Information Sciences 544 (2021) 343-371

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins e

Effective and efficient top-k query processing over incomplete N
data streams Gt
Weilong Ren*, Xiang Lian **, Kambiz Ghazinour *”

2 Department of Computer Science, Kent State University, Kent, OH 44242, USA
b Center for Criminal Justice, Intelligence and Cybersecurity, State University of New York, Canton, NY 13617, USA

ARTICLE INFO ABSTRACT
ArtiC{e history: Nowadays, efficient and effective stream processing has become increasingly important in
Received 25 February 2020 many real-world applications such as sensor data monitoring, network intrusion detection,

Received in revised form 27 July 2020
Accepted 5 August 2020
Available online 5 September 2020

IP network traffic analysis, and so on. In practice, stream data often encounter the problem
of having some data attributes missing, due to reasons such as packet losses, network con-
gestion/failure, and so on. In such a scenario, it is rather important, yet challenging, to accu-
rately and efficiently monitor top-k objects over incomplete data stream, which may
Top-k query p‘otentially ipdicate some dangerous aqd critical security events (e.g., fire, network intru-
Incomplete data streams sion, or denial-of-service attack). In this paper, we formally define the problem of top-k
Topk-iDS query over incomplete data stream (Topk-iDS), which continuously detects top-k objects
with the highest ranking scores over an incomplete data stream. Due to unique character-
istics such as incompleteness and stream processing, we propose a cost-model-based data
imputation approach, design effective pruning strategies to reduce the Topk-iDS search
space, and carefully devise dynamically updated data synopses to facilitate Topk-iDS query
processing. We also propose an efficient algorithm to perform the data imputation and
incremental Topk-iDS computation at the same time. Finally, through extensive experi-
ments, we evaluate the efficiency and effectiveness of our proposed Topk-iDS query
answering approach over both real and synthetic data sets..

© 2020 Elsevier Inc. All rights reserved.

Keywords:

1. Introduction

Stream data processing has received much attention from the database community, due to a wide spectrum of real-world
applications such as sensor data monitoring [1], network intrusion detection [2], IP network traffic analysis [3], and so on. In
reality, due to various reasons such as the network congestion/delay, data lost during the transmission, and/or device fail-
ures, sometimes, data objects from streams may not be fully available (i.e., some attributes might be missing). It is thus
rather challenging to effectively and efficiently manage and query such streams with incomplete data objects.

In this paper, we consider a classic and important problem, the top-k query over data streams, with missing attributes in
streaming objects. We have the following motivation example of monitoring security events (e.g., fire) in a forest.

Example 1. (Forest Security Monitoring) Consider an example of the forest security monitoring in Fig. 1, where 5 sensors,
01 ~ 05, are deployed in a forest. Each sensor o; (1 <i < 5) is in charge of a forest area, and collects sensory data (i.e.,
periodically received attributes) such as the temperature, the density of oxygen, and sunlight intensity (as depicted in

* Corresponding author.
E-mail addresses: wren3@kent.edu (W. Ren), xlian@kent.edu (X. Lian), kghazino@kent.edu (K. Ghazinour).

https://doi.org/10.1016/j.ins.2020.08.011
0020-0255/© 2020 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.08.011&domain=pdf
https://doi.org/10.1016/j.ins.2020.08.011
mailto:wren3@kent.edu
mailto:xlian@kent.edu
mailto:kghazino@kent.edu
https://doi.org/10.1016/j.ins.2020.08.011
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

W. Ren et al. Information Sciences 544 (2021) 343-371

A: temperature B: density of oxygen C: sunlight intensity

What are top-k
most dangerous
areas (sensors)?

Forest Security Monitoring

Fig. 1. An example of the top-k query for forest security monitoring (attributes A, B and C are normalized).

Table 1
An incomplete data stream, iDS, collected from sensor networks in Fig. 1 (with the ranking function F(0;) = 0;/A] + 0;[B] + 0i[C]).
sensor arrival [A] tem- [B] density [C] sunlight ranking
ID time perature of oxygen intensity score
04 1 0.1 0.1 0.2 04
02 2 04 03 0.5 1.2
03 3 0.3 - 0.2 ?
04 4 0.2 0.2 0.3 0.7
05 5 0.6 - - ?

Table 1) in real time. Since forest security events (e.g., fire) may lead to serious consequences such as personal safety,
biodiversity losses, and/or financial losses, it is very important to monitor and prevent such dangerous events.

In the example of Fig. 1, a forest security monitoring system will monitor real-time streaming information,
iDS = (01,03,...,0s,...), from sensors, and obtain top-k sensors with the highest risks that forest security events (e.g.,
fire) occur. Assume that we use a simple ranking function #(-) that sums up all the 3 attributes of each sensor. Intuitively,
high ranking scores F(-) indicate high risk levels of the sensors. Then, we can retrieve top-k sensors o; € iDS with the highest
ranking scores (e.g., sensor o4 has high score 0.7), as shown in Table 1.

In practice, however, due to hardware failure or packet losses, attributes from some sensors (objects) may not be available
(e.g., the density of oxygen of sensor o3 and the sunlight intensity for sensor 0s), as shown in Table 1. Thus, in order to monitor
critical events such as fire, we should conduct the top-k query over such an incomplete network data stream accurately and
efficiently, which reports k sensors with the highest risks to forest security people. |

In the example above, there are two major challenges for monitoring top-k query answers (i.e., k most risky sensors
with fire events) over incomplete data stream. First, the ranking function #(-) may involve missing attributes in objects
from incomplete data stream iDS. It is not trivial how to obtain the ranking scores of incomplete objects with missing
attributes. While existing works [4] simply ignored the missing attributes, by setting their values (e.g., density of oxygen
and sunlight intensity) to 0, the resulting top-k query may incur inaccurate (low or high) ranking scores, and in turn erro-
neous query results. For example, incomplete object o5 in Table 1 tends to have low (biased) ranking score, if ignoring
missing attributes os[B] and o0s[C]. Thus, alternatively, we need to design an accurate data imputation approach to impute
the missing attributes.

Second, it is also challenging to efficiently and accurately retrieve the top-k query answers over incomplete data streams.
Due to unique stream processing requirements (e.g., high-speed processing and limited memory consumption), we need to
design effective pruning strategies to quickly filter out false alarms of top-k query answers, and devise effective and space-
efficient data synopses to enable both data imputation and incremental top-k answer computations at the same time. Note
that, a straightforward method to answer top-k queries over incomplete data stream is to first impute incomplete objects,
followed by top-k query answering, which may not suit for fast processing requirement in the stream environment. Thus, in
this paper, we explore the style of performing the “data imputation and top-k query processing at the same time”, which, to
our best knowledge, has not been studied before.

344

W. Ren et al. Information Sciences 544 (2021) 343-371
1.1. The Topk-iDS problem.

Inspired by the example above, in this paper, we formally define the top-k query over incomplete data stream (Topk-iDS),
which continuously monitors and retrieves objects o; from incomplete data streams iDS, that have the highest top-k ranking
scores with high confidences. To tackle the challenges of Topk-iDS query answering, we propose an effective and efficient
approach to enable the data imputation and Topk-iDS query answering over incomplete data stream at the same time.

In addition to the forest fire monitoring (as mentioned in Example 1), the Topk-iDS problem can also be applied to other
application domains such as IP network traffic analysis or network intrusion detection. For example, in the application of IP
network traffic analysis, when the network traffic is busy, the routers may drop packets and affect user experience. Thus, it is
important to conduct the Topk-iDS query to effectively and quickly detect top-k busiest routers (ranked by network traffic
factors, some of which are missing due to packet losses), and adaptively control online network traffic.

Similarly, for network intrusion detection, routers (connected with a number of servers) are usually distributed at differ-
ent locations of a computer network and receive statistical attributes such as No. of connections, connection duration, and
transferred data size, which can be used to detect and prevent network attacks such as network congestion, malicious virus
installation, denial-of-service, and/or leakage of users’ information. However, due to the network delay or packages losses,
statistical attributes from some routers may not be available. In this case, we can issue a Topk-iDS query over (incomplete)
network streaming data to retrieve top-k risky routers that are under attack.

1.2. Differences from prior works

While prior works [4,5] studied the top-k query over incomplete data stream, they assume that the data incompleteness
is caused by different arrival timestamps of object attributes, and this incompleteness will be fixed when the missing attri-
butes arrive at the data stream. Thus, data attributes in prior works are only temporarily missing. In contrast, in this paper,
we assume that some attributes of objects in the data stream are permanently missing, due to packet losses or environmental
factors. Furthermore, previous techniques [4,5] set the missing attribute values to 0 (while attribute values are temporarily
missing), which underestimates the ranking scores and may cause wrong decision making. To solve this problem, in this
paper, we adopt differential dependency (DD) rules [6] to turn incomplete data into complete (imputed) ones. To our best
knowledge, no previous works explored the top-k query over incomplete data stream in the presence of permanently miss-
ing attributes. For the comparison of our work with top-k queries on uncertain data [7-9], please refer to Section 2.

Most importantly, in order to efficiently and effectively process Topk-iDS queries over incomplete data stream, we specif-
ically design the cost-model-based and space-efficient index structures for both data imputation and query processing,
explore efficient pruning strategies to reduce the imputation space and query time, and propose efficient Topk-iDS query
answering algorithms to enable the data imputation and query processing at the same time.

In this paper, we make the following major contributions:

. We formalize an important problem of the top-k query over incomplete data streams (Topk-iDS) in Section 3.

. We propose effective and efficient cost-model-based data imputation techniques via DD rules in Section 4.

. We devise effective pruning strategies to reduce the search space of the Topk-iDS problem in Section 5.

. We design effective indexes and efficient algorithms to tackle the Topk-iDS problem in Section 6.

. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed Topk-iDS processing approach
on real/synthetic data sets in Section 7.

b~ wWwN =

In addition, Section 2 reviews related works on stream processing, differential dependency, top-k queries, and incomplete
databases. Section 8 concludes this paper.

2. Related work
2.1. Stream processing

Stream processing usually requires fast processing speeds and limited memory consumption. Many previous works stud-
ied various queries over data streams, for example, the top-k query [10-12], join [13], aggregate queries [14], nearest neigh-
bor queries [15], skyline queries [16], keyword search [17], event detection [18], and so on. These works often assumed that
the underlying stream data are complete. Therefore, their proposed techniques cannot be directly applied to our Topk-iDS
problem in the scenario of incomplete data streams.

2.2. Differential dependency

Differential dependency (DD) [6] can be used for data cleaning [19], data repairing [20], data imputation [21], and so on.
Prokoshyna et al. [19] detected records that violate DDs and cleaned those inconsistent records. Moreover, DD can be also
used for constraint-based data repairs over various data types like graphs [20]. Song et al. [20] utilized DDs to repair vertex

345

W. Ren et al. Information Sciences 544 (2021) 343-371

labels in network graphs. Song et al. [21] applied DD rules to impute the missing attributes via extensive similarity neighbors
with the same determinant attributes on static databases. In contrast, our work considers not only the data imputation over
streams (instead of static databases), but also top-k query processing at the same time. Thus, it is more challenging to effi-
ciently tackle the Topk-iDS problem.

2.3. Top-k queries over certain/uncertain databases

Prior works on top-k query processing over certain data explored many techniques such as PREFER [22], the threshold
algorithm (TA) [23], branch-and-bound ranked search (BRS) [24], and so on. Regarding probabilistic top-k queries, different
top-k semantics were proposed over static probabilistic databases, such as U-Topk [25], U-kRanks [25], probabilistic thresh-
old top-k (PT-k) [7], probabilistic k top-k (Pk-topk) [9], a unified top-k approach [26], and so on. Specifically, U-Topk [25]
returns a vector of top-k highest ranked objects with the highest probability for all possible worlds; U-kRanks [25] obtains
k objects, where the i-th (1 < i < k) returned object has the highest probability to have rank i in possible worlds; PT-k [7]
retrieves a set of objects with high probabilities (greater a threshold) to be ranked top-k among all possible worlds; and
Pk-topk [9], a variant of the PT-k semantics, returns k objects with the highest probabilities to be ranked top-k among all
possible worlds.

In this paper, we adopt the PT-k semantics for monitoring top-k answers over the sliding window in incomplete data
streams. Previous works on top-k queries over certain/uncertain data usually considered queries over complete data (rather
than incomplete data). Thus, we cannot directly apply previous top-k techniques on (static) complete data to solving our
Topk-iDS problem over incomplete data streams.

Some previous works [4,5] considered top-k query processing over data streams, where some attribute values have trans-
mission delays (however, finally these attributes will arrive). When some attributes are not available, these works simply set
these attribute values to 0 [4]. This might return inaccurate or even wrong top-k answer set, and may not instantly report
dangerous events (e.g., computer network intrusion). In contrast, our Topk-iDS problem assumes that some attributes are
missing permanently (e.g., due to packet losses), and imputes the missing attributes via DDs. With a different assumption
about the data model, we cannot use previous approaches to tackle our Topk-iDS problem.

Furthermore, for our Topk-iDS problem, it is not efficient to conduct the data imputation before the top-k query answer-
ing. Therefore, we follow the style of “data imputation and query processing at the same time”, which is quite different from
previous works on top-k query processing on certain [11] or static uncertain database [7,9].

2.4. Incomplete databases

There are three widely adopted models for missing data [27]: missing completely at random (MCAR), missing at random
(MAR), and not missing at random (NMAR). Specifically, MCAR assumes that an attribute A; is missing randomly (i.e., neither
related to other attributes X (A; ¢ X) nor 4; itself); MAR assumes that the missing attribute A; is related to attributes X; and
NMAR assumes the missing value on attribute A; is only related to A4; itself, instead of other attributes X. In this paper, we
consider the MAR missing data model.

