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Abstract—With the urbanization and development of infras-
tructure, the community search over road networks has be-
come increasingly important in many real applications such
as urban/city planning, social study on local communities, and
community recommendations by real estate agencies. In this
paper, we propose a novel problem, namely fop-k community
similarity search (Top-kC'S?), which efficiently and effectively
obtains spatial communities that are the most similar to a
given query community over road-network graphs. In order to
efficiently and effectively tackle the T'op-kC'S® problem, in this
paper, we will design an effective similarity measure between
communities, and propose a framework for retrieving 7'op-kC S>
query answers. Extensive experiments have been conducted
on real and synthetic data sets to confirm the efficiency and
effectiveness of our proposed Top-kC'S? approach under various
parameter settings.

Index Terms—top-k community similarity search, road-
network graph

I. INTRODUCTION

Recently, the community search/detection over graphs has
received much attention in many real-world applications such
as social network analysis [1]-[11], online marketing and ad-
vertising over geo-social networks [12]-[17], and many others.
While prior works on the community search/detection [7]-
[9], [11], [18]—[21] usually considered user communities with
strong social/spatial relationships in (geo-)social networks, in
this paper, we will study a novel problem of retrieving top-k
spatial communities on road-network graphs, which are quite
useful and important for urban/city planning or community
recommendations by real estate agencies.

We have the following motivation example.

Example 1. (Data Visualization via Lenses on Road Net-
works) In real applications such as urban/city planning, social
study, or transportation systems, data analysts often utilize
geospatial visualization tools such as interactive lens [22] and
identify/analyze those communities with neighborhood similar
to a target (query) community. Figure 2 illustrates a map
of road networks in a visualization system, on which a lens
(i.e., a circle with radius r) is specified by a user. The road-
network subgraph within the lens can be considered as a query
community, which is used to find other communities nearby
with similar road-network structures and POIs. Geologists or
other data analysts may be interested in studying community
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Fig. 1. An example of lens on a road-network graph G.

structure in a particular spatial location (e.g. a city or a
country), our solution will help find/highlight different com-
munity structures in a specific location based on a given query
community. |

Inspired by the examples above, in this paper, we will
formulate and tackle a novel problem, namely fop-k com-
munity similarity search (Top-kCS?), which efficiently and
effectively obtains top-k spatial communities that are similar
and spatially close to a given query community over road-
network graphs.

Note that, efficient and effective answering of the
Top-kCS? query is rather challenging. A straightforward
method to process the Top-kCS? query is to enumerate all
possible communities (subgraphs) in road-network graphs,
compute the similarity/distance between each community and
the query community, and return £ communities with higher
similarities than a given threshold, # and small distances.
However, this straightforward method is not very efficient, due
to the large number of candidate communities to refine on road
networks. What is more, it is not very trivial how to accurately
define the similarity between two communities that captures
their graph structural and POI similarities.

To our best knowledge, prior works (e.g., community
search in (geo-)social networks) did not consider finding
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Fig. 2. An example of a road-network graph G.

similar/close spatial communities on large-scale road-network
graphs. Therefore, previous techniques cannot be directly
applied to solve our Top-kCS? problem. In order to tackle
the challenges of processing Top-kC'S? queries, in this paper,
we will propose a novel metric to measure the similarity be-
tween two spatial communities in road-network graphs, design
effective pruning strategies (w.r.t. similarity and distance) to
reduce the Top-kCS? search space, as well as an effective
indexing mechanism, and develop an efficient Top-kCS?
processing algorithm via index that integrates our proposed
pruning methods.

In this paper, we make the following contributions.

o We formally define a novel problem, namely fop-k com-
munity similarity search (T'op-kCS?) query, over road-
network graphs in Section II.

o We present the framework for answering the Top-kCS?
query in Section III.

« We demonstrate the efficiency and effectiveness of our
proposed Top-kCS? approach in Section IV.

In addition, Section V concludes this paper.

II. PROBLEM DEFINITION

In this section, we formally define fop-k community simi-
larity search over road-network graphs.

