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Abstract—We present a method for joint phase identification
and topology recovery in unbalanced three phase radial networks
using only voltage measurements. By recovering phases and
topology jointly, we utilize all three phase voltage measurements
and can handle networks where some buses have a subset of
three phases. Our method is theoretically justified by a novel
linearized formulation of unbalanced three phase power flow
and makes precisely defined and reasonable assumptions on
line impedances and load statistics. We validate our method on
three IEEE test networks simulated under realistic conditions in
OpenDSS, comparing our performance to the state of the art.
In addition to providing a new method for phase and topology
recovery, our intuitively structured linearized model will provide
a foundation for future work in this and other applications.

Index Terms—Topology, Phase, PMU, Synchrophasor, Distri-
bution networks, Radial, Tree, Noise

I. INTRODUCTION

TOPOLOGY identification—which determines the con-
nectivity of network nodes from an available measure-

ment set—is vital in the electric grid, especially in distri-
bution networks [1], which may be switched between mul-
tiple operating configurations. Real-time topology awareness
is critical for most control and optimization approaches and
is essential for detecting unintentional changes caused by
faulty equipment or cyberattacks. In three phase electrical
networks, phase identification—determining the phase label
of each phase at each bus—is part of topology identification.
Correct phase labels are important for several applications,
including allocating resources to minimize phase imbalance
[2]. Together, topology and phase identification determine
the entire network connectivity. The literature demonstrates
several approaches to phase identification—many heuristic—
on simulated or real data sets. In [3] and [4] power balance
constraints on load measurements are used to identify cus-
tomer phase connectivity; this approach suffers from multiple
feasible solutions. Another class of techniques applies cluster-
ing to power or voltage measurements to categorize phases, as
in [5] and [6]. Correlations are a popular clustering distance
metric for voltage magnitudes [7], [8], [9]. In [10], voltage
correlations are used with voltage angle differences to match
phases at two buses. Though some of these methods achieve
good performance, they don’t provide theoretical guarantees,
stymieing understanding of why and how they work, and if
and when they fail. For example, clustering algorithms such
as k-means [11] can suffer from local minima that may result
in incorrect solutions [12]. Further, a theoretical justification
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enables us to understand how load and network characteristics,
such as the radial structure and line impedances, impact the
success of an approach. [13] presents a maximum likelihood
estimator for phase identification, but it requires knowledge of
the grid topology and is non-convex.

Topology identification has been extensively explored in the
literature. Several works use voltage correlations or covari-
ances to recover topology, based on heuristics [14], theoreti-
cally justified patterns in covariances [15], [16], or conditional
independence tests [17], [18]. Another class of approaches
uses linear regression to estimates the entire network model,
including topology and line impedances, but require phasor
current measurements in addition to voltages [19], [20], [21],
[22], [23]. All these approaches assume that the system is
balanced and can be approximated by a single phase network.
This may lead to errors estimating unbalanced distribution
networks. [24], [25] present three-phase topology estimation,
possibly with incorrect phase labels, using conditional inde-
pendence or mutual information tests. However the sample
requirements of these methods often exceed those of direc-
t/greedy methods such as [1]. Post-topology recovery, [24]
uses a distance-based metric or mixed-integer program to
classify unknown phases. This still falls short of a theoretically
guaranteed, polynomial-time algorithm for phase recovery.

Contribution: This work presents a greedy algorithm
for joint phase and topology identification—termed GPT—
surpassing the prior work in that it
• is provably correct under realistic assumptions and runs

in polynomial time.
• is applicable to real networks, where some buses may

have a subset of all three phases.
• requires only voltage measurements; either phasors or

magnitudes (with slight differences in performance).
• utilizes voltage statistics enabling successful phase iden-

tification even from voltage magnitudes alone and in the
presence of phase shifting transformers [26].