In the literature of incomplete databases under the MAR model, the imputation techniques of incomplete data can be
classified into categories such as rule-based [28], statistical-based [29], pattern-based [30], and constraint-based [31,32].
Due to the sparseness of data sets, these works may encounter the problem of having zero or small size of samples for imput-
ing the missing attributes. This may lead to serious problems such as biased imputed attributes or even the failure of imput-
ing data [6]. In contrast, our work uses a complete data repository R to impute missing attributes via DDs. Moreover, [33,34]
studied join and skyline operators over incomplete data streams, which have different query semantics from our Topk-iDS
problem. Thus, we cannot directly borrow previous techniques, and have to design novel pruning methods, data synopses,
and stream processing algorithms specifically for our Topk-iDS problem.

3. Problem definition

In this section, we formally define the problem of a top-k query over incomplete data stream (Topk-iDS), which takes into
account missing attribute values during the top-k query processing.

3.1. Incomplete data stream

3.1.1. Incomplete data stream
We first define the data models for incomplete data stream and the sliding window over a data stream.

Definition 1. (Incomplete Data Stream) An incomplete data stream, iDS, is an ordered sequence of objects,

{01,02,...,0r,...}. Each object o; arrives at timestamp i, and contains d attributes A; (for 1 <j < d), some of which have
missing attribute values, denoted as o;[A;] = “-".

346

W. Ren et al. Information Sciences 544 (2021) 343-371

In Definition 1, at each timestamp i, a new object o; arrives at data stream iDS. As an example in Table 1, at timestamp 1,
object o; arrives at iDS; at timestamp 2, a new object o, arrives at iDS; and so on.

3.1.2. The sliding window model
To process queries over data stream, a sliding window model [35] is often used, which always considers the most recent
objects from the data stream.

Definition 2. (Sliding Window, W;) Given an incomplete data stream iDS, a positive integer w, and a timestamp t, a sliding
window, W¢, contains w most recent objects, {0 1,0t w2, - ., 0¢}, from iDS, where each object 0; € iDS(t —w+ 1 <i<t)
arrives at timetamp i.

In Definition 2, at timestamp t, the sliding window W, contains a fixed number (i.e., w) of the latest objects from iDS. Fol-
lowing the sliding window model, a sliding window W, can be incrementally maintained, by adding newly arriving objects
and evicting the expired (old) objects.

Example 2. As an example in Fig. 1 and Table 1, assuming window size w = 3, the sliding window W3 contains three objects,
01,0 and o3, at timestamp 3. At timestamp 4, a new object o4 arrives at iDS, and the oldest one 0; expires. Thus, object 04 is
added to W3, and o, is removed from W3, which results in an updated sliding window W, = {0,,03,04}. Similarly, we can
obtain the sliding window W5 of size 3 at timestamp 5, that is, W5 = {03,04,05}. |

3.2. Imputation on incomplete data stream

In this paper, we impute the missing attributes by differential dependency (DD) rules [6], which can be used to impute a
missing attribute value of an incomplete object based on other (complete) attributes of the incomplete object. Assume that
we have a static data repository R, which contains (historical) complete objects to facilitate the data imputation. Then, we can
utilize the data repository R and DD rules (detected from R) to estimate the missing attributes of incomplete objects from
data stream iDS.

3.2.1. Differential dependency (DD)
We give the definition of a DD rule as follows.

Definition 3. (Differential Dependency [6], DD) A differential dependency (DD) rule is in the form of (X — A;, ¢[XAj]), where X
is a set of determinant attributes, A; is a dependent attribute (A; ¢ X), and ¢[Y] is a differential function that specifies distance
range restrictions on an attribute set Y (i.e., a set of distance restriction intervals, Ay.I = [0, €,], of attributes Ay in Y).

Intuitively, given a DD rule (X — Aj, ¢[XA;]) in Definition 3, if any two objects s; and s satisfy the distance restrictions, ¢[X],
on determinant attributes X, that is, |s;[Ax] — sk[Ax]| € [0, €a,] (= Ax.I) holds for each attribute A, € X, then their attribute A; also
follows the distance restriction $[Aj], that is, [si[Aj] — si[Aj]] € [0, €4] (i.e., AD).

As an example, Table 2 has a DD rule, DD; : (A — B, {[0,0.1],[0,0.1]}). That is, for any two objects such as s; and s,, if their
attributes A are within 0.1 distance (i.e., |s1[A] — 52[A]| = 0.1 < €4 holds), then their B attribute values must be within 0.1 dis-
tance (i.e., |s1[B] — s2[B]| = 0.1 < €3).

The Advantages of Employing DDs as the Imputation Tool. The advantages of DDs as our imputation method are three-
fold. First, compared with the state-of-the-art constraint-based approach [31], DDs do not require any labelled data, and they
can be automatically learned from a static data repository R. Moreover, compared with the methods requiring exact match-
ing (e.g., edit rule [28]), DDs can tolerate differential differences between attribute values, which can lead to a good impu-
tation accuracy, even in sparse data sets. Furthermore, compared with the imputation methods (e.g., SCREEN [32]) based on
incomplete data themselves only, DDs have less chance to fail the imputation by leveraging a static repository R. For exam-
ple, [32] cannot deal with the case that two consecutive records are incomplete at the same time. In contrast, our DD-based
imputation does not have the limitations above.

3.2.2. Missing data imputation

With a DD rule in the form of X — A;, given an incomplete object o; with missing attribute A; and a complete object sy, if
objects o; and s, satisfy the distance constraints on attributes X, attribute value s;[A;] of complete object s, can be regarded as
a candidate value to fill missing attribute o0;{A;] of incomplete object o;. Note that, in this paper, we do not consider the dis-
tance constraint, A;.I, on dependent attribute A; in the process of data imputation. That is, in the process of imputing o;[A;],
instead of a value interval [s[A;] — €4;, Sk[Aj] + €4], we only consider s[A;] as a candidate value.

After the imputation, an incomplete object o; can have several possible instances o;; with different imputed attribute val-
ues o0;[A;]. Without loss of generality, we assume each instance o;; is supported (imputed) by o;;.freq objects (or a combina-

0;.freq

tion of objects for multiple missing attributes) in R. Then, each instance is associated with a probability o;,.p = o e

¥0; 4 €0;

347

W. Ren et al. Information Sciences 544 (2021) 343-371

Table 2
An example of a complete data repository R with 2 DD rules, DD; : (A — B,{[0,0.1],[0,0.1]}) and DD, : (A — C,{[0,0.2],[0,0.2]}).
obj. [A] temperature [B] density of oxygen [C] sunlight intensity
Sy 0.2 0.2 0.3
Sy 0.3 0.3 0.2
S3 0.6 0.5 0.5
Sa 0.6 0.5 0.8
S5 0.7 0.6 0.8
S6 0.8 0.7 0.8

Example 3. Table 2 shows a complete data repository, R={s1,52,53,54,55,56¢}, with two DD rules,
DD, : (A— B,{[0,0.1],[0,0.1]}) and DD, : (A — C,{[0,0.2],]0,0.2]}), where A,B, and C represent attributes temperature,
density of oxygen, and sunlight intensity, respectively.

Incomplete object o3 in Table 1 has a missing attribute B (i.e., the density of oxygen). We can apply the DD rule,
DD, : (A — B,{[0,0.1],[0,0.1]}), to impute this missing attribute o3[B] via R in Table 2. Since object o3 satisfies the distance
constraints on attribute A with objects s; and s, in R (e.g., |03[A] — s1[A]| = 0.1 € [0,0.1]), we can thus treat attribute values
s1|B] = 0.2 and s, [B] = 0.3 as 2 possible values of missing attribute o3[B], that is, attribute o3[B] may be either 0.2 or 0.3, each
associated with a probability 0.5. [|

Note that, we select DD rules as our imputation tool, since DD rules can tolerate differential differences between attribute
values. By using a complete data repository R, the imputation via DDs can provide good imputation results even on sparse
data, which cannot be achieved by traditional exact matching techniques such as editing rule [28] and relational dependency
network [29].

3.2.3. Imputed data stream
Next, we define the imputed data stream, by inferring the missing attributes in incomplete data stream iDS, based on DDs
and R.

Definition 4. (Imputed Data Stream, pDS) Given an incomplete data stream iDS = (01,02,...,0;,...) with some missing
attribute(s) 0;[A;] (=“-"), its imputed (complete) data stream, pDS = (o},05,...,0f,...), is composed of imputed (complete)
objects, of, obtained from objects o;, by filling all the missing attribute values. Each imputed object of € pDS has a set of
mutually exclusive (complete) instances, o;;, with existence probabilities o;,.p, where Zof_,eofoil'p =1 holds.

In Definition 4, the imputed data stream pDS is obtained by replacing those incomplete objects o; in iDS with their pos-
sible instances/samples o0;; (forming uncertain objects [36] or X-relation objects [37]), each associated with an existence
probability o;;.p.

Example 4. Table 3 shows an example of the imputed data stream pDS, based on incomplete data stream iDS in Table 1. By
filling the missing attributes of incomplete objects, o3 and os, in Table 1, the imputed data stream pDS is given by
{0, 08,085,008, ...}, as depicted in Table 3.

As mentioned in Example 3, object o3 € iDS has two possible B (i.e., the density of oxygen) values, 0.2 and 0.3, both with

confidences 0.5. As a result, the imputed (probabilistic) object 04 € pDS has two instances, 031 and 03 », with equal existence
probabilities 0.5. The case of the imputed object 0f € pDS is similar. .

3.2.4. Possible worlds of the imputed data stream

In the literature of probabilistic databases, we usually use the possible worlds semantics [38]. Here, for the imputed data
stream pDS, we also consider possible worlds, pw(W,), of the sliding window W; in pDS, each of which is a materialized
instance of the sliding window W, that can appear in reality. We have the following formal definition:

Definition 5. (Possible Worlds of the Imputed Data Stream, pw(W;)) Given a sliding window W; of an imputed data
stream pDS, a possible world, pw(W};), is a materialization of the sliding window W, that can appear in the real-world, where
each (incomplete) object o; € W, contributes one (imputed) instance o;; to pw(W;).

Each possible world, pw(W;), has an appearance probability, given by:

PripwWo} = [oup. (1)

0;1Epw(Wr)
Intuitively, in Definition 5, each possible world pw(W;) of the sliding window W; corresponds to a combination of
instances from probabilistic objects (i.e., objects with imputed attributes) o; € W;, which may appear in the real-world with
some probability Pr{pw(W,)} (as given in Eq. (1)).

348

W. Ren et al. Information Sciences 544 (2021) 343-371

Table 3
The imputed data stream, pDS, in the example of Table 1 (DD, : (A — B, {[0,0.1],[0,0.1]}) and DD, : (A — C,{[0,0.2],[0,0.2]}).
obj. inst. [A] tem- [B] density [C] sunlight ranking prob.
perature of oxygen intensity score
o? 011 0.1 0.1 0.2 0.4 1
0b 021 0.4 0.3 0.5 1.2 1
0} 031 0.3 0.2 0.2 0.7 0.5
032 0.3 0.3 0.2 0.8 0.5
o 041 0.2 0.2 0.3 0.7 1
051 0.6 0.5 0.5 1.6 0.167
o? 055 0.6 0.5 0.8 1.9 0.5
053 0.6 0.6 0.5 1.7 0.083
054 0.6 0.6 0.8 2.0 0.25

Example 5. In Table 3, let W5 = {0}, 0}, 02} be a sliding window at timestamp 5 of size w = 3 from the imputed data stream
pDS. Table 4 shows all the 8 possible worlds, pw; (Ws) ~ pwg(W5), of sliding window Ws. For example, possible world
pw; (Ws) contains object instances 031,041, and 0s 1, and its appearance probability, Pr{pw; (Ws5)}, is given by multiplying
their existence probabilities, that is, Pr{pw;(Ws)} =031.p-041.p-051.p = 0.5 x 1 x 0.167 = 0.0835. |

3.3. Top-k queries over incomplete data stream
In this subsection, we provide the definition of the top-k query over incomplete data stream (Topk-iDS) below.

3.3.1. Ranking function
In this paper, we consider the ranking function, F(-), below to rank (instances of) objects over the data stream.

Definition 6. (Ranking Function, 7(-)) Given positive weights, A;.v, for attributes A; and an object sy, a ranking function,
F(sk), returns the ranking score of object s, as follows:

d

= 2wt Ay, 2)

1

Intuitively, in Definition 6, the weight A;. v of attribute A; (as given in Eq. (2)) indicates the importance of attributes A;. As a
result, a ranking function F(-) will calculate the ranking score of a complete object s;, by summing up the attribute values
sk[Aj] weighted by A;.v.

Example 6. In the example of Table 1, the ranking function is given by: F(sy) = si[A] + Sk[B] + s¢[C]. Thus, in Table 3, an object
instance 017 = (0.1,0.1,0.2) has the ranking score 7(0;7) =0.1+0.1+0.2=0.4.

3.3.2. The Topk-iDS problem
We next formalize the Topk-iDS query, which follows the probabilistic threshold top-k (PT-k) semantics [7].

Definition 7. (Top-k Queries Over Incomplete Data Stream, Topk-iDS) Given an incomplete data stream iDS, a ranking
function F(-), and a probabilistic threshold «, a top-k query over incomplete data stream (Topk-iDS) continuously monitors
top-k (imputed) objects o; € W, from iDS, such that they have the highest ranks with probabilities, Prrop_ips(0f), greater than
threshold o, that is,

Prrogeins(00) = > Pripw(Wo)} - x(0i, k, pw(Wy)) > o (3)

pw(Wy),0€pw(We)

where o;; is an instance of the imputed object o that appears in possible world pw(W,), and function (o, k, pw(W)) = 1 if
o0;; is among k instances with the highest ranking scores in possible world pw(W,) (otherwise, x(o;;, k, pw(W)) = 0).

In Definition 7, at timestamp t, Topk-iDS will retrieve all top-k ranked imputed objects of € W, with probabilities,
Proopiips(0?), greater than o. Intuitively, to compute the Topk-iDS probability Prrop_ips(0f) (as given in Eq. (3)), we can
sum up all appearance probabilities, Pr{pw(W,)}, of possible worlds pw(W,), which contain an instance o;; of the imputed
object of, where oy, is in the top-k result of pw(W,) (i.e., when y(o;;, k, pw(W;)) = 1 holds).