A. Road-Network Graphs

Road Networks. In this paper, we model road networks by a
planar graph, defined as follows.

Definition 1. (Road-Network Graph) A road-network graph
is a connected planar graph G = (V(Q), E(G), ®(G)), where
V(G) and E(G) are the sets of vertices and edges in graph
G, respectively, and ®(G) is a mapping function: V(G) x
V(G) = E(G).

In Definition 1, edges e; € E(G) represent roads (line seg-
ments) in road networks GG, where each edge e; is associated
with its length e;.l. Moreover, vertices v; € V(G) correspond
to intersection points of road segments.

Example 2. Figure 2 shows an example of a road-network
graph G, where the vertex set V(G) = {v1,vq,...,vs} and
the edge set E(G) = {e1,es,...,e10}. For example, edge e;
is a road segment connecting 2 ending vertices v and vo. B

Tree Radial

Fig. 3. An example of patterns in road-network graphs.

Points of Interest. On edges ¢; € E(G) of road networks
G, there are a number of points of interest (POIs), such as
restaurants and movie theatres, which are defined as follows:

Definition 2. (Points of Interest, POI) Given a road-network
graph G, a point of interest (POI), o;, is a facility (object)
located at oj.loc on an edge e; € E(G).

In Definition 2, POIs on edge ¢ € E(G) can be of various
types, such as restaurants, shopping malls, supermarkets, cin-
emas, schools, churches, houses, and so on. We can represent
all POIs on edge e € E(G) by a POI vector, e.vec, which
consists of counts (frequencies) of different POI types on edge
e. For example, assume that we only consider 4 types of POls,
restaurant, church, house, and school. If an edge e contains 2
restaurants, 1 church, 3 houses, and 5 schools, then its POI
vector e.vec is given by e.vec = (2,1, 3,5).

Example 3. As illustrated in Figure 2, there are two POI
objects 01 and o2 on edge ei, where object o1 represents a
house and object o2 is a school. Thus, the POI vector; e;.vec,
of edge ey is given by (1,1). |

B. The Spatial Community in Road-Network Graphs

Before we define the spatial community on road networks,
we first discuss patterns and unit patterns in road-network
graphs.

Road-Network Patterns. As shown in Figure 3, there are
many possible structural patterns in road-network graphs,
which may indicate different scenarios of road-network de-
signs. For example, in city areas, it is very likely that we have
a large number of grid structures of rectangular shape, due
to the block system planning. Note that, the grid pattern has
a lot of intersections and short roads, and a study [23] has
shown that the number of accidents is higher for this pattern
type than others.

The tree pattern is another common pattern found on road
networks. This type of pattern is very common in residential
areas, where houses, churches, and/or schools are usually
located at the leaves of trees.

The radial pattern is composed of a network of roads, which
radiate from a core. Such a pattern type usually indicates a
business area.

The mesh pattern is usually the results of unplanned road
networks, where there are a lot of structures of different pattern
types.

Unit Patterns in Road-Network Graphs. Figure 4 illustrates
several basic patterns, called unit patterns, on road networks,
which include edge, delta, rectangle, pentagon, hexagon, and
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Fig. 4. An example of unit patterns in road-network graphs.

so on. In particular, the edge unit pattern is an edge (a road
segment, but not in a circle), which can be a branch in the tree
pattern or a dead end in residential areas. Similarly, the delta
unit pattern contains 3 vertices, forming a circular triangular
structure.

In this paper, we consider road networks as a planar graph.
Thus, we can divide this planar road-network graph into non-
overlapping unit patterns of different types. Intuitively, unit
patterns such as rectangles correspond to blocks on road
networks.

Spatial Community. Next, we give the definition of a spatial
community in road-network graphs.

Definition 3. (Spatial Community in a Road-Network
Graph). Given a road-network graph G, a center vertex
ve € V(QG), and a radius v, a spatial community, C, is a
subgraph of G (i.e., C; C G), such that:
1) subgraph Cy is connected, and;
2) all unit patterns c in Cy have the minimum distances to
vertex v, less than or equal to r (i.e., mindist(c,v.) <
r),
where mindist(c,v.) computes the minimum Euclidean dis-
tance from vertex v. to unit pattern c.

