuracy where recall@m
is defined as the fraction of queries that have the true nearest neighbor within the top
m-ranked candidates returned by the evaluated method. The results are reported in Figure
4. For ranking accuracy, the detailed results are in Appendix C. To summarize, the modified
flowtree approach is more accurate than the L; embedding approach both in terms of nearest
neighbor search and closeness to the true ranking of candidate diagrams for a fixed query
diagram. Both approaches appear to have a lower degree of accuracy on diagrams where
there a higher proportion of points near the diagonal. This may be due to the increased
possibility of erroneously matching points to the diagonal.

In summary, we note that both our new approximation algorithms significantly improve
the speed previously best-known Hera algorithm by orders of magnitudes, but with worse
approximation factors. Empirically, the approximation factors remain constant despite
our theoretical results suggestion an O(log A)-approximation. In particular, the relative
approximation error of flowtree is often smaller than 0.50 for Ly ground metric (see Appendix
C Table 2).

Table 1 Comparison of the maximum allowed relative error with the average experimental
relative error for Hera on the reddit-binary dataset. The relative error was calculated using the
GUDHI library’s wasserstein_distance function which uses the Python Optimal Transport library
to compute exact 1-Wasserstein distance.

Maximum allowed relative error | Average relative error
0.1 0.00043768
1.0 0.003331
100000 0.0076055
200000 0.0076055

Table 2 Average error and standard deviation for all datasets. We abbreviate the L; embedding
approach to embd and the flowtree approach to ft.

Ly Lo Loo
embd ft embd ft embd ft
Avg. Error 2.058 0.2846 3.161 0.2664 4.536 0.2595
Std. Dev. 1.034 | 0.3891 | 1.189 | 0.3488 | 1.164 | 0.3176
Avg. Error | 1.341 | 0.3358 | 2.136 | 0.2860 | 3.035 | 0.2251
Std. Dev. | 0.3647 | 0.1809 | 0.4139 | 0.1519 | 0.3669 | 0.1178
Avg. Error 2.112 0.2899 3.089 0.3080 3.921 0.2854
Std. Dev. 1.275 0.3859 2.100 0.5126 2.427 0.4801
Avg. Error | 2.189 | 0.7331 | 2.438 | 0.4929 | 3.061 | 0.9399
Std. Dev. 0.9543 | 0.4132 | 0.8136 | 0.3171 1.051 0.4448

synthetic-uniform

synthetic-Gaussian

reddit-binary

ModelNet10

5 Concluding remarks

In this paper, we presented two algorithms for fast approximation of the 1-Wasserstein
distance between persistence diagrams based on L; embedding. While the relative error
incurred by both algorithms is higher than that of Hera, the runtime is significantly faster.
We also observe that approximation methods introduced are more accurate on persistence
diagrams with a lower proportion of points near the diagonal.
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(a) Recall@m accuracy on reddit-binary dataset
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Figure 4 Recall@m accuracy on reddit-binary and ModelNet10 datasets with Lo ground metric.

In the future, we are interested in using the L; embedding described with locality sensitive
hashing for sub-linear nearest neighbor search. Additionally, it maybe be possible to use the
ideas to compare persistence diagrams under some transformations: e.g, parallel shifting
along the diagonal directions (which corresponding to that the input functions generating
the persistence diagram is added by a constant term). It will also be interesting to expand
this work to perform statistics on the space of persistence diagrams (e.g, computing 1-mean
of persistence diagrams under our approximation distances).
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A  Additional Proofs

Proof of observation 4. By the optimality of dor( 5 1/6), we know that

dor(pp,vg) < AW (P,Q)+ Y [ln(a) —w(b)ll
(a,b)eTy

where I'y is the set of (a,b) € T' that have first form given in definition 2. We know
that [|m(a) = m(b)[lq < [la = bllq so dor(pp, vg) < & (P Q) + Xapyer, lIm(@) = m(d)]lq <
2-dyy, (P,Q). <

B Datasets

We use datasets of synthetic persistence diagrams as well as persistence diagrams generated

from real data. For persistence diagrams from real data, we use both graph and shape

datasets.
Synthetic data: We generated two sets of persistence diagrams. For the first set of
synthetic persistence diagrams, we find a random persistence of size at most s where
s =10z for z € {1,...,100} by generating points py,...,ps. To find each points p;, we
sample p;.x from a uniform distribution from 0 to 200. We then sample p;.y from a
uniform distribution between z and 300. We will refer to this set of synthetic persistence
diagrams as synthetic-uniform. For the second set of synthetic persistence diagrams, we
again generate a point p; by sampling p;.x from a uniform distribution from 0 to 200. We
then sample p;.y from a Gaussian distribution centered about = with standard deviation
1.0. We will refer to the second set of synthetic diagrams as synthetic-Gaussian.
Graphs: For persistence diagrams generated from graphs, we use the reddit-binary graph
dataset, which consists of graphs corresponding to online discussion on Reddit. In each
graph, nodes correspond to users and there is an edge between two nodes if at least one
of the corresponding users has responded to the other’s comments. The data is taken

from four popular subreddits: IAmA, AskReddit, TrollXChromosomes, and atheism.

Additionally, the persistence diagrams are generated using node degree as the filtration
function [6].

Shapes: We use the ModelNet10 [30] dataset to generate persistence diagrams from
shapes. ModelNet10 is comprised of 4899 CAD models from 10 object categories. The

persistence diagrams are generated using closeness centrality as the filtration function [6].
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The statistics of the ModelNet10 and reddit-binary datasets are summarized in Table 3.
Note that a persistence point is considered close to the diagonal if its lifetime is less than
one-tenth of the lifetime of the point with the largest lifetime.

Table 3 Diagram statistics for reddit-binary and ModelNet10 datasets.

Average # of PD points | Average # of points near diagonal

reddit-binary 278.155 20.245
ModelNet10 40.52 34.345
C Results

To measure the accuracy of the rankings produced by the modified L; embedding and flowtree
methods, we plot the true ranking of each candidate against the rank of the candidate in the
rankings produced by the evaluated method. Note that we will do this using the Lo norm as
the ground metric. The ranking accuracies for the evaluated methods for the reddit-binary
dataset and ModelNet10 are summarized in Figures 5, 6, 8, 7. The average number of ranks
away from the true rank is less than 10 for both reddit-binary and synthetic-uniform whereas
the same metric for synthetic-uniform and ModelNet10 is above ten for both datasets.

Both the modified flowtree and the L, embedding approximations seem to be less effective
for estimating nearest neighbor for persistence diagrams where there is a high proportion
of points near the diagonal. This may be because a higher proportion of points near the
diagonal increases the possibility of erroneously matching points to the diagonal.

100 - 100 4
Average number of ranks away from true rank: 4.815

Average number of ranks away from true rank: 6.867 ‘

80 1

60
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Average approximatien ranking

o] 20 40 60 80 100 0 20 40 60 80 100
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(a) Flowtree rankings. (b) L: embedding rankings.

Figure 5 Comparison of rankings generated by the flowtree and Li embedding approximations
with the true rankings of the candidate diagrams using the reddit-binary datset.
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Figure 6 Comparison of rankings generated by the flowtree and L; embedding approximations
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Figure 7 Comparison of rankings generated by the modified flowtree and L1 embedding approx-
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Figure 8 Comparison of rankings generated by the modified flowtree and L; embedding approx-
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