GPT is based on a linearized, multi-phase power flow model
mapping nodal current injections to nodal voltage phasors,
and requires radial structure and diagonal dominance of line
impedance matrices to guarantee correctness. When phases are
known, GPT reduces to provable, greedy multi-phase topology
learning generalizing prior work [1] for the balanced setting.
When topology is known apriori, it reduces to a local approach
to phase identification. We demonstrate GPT’s performance
and its improvement over prior work in both phase and
topology recovery on multiple IEEE test networks simulated
in Open-DSS, an open source distribution system simulator
[27].

The paper is organized as follows. Section II presents a
linearized model for unbalanced, three-phase networks with



Fig. 1: (a) Notation visualized for two nodes and connecting
line. (b) ToyNet: A toy network with three, two, and one phase
nodes used as a running example.

missing phases which is the theoretical basis of our work.
Section III theoretically justifies a proximity metric for phase
identification while Section IV justifies a distance metric
for topology identification once phases have been identified.
Section V puts the parts together to propose GPT: an algorithm
for joint phase and topology recovery. Finally, Section VI
presents validation on non-linear voltage data for three IEEE
distribution test networks, simulated in OpenDSS. We compare
performance with algorithms in prior work, demonstrating that
our approach outperforms the prior work, and is robust to non-
ideal measurements.

A. Notation

Notation is summarized below and visualized in Fig. 1a.

N Node set E Edge set

Vk =

vakvbk
vck

 Node k volt-
ages

Ik =

iakibk
ick

 Node k current
injections

Mk Node k phases Mkl Line kl phases
V All nodal volt-

ages
I All nodal injec-

tions
Ykl Multiphase ad-

mittance matrix
of line kl

Y Network admit-
tance matrix

Yk,l Y block for
nodes k & l

Yφ,ψk,l Y element for
phase φ at node
k & phase ψ at
node l

AT Transpose AH Conjugate
transpose

II. UNBALANCED THREE PHASE MODEL

Before introducing our unbalanced three phase network
model, we review the single phase balanced power flow
model. In the single phase case, each line ij has an associated
scalar admittance yij and impedance zij = y−1ij . The single
phase voltage phasors and current injections are related by the
(|N |× |N |) system admittance matrix Y as I = YV with the
form:

Yi,j = −yij , Yi,i =
∑
ij∈E

yij ⇒ Y = ADAT

Y can be factored into |N | × |E| incidence matrix A and
diagonal line impedance matrix D [28]. Without loss of
generality, we choose all edges to be directed away from
the network “root”, generally the point of common coupling
(PCC) or substation. If edge ij is oriented from i to j, the
corresponding elements of A are

Ai,ij = 1, Aj,ij = −1, Ar,ij = 0 if r 6= i 6= j

where Ai,ij is the ith element of the column corresponding
to edge ij. By definition, as Y1 = 0, Y is not invertible.
An invertible reduced admittance matrix, Y, is constructed by
choosing a reference node r and removing the corresponding
row and column of Y. Since the system is lossless, its inverse
relates voltages and currents as follows:

Z = Y−1, V = ZI (1)

V contains voltages differences to the reference voltage while
I contains current injections at non-reference nodes. Let Ei
and Ej denote the edge sets on the unique path in the radial
system to r from nodes i and j respectively. The value of Zi,j
is given by :

Zi,j =
∑

kl∈(Ei∩Ej)

zkl.

Thus, the elements of Z correspond to the impedances of
common paths between node pairs and the reference [19], [1].

The unbalanced three phase model follows from the single
phase one. To clarify definitions, we use ToyNet (Fig. 1b), a
simple, unbalanced, three phase radial network, as a running
example. We begin with the model for a multiphase line ij,
with phases Mij ⊆ {a, b, c}. The voltage across ij is related
to the current along each phase of the line by line impedance
matrix Yij :

Iij = Yij(Vi −Vj) (2)

Yij is the inverse of the (|Mij | × |Mij |) line impedance

matrix, Zij . Eq. (2) for line 56 in ToyNet is:
[

ia56
ic56

]
=

Y56

[
va5 − va6
vc5 − vc6

]
. The node i current injection, denoted Ii, is

a vector of injections on each phase of i, and is given by
the sum of line flows: Ii =