Intuitively, a spatial community is a subgraph of road
networks GG, whose unit patterns (i.e., blocks) intersect with a
circle centered at vertex v. and with radius 7.

Note that, in this paper, we assume that radius r is a
pre-defined system parameter, which can be specified by the
system (e.g., the radius of lens in a visualization system) or
tuned/inferred from historical users’ preferences (e.g., 10 miles
within users’ driving distances).

Example 4. In the example of Figure 5(a), assume that we
have a center vertex vy, and a radius r. Then, a spatial
community, Cy, centered at vertex vy and with radius T, is
given by a subgraph with vertices {v1, va, v3, V4, Vs, Ug, U7, Ug }
and edges e; ~ ejg. Note that, edge es is considered to be
inside the community Cly, since it is a part of the rectangle
unit pattern (i.e., Ouivavsvy), denoted as c3, which partially
intersects with a circle centered at vertex vy and with radius
. |

C. Similarity Between Two Communities

In this subsection, we first propose a similarity metric to
measure the similarity between two unit patterns, and then
provide the definition of the similarity score between two
communities.

c, PoI, | PoI, | PoI, | PoI,
c;[1].vec 2 1 1 0
c)[1].vec 2 5 0 2
M " 7 ol2lvec | 4 3 1 2
P - Z eyf1].vec 1 2 1 0

(a) A spatial community Cy (b) POI vector of Cy

Fig. 5. An example of a spatial community.

The Similarity Score Between Unit Patterns. We first give
the definition of the similarity score between two unit patterns.
In particular, for two unit patterns of the same type (e.g., delta
or rectangle), we define their similarity based on their POIs
via the cosine similarity [24].

Definition 4. (The Similarity Score of Two Unit Patterns)
Assume that we have two unit patterns c,, and c,, whose POI
vectors are represented by c,.vec and cy.vec, respectively.
Then, we can compute their similarity score as:

stm(cg, cy) = cos_sim(cg.vec, ¢y.vec), (1)

where function cos_sim(cg.vec,cy.vec) outputs the cosine
similarity [24] between vectors c,.vec and cy.vec.

In particular, given two vectors A = (Ay, Ag,--- , A,,) and
B = (By,Bs, -, By,), the cosine similarity, cos_sim (A, B),
in Eq. (1) is given by the normalized dot product of vectors
A and B as follows:

A-B _ Son_1 AnBy
HAI-IBI V/3ohoy ARV By,
2
Note that, in Eq. (2), we assume that vectors A and B (or

POI vectors of unit patterns in Eq. (1)) are normalized to have
length 1 (i.e., ||A|| = ||B|| = 1). As a result, we have:

cos_sim(A, B) =

cos_sim(cg.vec, ¢ .vec) = Cz.U€C - Cy.vec 3)
= Z (cz.veclh] x ¢y.veclh]).
h=1

For example, assume that we have a query unit pattern
(edge) qi[1], whose POI vector is given by g¢i[1].vec =
(2,2,1,1). From Figure 5, we have c¢;[1] which is an edge
similar to ¢;[1], where c¢i[l].vec = (2,1,1,0). Now, the
similarity score between unit pattern c;[1].vec and g;[1].vec
can be calculated as cos_sim(q[1].vec, ¢1[1].vec), which is
equalto 7 (=2x24+2x1+1x141x0).