349

W. Ren et al. Information Sciences 544 (2021) 343-371

Table 4
Possible worlds, pw(W5s), of W5 from the imputed data stream, pDS, at timestamp 5
in Table 3 (w = 3).

Possible world of W5 Content of pw(Ws) Probability Pr{pw(Ws)}

pwy(Ws) {031,041,051} 0.0835
pw,(Ws) {03.1,041,052} 0.25
pw3(Ws) {031,041,053} 0.0415
pw4(Ws) {031,041,054} 0.125
pws(Ws) {032,041,051} 0.0835
pwg(Ws) {032,041,052} 0.25
pw;(Ws) {032,041,053} 0.0415
pwg(Ws) {032,041,054} 0.125

Example 7. We consider object 0f € pDS in Table 3, where w = 3,t = 5,k = 2, and o = 0.8. In particular, object o5 has rank 1
in all 8 possible worlds, as shown in Table 4. Thus, we can sum up appearance probabilities of these possible worlds, and
obtain the probability Prrop;_ins(08) = 1 (as given in Eq. (3)), which is greater than o (i.e., 0.8). Object 05 is thus one of our
Top2-iDS query answers. |

3.3.3. Challenges

The major challenges to tackle the Topk-iDS problem are threefold. First, many existing works [4,5,7] on stream process-
ing usually assume that the data are complete or data with the missing attributes are simply ignored. However, this assump-
tion may not hold in practice (e.g., sensory data may be missing during transmission) or cause inaccurate/wrong query
results. Thus, existing top-k query processing techniques cannot be directly applied to our Topk-iDS problem over incom-
plete data stream, and we should design effective and efficient approach to impute the missing attributes of incomplete
objects.

Second, it is quite challenging to effectively tackle our Topk-iDS problem under possible worlds semantics [38] over the
imputed data stream. As shown in Eq. (3), due to the exponential number of possible worlds, the time complexity is high
with a large window size w and a large number of missing attributes of incomplete objects. Thus, it is time consuming to
process our Topk-iDS problem in the stream environment, and we should design effective approaches to reduce the search
space of our Topk-iDS problem.

Third, it is non-trivial how to effectively and efficiently perform the Topk-iDS query over incomplete data stream. This is
because, we need to perform the data imputation, and meanwhile dynamically update and maintain the probabilistic top-k
objects over sliding windows as time changes. Therefore, in this paper, we need to propose effective indexing methods to
facilitate efficient Topk-iDS query processing algorithms.

Algorithm 1. Topk-iDS Processing Framework

Input: an incomplete data stream 7D.5, a static (complete) data repository R,
a timestamp ¢, an integer k, and a probabilistic threshold «
Output: a Topk-iDS query answer set over W,
// Pre-Computation Phase
1 offline construct indexes, I;, over data repository R
// Imputation and Topk-iDS Query Processing Phase
2 for each expired object o), at timestamp t do
3 L update rop-k dual layers, T DL, over W with o} and evict o} from W}

N

for each new object o; arriving at W; do

5 traverse index, I;, over R and top-k dual layers, T'D L, over W, at the
same time to enable DD attribute imputation and top-k computation, resp.

6 if object of cannot be pruned then

7 L incrementally update the fop-k dual layers, T DL, with object 0¥

8 return all objects on the first layer of top-k dual layers, T DL, as actual
Topk-iDS answers

350

W. Ren et al. Information Sciences 544 (2021) 343-371
3.4. Topk-iDS processing framework

Algorithm 1 illustrates a framework for our Topk-iDS query answering, which consists of two phases. In the first pre-
computation phase (Section 6.1), we offline build indexes Z; (for 1 < j < d) over a static (complete) data repository R for
imputing attributes A; (line 1). Next, in the imputation and Topk-iDS query processing phase (Sections 6.2 and 6.3), we dynam-
ically maintain a data synopsis, called top-k dual layers (TDL), which consists of two layers of potential Topk-iDS candidates
over incomplete data stream iDS. For expired objects o;/, we delete o7 from sliding window W, and update TDL (lines 2-3).
Similarly, regarding the insertion of a new object o;, we will use indexes Z; over R to help with the data imputation (as will be
discussed in Section 4) via differential dependencies (DDs), and apply pruning mechanisms (discussed later in Section 5) to
reduce the search space of the Topk-iDS problem (lines 5-6). If object o; cannot be pruned, then we will insert it into
TDL. Finally, we directly return actual Topk-iDS answers from the top-k dual layer data structure TDL (line 8).

Table 5 depicts the commonly-used symbols and their descriptions in this paper.

4. Cost-model-based imputation of incomplete objects

In this section, we will explore how to impute the missing attributes of incomplete objects in data streams via differential
dependencies (DDs) [6] discovered from a historical complete data repository R. Instead of imputing the missing attribute via
a single DD (Section 3.2), in the sequel, we will consider the attribute imputation via multiple DDs with the same dependent
attribute A; (for 1 <j < d). In particular, in order to select good CDDs for attribute imputation, we introduce a conceptual
imputation lattice (as a guideline) and an effective cost model via the fractal dimension [39].

4.1. Missing attribute imputation via DDs

In some scenario, there may be more than one DD rule, X; — A;,X> — 4;, ..., and X; — A;, with the same dependent attri-
bute A;. In this case, without prejudice, we may need to consider combining all these DDs, that is,
(X1X3 ... X — Aj, ¢[X1X2 ... XiAj]), for imputing missing attributes A;.

The advantages of combining these DDs are as follows. Intuitively, the intersection of determinant attribute sets from dif-
ferent DD rules makes the query range X;.I A X,.I A ... A X,.I more selective. For example, given a schema with three attri-
butes {A,B,C}, and two DD rules, DD; : A — C,{[0,0.1],]0,0.1]} and DD, : B — C,{[0,0.2],[0,0.1]}, in order to impute
attribute C, we can use a combined DD rule AB — C with tighter distance constraints, that is, AI A B.I =[0,0.1;0,0.2]. This
will lead to a smaller set of object candidates for filling the missing attribute A; of an incomplete object, higher confidences
for fewer imputed instances of incomplete object, and lower time cost for the data imputation.

4.2. DD selection strategy

As mentioned above, when multiple (I) DDs with the same dependent attribute A; are discovered from the historical
repository R, we can combine them to obtain one DD rule X;X, ...X; — Aj, and use the combined rule to impute the missing
attribute A; of an incomplete object o;. However, there is a prerequisite for the usage of the combined rule, that is, there must
exist at least one complete object in R satisfying the distance constraints (w.r.t. object o;) on attributes XX, ...X,.

If no complete objects can be obtained from R for imputing o0;[A;], we can alternatively select a subset of attributes in
Xi1X, ... X, for imputing o;[A;]. However, there are an exponential number of attribute subsets, and we need to design an effec-
tive strategy to choose an appropriate DD rule.

In the sequel, weintroduce a conceptual imputation lattice to assist the DD selection.

Conceptual imputation lattice (Lat;). Given | different DD rules, X;, X5, ..., X, with the same dependent attribute A;, we con-
sider a conceptual imputation lattice, Latj, where 1 < j < d. Each lattice Lat; is composed of (I + 1) levels. To be specific, on level
0 of the lattice, we have an empty set, indicating that none of the DD rules can be used to impute missing attribute A;; on
level 1, we have I different DD rules X; — A; (for 1 < s < I); on level 2, we have DD rules in the form XX, — A; (for 1 < a,b <
and a # b); and so on. Finally, on level I, we only have one DD rule, that is, X; X ...X; — A;.

DD selection via Latj. Our DD selection strategy is to traverse lattice Lat; to find the best DD rule from level [to level 0.
When we reach a DD rule DD; on a level v of Lat;, we will first estimate whether or not there are any objects s, in data repos-
itory R that satisfy the distance constraints w.r.t. o;. If the estimated number of objects s, is nonzero, we will use this DD rule
DD, for imputing o0;[A;]; otherwise, we continue to check the next DD rule on level lv. When the traversal of the lattice reaches
level O (i.e., no DD rule can be used to impute o;[Aj]), we will apply a statistics-based method [29] to impute o;[A;] with the
probabilistic distribution of attribute A; in R.

Since it is not efficient to directly count the number of objects in R satisfying distance constraints, in this paper, we also
provide a cost model (please refer to Appendix B.1 for details) to estimate this COUNT aggregate within a query range (i.e.,
following distance constraints) via fractal dimension [39]. If the expected COUNT of a DD rule is greater than or equal to 1, we
will use this DD rule for imputing o0;[A;].

351

W. Ren et al. Information Sciences 544 (2021) 343-371

Table 5
Symbols and descriptions.

Symbol Description

iDS An incomplete data stream

pDS An imputed (probabilistic) data stream

0; An object arriving at timestamp i from stream iDS

of An imputed probabilistic object in the imputed stream pDS

w The size of the sliding window

W, The most w recent objects from stream iDS or pDS at timestamp t
pw(W,) A possible world of imputed probabilistic objects in W,

F() A ranking function given by Eq. (2)

5. Pruning strategies
5.1. Problem reduction

In Definition 7, for an incomplete object o;, we calculate its top-k probability by taking into account all possible worlds
pw(W,) of the sliding window W, € pDS at timestamp t, which is inefficient, or even impossible, to enumerate (as given in Eq.
(3)). Intuitively, for o;, its top-k probability only depends on whether there are more than k other objects o, in W, that have
higher ranking scores than o; (i.e., 7(0,) > F(0;)). Therefore, we can reduce the problem of calculating the top-k probability,
Propiips(0?), of the imputed object of from the possible-world level to the object level. Specifically, in the stream environ-
ment (instead of static uncertain databases [7,40-43]), we rewrite the top-k probability Pry_ips(0f) of of by summing up the
probabilities that each instance, o;; € of, is a top-k object instance among all objects in the sliding window W, that is,

Pryopic_ips(07) = Z <Ou~P'

k
Vo cof j=

HW:,j - 1)>7 (4)

j=1

where 0;,.p is the existence probability that instance o;; of of appears in the real-world, and function H(W,,j — 1) is the prob-
ability that (j — 1) objects in W, have higher ranking scores than that of instance o;.

5.2. An equivalent form of Prrop_ips(07)

From Eq. (4), we can see that the top-k probability of instance o, (i.e., Z}‘:]H(Wt.j — 1)) is only related to those instances
with higher ranking scores than o;; (rather than the entire sliding window W,).

For objects in W, we can obtain a sorted instance list, denoted as L;,s, by sorting their instances in a non-increasing order of
their ranking scores.Similar to [7], for each object o, with some instances ranked before instance o;; in the list L;,s, we com-
bine these instances of o, into a condensed instance o¢ (= {0,5]0,s € 07, F(0,5) > F(0i1)}), associated with probability o.p
(=Z\mz,seagoz.sp) and an interval of ranking scores (which is enclosed by the corresponding instance scores). This way, these
condensed instance oS (w.r.t. instance o;;) can form a so-called dominant condensed instance set, Sgm(0i;), where
Saom(0i) = {05|0, € W, V0,5 € 05, F(0,5) > F(0i1)}.

With the notion of Sy, (0;;), we can rewrite Eq. (4) as:

Proopk-ips(0f) = Z <0i.l~P'

k
Vo; cof j=

H(Sdom (0i1).J — 1)>7 5)

j=1

where H(Sgom(0i1),j — 1) is the probability that exactly (j — 1) compressed objects from Sgom(0;;) appear.

Note that, although we reduce the top-k probability calculation from the possible-world level (i.e., Eq. (3)) to the object
level (i.e., Eq. (5)), it is still time-consuming to compute this probability involving many probabilistic objects. To further
reduce the time complexity, we will introduce several pruning strategies, which discard false alarms with low top-k confi-
dences (i.e., < o) and reduce the problem search space.

5.3. Pruning strategies

In this subsection, we propose three pruning strategies, top-instance pruning, mid-instance pruning, and multi-instance
pruning, respectively, which can help discard false alarms with low top-k confidences (i.e., < o).

5.3.1. Terminologies
Before we introduce the pruning strategies, we first present several terms and their meanings below.

o The top instance o, : an instance with the highest ranking score among all instances of object of € W..

352

W. Ren et al. Information Sciences 544 (2021) 343-371

 The bottom instance o; : an instance with the lowest ranking score among all instances of object of € W,.
o The middle instance o;,,: given all instances, o;;, of object of in a non-increasing order of their ranking scores, the middle
instance o;,, satisfies the conditions that (1) 321", 0,.p < o, and (2) >-"T'0;.p > o

5.3.2. Top-instance pruning

The top-instance pruning method filters out false alarms via top instances of objects. Specifically, if the top instance o;" of an
imputed object of cannot have top-k highest ranking scores (in possible worlds) during its lifetime, then object o? can never
be in the Topk-iDS query answer set over the stream.

Below, we formally give this top-instance pruning lemma.

Lemma 5.1. (Top-Instance Pruning) Given a top instance o;” of imputed object of € W and its dominant condensed instance set
Saom(0]"), object of can be safely pruned, if there exist k condensed instances 05 € Sqom(0;") such that: (1) [Tvoc0sp > 1 -0, and (2)
Vz,t, > t;, where t, and t; are arrival times of objects o, and o;, respectively.

Proof. Please refer to Appendix A.1.

As illustrated in Fig. 2, for imputed object o, k condensed instances o¢ (1 < z < k) arrive after object of and have ranking
scores higher than its top instance o;. Moreover, the multiplication of existence probabllltles from k condensed instances is
greater than 1 — « (i.e., H'z‘zl 0S.p > 1 — o). Due to the existence of these k condensed instances (objects), top instance o; (or
object o) cannot be in the top-k result with high confidence.

5.3.3. Mid-instance pruning
Similarly, our second mid-instance pruning method will check whether or not a middle instance o; ,, of object of can become a
top-k object in its lifetime. If the answer is no, then object o can be pruned. Below, we provide this pruning method.