∑
ij∈E Iij . Building up from

the current-voltage relations across individual lines in (2),
the multi-phase voltages and currents injections across the
network are related by I = ŶV. Note this model can describe
a network with a subset of phases at some nodes. Ŷ is
the multi-phase system admittance matrix with dimensions
(
∑
i∈N |Mi|)× (

∑
i∈N |Mi|). The i, j block of Ŷ is

Ŷi,j = −Yij , Ŷi,i =
∑
ij∈E

Yij (3)

Block Ŷi,j is (|Mi| × |Mj |), so Yij must be appropriately
zero-padded or reduced if i and j don’t have all the same
phases. For ToyNet, Ŷ has the structure visualized in Fig. 2.

Remark 1: Ŷ can be factored into an incidence matrix Â,
which captures the endpoints of each edge, and D̂, a block
diagonal matrix of line admittances: Ŷ = ÂD̂ÂT . D̂ has



Fig. 2: Visualizing the structure of three phase admittance,
adjacency and impedance matrices for ToyNet.

dimensions (
∑
ij∈E |Mij |)×(

∑
ij∈E |Mij |), with line admit-

tance matrices Yij along the diagonal. Â is (
∑
i∈N |Mi|)×

(
∑
ij∈E |Mij |) dimensional. Its rows correspond to phases at

each bus, and columns to phases of each edge. With edges
directed toward the root, assume edge ij ∈ E is oriented
from i to j. Then for every ij ∈ E , with φ ∈ Mij :
Âφφi,ij = 1, Âφφj,ij = −1. All other elements of Â are zero.
Â for ToyNet is visualized in Fig. 2.

A. Inverting the model

Ŷ maps voltages to current injections, but we use the inverse
mapping for phase and topology identification. By definition
(3), Ŷ is singular. Again, a reduction denoted Ŷ is invertable.
To obtain Ŷ, we remove the three rows and columns of Ŷ
corresponding to the three phases at reference node r. Ŷ can
be factored as: Ŷ = AD̂AT where A is obtained from Â
by deleting the three rows corresponding to r. To derive Ŷ
inverse, we begin with the right pseudoinverse of AT , which
has the following properties.

Lemma 1: Let B be the right pseudoinverse of AT , with
rows corresponding to nodes and columns to edges. For i ∈ N
with phases Mi, let Ei be the edge set of the unique path to
r. Then,

Bφψi,kl =

{
−1 ∀φ = ψ ∈Mi, ∀kl ∈ Ei
0 otherwise

Proof: Bφi is the row of B corresponding to phase φ at
node i, while B,φ,ij is the column corresponding to phase φ of
edge ij. If φ 6= ψ, B,φT,ij A

,ψ
,kl = 0. A column of A has only

two nonzero elements, so for φ = ψ, we have

B,φT,ij A
,φ
,kl = −1δ(ij ∈ Ek) + 1δ(ij ∈ El)

For any edge kl 6= ij, we will have either (ij ∈ Ek), (ij ∈ El)
or (ij 6∈ Ek), (ij 6∈ El). Thus B,φT,ij A

,φ
,kl = 0 for kl 6= ij. If

kl = ij, we have (ij 6∈ Ek), (ij ∈ El) and B,φT,ij A
,φ
,ij = 1.

Thus, B,φT,ij A
,ψ
,kl = 1 iff ij = kl, φ = ψ ⇒ BTA = I.

Now consider, Bφi A
ψT
j , the inner product of rows. If φ 6= ψ,

this is 0. Consider when φ = ψ and i 6= j. If j does not lie
along the path from i to the reference, then jk 6∈ Ei, i.e.
there is no edge connected to j in Ei, and Bφi A

φT
j = 0. In

contrast, if j lies along the path from i to the reference, there
must be two edges kj, jl ∈ Ei oriented to and away from j

respectively, as the path passes through j. Then, Bφi A
φT
j =

(−1×−1) + (1×−1) = 0. If i = j, only edge il = jl ∈ Ei,
and Bφi A

φT
i = 1. Therefore, Bφi A

ψT
j = 1 iff i = j, φ = ψ

Therefore, Ŷ
−1

= Ẑ can be written as follows.
Theorem 1: The inverse of Ŷ is given by:

Ẑ = Ŷ
−1

= BD̂−1BT (4)

where D̂−1 is block diagonal matrix of line impedance matri-
ces: D̂−1ij,ij = Zij . Further, the element of Ẑ corresponding to
phase φ at node i and phase ψ at node j is given by:

Ẑ
φψ

ij =
∑

kl∈(Ei∩Ej)

Zφψkl (5)

Proof: Using the structure of B from Lemma 1, we have
ẐŶ = (BD̂−1BT )(AD̂AT ) = I . Thus Ẑ = Ŷ

−1
.

Consider the block of Ẑ corresponding to nodes i and j.
Based on Lemma 1:

Ẑ
φψ

ij =
∑
kl∈E

Bφφi,klZ
φψ
kl B

ψψT
j,kl =

∑
kl∈(Ei∩Ej)

Zφψkl

Intuitively, (5) says that a change in current injection on phase
ψ at node j will affect the voltage at phase φ at node i,
proportional to the (φψ) impedance of the shared path (Ei∩Ej)
from i, j to r. In our definition, Ŷ and Ẑ are ordered with the
phases of each node or edge grouped together. If all phases
exist at all nodes, this is equivalent to a permutation of the
three-phase model in [25], where entries for one phase across
all nodes and edges are grouped together.

Using this theorem, in the unbalanced three phase model,
voltages are related to currents as:

V = ẐI (6)

Here, V contains nodal voltage differences with the voltage for
the matching phase at the reference: Vφ

i = vφi −vφr . I contains
all current injections except at the reference. Note that there is
no assumption for all nodes having all three phases. In the next
section, we will use the model of (6) to determine patterns in
voltage statistics to enable phase and topology recovery.

B. Current and Voltage Statistics

We treat voltages as random variables driven by current via
the model of (6). In our theoretical analysis, we assume
1) current injections are uncorrelated across nodes and phases

(including at a single node).

cov(iφi , i
ψ
j ) 6= 0 iff (i = j) ∩ (φ = ψ) (7)

2) current injections have equal variance at all nodes.

∀i, φ : var(iφi ) = s2 (8)

As they are predominantly determined by loads—which are
uncorrelated over time intervals on the order of seconds—
current injections can be modeled as uncorrelated across nodes
and phases when using high resolution measurements such
as from PMUs. We assume PMUs report at 120Hz, but our
methods apply if resolution is sufficient for measurements to



be de-trended to remove inter-nodal correlations. Assumption
(8) is stronger but permissible in reasonably balanced net-
works. In Section VI, we evaluate how deviations from these
assumptions impact recovery performance.

III. VOLTAGE COVARIANCE FOR PHASE MATCHING

Voltages covariances are informative for phase identifica-
tion. Under Assumptions (7,8), the covariance of the voltage
of phase φ at node i and phase ψ at node j, in the three-phase
model (6), is given by:

cov(vφi ,v
ψ
j ) = cov(Ẑ

φ

i I, Ẑ
ψ

j I) = s2Re((Ẑ
φ

i )H Ẑ
ψ

j ) (9)

We are interested in the sum of covariances for a particular
phase ordering between nodes i and j. Consider the case
where the phases at i are a subset of those at j (Mi ⊆Mj).
Let O denote the ordering/permutation of phases at j, where
O(φ) denotes the specific phase at j matched to the phase φ
at i. Then, the covariance sum for matching O, denoted by
cOij , is:

cOij =
∑
φ∈Pi

cov(vφi ,v
O(φ)
j ) (10)

Let Ẑi denote the rows of Ẑ corresponding to all phases at
node i, and Ẑ

O
j denote the rows corresponding to the phases

at j ordered according to O. Then cOij is:

cOij = s2Re(vec(Ẑi)Hvec(Ẑ
O
j )) = s2Re(

∑
k∈N

vec(Ẑ
H

ik)vec(Ẑ
O
jk))

= s2Re

[ ∑
k∈N

∑
mn∈(Ei∩Ek)
pq∈(Ej∩Ek)

vec(ZMi
mn)Hvec(ZOpq)

]
(11)

The last equality follows from (5). The contribution of a node
k to cOij is the dot product of the common path lengths between
i, k and j, k. The following result shows how cOij enables phase
matching.