The Similarity Score Between Spatial Communities. The
similarity score between a candidate community C; and a
query community, (), can be calculated below.
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Definition 5. (The Similarity Score Between Two Com-
munities). Given a community C;, a query community, Q,
and their unit patterns (of the h-th type) c¢;, € C; and
gn € Q (1 < h < n), the similarity score, sim(Cj,Q),
between communities Cy and Q) is given by the average cosine
similarity of POI vectors of each unit pattern type in cp and
qn, that is,

sim(Cy, Q) )
D ohet Sim(Cm an)

n \lIh|

2 7

{ Zlch‘ Z‘q cos_sim(cp [t].vec,qn [j].vec) }

h=1
Z Z‘C’L Zlqh‘l cos_sim(cy[i].vec, qn[j].vec)
- et lqn] - 12 7

where |qy,| is the number of unit patterns of the h-th shape in
the query community Q, and cy[i] (or q[j]) is the i-th (or j-th)
unit pattern (with the h-th shape) in C; and Q, respectively.

Intuitively, the community C; may contain 7 unit pattern
types, the h-th of which may have |cj| instances of such a
unit pattern type in C;. The case of the query community )
is similar. Thus, in Eq. (4), for the h-th unit pattern type, we
can compute the summed similarity between unit patterns cy, [i]
and g¢[j], divide it by |gp|, and then take the average score
for all the n unit pattern types.

As an example, in Figures 5 and 6, we have a candi-
date community Cy and a query community (), respectively.
Here, Cy and Q have three types of unit patterns, edge
(c1), delta (c2) and rectangle (c3), with counts (1,2,1) and
(1,1,2), respectively. Thus, based on Eq. (4), the similarity
score sim(Cy, Q) can be calculated as the average simi-
larltgf of all three unit pattern types in C4 and @, that is,

sim(c1, q1)+stm(c2,qz)+ézm(cs qs)

D. Top-k Community Similarity Search in Road-Network
Graphs

We next define the problem of top-k community similarity
search (Top-kCS?).

Definition 6. (Top-k Community Similarity Search in Road-
Network Graphs, Top-kCS?) Given a query community @Q,
a road-network graph G, a query vertex vy, and a similarity
threshold 0, a top-k community similarity search (Top-kCS?)
query retrieves k communities, C; (for 1 <1 < k), from G,
such that:

o similarity scores sim(C), Q) are greater than or equal
to 0 (i.e., sim(Cy, Q) > 0, and;

o for any community C; (satisfying sim(C;,Q) > 0 and
C; # Ci), we have dist(vy,C;) < dist(vg,Cy) (ie.,
communities Cy are the closest to vg)

where the distance from vy to a community Cy is given by the
Euclidean Distance [25] between center vertices, vq and v,
from communities Q) and C}, respectively.

Q | por [ por. | por, | por,

gil1].ve

aill]vee

gil1].vee

ol v w| =
ol wl w| o~
| o w| =
e w| =

gsf2).vec

Fig. 6. An example of communities in a large road-network graph.

As an example in Figure 6, we have a query community
@, a query vertex, v,, and a radius r. In the figure, we have
some candidate communities {C7, Ca, C3,Cy}. Assume that
the similarity scores of communities Cy, Cy, Cs, and Cy are
0.7, 0.5, 0.35 and 0.5, respectively. Moreover, the distances (in
miles) from v, to communities Cy, Ca, C3, and Cy are 0.6, 0.2,
0.55, and 0.4, respectively. If the similarity threshold 6 is 0.5
and k = 1, then the T'op-kCS? problem will return C; as the
answer. This is because the similarity score between Cy and
@ is greater than or equal to 0.5 (i.e., #) and community Cs
has the smallest distance to v, among communities C ~ Cj.

Table I depicts the commonly-used notations in this paper
and their descriptions.

TABLE I
NOTATIONS AND DESCRIPTIONS

[ Notation [[ Description

0 a point of interest (POI)
a unit pattern

[} a spatial community in road-network graph G

Q a given query community

n the total no. of unit pattern types

ch a unit pattern of type A (1 < h < n) in community C;

qn a unit pattern of type h in query community, Q)
cpli].vec || a POI vector for ¢-th unit pattern of ¢, (1 <7 < [cp])
qnlj].vec a POI vector for j-th unit pattern of g5, (1 <7 < [qz])

cp, the count of the unit pattern of type h in C}

qn the count of the unit pattern of type h in Q

IT11. THE FRAMEWORK FOR Top-kC'S? QUERY
ANSWERING

In this section, we present a framework for Top-kCS?
query answering in road-network graphs, G, in Algorithm 1.