Lemma 5.2. (Mid-Instance Pruning) Given a middle instance o; ,, of imputed object of, and its dominant condensed instance set
Saom(0im), Object of can be safely pruned, if there are at least k condensed instances 05 € Sqom(0;), Such that for these objects o,,
we have: (1) F(o;) = F(0im), and (2) t; > t;.

Proof. Please refer to Appendix A.2.

5.3.4. Multi-instance pruning

We will try the third multi-instance pruning strategy, in the case that an object of cannot be pruned by neither the top-
instance nor mid-instance pruning methods. That is, for an imputed object of, we will derive an upper bound,
UB_Prropk_ips(0), of its top-k probability Prrop_ips(0?) (given in Eq. (5)). If this upper bound is smaller than o, then we can
safely prune object of.

In order to compute the upper bound UB_Prropk_ips(0f), we alternatively consider summing up probability upper bounds of
instances o;; in object of. We have the following pruning lemma via multiple instances.

Lemma 5.3. (Multi-Instance Pruning) Given L instances, o;, (1 < 1< L), of an imputed object of in a non-ascending order of
their ranking scores, and dominant condensed instance sets Sqom (0;;), object of can be safely pruned, if for some 1 < v < L, it holds
that: (1) for all oS € Sgom(0i)),t; > t;, and (2) UBJ’rTopk ins(0f) < a. Here, we have the probability upper bound:

UB—PrTopk IDS Zoza .D- UB1 OIa Z Oip.D - UBZ(Olb) (6)

a=1 b=v+1
where UB1(0i4) = Z}’-‘:l << >]'[o“ D- Hy (1 —o0}.)) (for Vo;,o; € Sdom(0iq),05.p > o;p), N is the number of condensed

instances in Sgom(0ia), (n) is the number of combinations to select m out of n objects, and UB,(0;}) is the smallest UB;(0;4)

among all instances 0;4 (1 < a < v).

Proof. Please refer to Appendix A.3.

Intuitively, in Lemma 5.3, we only need to access partial instances 0;, (1 < a < v), and compute the probability upper
bound UB_Prrp_ips(0) based on Eq. (6), which can be used to enable the multi-instance pruning.

We apply the three pruning rules above in the order of top-instance pruning, middle-instance pruning, and multi-
instance pruning, where the latter ones (e.g., multi-instance pruning) have higher pruning power than the former one(s),

353

W. Ren et al. Information Sciences 544 (2021) 343-371

2
S r o |
a | e ko
en|instance | . o0¢ 3 el |
£ 0y 2 ey 1!
— Negt @] I.| I
= | e ol 101 1.l
| &

Sl ogr o i e

AN

- ——— s

1@ I

| |

o |

1@ |

| |

{ {

t; 4L timestamp

H’z‘=l op>1-a

Fig. 2. Illustration of the top-instance pruning.

but need more computation cost. In other words, we first use the top-instance pruning rule with less computation cost, then
use the middle-instance pruning (if top-instance pruning rule fails to prune), and finally apply the multi-instance pruning
with the highest pruning power (in case the previous two pruning methods fail to prune). Therefore, these three pruning
methods are applied together in order in our approach to provide high pruning power and meanwhile efficient computation
cost. The three pruning strategies above are applied in Section 6.3 (Algorithm 2), and evaluated in Section 7.3.

6. Top-k processing over incomplete data streams

In the sequel, Section 6.1 discusses how to build the index structure, I; over the data repository R, which is to facilitate and
accelerate missing attribute imputation. Then, Section 6.2 proposes a novel data synopsis, namely Top-k dual layers (TDL),
built over sliding window W, of incomplete data stream, which is to dynamically maintain candidate top-k objects over
W.. Finally, Section 6.3 presents how to leverage the index structure I; and data synopsis TDL to perform data imputation
and top-k query answering at the same time over incomplete data stream.

6.1. Cost-model-based indexes on data repository R for imputation

In this subsection, we will present our cost-model-based indexes, I; (1 <j < d), over a complete repository R, each of
which can facilitate quick imputation of a missing attribute A; in incomplete objects from iDS.

6.1.1. Index structure

To enable fast imputation of missing attributes in objects o; € W;, we will derive d indexes, ; (for 1 < j < d), each of which
can quickly and accurately access complete objects s, in repository R, and impute the values of missing attribute A;.

Given IDD rules, {X; — Aj, X2 — A;, ..., X; — A;}, with dependent attribute A;, we will build an index I; over R for attributes
in Uj = X; UX, U...UX,. In particular, we divide (complete) objects s € R into n clusters, cls; ~ cls,, of sizes within [m, M].
Then, we invoke the normal “insertion” function, and insert clusters ¢, (for 1 < k < n) into an Rx-tree [44].

Fig. 3 shows an example of constructing such an index w.r.t. a DD rule (i.e., DD, : A — B), where U; = {A} and A; = B. In
this toy example, we have 3 clusters, ¢; ~ c3, which are stored in the leaf nodes of an Rx-tree.

Moreover, each node e in the index [; is associated with a histogram, Hy,, over attributes U;, which stores a summary of

complete objects s in e. To construct this histogram Hy,, we first divide the data space of node e into 74 buckets, buc, of equal

size, where 2 is the number of intervals for each attribute in U; and d is the number of attributes (i.e., |U;|). Next, for each
bucket buc, we store the following information for the pruning (discussed in Section 5.3):

1. the number, buc.cnt, of complete objects s, in bucket buc, and
2. the bound, buc.I = [buc.A;, buc.Af], of attribute A; for all objects s € buc.

In the previous example of Fig. 3, histogram H, of MBR node e contains 2 buckets, buc; and buc,, over attribute A. For
instance, bucket buc, contains a count aggregate buc,.cnt and an interval buc,.I for attribute B.

Please refer to Appendix B for the details of our cost model for selecting good clusters in cls, as well as the data imputation
and object pruning via the index I;.

354

W. Ren et al. Information Sciences 544 (2021) 343-371

buc,.cnt

histogram buc,

—| H, buc,.I
buc,

cluster set (cls)

Fig. 3. Index over repository R with histogram w.r.t DD; : A — B in Table 3.

6.2. Top-k dual-layer synopsis for the sliding window

Next, we propose a data synopsis, namely top-k dual layers (TDL), for the sliding window W, of incomplete data stream
iDS, which stores potential Topk-iDS query answers.

6.2.1. Top-k dual layers (TDL)

The TDL data synopsis is built over a sliding window W, of the imputed data stream pDS, which contains two layers. In
particular, the first layer contains the current top-k query answer set (i.e., satisfying Prrop_ips(0f) > o for all objects of on this
layer); the second layer keeps a set of objects, of, that are not currently in the top-k answer set, but might become top-k
answers in future before they expire (i.e., 0 < Prp_ips(0f) < o holds at the current timestamp).

As shown in Fig. 4, each valid object o in synopsis TDL is associated with two data structures: a dominant condensed
instance set Sqom(0;") Of its top instance o;" (as defined in Section 5.1; which can be used by Lemma 5.1 vector containing 8
items listed below:

. the layer number (1 or 2), of.layer, on which object of stays on TDL;

. a pointer, o; .pos, pointing to the bottom instance o; of object of in the sorted instance list Lins;

. a pointer, 0;,,.pos, pointing to the middle instance o;, of of in the sorted instance list Li;

. a pointer, o;".pos, pointing to the top instance o] of of in the sorted instance list Lis;

. (layer 2 only) a pointer, 0,5.pos, pointing to an instance o, in sorted instance list L;,;, where o0, is the first detected instance
in Ly, (starting from the beginning) such that the instance set prior to 0, makes Pryp_ips(07) < o hold (via Eq. (5));

. (layer 2 only) a timestamp, t;, indicating the timestamp to re-check the top-k probability of of;

. the earliest expiration timestamp, t;, among all condensed objects stored in the dominant condensed instance set Sqom (0;);
and

8. the number, N,,, of condensed instances o in the dominant condensed instance set S4om(0im), where the bottom instances

o; of objects o? have higher ranking score than that of middle instance o;, (i.e., F(0;) > F(0;)) and expire after object o;

(i.e., t; > t;).

b W N =

N

Fig. 4 shows an example of an object of in TDL, which has two extra structures, S4m(0;") and the vector. The vector stores
information such as the layer number for Item (1) (i.e., of .layer = 2 means object of is on layer 2 of TDL), the pointers (i.e.,
four pointers in Items (2)-(5), pointing to instances in L;,s), timestamps (Items (6) and (7)), and a counter (Item (8)).

All the stored information above will help accelerate the Topk-iDS query processing, which will later be discussed in
Section 6.3.

Properties of TDL. We list the properties of the TDL synopsis below.

Property 1. (Completeness) The TDL synopsis contains all the objects of from iDS that have chance to be top-k objects
before they expire.

355

W. Ren et al. Information Sciences 544 (2021) 343-371

(1) layer numer

(2) pointer to bottom instance o] sorted instance list (L;,)

(3) pointer to middle mstance Oim ¥ —

(4) pointer to top instance o} o O[O lﬂd | 0;
LY

(5) pointer to instance o_
(6) timestamp to recheck top-k confidence

(7) smallest expiration timestamp among
instances in S,,,,m(o',!) ="
(8) number of bottom instance o, in L,
with F(o;) > F(o})

i
|
g
| 1 Ol B
layer1 || @ @ - Q: ,,,,,, -

| S S dommant 7 ©
ey s o 7
laver 2 || opgl condensed
y LQ—Q———’—— instance set]3‘ """ —
top-k dual layers __ Sum(0}) m [
(TDL) vector

Fig. 4. Illustration of the top-k dual layers.

Proof. Please refer to Appendix C.1.

Property 2. (No False Dismissals) If an imputed object of is not on the first layer of the top-k dual layers TDL over W,, then
of cannot be a top-k object at current timestamp t.

Proof. Please refer to Appendix C.2.

6.3. Dynamic maintenance of the Top-k dual layers

As discussed in Section 6.2, TDL maintains the current top-k objects (on layer 1) and potential top-k objects in the future
(on layer 2). In the sequel, we will explore how to dynamically maintain the TDL, upon the arrival of new objects and expi-
ration of old objects.

Insertions. When a new object o; arrives at timestamp t, we need to decide how to update the TDL synopsis with object o;.
In particular, Algorithm?2 shows the pseudo code of the insertion, which first inserts object o; into a layer in TDL, and then
updates other objects o} in TDL.Finding the layer to insert new object of. At timestamp t, when a new (incomplete) object o;
arrives, we will utilize index I; and DDs to obtain the imputed probabilistic object of (with attribute intervals on the node
level; line 1), and update the sorted instance list Li,; by inserting instances (or that with attribute intervals) in of (line 2). Then,
we will check if of can be inserted on first layer of the TDL via the dominant condensed instance set Sqom(0;") of its bottom
instance o; (lines 3-6). If there are less than k condensed instances oS having higher ranking scores than that of bottom
instance o; (lines 3-4), or o; is a top-k object via Eq. (5) (lines 5-6), object o; is definitely a current top-k answer, and we
will put it on layer 1 of TDL. If we cannot determine which layer o; should stay via its bottom instance o;, we will calculate
the top-k probability of multiple instances of object of via Eq. (5) (lines 7-10). If o satisfies the constraint of the top-k prob-
ability (i.e., > «), we insert of into layer 1 of TDL (lines 7-8); otherwise, o is not currently a top-k answer, and we put it on
layer 2 of TDL (lines 9-10).

After we add o to TDL, we can compute Sy, (0;") and its vector (as mentioned in Fig. 4) for imputed object o?, which can
assist top-k probability calculation later (line 11).Updating objects o} in TDL. For each object o} in TDL, we first check whether
or not there are any instances of of having higher ranking scores than that of its top instance o; (line 13). If the answer is yes,
we may need to update Sy, (0F) and the earliest expiration timestamp ¢y, for condensed objects in Sgm(07) (lines 14-15).
After that, we will prune o} via Lemmas 5.1 ~ 5.3 (lines 16-23). Specifically, we first check if object o§ can be pruned by
k condensed instances of (top-instance pruning as given in Lemma 5.1; lines 16-17). If o} cannot be pruned by Lemma
5.1, we will see if it can be pruned by mid-instance pruning method via Lemma 5.2 (lines 18-21). If o} still cannot be pruned,
we will use the multi-instance pruning in Lemma 5.3 (lines 22-23).

If 0§ cannot be pruned, we will update data structures associated with o} in TDL (lines 24-33). Specifically, if o} is on the
first layer of TDL and some of its instances have lower ranking scores than that of object of, we will re-check its top-k prob-
ability (lines 25-26). If Pry_ips(0§) < o, we will move o} from layer 1 of TDL to layer 2, and update its pointer o§.pos and
timestamp t; (lines 27-29). If o} is not on layer 1, we will check whether or not the current timestamp t reaches the recheck-

356

W. Ren et al. Information Sciences 544 (2021) 343-371

ing timestamp t; (line 30). If t > t,, we will update the two data structures of of (line 31). After the update, if current top-k
probability of o} is greater than o, we move o} from layer 2 to layer 1 on TDL (lines 32-33).