Theorem 2: Consider cOij given in (10) for Mi ⊆ Mj . If
condition (12) holds for each pair of line impedance matrices,
then cOij is maximized whenO corresponds to the correct phase
matching between i and j.

∀M ∈ {M1, ...,Mn}, ∀st, kl ∈ E :

M = arg max
O

Re

[
vec(ZMst )Hvec(Z

O(M)
kl )

]
(12)

where M ranges over every nodal phase set Mi.
Proof: If (12) holds, every term in the summation in

(11) is maximized by O = Mi. Therefore, Mi maximizes
the sum, and Mi = arg maxO c

O
ij

(12) is a condition on every pair of edges, st and kl, in
the network. It states that for every row subset of line
impedance matrix Zst (corresponding to each nodal phase
set M1, ...,Mn), the matching rows of Zkl produce the
largest vectorized dot product. This is reasonable as real line
impedance matrices are diagonally dominant. Condition (12)
depends on the particular network considered. In a network
where all nodes have all three phases, M =Mi = {a, b, c},
the condition on the vectorized dot product involves the full

three phase line impedance matrices. if some nodes have a
subset of phases, it will involve sub-matrices of impedance
matrices. Note that, in general, cov(vφi ,v

ψ
j ) > 0 even if

φ 6= ψ. If node i has phases a, b and node j has phases
a, c (Mi 6⊆ Mj), minimizing cij will incorrectly match b, c.
GPT avoids such scenarios by ordering nodes; discussed later.
Theorem 2 allows us to use cOij as a proximity metric for phase
matching.

IV. VOLTAGE DIFFERENCE VARIANCES FOR TOPOLOGY

We use voltage difference variances for topology recovery.
Define dij to be the sum of the variance of the voltage
differences between correctly matched phases of nodes i, j.
Assuming Mi ⊆Mj , dij is:

dij =
∑
φ∈Mi

var(vφi − vφj ) =
∑
φ∈Mi

E[(vφi − vφj )− E(vφi − vφj )]2

(13)

Lemma 2 establishes trends in dij along one phase.
Lemma 2: Given the voltage on phase φ at node i:

arg min
j
dφij , arg min

j
var(vφi − vφj ) ∈ Parent/Child of i

(14)

Proof: Expanding the difference, we obtain:

dφij = var(vφi − vφj ) =
∑
n∈N

∑
ψ∈Mn

s2n|Ẑ
φψ

in − Ẑ
φψ

jn |2 (15)

If the paths from nodes k and l to r merge at node n,
Ẑ
φ,ψ

k,l = eφψn , the impedance of the path from n to r along
phase coupling φ, ψ:

eφψn =
∑
ij∈En

Zφψij (16)

To determine the minimizer of (14), consider two cases
visualized in Fig. 3. In case A, j is the common ancestor
of node i, k on the path to the root. In case B, j is an ancestor
of i, while k is an ancestor of j. In both cases, we show that
dφij , d

φ
jk < dφik. Put together, for a given i, the minimizer j of

dφij is either the parent or child of i.
Case A. We split the sum in (15) into the regions Ni in

Fig. 3a. Using (16) in (15) for each region, we have

dφik − d
φ
ij =

∑
n∈N1,ψ∈Mn

0 +
∑

n∈N2,ψ∈Mn

0 +
∑

n∈N4,ψ∈Mn

0

+
∑

n∈N3,ψ∈Mn

s2n

(
|eφψj − eφψn |2 − |e

φψ
j − eφψj |

2

)
+

∑
n∈N5,ψ∈Mn

s2n

(
|eφψj − eφψk |

2 − |eφψj − eφψj |
2

)
> 0



Fig. 3: Regions of the radial network when (a) Case A: k lies
off the path between i and the reference. (b) Case B: i lies
along the path from j to the reference.