Specifically, our framework helps retrieve top-k similar
communities that satisfy the similarity threshold when com-
pared to the query community, (), and are closer to the query
vertex, vq, which consists of offfine pre-processing and online
computation phases.

In the offline pre-processing phase, we first detect all the
unit patterns, ¢, on road networks G (line 1), by invoking our
proposed algorithm, Get_Unit(G). Then, we insert all the
unit patterns, ¢ € (G, into an aggregate R-tree index, I, that
is, aR-tree [26], and offline pre-compute all the communities
(with radius 7) in the road-network graph G, whose statistics
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Algorithm 1: The Top-kCS? Answering Framework

Input: a road-network graph G, a similarity threshold 6, radius r, a query
community @, and a query vertex vy

Output: top-k communities, C;, (1 < [ < k) with similarity scores > 6

//Offline Pre-Processing Phase

detect all the unit patterns ¢ € G

insert all the unit patterns into an aR-tree |

obtain some communities C;(1 < I < |V']) containing each unit pattern and

update aggregates in aR-tree

//Online Computation Phase

for each unit pattern type q;, € Q, 1 < h < n do

L for each unit pattern qp[i],1 < i < |qp| do

woN o=

IS

L find a set of unit patterns similar to gp,[¢] via index I

7 sort candidate unit patterns based on their similarity scores

8 obtain a list of candidate communities, cand_list, based on the sets of
candidate unit patterns w.r.t. g5, € Q

9 for each candidate community Cy; € cand_list do

10 calculate an upper bound, ub_sim(Cj, Q), of the similarity score
sim(Cy, Q)

u if ub_sim(C;, Q) < 6 then

12 ‘ prune community C

13 else

14 calculate the exact score of Cj, sim(Cy, Q)

15 if sim(Cy, Q) < 6 then

16 | prune community C;

17 else

18 if comm_count < k then

19 add C; to a sorted top-k list ans_list

20 comm_count++

21 else

2 if dist(C;,vq) < dist(Cy,vq) then

23 add C; to the top-k list ans_list

24 remove C from the top-k list ans_list

25 return the top-k answer list ans_list

(e.g., lower/upper bounds of pattern counts) can be used as
aggregates for unit patterns in the aR-tree (lines 2-3).

In the online computation phase, for each unit pattern gy,
in the query community (), we use the aR-Tree to retrieve a
set of similar candidate unit patterns, in descending order of
similarity scores (lines 4-7). Next, we use these candidate unit
patterns, with respect to g5, (1 < h < n), to obtain a number
of candidate communities C; in a list cand_list (line 8). For
each candidate community, C; € cand_list, we first calculate
the upper bound similarity score, ub_sim(Cy, Q) (lines 9-
10). If the similarity upper bound score of Cj is less than
threshold 6 (i.e. ub_sim(Cy,Q) < 6), we can safely prune
the community C; (lines 11-12). Otherwise, we calculate the
exact similarity score, sim(Cj, Q), for candidate community
C; (line 14). If it holds that sim(Cj, Q) < 6, then we can
safely rule out community C; (lines 15-16). On the other hand,
if sim(C;, Q) > 0 holds, we will check whether we have
k candidate communities in the current top-k list, ans_list
(lines 17-24). When the count, comm_count, of communities
in the current top-k list ans_list is less than k, we can
directly add community C; to this list and increase the count,
comm_count, by 1 (lines 18-20). When comm_count is
equal to k, we will consider the constraint of the distance
of community C; to query vertex vg. If Cj is closer than the
k-th closest community C} in the top-k list ans_list, then
we remove community C}, from the list and insert C; into the
top-k list ans_list (lines 22-24). Finally, we return the top-k
answer list, ans_list, after checking all candidate communities

in cand_list (line 25).

IV. EXPERIMENTAL EVALUATION

In this section, we verify the effectiveness and efficiency
of our proposed Top-kCS? algorithm over both real and
synthetic road-network graphs.