If object of is pruned, we will update data structures of each object of in TDL (when some instances of of affect the prob-
ability of instances in o}, (lines 34-36)

Algorithm 2. Insertion

Input: the top-k dual layers 7D L and a new object o; at timestamp ¢

Output: the updated TDL

impute and obtain of via DDs and index [;

update sorted instance list Ly

if the number of condensed objects 05 € Saom(0;) is less than k then
L put o; on the first layer of DL

AW =

wn

else if Prropk—ins(o;) > a via Eq. (5) then
6 L put o; on the first layer of DL
7 else if Prropi—ips(0f) > a via Eq. (5) then
8 L put o; on the first layer of DL

9 else
10 L put o; on the second layer of "D L // a potential answer in the future

11 compute Sgom (ozr) and a vector of 8 items for object of
12 for each object o) in TDL do

13 it 7(0o;) > F(o]) then
14 update the dominant condensed instance set Sdom(o;) of top instance 03’ of
oh

15 update the timestamp ¢, of of

16 if 3 k condensed instances oS € Sdom(og*), such that []oS.p > 1 — cand
tr, > t, then

17 L delete object of) from T'DL // Lemma 5.1

18 else if 7(o;) > F(0g,m) and t; > t, then

19 Np — Ny + 1

20 if N,,, = k then

21 L delete object of from T'DL // Lemma 5.2

22 if o is not pruned and Prropk—ips(0h) < a via the dominant condensed instant
set Saom (0g,1) of instances og4,; € 0} then

23 L delete object of) from T'DL // Lemma 5.3

24 else if o} is not pruned then

25 if of) is on the first layer then

26 if 7(0]") > F(o;) and Prropk—ips(0f) < a via Eq. (5) then

27 move o} from layer 1 to layer 2 on T DL

28 update pointer o.,.pos for object o}

29 update timestamp ¢ of o}

30 else if ¢ > ¢, then

31 update data structure stored in o}

2 if Proopk—ins(0})) > « then

33 L move of from layer 2 to layer 1 on TDL

34 else

35 for each object o, satisfying F(of) > F(o;,) do

36 L update data structures of object o}

357

W. Ren et al. Information Sciences 544 (2021) 343-371

Deletions. When an old object o expires, Algorithm3 dynamically updates the TDL synopsis. Specifically, Algorithm3
first removes the expired object of from TDL (line 2). Then, we will consider those objects o} whose top-k probabilities
are affected by the expiration of of (i.e., objects 0% with instances having lower scores than that of object of; line 3). For these
affected objects o?, we update their structure information (line 4). Moreover, if they are layer 1 of TDL, their top-k probabil-
ities will not decrease, and we can keep them on the first layer. On the other hand, those objects o on layer 2 of TDL will have
increasing top-k probabilities Prrop_ips(0?), which thus should be re-computed (lines 5-6). If their top-k probabilities are
greater than threshold o, we move them from layer 2 to layer 1 in TDL, and update the pointer o,.pos and timetamp t; with
null values (note: only objects on layer 2 of TDL are associated with these two variables; lines 7-10).

Topk-iDS Query Answer Retrieval. Since layer 1 of the TDL synopsis contains all objects of with top-k probabilities
PrT,,pk,,-Ds(of’) > o, we can directly return all the objects on layer 1 of TDL as our actual Topk-iDS query answers.

Complexity Analysis. The insertion function in Algorithm2 requires O(L - [Sgom (0:)|) time complexity, where L is the aver-
age number of instances per imputed object of’, and |Sgom(0i))] is the average number of condensed instances in Sgom,(0;,) for
some instances o;;. Moreover, the deletion function in Algorithm3 has O(Nex, - Nopj - Nins) time complexity, where Ney, is the
number of expired objects o., Noy; is the number of affected objects of on layer 2 of TDL due to the expired objects o, (i.e.,
satisfying F(of) > F(o;) and of’ Jlayer = 2), and Nj,s is the number of the affected instances, o;;, in the affected objects, of
(i.e., satisfying F(0i;) < F(0es)).

Algorithm 3. Deletion

Input: the top-k dual layers 7D L and current timestamp ¢
Output: the updated 7D L
1 for each expired object of € W, do
remove o} from TDL
for each object 02 € Wy_1 satisfying F(o]) > F(o;) do
update the data structure of 0%
if o is on layer 2 of T DL then
re-compute Prropr—ips(0of) via Eq. (5)
if PrTopk,iDs(oS) > « then
add o to layer 1 of TDL
update pointer o s.pos with null
update the re-checking timestamp ¢, with null

e e N AW

=

7. Experimental evaluation
7.1. Experimental settings

7.1.1. Real/synthetic data sets
In this paper, we evaluate the performance of our Topk-iDS approach on both real and synthetic data sets.

7.1.2. Real data sets

We use Intel lab data,' Pump sensor data for predictive maintenance, and UCI gas sensor data for home activity monitor-
ing,® denoted as Intel, Pump, and Gas, respectively. Intel data contain 2.3 million records from 54 sensors deployed in the Intel
Berkeley Research lab; Pump data hold 220 K sensory data from 52 sensors on Apr. 1-Aug. 31, 2018; Gas data consist of 919,438
samples from 8 MOX gas sensors, and a temperature and humidity sensor. We extract 4 attributes (i.e., temperature, humidity,
light, and voltage) from Intel data, 10 attributes (i.e., sensor_01-sensor_10) from Pump data, and 10 attributes (i.e., temperature,
humidity, and resistance of sensors 1-8) from Gas data. Then, as shown in Table 6, we detect DD rules among attributes [6], by
checking complete objects s, in data repository R and all possible combinations between any two attributes (i.e., determinant
and dependent) in the data schema. Note that, all DD rules X — A; in Table 6 are the ones with minimum intervals on dependent
attribute A;. For details of the DD detection, please refer to [6].

! http://db.csail.mit.edu/labdata/labdata.html.
2 https://www.kaggle.com/nphantawee/pump-sensor-data/version/1.
3 http://archive.ics.uci.edu/ml/datasets/gas+sensors+for+home-+activity+monitoring.

358

W. Ren et al. Information Sciences 544 (2021) 343-371

Table 6
The tested data sets and their DD rules.

Data Sets DD Rules

voltage — temperature, {[0,0.0001], [0, 0]}

Intel voltage — humidity, {{0,0.0001], [0, 0]}
Voltage — light, {[0,0.0001], [0, 0]}
Light — woltage, {[0,0.0001],[0,0.989]}
Sensor_06 — sensor_01, {{0,0.0001],[0,0]}
Sensor_06 — sensor_02, {[0,0.0001],[0,0]}
sensor_06 — sensor_03, {[0,0.0001],[0,0]}
Sensor_06 — sensor_04, {[0,0.0001], [0, 0]}

Pump Sensor_08 — sensor_05, {[0,0.0001],[0,0]}
Sensor_07 — sensor_06, {[0,0.0001], [0,0.0206]}
Sensor_01 — sensor_07,{[0,0.0001], [0,0.073]}
sensor_07 — sensor_08, {[0,0.0001],[0,0.06]}
sensor_01 — sensor_09, {[0,0.0001},[0,0.065]}
sensor_08 — sensor_10, {[0,0.0001], [0, 0]}
Resistance4 — resistancel, {[0,0.0001],[0,0.177]}
Resistance3 — resistance2, {[0,0.0001],[0,0.2615]}
Resistance2 — resistance3, {{0,0.0001],[0,0.279]}
Resistance5 — resistance4, {[0,0.0001], [0,0.239]}

Gas Resistance4 — resistance5, {[0,0.0001], [0, 0.2]}
Resistancel — resistance6, {[0,0.0001],[0,0.038]}
resistance3 — resistance7, {(0,0.0001], [0,0.1]}
Temperature — resistance8, {[0,0.0001], [0, 0.006]}
Resistance8 — temperature, {[0,0.0001],[0,0.007]}
Resistance8 — humidity, {[0,0.0001], [0, 0.043]}
B — A, {[0,0.0001],0,0.001]}

]
C — B, {[0,0.0001], [0,0.001]}
D — C,{[0,0.0001], [0,0.001]}
Uniform E — D,{[0,0.0001],[0,0.001]}
Correlated F — E,{[0,0.0001],[0,0.001]}

Anti-correlated G — F,{[0,0.0001],[0,0.001]}
H — G, {[0,0.0001],[0,0.001]}
I — H,{[0,0.0001],[0,0.001]}
J —1,{[0,0.0001],[0,0.001]}
A —],{[0,0.0001], [0,0.001]}

7.1.3. Synthetic data sets

We produce three types of d-dimensional data sets: Uniform, Correlated, and Anti-correlated, which follow uniform, corre-
lated, and anti-correlated distributions [45], respectively. In particular, we first generate 5000 seeds following the corre-
sponding data distribution, and then randomly obtain the remaining data objects, based on seeds and DD rules (as
depicted in Table 6).

7.1.4. Incomplete data generation

Given the number, m, of missing attributes, for real and synthetic data above, we randomly set m out of d attributes as
missing (i.e., “-"), and turn complete objects in the stream into incomplete ones. Note that, instead of directly using incom-
plete data in the real world, we manually turn complete data into incomplete ones. This way, we can obtain the ground truth
of Topk-iDS query answers, which can be used to evaluate the effectiveness of our proposed solutions to the Topk-iDS
problem.

7.1.5. Competitor
We compare our Topk-iDS approach with five competitors, namely DD + Topk, DD + PTk, Mean + Topk, Zero + Topk, and
Con + Topk. The details of above five baseline methods as follows.

e DD + Topk: this baseline method first imputes missing attribute values via differential dependencies (DDs) [6], and then
performs the top-k query over imputed data streams via the proposed techniques in this paper;

e DD + PTk: this baseline method first imputes missing attribute values via DDs [6], and then conducts the top-k query
operator over imputed data streams via the algorithm in [7];

e Mean + Topk: this baseline first imputes missing attribute values by taking the average of all the detected values via DDs
[6], and then uses the proposed techniques in this paper.

e Zero + Topk: this method first imputes missing attribute values with 0 (the same as [5,4]), and then performs the top-k
query operator via the proposed techniques in this paper.

e Con + Topk: this baseline method first imputes missing attribute values via a constraint-based imputation method [46],
and then performs the top-k query processing over imputed data streams via the proposed methods in this paper.

359

W. Ren et al.

Information Sciences 544 (2021) 343-371

Table 7

The parameter settings.
Parameters Values
Probabilistic threshold o 0.1, 0.2, 0.5, 0.8, 0.9
Dimensionality d 2,3,4,5,6,10

parameter k

The number, W, of valid objects in iDS

The size, R|, of data repository R

The number, m, of missing attributes

5, 8,10, 20, 50, 100

10K, 20K, 30K, 40 K, 50 K

1,23

15K 3K6K 12K, 15K,30K

7.1.6. Measures

We will report the wall clock time for both real and synthetic data sets, which is the overall CPU time for the data impu-
tation via Z; (as described in Section 6.1) and and top-k query answering via top-k dual layers TDL (as discussed in Sec-

tion 6.3). Please note that, we do not separately report the imputation and query times, since we perform the data
imputation and query processing at the same time.

7.1.7. Parameter settings

We run our experiments on a PC with Intel(R) Core(TM) i7-6600U CPU 2.70 GHz and 32 GB memory. Table 7 depicts
parameter settings of our experiments, and we bold all parameter defaults. When we test one parameter, we will keep all
other parameters as their default values. All algorithms were implemented by C++, where the code is available at http://

www.cs.kent.edu/ wren/topk.

7.2. Verification of the cost model

We first verify our cost model for estimating the number, cnty, of objects o; that fall into the query range Q
(= Aa,ex[0ilAx] — €a,, 0i[Ax] + €a,]) based on DD rules with determinant attributes X. Note that, this cost model is important

pruning power (%)

180~

80
60
40
20

0

mmest_cnt,,

[Jact,cnto

Intel Pump

Gas

Uniform
data set

CorrelatedAnti-correlated

Fig. 5. Cost model verification for the DD selection.

100 -
217 o -
90 - = 48 [47] 46
80
70| 402 412 30.3 30.2 30.4
36.5
60
50 r:ltop-instance pruning
[Imid-instance pruning
40 L. .
| Imulti-instance pruning|
3 5537}
0 %9 o 56.7 563
20 416
10
0 " -
Intel Pump Gas Uniform Correlated\nti-correlated
data set

Fig. 6. Pruning power evaluation over real/synthetic data sets.

360

(e) F-score (Correlated)

W. Ren et al. Information Sciences 544 (2021) 343-371
00) 10 |
100 - o % — ——————— %
9W 90 |
b sr—> p—%

~ 7 = 70| %
N ¥ Topk-iDS IS Topk-iDS
:’ 60 - \[ean+Topk : 60 ean+Topk
’s ‘ ero+Topk ’s ero+Topk
S 50 §C0n+Topk S 50+ QCon+Topk
= 40 = a4 Pl < —<
e A] <‘17 ~ ~
3 < |
- e Y W |
10- 3 = 10~ ' y
10 20 50 100 10 20 50 100
k k
(a) F-score (Intel) (b) F-score (Pump)
100 ! 106% r’_‘;/?é/_—ﬁ
Kk —¥
g5 i
92 |
2 " 3
& [Topk-iDS & 60 ¥ Topk-iDS
N 60 ‘ ean+Topk N ean+Topk
’S ero+Topk ‘S ero+Topk
S S0 QCon+Topk o Con+Topk
2 i 2 40
< | 9
A | A
<G— <} < ~] < < < =l
30 | 20
/ A
2Q_\L A uﬂ r — N
10L L = 0, 1 L S
10 20 50 100 10 20 50 100
k k
(¢c) F-score (Gas) (d) F-score (Uniform)
N N
9(; 1% 17 | [> 1% %
80 80
3 3
s ¥ Topk-iDS & 60 ¥ Topk-iDS
N 60 ean+Topk © ean+Topk
is ero+Topk ‘S ro+Topk
S 50 QCotﬁTopk S éCon+T0pk
S = 4
® G—g——<—
30 3’ LL\‘ <|‘ — 20
20 A\A\A\A
ZS‘A\A\A
10 oL I a
10 20 50 100 10 20 50 100
k k

(f) F-score (Anti-correlated)

Fig. 7. The Topk-iDS effectiveness vs. parameter k.

for selecting a good (combined) DD rule for the data imputation, when we access the conceptual imputation lattice, Lat;. As
shown in Fig. 5, we compare the estimated cntq (via Eq. (9) in Appendix B.1), denoted as est_cntq, with the actual one,

361

W. Ren et al. Information Sciences 544 (2021) 343-371

act_cntq, over both real and synthetic data sets. Our experimental results show that the estimated count cnt, can closely
mimic the actual one, which confirms the correctness and effectiveness of our proposed cost model. This also indicates that
we can use the cost model to guide the selection of a good DD rule (balancing between accuracy and efficiency) in the lattice
Latj.