A similar argument shows dφik − d
φ
kj > 0.

Case B. Now we split (15) over the regions in Fig. 3b. Using
(16), we have

dφik − d
φ
ij =

∑
n∈N1,ψ∈Mn

0 +
∑

n∈N2,ψ∈Mn

0

+
∑

n∈N3,ψ∈Mn

s2n

(
|eφψn − eφψk |

2 − |eφψn − eφψn |2
)

+
∑

n∈N4,ψ∈Mn

s2n

(
|eφψj − eφψk |

2 − |eφψj − eφψj |
2

)
+

∑
n∈N5,ψ∈Mn

s2n

(
|eφψn − eφψk |

2 − |eφψn − eφψj |
2

)
+

∑
n∈N6,ψ∈Mn

s2n

(
|eφψi − eφψk |

2 − |eφψi − eφψj |
2

)
> 0

A similar analysis shows dφik − d
φ
kj > 0. Thus the minimum

is given by the parent/child of i.
Applying Lemma 2 to all matched phases between two nodes
gives the following result:

Theorem 3: Given node i, the node j which minimizes dij
in (13) is either a parent or child of i.
If phases at each node are known, Thm. 3 enables correct
topology recovery with a greedy algorithm based on distance
dij . Note that Lemma 2 and Thm. 3 hold for all uncorrelated
injections even with unequal variances. Thus, Assumption 8
can be relaxed for topology learning. We now have the tools
for joint phase and topology recovery, detailed in the next
section.

V. JOINT PHASE & TOPOLOGY IDENTIFICATION

We propose GPT (Alg. 1): a greedy algorithm for joint
phase and topology identification based on the nodal voltage
properties of Sections III-IV. GPT computes cOij’s (9) exhaus-
tively (for all matching options), selecting maxima for phase
matching (Theorem 2). Based on phase matchings, it computes
dij’s (13) exhaustively (for all node pairs), selecting minima
for topology recovery (Theorem 3). GPT greedily builds a
tree with node set T , starting from node i0 and iterating till all
nodes have been added. In each iteration, a new node is added
to the tree by choosing node i 6∈ T , which has the minimum
value of dij for all j ∈ T , using getNext algorithm. GPT
adds 3 phase, then 2 phase, then 1 phase nodes to the tree.
The initial node must be three phase, making the reference an
intuitive choice. By adding nodes in this order, GPT implicitly

Alg 1 GPT Greedy topology and phase recovery
Input: Multi-phase voltage time series for all nodes in V .
Output: Set of edges in network, phase ordering of each node.

1: N3, N2, N1← set of three, two, one phase nodes in V .
2: for all i 6= j ∈ N do
3: ∀O compute cOij
4: M [i, j]← arg max cOij in (10) . Phase matching
5: D[i, j]← dij in (13) with matched M [i, j]
6: end for
7: T ← {i0}, N3← N3 \ i0, P [i0]← [a, b, c] . Add first

three phase node to tree T and set phases
8: while N3 6= ∅ do . Connect 3 phase nodes
9: i, j ← getNext(D, T , N3)

10: T ← T∪i,N3← N3\i, E ← E∪eij , P [j]←M [i, j]
11: end while
12: while N2 6= ∅ do . Connect 2 phase nodes
13: i, j ← getNext(D, T , N2)
14: T ← T∪i, N2← N2\i, E ← E∪eij , P [j]←M [i, j]
15: end while
16: while N1 6= ∅ do . Connect 1 phase nodes
17: i, j ← getNext(D, T , N1)
18: T ← T∪i, N1← N1\i, E ← E∪eij , P [j]←M [i, j]
19: end while

Alg 2 getNext
Input: Pairwise distances in D, Added nodes in T , Nodes to
add in N
Output: i ∈ N to be added, j ∈ T connected to i.