A. Experimental Settings

Real/synthetic data sets. We used both real and synthetic
data sets for our experimental evaluation. Specifically, for real
data set, we use the California Road Network [27], denoted
as C'A, which contains 21,048 road intersection points, 21,693
road segments, and 104,770 points of interests (POIs). C'A is
originally obtained from Digital Chart of the World Server
and U.S. Geological Survey. Each vertex in C'A data set is
represented by (longitude, latitude).

For synthetic data, we first generate vertices of a road-
network graph on a spatial data space, following either the
Uniform or Clustered distribution. For the Uniform distribu-
tion, we generate vertices uniformly in a designated spatial
data space; for the clustered data set, we first randomly obtain
seed vertices in a spatial space, and then generate other vertices
close to these seeds. Here, the clustered data set can simulate
dense road networks (i.e., clusters of vertices) in cities. Next,
we connect vertices via edges (road segments) on road net-
works, that is, linking each vertex to d € [degmin, degmax]
random nearest neighbors nearby (avoiding road intersections
on the planar graph). This way, we can obtain a random road-
network graph, GG, with an average degree deg. By using
different spatial distributions of vertices, we produce two types
of graph, uni form and cluster.

Measures. To evaluate the Top-kC'S? query performance,
we select 15 random query vertices from road networks, and
obtain query communities (with radius r). We report the wall
clock time and I/0 cost. Here, the wall clock time is the average
time cost to answer Top-kCS? queries; the I/O cost is the
number of node accesses in the aR-tree.

Competitor. To our best knowledge, no prior works studied
the top-k community search problem in large-scale road-
network graphs, which has different community semantics
from that on social networks. Thus, in this paper, we compare
our Top-kCS? approach with a baseline algorithm, named
baseline, which is a naive approach without using any index.
In particular, the baseline method first scans the road-network
graph G to retrieve unit patterns from G that are similar to
query unit patterns in the query community (), and then com-
putes k£ communities (containing the retrieved unit patterns)
that satisfy the similarity threshold, 6 and are closest to Q.
Parameter settings. Table II depicts the parameter settings,
where default values are in bold. Each time we vary the values
of one parameter, while other parameters are set to their default
values. We ran all the experiments on a machine with Intel
Core i7-6600U 2.60GHz CPU, Windows 10 OS, and 512 GB
memory. All algorithms were implemented in C++.

The Top-kCS? performance vs. real/synthetic data sets.
Figure 7 compares our T'op-kC'S? approach with the baseline
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TABLE 1I
THE PARAMETER SETTINGS.
[ Parameters | Values ‘
k 1, 5,10, 15, 20
deg 2,3, 4
T 0.1,0.5,1, 15,2
0 0.5, 0.55, 0.6, 0.65, 0.7
V()] 10K, 20K, 30K, 50K, 100K
12 B op-kcs”
> I Dbaseline
g =
V0.8
5
=
s 06
-.%
? 0.4
2
0.2
. m = B
CA uniform cluster
datasets

Fig. 7. The Top-kC'S? performance vs. real/synthetic data sets.

algorithm over real/synthetic data sets, in terms of the wall
clock time. From the figure, we can see that the efficiency of
the Top-kCS? query outperforms that of baseline for all the
three data sets. This is because Top-kCS? applies effective
pruning methods with the help of the index. The experimental
results confirm the effectiveness of our pruning methods, and
efficiency of our Top-kC'S? approach.

V. CONCLUSIONS

In this paper, we formulate and tackle a novel problem of
top-k community similarity search (Top-kCS?) over large-
scale road-network graphs, which retrieves k spatial commu-
nities having high structural and POI similarities and with
spatial closeness, with respect to a given query community.
To tackle this problem, we propose effective pruning strategies
and indexing mechanism, and develop an efficient T'op-kC S?
query processing algorithm. We have demonstrated through
extensive experiments the efficiency and effectiveness of our
proposed Top-kCS? approach over both real and synthetic
road-network graphs.
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