7.3. Evaluation of Topk-iDS pruning strategies

Fig. 6 shows the pruning power of our proposed pruning rules (in Section 5.3) over real/synthetic data sets, where all
parameters are set to their default values (Table 7). As stated in Section 6.3 (Algorithm2), we apply the pruning rules in
the order of top-instance pruning, mid-instance pruning, and multi-instance pruning. From Fig. 6, we can see that the top-
instance pruning strategy can rule out almost half of the objects (i.e., 47.6-53.2% for real data and 55.7-56.7% for synthetic
data). Then, the mid-instance pruning can further prune the remaining unpruned objects (i.e., 36.5-41.2% and 30.2-30.4% for
real and synthetic data, respectively), followed by the multi-instance pruning (i.e., 2.7-4.2% for real data and 4.6-4.8% for syn-
thetic data). Overall, the three pruning strategies can together prune 88.3-96.1% for real data and 90.7-91.8% for synthetic
data, which confirms the effectiveness of our three pruning rules.

7.4. The effectiveness of Topk-iDS queries

In this subsection, we report the effectiveness of our proposed Topk-iDS approach, in terms of F-score. Specifically, in our
experiments, we first obtain complete real/synthetic data sets, and then randomly mark some attribute(s) as missing attri-
butes. Thus, we know the groundtruth of actual top-k query answers over complete data sets, and the F-score is given by:

(7)

recall x precision

F—-score=2x —————
recall + precision

DD+Topk

0 IDD+PTk

ETopk-iDS

['Mean+Topk
1Zero+Topk

B Con+Topk

RIRIRIR)

Intel Pump Gas Uniform CorrelatedAnti-correlated
data set

wall clock time (sec)

S
o
| —
—

10"

Fig. 8. The performance vs. real/synthetic data sets.

0.035 0.0?t
g 90029
S 003 T3
Q L 0.028
S Intel S
= Pump =
= 0.025 Gas $0.020— ©—=0
S S >¢Uniform
o S 0.026 OCorrelated {
= 0.0 ~ EAnti-correlated
S S 0.025]
0.015" ' ! 0.024 :
0.1 0.2 0.5 0.8 0.9 0.1 0.2 0.5 0.8 0.9
a w
(a) real data (b) synthetic data

Fig. 9. The performance vs. probabilistic threshold .

362

W. Ren et al. Information Sciences 544 (2021) 343-371

where the recall is given by the number of actual top-k answers in our Topk-iDS query results divided by the number of
actual top-k answers (i.e., k); and the precision is defined as the number of actual top-k answers in our Topk-iDS query results
divided by the total number of objects returned by our Topk-iDS approach.

7.4.1. The Topk-iDS effectiveness vs. parameter k

Fig. 7 compares the query accuracy (i.e., F-score) of our Topk-iDS approach w.r.t. that of three baseline competitors (i.e.,
Mean + Topk, Zero + Topk and Con + Topk) over real/synthetic data sets, where k = 10, 20, 50, and 100, and other parameters
are set to their default values. Note that, since DD + Topk and DD + PTk use the same imputation method as the Topk-iDS
method (i.e., using DDs as the imputation tool and considering multiple instances for incomplete tuples), they have the same
F-score as Topk-iDS, and we do not plot them in figures. For real data sets (i.e., Intel, Pump and Gas), Fig. 7 shows that our
Topk-iDS approach outperforms the three baseline methods and achieves high F-score with different k values (i.e., above
90% for Intel, 96% for Pump, and 93% for Gas), which confirms the effectiveness of considering multiple object instances
for incomplete objects. Moreover, Zero + Topk achieves the lowest F-score over all real data sets, which shows that it is inap-
propriate to ignore the missing attribute values when we deal with the Topk-iDS problem.

For synthetic data sets (i.e., Uniform, Correlated, and Anti-correlated), from Fig. 7, we observe the same trend as that of real
data. Specifically, the Topk-iDS approach achieves higher F-score (very close to 100%) over synthetic data than that over real
data sets. This is because synthetic data is densely generated based on 5,000 seeds (i.e., pivots) and DD rules, thus, the recall
ratio for the imputation (in turn, the F-score) on synthetic data is higher than that of real data.

v 0.05
~ ~ 0.045 > Uniform 3
N 5 S 0.04 OSCorrelated
N 2 % HAnti-correlated
g% § 0.035
-‘: -= M
e 2
S S 0.03
= 3
§ § 0.025
2 ES
0.0%
0.015
10 3 4 5 6 10
d
(a) real data (b) synthetic data

Fig. 10. The performance vs. dimensionality d.

0.06

=4
=]
N |

e

1=

=)
|55}

>¢Uniform
005 Scorrelated
H Anti-correlated

?lntel
Pump

FeGas

e
=
a

0.03

wall clock time (sec)
g

wall clock time (sec)
[—)
=S
=

S
=

5 8 10 20 50 100 8 10 20 50 100
k k

(a) real data (b) synthetic data

Fig. 11. The performance vs. the parameter k.

363

W. Ren et al. Information Sciences 544 (2021) 343-371
7.5. The efficiency of Topk-iDS queries

7.5.1. The Topk-iDS performance vs. real/synthetic data sets

Fig. 8 compares the performance of our Topk-iDS algorithm with that of the five baseline methods (i.e.,
DD + Topk, DD + PTk, Mean + Topk, Zero + Topk, and Con + Topk) over real/synthetic data, where default parameter values
are used. From experimental results, Topk-iDS outperforms DD + Topk and DD + PTk algorithms by about 2 orders of mag-
nitude, in terms of the wall clock time, which confirms the efficiency of our Topk-iDS approach (i.e., the style of “data impu-
tation and top-k processing at the same time”). Compared with the baselines (i.e., Zero + Topk, Con + Topk, and Mean + Topk)
with only one imputed value for each missing attribute, our Topk-iDS approach has multiple possible imputed values, and
thus incurs higher wall clock time. Nevertheless, our Topk-iDS approach has higher query accuracy (as confirmed in
Section 7.4).

In particular, the performance of our Topk-iDS approach on Intel data is always better than that of Pump and Gas data. The
reason is that there are fewer possible imputed values in Intel w.r.t. that of Pump and Gas data. Similar trends can be found in
subsequent experimental results.

Below, we will test the robustness of our Topk-iDS approach by varying different parameters over real/synthetic data sets.
In order to clearly plot the trend of our Topk-iDS approach, we will not report the results of the five baseline methods here.

7.5.2. The Topk-iDS performance vs. probabilistic threshold o

Fig. 9 evaluates the effect of probabilistic threshold o on the performance of our Topk-iDS approach, where « varies from
0.1 to 0.9, and other parameters are set to default values. Note that, smaller & may cause more potential top-k objects, and
weaken the pruning power (as mentioned in Section 5.3), whereas larger o may lead to higher calculation cost of the top-k
probability (as given in Eq. 5) for more instances. From figures, we can see that the wall clock time is not very sensitive to the
o value, and remains low in both real and synthetic data (less than 0.0325 and 0.03 s, respectively), which indicates the effi-
ciency of our Topk-iDS approach for different o values.

7.5.3. The Topk-iDS performance vs. dimensionality d

Fig. 10 demonstrates the efficiency of our Topk-iDS approach over real and synthetic data, by varying the number, d, of
attributes in iDS (and R) from 2 to 10, where other parameters are by default. Note that, in Fig. 10(a), Intel data only have 4
attributes. With the increase of the d value, the wall clock time also increases. This is due to the “the curse of dimensionality”
problem [47]. Nonetheless, the overall cost for all real/synthetic data is still quite low (i.e., less than 0.05 s and 0.046 s, resp.),
which shows good performance of our Topk-iDS approach.

7.5.4. The Topk-iDS performance vs. parameter k

Fig. 11 shows the effect of parameter k for the Topk-iDS query processing, where k = 5, 8,10, 20, 50, and 100, and other
parameters are set to their default values. In figures, the wall clock time increases when k becomes larger. This is reasonable,
since we need to retrieve more objects from data stream when k is larger. However, the overall time cost remains low (i.e.,
less than 0.065 s for k = 100), which shows good scalability of our Topk-iDS approach for large k.

We also conducted experiments by varying other data distributions or parameters (e.g., the number, |W,|, of valid objects
in W, the size, |R|, of the data repository R, and the number, m, of missing attributes), please refer to Appendix D for details.
In summary, extensive experiments have verified the effectiveness and efficiency of our Topk-iDS approach.

8. Conclusions

In this paper, we formulate and tackle the Topk-iDS query over incomplete data stream, which monitors top-k objects
over the sliding window, with missing attributes. In order to efficiently and effectively process the Topk-iDS query, we design
effective imputation, pruning, and data synopsis mechanisms to facilitate an efficient Topk-iDS query answering algorithm.
Our Topk-iDS framework follows the style of “imputation and top-k query processing at the same time”. Extensive experi-
ments have demonstrated the efficiency and effectiveness of our proposed Topk-iDS processing approach over real/synthetic
data under various parameter settings.

There are several research directions as our future works. First, we use the count-based sliding window [48] (as given in
Definition 2) for our problem, and we can consider the problem study with the time-based sliding window [16]. Second, we
do not consider the distance constraint A;.I on dependent attribute A; in the process of missing data imputation (Section 3.2),
and thus we would like to study the imputation strategy by considering the distance interval (i.e., A;.I) on dependent attri-
bute A; in the future. Third, we adopt DD [6] as our imputation method, and leave the interesting topic of using other impu-
tation methods (e.g., relational dependency network [29]) as our future works. Fourth, we calculate the ranking function
(Definition 6) by summing up the attribute values weighted by the corresponding weights, and we will explore other ranking
functions as our future work. Fifth, we follow the probabilistic threshold top-k (PT-k) semantics [7] in our framework, and it is
interesting to study the topics that extend our framework to support other top-k semantics (e.g., Pk-topk [9], U-Topk [25],
and U-kRanks [25]).

364

W. Ren et al. Information Sciences 544 (2021) 343-371
CRediT authorship contribution statement

Weilong Ren: Conceptualization, Methodology, Software, Validation, Formal analysis, Writing - original draft, Writing -
review & editing. Xiang Lian: Conceptualization, Methodology, Validation, Formal analysis, Writing - original draft, Writing -
review & editing, Funding acquisition. Kambiz Ghazinour: Conceptualization, Methodology, Validation, Formal analysis,
Writing - review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Proofs of Lemmas for Pruning Strategies

A.1. Proof of Lemma 5.1

Proof. In all the possible worlds, pw,(W;), where all k dominant condensed instances o5 € S4m(0;") appear, we can get
Prropk_ips (0f) = 0, since all these k instances o5 have higher ranking scores than that of top instance o; in possible worlds
pw,(Wy). The top instance o has the highest ranking score among all instances of of, we can get
Prropk—ips(07) < Prropk_ips(0;). Thus, Prrop_ips(0f) =0 in all possible worlds pw,(W;) where the k dominant condensed
instances oS appear, and object o’ may be top-k objects only in other possible worlds where not all the k dominant
condensed instances oS appear at the same time. We know that the existence probability sum of all possible worlds is equal
to 1 (ie, S pw(W;) =1). If [Tvc0sp>1—0, the probability sum of all other possible worlds is smaller than « (i.e.,
S pw(Wy) — pw,(W,) < o). Even object of is always a top-k object in all these possible world (except possible worlds
pw,(W})), its top-k probability is smaller than o. Besides, if all these k condensed instances of expire later than of (i.e., t; > t;),
object of can never be a top-k object in its lifetime due to the existence of the k condensed instances of in Sgon(0;"), and can
be safely pruned.

A.2. Proof of Lemma 5.2

Proof. For the middle instance o;,, of imputed object of, if there are k condensed instances, of, in its dominant condensed
instance set Sgom (0im), such that (1) their bottom instances o, all have higher ranking scores than that of instance o;, (i.e.,
F(o;) > F(0im)), and (2) objects o, expire after o; (t, > t;), the middle instance o; ,, cannot become a top-k object in its lifetime.
That is, Prrepi_ips(0im) = 0. Thus all instances of of with lower ranking scores than that of o;,, cannot become top-k instances
(i.e., Yoi; (I = m), Prropk_ips(0;;) = 0). We can obtain a top-k probability upper bound of object of by assuming all its instances
prior to 0;,, are always top-k object in their possible worlds, i.e., Prrop_ips(0F) < S5 ol, P - Preopi_ips(0i7) < Z}iﬂou‘p. Since
Sy < o, we can get Progy_ips(0f) < S0 oi’I‘p < >1%4040.p < o. So imputed object of cannot become a top-k object in its
llfetlme and can be safely pruned

A.3. Proof of Lemma 5.3

Proof. Based on Eq. (5), for an instance o;; of imputed object of, when it is ranked as rank-j (for 1 < j < k), its corresponding
top-k probability equals to H(Sgm(0i),j — 1). That is, only (j—1) out of N (= |Sgm(0i;)|) condensed instances of (for

1 <z < N)in its dominant condensed instance set Sqom(0;;) appear, which has (j I_V]

condensed instances oS in Sy,m(0;;) based on their existence probabilities (i.e., 0S.p) in a decreasing order, and use o5 (for
1<x<j—1) and o (for j <y < N) to represent the first (j— 1) and the remaining condensed instances in the sorted

) possible combinations. We sort the

dominant condensed instance set Sy, (0;;). Thus, in the () possible worlds that only (j — 1) objects in S,,(0;;) appear,

N
j—-1
the most probable one (i.e., with the biggest existence probability) is that only the first j — 1 condensed instances of in
Sdom(0;1) appear, with existence probability H of .p- Hy _;(1 — 0},.p). By using this most probable probability as the existence

probabilities of all (j I_V1> possible worlds, we can get an upper bound of instance o;; to be ranked as rank-j, that is,

365

W. Ren et al. Information Sciences 544 (2021) 343-371

H(Sgom(0i1),j — 1) < ()]'[X 105D -]'[y _i(1 —o0;.p). Thus, we can derive an upper bound of instance o;; to be a top-k

object by combing the wupper bounds of o0;; to be ranked as rank-1 to rank-k, ie,
Preopi_ips(0i) ZJ 1H(Sgom(0i1),J — 1) < UBq(0;;), where UB4(0;)) = ZJ’»‘ZI(N ji—-1)- H ofp Hy _i(1 - o0}.p). Furthermore,
we can derive an upper bound of imputed object of to be a top-k object by combing all its instance upper bounds, i.e.,
Prropi_ips(0}) = > vo;, 0i1-P - Prropk—ins(0i1) < Yy, 0i1-p - UB1(0i)). The above upper bound of imputed object of needs to check
and obtain the upper bound of all its instances o;; (for 1 < I < L). Actually, we may not need to check all its instances. Instead,
we only need to check partial of its instances. The idea is as follow. We sort all instances o;; of of based on their ranking
scores in a decreasing order, and thus the upper bound of instance o;; is also an upper bound of instance o;;,,. Given the
sorted instances o;;, we will check the first v instances, and obtain each of their probability upper bound UB;(0;,) (for
1 <a < v). From these v upper bounds UB;(0;4), we choose the smallest one, denoted as UB;(0;), as the upper bounds of all
unchecked instances o;;, (for v+ 1 < b < L). By combing all these upper bounds, we then can get the probability upper
bound, UB_Prygpy_ips(0}), of 0?, as shown in Eq. (6). If UB_Prepk_ips(0f) < @, and all condensed instances o in Som(0;;) expire
later than object of (i.e., t; > t;), then object of can never become a top-k object, and can be safely pruned.