1: dij ←∞, i← None, j ← None
2: for all b ∈ T, a ∈ N do
3: if D[a, b] < dij then
4: dij ← D[a, b], i← a, j ← b
5: end if
6: end for

enforces the crucial fact that number of phases never increases
moving from the substation to the network ends (a single phase
node is never the parent of a three phase node) and avoids
issues that can arise when applying a naive greedy algorithm to
a network with a variable number of phases at each node. For
example, suppose we are recovering the topology of ToyNet.
All nodes have been added to T except 6, 7, and 8. To recover
the correct topology, we should connect node 6 to 5 first. Then
nodes 7 and 8 will get connected to 6 naturally, as d76 < d75
and d86 < d85. However, consider d65 and d75,

d65 = var(va6 − va5) + var(vc6 − vc5), d75 = var(vc7 − vc5)

We have no guarantee that d65 < d75 due to the presence of
additional phase variance in d65 illustrating how an algorithm
that doesn’t order nodes by decreasing number of phases may
return an incorrect topology, unlike GPT.



A. Alternative Estimation Scenarios

In the general scenario, GPT recovers both phase and
topology from voltage measurements. Our theoretical results
also establish estimation methods for restricted settings:

1) Phase Identification with Topology Information: If
topology is known, phases can be identified by greedily
matching adjacent nodes using cOij (9) across edges ij ∈ E .
Unlike [5], [6], [7], [8], [9], which cluster all nodal voltages
to recover phase, our approach is highly local. [7], [9], [29]
use the Pearson correlation coefficient of voltages as the
distance, which is related to the covariance but not theo-
retically justified. K-means is a popular clustering algorithm
choice [6]. However, even if the correct phase matching is the
globally optimal solution of the k-means cost, the optimization
is non-convex and may not converge to the global minima.
Our greedy approach, however, is guaranteed to result in the
optimal solution.

2) Topology Estimation with Phase Information: If phase
labels are known, dij (13) can be directly minimized to
recover topology and GPT reduces to greedy spanning tree
learning generalizing prior work for the single phase case
[1]. Compared to [24], [25] that use conditional independence
tests and need matrix inversions, GPT has improved sample
performance, as demonstrated in Section VI.

3) Estimation using voltage magnitudes only: While GPT
is based on nodal voltage phasors, it can also use voltage
magnitudes vφi = |vφi |. This is theoretically justified by
linearizing (2) for line kl:

Ikl = Ykl

ejθa(vake
jθak − val ejθ

a
l )

ejθ
b

(vbke
jθbk − vbl ejθ

b
l )

ejθ
c

(vcke
jθck − vcl ejθ

c
l )


≈ YklDr((Vk − Vl) + j(θk − θl))

where θφ is the phase φ reference angle and θφk = θφk − θφ.
The linearization assumes small magnitude deviations from
the reference and small angle difference between neighboring
nodes. Properties of voltage magnitudes across the network
can then be derived under assumptions on YklDr, Ikl to GPT
for phase and topology recovery.

VI. SIMULATION EXPERIMENTS

We present simulation results of GPT. We measure average
errors in phase and topology recovery, normalized to the total
number in the grid:

Topology Error =
wrong edges + missing edges

total edges
,

Phase Error =
wrong nodal phases
total nodal phases

Further, we evaluate the algorithm’s sensitivity to the following
parameters.
• Measurement noise: We add white noise n to original

measurement vi: ṽi = vi + n, defining noise level(ṽi) =
var(n)
var(vi)

. As GPT uses voltage covariances, it depends on
relative precision and not absolute accuracy and is immune
to the stable transducer errors that afflict distribution PMU
data [30].

• Number of measurement samples: Assuming 120 Hz distri-
bution PMU measurements [31], we record performance on
1 second to 1 minute of voltage data.