Appendix B. Cost models and apply of index I;
B.1. Cost-model-based estimation via fractal dimension

Given a DD rule, Y — A, the data space of repository R can be reduced (projected) from d dimensions to |Y| + 1 dimen-
sions, where |Y| is the number of attributes in Y. Within the (|Y| + 1)-dimensional subspace, we can calculate its correspond-
ing fractal dimension [39], denoted as DY, given as follows.

I 2
D; = o0elapi) g%gﬁ(jrz)a,) » o Te(r,n) (8)

where the (|Y| + 1)-dimensional space of data repository R is divided into multiple regular cells, ¢;, with equal side length
r € (r1,12), and p; is the percentage of data points in R falling into a cell c;.

Given the DD, Y — A;, and an incomplete object o; with missing attribute A;, we can obtain a query range, Q, enclosed by
the intervals, A,.I, on attributes A, € Y. With the query range Q, we can estimate the number of points, cntq, falling into Q via
Eq. (9) [39].

0y
Y+1 vy
cnty = (%) x (N —1) x 2% x € (9)
where € is the distance of the center of gravity of Q to the most remote point in x-axis within query range Q, Vol(e, Q) is the
volume of Q, Vol(€,0) is the volume of regular cube (with dimension |Y| + 1) with distance € between the most remote point
in x-axis and its center of gravity of [J, and N is the number of objects falling into the regular cube.

During the lattice traversal, when we encounter a DD rule, Y — A;, we can apply Eq. (9) to estimate the expected COUNT
aggregate, cntq, in Q. If it holds that cnt, > 1, we will use this DD for the imputation of attribute A;. If no object is actually
found by this DD, we will consider the next DD rule with cnt, > 1 in lattice Lat;.

B.2. Cost model for selecting good clusters in cls

Note that, with different clustering methods over R, we may obtain distinct cluster sets cls, with various imputation costs.
Therefore, it is important to obtain a “good” cluster set cls that minimizes the imputation cost. Alternatively, given a query
range, Q, over data repository R (for the imputation), we aim to maximize the probability that clusters in cls do not intersect
with Q (i.e., with low imputation cost).

Specifically, given a DD: (X — A;, ¢[XA;]) and an incomplete object o; (with missing attribute A;), we have the query range
Q(0;,DD) defined as follows:

Q(0;,DD) =)\ [0i[A] — €a,, 0i[A] — €a,] (10)
AxeX
For any cluster ¢ € cls, we use c.MBR to represent its space range over attributes X. Our goal is to find the best cluster set cIs”
satisfying the following condition:

cls* = argrrgxzz > ¥(cw, Q(0;, DD)) (1

i=1 YDDVcyecls

366

W. Ren et al. Information Sciences 544 (2021) 343-371

where incomplete object o; are samples (following the distribution of historical data), s is the number of samples, and func-
tion y(ck, Q(0i, DD)) returns the probability that cluster c € cls does not intersect with query range Q(o;, DD).

Intuitively, the desired cluster set cls* should maximize the summed probability that clusters c, € cIs” do not intersect
with the query range Q(o;, DD), which in turn minimizes the imputation cost.

In light of the cost model in Eq. (11), we will design an effective cost-model-based clustering method, which aims to find
optimal clusters cls” guided by Eq. (11) iteratively.

Based on the cost model in Eq. (11), given a data repository R, DD rules, object dimensionality d, page size page_size (e.g.,
typically 4KB), object (or MBR) size obj_size (e.g., obj_size = 4 bytes x 2 x d for floating numbers), and a user-specified number
of rounds round, Algorithm4 obtains the optimal cluster set cIs". In lines 1-3, we initialize three variables max, min, and S,
which define the maximum and minimum numbers of objects that a cluster can store, and the number of generated clusters,
respectively. In lines 4-6, we define another three variables, cIs*, Pivots and Prob, which represent the optimal cluster set cls”,
the set of S pivots to generate S clusters, and the summed probability that query ranges of all sampling objects o; in Eq. (11)
do not intersect with the data space c,.MBR of clusters c; € cls”, respectively. Also, in line 7, variable, iter, stores the current
iteration for searching the cluster set cls™. Here, iter is limited by the user-defined upper bound round. In the first iteration, we
will generate the cluster set based on the S pivots in Pivots, by assigning objects s, to its nearest pivot under the limitation
that the size of each cluster is between min and max (lines 9-10). In the following iterations (i.e., iter > 1), we will first gen-
erate new pivots pvt (different from the S pivots in Pivots) in line 12, and obtain a new pivot set, newPivots, by replacing a
random pivot in Pivots with pvt (line 13), and then generate a cluster set, newcls, based on S pivots in newPivots (line 14). In
lines 16-24, we calculate the summed probability that the query range of all sampling objects o; does not intersect with the
cluster ¢, € cls, as formally defined in Eq. (11). In particular, for iterations from 2 to round, we use a new variable, newProb, to
store the summed probability. After each iteration, in lines 25-28, we will compare the probability, newProb, in current iter-
ation with the best probability Prob. If newProb > Prob, we update the best pivot set Pivots (line 27) and the best cluster set
cls” (line 28). After all iterations, we return the best cluster set clIs” as our output (line 29).

Algorithm 4. Selection of the best cluster set cIs* based on the cost model in Eq. (11).

Input: a data repository 12, DD rules, dimensionality d, page size page_size, object size obj_size, and the
number, round, of rounds

Output: an optimal cluster set cls™

max < [ERLESEE |7/ maximum number of objects one cluster can store

min <— % // minimum number of objects one cluster can store

S 2x|R|

-

5}

3 rantmin number of clusters, and | R| is the size of data repository R

4 Pivots < S random points in the repository space

5 Prob+ 0

6 cls™ + null

7 iter <— 1

s for iter = 1to round do

9 if iter < 1 then

10 L generate a cluster set cls™ based on S pivots in Pivots

11 else

12 generate a new pivot pvt.

13 obtain a new pivot sets, new Pivots, via randomly replacing one pivot in Pivots by put.
14 generate a cluster set newcls based on .S pivots in new Pivots

15 newProb < 0

16 for i = 1 to s do

17 for j = 1toddo

18 for each DD rule, D D, with dependent attribute A; do

19 for ci, € cls™ (or newcls) do

20 if cluster ¢y does not intersect with query range Q(o;, D D) then
21 if iter = 1 then

2 L Prob < Prob + ¢(ck, Q(0;, DD))

23 else

24 | newProb < newProb+ v (ck, Q(o;, DD))
25 if iter > 1 then

26 if new Prob > Prob then

27 Pivots <— newPivots

28 L cls® + newcls

29 return cluster set ¢ls™

367

W. Ren et al. Information Sciences 544 (2021) 343-371
B.3. Data imputation and pruning via I;

Data Imputation via J;. Next, we consider how to use DDs and index I; to help impute the missing attribute A; of an
incomplete object o;. First, as shown in Section 4, we need to select an available DD via fractal dimension. With the selected
DD rule and incomplete object o;, we can obtain a query range Q, as shown in Eq. (10). Then, starting from the root node,
root(I;), of index I;, when we encounter a non-leaf node e, we will check if the space of the node is intersected with the query
range Q. If the answer is yes, we can obtain an interval that the possible values of missing attribute o;[A;] fall into, by inte-
grating the intervals of intersected buckets buc,.I (with query range Q) in the intersected node e. Besides, we need to further
check the intersection between the query range Q with the space of children nodes of e. When we reach the leaf node level, if
query range Q is intersected with some leaf nodes, we will check the clusters cls under these leaf nodes, and use the attribute
values s, [A;] of objects s, in the intersected clusters cis to impute the missing attribute A; of incomplete object o;. Compared
with the possible intervals that missing attribute o;[A;] may fall into, the imputation in cluster level can obtain the exact pos-
sible values of 0;[A;], with corresponding confidences (i.e., probabilities).

Object Pruning via I;. As shown in Section 5.3, we propose three pruning strategies in instance level. Actually, the apply
of pruning strategies in instance level in Section 5.3 need to access the complete objects s, in clusters under the leaf nodes of
index [j, as discussed in data imputation via I;. But it is possible that we can prune some objects with low top-k probabilities
before we reach the exact complete objects in clusters under index I;. So we will briefly discuss how to apply these pruning
strategies via the non-leaf or leaf nodes in index I;.

As mentioned in data imputation via I;, to impute an incomplete object o; with missing attribute A;, when we reach a node
e in [; intersected with query range Q, we can further obtain its intersected buckets buc, with Q. Via these intersected buck-
ets, we can obtain some intervals that values o;[A;] may fall into, with corresponding probabilities, which can be used for the
pruning strategies in Section 5.3. Thus, instead of getting some exact instance ranking scores of imputed object of, we can get
some intervals of ranking scores of of, as shown in Fig. 12. In Fig. 12, when we apply Lemma 5.1, the upper bound of ranking
scores of imputed object of is higher than that in Fig. 2, while the lower bounds of ranking scores of compressed object oS are
lower than that in Fig. 2. So the top-k probability of object of in Fig. 12 is higher than that in Fig. 2. In other words, if of can be
pruned via nodes in ; (Fig. 12), it can be pruned via instance level (Fig. 2). For the apply of the other two pruning strategies in
Section 5.3 via I;, we omit their details here.

Appendix C. Proofs of properties for double dual layer TDL

C.1. Proof of property 1 of TDL

Proof. By definition of top-k dual layers, layer 1 keeps the current top-k answer set (i.e., Prrop,_ips(07) > o) and layer 2 holds
all objects of that are not within the current top-k answer set but may become top-k objects in the future (ie.,
0 < Prropr_ips(0¥) <). Thus, this property is proved.

instance 05 M
interval 07 _

ranking score
|
!

I L
il |
i |
[T
l_lr_| |

L L timestamp

k c
o.p>1-a
Hz =1 Z 'p
Fig. 12. The top-instance pruning via index I;.

368

W. Ren et al. Information Sciences 544 (2021) 343-371

C.2. Proof of property 2 of TDL

Proof. For a valid object of € W, the only requirement for of to be a current top-k object is that of has the probability
greater than threshold o (i.e., Prropk_ips(0f) > o) to be a top-k object, which is the requirement of objects on layer 1 of TDL.

Appendix D. More experimental results

The Topk-iDS Performance vs. the Number, |W,|, of Valid Objects in W,. Fig. 13 illustrates the performance of our Topk-
iDS approach for different numbers, |W;|, of objects in the sliding window W, where |W,| = 1.5K, 3K, 6K, 12K, 15K, and 30K,
and default values are used for other parameters. When |W,| becomes larger, the wall clock time of our Topk-iDS approach
also increases for all real/synthetic data sets. This is reasonable, since more Topk-iDS query candidates need to be dynam-
ically maintained in the TDL synopsis. With different |W,|, the wall clock time remains low (e.g., less than 0.46 s even when
[W¢| = 30 K).

The Topk-iDS Performance vs. the Size, |R|, of the Data Repository R. Fig. 14 examines the performance of our Topk-iDS
approach for different sizes, |R|, of (static) data repository R, where |R| varies from 10 K to 50 K. From figures, when the data
size |R| increase, the wall clock time increases smoothly. With more complete data s, in data repository R, the missing attri-
butes will have more potential candidates, which will generate more possible instances for imputed objects. Nevertheless,
the wall clock time still remains low (i.e., less than 0.038 s and 0.035 s for real and synthetic data sets, respectively), which
verifies the effectiveness and efficiency of our index I; over the data repository R.

0.045 0.05
0.04 Intel 0.045+ [?$Uniform 1
= Pump - ™ @Correlated
Q (.035 FeGas S (.04 |[HAnti-correlated §
N =2 J
Q0. 2 0.035¢
S 0.03 5
A A
< 0.025 < 0.03
% 0.02 -§ 0.025}
~
S 0.0154 S o0z}
2 2
0.013 0.015
0.005 . : : . 0.01" : : . ‘
I5K 3K 6K 12K 15K 30K 15K 3K 6K 12K 15K 30K
W] W]
(a) real data (b) synthetic data

Fig. 13. The performance vs. No., |W,|, of objects in W,.

><Uniform
OCorrelated
= Anti-correlated

wall clock time (sec)

=
=
2

4
0.01§/ : . . 0.02 : : -
10K 20K 30K 40K 50K 10K 20K 30K 40K 50K
|R| |R|
(a) real data (b) synthetic data

Fig. 14. The performance vs. the size, |R|, of data repository.

369

W. Ren et al. Information Sciences 544 (2021) 343-371

0.05 0.05
~0.045 ?Intel ~~ ><Uniform g
§ Pump 80'045 OCorrelated
~ 0.04 FeGas N = Anti-correlated D
Q o 0.04
§ 0.035 L §
- 0.035
3 003 S
3 T o0
% 0.025 % %
EY 0.022 = 0.025x

0.015 0.02

1 2 3 1 2 3
m m
(a) real data (b) synthetic data

Fig. 15. The performance vs. No., m, of missing attributes.

The Topk-iDS Performance vs. the Number, m, of Missing attributes. Fig. 15 reports the effect of the number, m, of
missing attributes on the performance of our TopK-iDS approach over synthetic data sets, where m varies from 1 to 3,
and other parameters are set to default values. With more missing attributes, the number of possible instances in an imputed
object will also increase. As shown in the figure, for large m, the wall clock time of our Topk-iDS approach increases
smoothly, and remains low for m = 3 (i.e., less than 0.049 s and 0.047 s for real and synthetic data sets, respectively), which
indicates the efficiency and effectiveness of our Topk-iDS approach.

References

[1] DJ. Abadi, W. Lindner, S. Madden,]. Schuler, An integration framework for sensor networks and data stream management systems, in: Proceedings of
the Thirtieth International Conference on Very Large Data Bases-Volume 30, 2004, pp. 1361-1364.
[2] L. Dhanabal, S. Shantharajah, A study on nsl-kdd dataset for intrusion detection system based on classification algorithms, Int. J. Adv. Res. Comput.
Commun. Eng. 4 (6) (2015) 446-452.
[3] C. Cranor, T. Johnson, O. Spataschek, V. Shkapenyuk, Gigascope: a stream database for network applications, in, in: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, 2003, pp. 647-651.
[4] P. Haghani, S. Michel, K. Aberer, Evaluating top-k queries over incomplete data streams, in, in: Proceedings of the 18th ACM Conference on Information
and Knowledge Management, 2009, pp. 877-886.
[5] K. Kolomvatsos, C. Anagnostopoulos, S. Hadjiefthymiades, A time optimized scheme for top-k list maintenance over incomplete data streams, Inf. Sci.
311 (2015) 59-73.
[6] S. Song, L. Chen, Differential dependencies: reasoning and discovery, ACM Trans. Database Syst. (TODS) 36 (3) (2011) 1-41.
[7] M. Hua, J. Pei, W. Zhang, X. Lin, Ranking queries on uncertain data: a probabilistic threshold approach, in, in: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, 2008, pp. 673-686.
[8] M.A. Soliman, LF. Ilyas, K.C.-C. Chang, Probabilistic top-k and ranking-aggregate queries, ACM Trans. Database Syst. (TODS) 33 (3) (2008) 1-54.
[9] C. Jin, K. Yi, L. Chen,].X. Yu, X. Lin, Sliding-window top-k queries on uncertain streams, Proc. VLDB Endowment 1 (1) (2008) 301-312.
[10] E.M. Choudhury, Z. Bao,].S. Culpepper, T. Sellis, Monitoring the top-m rank aggregation of spatial objects in streaming queries, in: 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), IEEE, 2017, pp. 585-596.
[11] K. Mouratidis, S. Bakiras, D. Papadias, Continuous monitoring of top-k queries over sliding windows, in, in: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, 2006, pp. 635-646.
[12] G. Das, D. Gunopulos, N. Koudas, N. Sarkas, Ad-hoc top-k query answering for data streams, in: Proceedings of the 33rd International Conference on
Very Large Data Bases, Citeseer, 2007, pp. 183-194.
[13] A. Das, J. Gehrke, M. Riedewald, Approximate join processing over data streams, in: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, 2003, pp. 40-51.
[14] N. Tatbul, S. Zdonik, Window-aware load shedding for aggregation queries over data streams, in: Proceedings of the 32nd International Conference on
Very Large Data Bases, VLDB Endowment, 2006, pp. 799-810.
[15] N. Koudas, B.C. Ooi, K.-L. Tan, R. Zhang, Approximate nn queries on streams with guaranteed error/performance bounds, in: Proceedings of the
Thirtieth International Conference on Very Large Data Bases-Volume 30, 2004, pp. 804-815.
[16] Y. Tao, D. Papadias, Maintaining sliding window skylines on data streams, IEEE Trans. Knowl. Data Eng. 18 (3) (2006) 377-391.
[17] L. Qin, J.X. Yu, L. Chang, Scalable keyword search on large data streams, VLDB J. 20 (1) (2011) 35-57.
[18] X. Zhou, L. Chen, Event detection over twitter social media streams, VLDB]. 23 (3) (2014) 381-400.
[19] N. Prokoshyna, J. Szlichta, F. Chiang, RJ. Miller, D. Srivastava, Combining quantitative and logical data cleaning, Proc. VLDB Endowment 9 (4) (2015)
300-311.
[20] S. Song, H. Cheng,].X. Yu, L. Chen, Repairing vertex labels under neighborhood constraints, Proc. VLDB Endowment 7 (11) (2014) 987-998.
[21] S. Song, A. Zhang, L. Chen, J. Wang, Enriching data imputation with extensive similarity neighbors, Proc. VLDB Endowment 8 (11) (2015) 1286-1297.
[22] V. Hristidis, N. Koudas, Y. Papakonstantinou, Prefer: a system for the efficient execution of multi-parametric ranked queries, ACM Sigmod Record 30 (2)
(2001) 259-270.
[23] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware,]. Comput. Syst. Sci. 66 (4) (2003) 614-656.
[24] Y. Tao, V. Hristidis, D. Papadias, Y. Papakonstantinou, Branch-and-bound processing of ranked queries, Inf. Syst. 32 (3) (2007) 424-445.
[25] M.A. Soliman, LF. Ilyas, K.C.-C. Chang, Top-k query processing in uncertain databases, in: 2007 IEEE 23rd International Conference on Data Engineering,
IEEE, 2007, pp. 896-905.
[26] J. Li, B. Saha, A. Deshpande, A unified approach to ranking in probabilistic databases, VLDB J. 20 (2) (2011) 249-275.
[27] J.W. Graham, Missing Data: Analysis and Design, Springer Science & Business Media, 2012.

370

http://refhub.elsevier.com/S0020-0255(20)30770-2/h0010
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0010
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0015
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0015
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0015
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0020
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0020
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0020
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0025
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0025
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0030
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0035
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0035
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0035
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0040
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0045
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0055
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0055
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0055
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0065
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0065
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0065
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0080
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0085
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0090
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0095
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0095
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0100
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0105
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0110
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0110
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0115
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0120
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0130
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0135
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0135

W. Ren et al. Information Sciences 544 (2021) 343-371

[28] W. Fan, J. Li, S. Ma, N. Tang, W. Yu, Towards certain fixes with editing rules and master data, Proc. VLDB Endowment 3 (1-2) (2010) 173-184.

[29] C. Mayfield,]. Neville, S. Prabhakar, Eracer: a database approach for statistical inference and data cleaning, in, in: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, 2010, pp. 75-86.

[30] Z.-G. Liu, Q. Pan, J. Dezert, A. Martin, Adaptive imputation of missing values for incomplete pattern classification, Pattern Recogn. 52 (2016) 85-95.

[31] A. Zhang, S. Song, J. Wang, P.S. Yu, Time series data cleaning: from anomaly detection to anomaly repairing, Proc. VLDB Endowment 10 (10) (2017)
1046-1057.

[32] S. Song, A. Zhang, J. Wang, P.S. Yu, Screen Stream data cleaning under speed constraints, in: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015, pp. 827-841.

[33] W. Ren, X. Lian, K. Ghazinour, Efficient join processing over incomplete data streams, in: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 2019, pp. 209-218.

[34] W. Ren, X. Lian, K. Ghazinour, Skyline queries over incomplete data streams, VLDB J. 28 (6) (2019) 961-985.

[35] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 2002, pp. 1-16..

[36] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Querying imprecise data in moving object environments, IEEE Trans. Knowl. Data Eng. 16 (9) (2004) 1112-
1127.

[37] J. Widom, Trio: A system for data, uncertainty, and lineage, Manag. Min. Uncert. Data 35 (2008) 1-35.

[38] N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases, VLDB]. 16 (4) (2007) 523-544.

[39] A. Belussi, C. Faloutsos, Self-spacial join selectivity estimation using fractal concepts, ACM Trans. Inf. Syst. (TOIS) 16 (2) (1998) 161-201.

[40] G. Aquino, J.DJ. Rubio, J. Pacheco, GJ. Gutierrez, G. Ochoa, R. Balcazar, D.R. Cruz, E. Garcia,].F. Novoa, A. Zacarias, Novel nonlinear hypothesis for the
delta parallel robot modeling, IEEE Access 8 (2020) 46324-46334.

[41]]. de Jests Rubio, Sofmls: online self-organizing fuzzy modified least-squares network, IEEE Trans. Fuzzy Syst. 17 (6) (2009) 1296-1309.

[42] J.A. Meda-Campaiia, On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs, IEEE Access 6 (2018) 31968-
31973.

[43] L Elias, J. d.]. Rubio, D.R. Cruz, G. Ochoa, J.F. Novoa, D.I. Martinez, S. Muiiiz, R. Balcazar, E. Garcia, C.F. Juarez, Hessian with mini-batches for electrical
demand prediction, Appl. Sci. 10 (6) (2020) 2036.

[44] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The r*-tree: an efficient and robust access method for points and rectangles, in: Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, 1990, pp. 322-331.

[45] S. Borzsony, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings 17th International Conference on Data Engineering, IEEE, 2001, pp. 421-
430..

[46] A. Zhang, S. Song,]. Wang, Sequential data cleaning: a statistical approach, in: Proceedings of the 2016 International Conference on Management of
Data, 2016, pp. 909-924.

[47] S. Berchtold, D.A. Keim, H.-P. Kriegel, The x-tree: an index structure for high-dimensional data, Very Large Data-Bases (1996) 28-39.

[48] R. Ananthakrishna, A. Das,]. Gehrke, F. Korn, S. Muthukrishnan, D. Srivastava, Efficient approximation of correlated sums on data streams, IEEE Trans.
Knowl. Data Eng. 15 (3) (2003) 569-572.

371

http://refhub.elsevier.com/S0020-0255(20)30770-2/h0140
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0145
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0145
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0145
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0150
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0155
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0155
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0160
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0160
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0160
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0165
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0165
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0165
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0170
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0180
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0180
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0185
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0190
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0195
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0200
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0200
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0205
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0210
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0210
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0220
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0220
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0220
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0230
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0230
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0230
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0235
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0240
http://refhub.elsevier.com/S0020-0255(20)30770-2/h0240

	Effective and efficient top-k query processing over incomplete data streams
	1 Introduction
	1.1 The Topk-iDS problem.
	1.2 Differences from prior works

	2 Related work
	2.1 Stream processing
	2.2 Differential dependency
	2.3 Top-k queries over certain/uncertain databases
	2.4 Incomplete databases

	3 Problem definition
	3.1 Incomplete data stream
	3.1.1 Incomplete data stream
	3.1.2 The sliding window model

	3.2 Imputation on incomplete data stream
	3.2.1 Differential dependency (DD)
	3.2.2 Missing data imputation
	3.2.3 Imputed data stream
	3.2.4 Possible worlds of the imputed data stream

	3.3 Top-k queries over incomplete data stream
	3.3.1 Ranking function
	3.3.2 The Topk-iDS problem
	3.3.3 Challenges

	3.4 Topk-iDS processing framework

	4 Cost-model-based imputation of incomplete objects
	4.1 Missing attribute imputation via DDs
	4.2 DD selection strategy

	5 Pruning strategies
	5.1 Problem reduction
	5.2 An equivalent form of [$]{Pr}_{Topk-iDS}({o}_{i}^{p})[$]
	5.3 Pruning strategies
	5.3.1 Terminologies
	5.3.2 Top-instance pruning
	5.3.3 Mid-instance pruning
	5.3.4 Multi-instance pruning

	6 Top-k processing over incomplete data streams
	6.1 Cost-model-based indexes on data repository R for imputation
	6.1.1 Index structure

	6.2 Top-k dual-layer synopsis for the sliding window
	6.2.1 Top-k dual layers (TDL)

	6.3 Dynamic maintenance of the Top-k dual layers

	7 Experimental evaluation
	7.1 Experimental settings
	7.1.1 Real/synthetic data sets
	7.1.2 Real data sets
	7.1.3 Synthetic data sets
	7.1.4 Incomplete data generation
	7.1.5 Competitor
	7.1.6 Measures
	7.1.7 Parameter settings

	7.2 Verification of the cost model
	7.3 Evaluation of Topk-iDS pruning strategies
	7.4 The effectiveness of Topk-iDS queries
	7.4.1 The Topk-iDS effectiveness vs. parameter k

	7.5 The efficiency of Topk-iDS queries
	7.5.1 The Topk-iDS performance vs. real/synthetic data sets
	7.5.2 The Topk-iDS performance vs. probabilistic threshold [$] \alpha [$]
	7.5.3 The Topk-iDS performance vs. dimensionality d
	7.5.4 The Topk-iDS performance vs. parameter k

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Proofs of Lemmas for Pruning Strategies
	A.1 Proof␣of Lemma 5.1
	A.2 Proof␣of Lemma 5.2
	A.3 Proof␣of Lemma 5.3

	Appendix B Cost models and apply of index [$]{I}_{j}[$]
	B.1 Cost-model-based estimation via fractal dimension
	B.2 Cost model for selecting good clusters in cls
	B.3 Data imputation and pruning via [$]{I}_{j}[$]

	Appendix C Proofs of properties for double dual layer TDL
	C.1 Proof␣of property 1 of TDL
	C.2 Proof␣of property 2 of TDL

	Appendix D More experimental results
	References