• Load Correlations: We test GPT’s sensitivity to the assump-
tion of uncorrelated injections, by varying the correlations
of the loads while maintaining their variance. This is done
by changing the covariance matrix Σ = σ2((1−ε)I+ε11T ).
As ε→ 1, injections become more correlated.
Three IEEE distribution test networks are simulated in

OpenDSS: the 13 and 34 bus networks have some one and
two phases buses, while the 37 bus network has all three phase
buses [32]. We modify the models by adding loads at every
bus, and by disabling voltage regulators, which invalidate the
assumption of voltages driven by injections. We fluctuate the
load injections at each phase at each bus, and simulate the
network to obtain non-linear voltages.

Fig. 4 plots topology recovery accuracy for three noise
levels ranging from 0 (no noise) to 10, with 1 second to 1
minute of voltage magnitude or phasor measurements. PMUs
are highly precise; and the noise level would realistically be
∼ 0.001 [33], [34]. Nevertheless, GPT performs well under
more noise as measurement samples increase. For all test
networks and measurement durations, GPT achieves perfect
topology recovery from voltage magnitudes for 0 and 0.001
noise. Insets in Fig. 4 show recovered topologies across trials.
Note how errors are localized to a few nodes, and lower
for voltage magnitudes. Fig 4 also compares performance
on voltage magnitudes to Liao2019 [24], showing that GPT
outperforms it across scenarios.

Fig. 5 presents GPT’s phase matching error on the same
three networks and noise levels averaged across several sample
durations (we found phase matching error to be invariant
to sample duration). The error is compared to that of the
approach in Olivier2018 [7]. The methods have comparable
performance, except on the 13 bus network, where GPT
outperforms Olivier2018 across SNRs.

Fig. 6 shows topology recovery sensitivity as injections stray
from the uncorrelated assumption (7). Error increases rapidly
as loads become more correlated. In reality, over short time
durations, it is reasonable to assume that injections will be
uncorrelated across nodes or can be de-trended [24]. We use at
most one minute of data to recover phase and topology: short
enough that the uncorrelated assumption should hold well.

Our polynomial time algorithms are suitable for real time
application, taking on the order of seconds to recover phase
and topology for the IEEE test cases shared here. On the
largest 37 bus test case, the algorithm completes in 15 seconds.

VII. CONCLUSION

We presented GPT for joint phase and topology identifi-
cation from voltage measurements in unbalanced three phase
networks where each bus can have single, two, or three phases.
GPT is polynomial time and relies on analytical trends in nodal
voltage statistics. We proved its theoretical correctness under
reasonable assumptions on load statistics and line impedances,
demonstrating its efficacy on non-linear voltages from three
test feeders simulated under realistic conditions. GPT is robust



Fig. 4: GPT topology error vs number of samples for three test feeders and three noise levels. Samples are assumed to arrive
at 120Hz. Insets show estimated (grey) and true (red) network lines across trials, with the opacity of grey lines indicating how
many times the edge was recovered. GPT is evaluated on voltage phasor and magnitude data, with performance on magnitudes
compared to state of the art in Liao2019 [24].

Fig. 5: GPT phase matching error for three test feeders and
three noise levels using voltage phasor and magnitude data.
The last table allows comparison with the state of the art
phase matching method of Olivier2018 [7]. Mostly, GPT
has comparable performance to Olivier2018, but significantly
outperforms it on the 13 bus system.

to measurement non-idealities, and outperforms the prior work
in both phase and topology recovery.

Extensions of the work include handling of voltage regula-
tors at some nodes and improving performance under load
correlations. The linearized unbalanced three phase model
presented here can motivate many future analytics, including
extensions to settings with limited measurements, where our
derived distance metrics could give a sense of the relative
proximity of dispersed measurement points if not the precise
topology. It is challenging to directly extend this work to
non-radial settings as inter-nodal distances become difficult
to define precisely in meshed networks. However, the model

Fig. 6: GPT topology error from voltage magnitudes as in-
jections become increasingly correlated (ε→ 1) for three test
feeders and two noise levels. Notice the rapid rise in error with
increasing correlation particularly for the largest network.

could inform graph theoretic monitoring approaches of meshed
networks, similar to those in [35].
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