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Abstract—With the urbanization and development of infras-
tructure, the community search over road networks has be-
come increasingly important in many real applications such
as urban/city planning, social study on local communities, and
community recommendations by real estate agencies. In this
paper, we propose a novel problem, namely top-k community
similarity search (Top-kCS2), which efficiently and effectively
obtains spatial communities that are the most similar to a
given query community over road-network graphs. In order to
efficiently and effectively tackle the Top-kCS2 problem, in this
paper, we will design an effective similarity measure between
communities, and propose a framework for retrieving Top-kCS2

query answers. Extensive experiments have been conducted
on real and synthetic data sets to confirm the efficiency and
effectiveness of our proposed Top-kCS2 approach under various
parameter settings.

Index Terms—top-k community similarity search, road-
network graph

I. INTRODUCTION

Recently, the community search/detection over graphs has
received much attention in many real-world applications such
as social network analysis [1]–[11], online marketing and ad-
vertising over geo-social networks [12]–[17], and many others.
While prior works on the community search/detection [7]–
[9], [11], [18]–[21] usually considered user communities with
strong social/spatial relationships in (geo-)social networks, in
this paper, we will study a novel problem of retrieving top-k
spatial communities on road-network graphs, which are quite
useful and important for urban/city planning or community
recommendations by real estate agencies.

We have the following motivation example.
Example 1. (Data Visualization via Lenses on Road Net-
works) In real applications such as urban/city planning, social
study, or transportation systems, data analysts often utilize
geospatial visualization tools such as interactive lens [22] and
identify/analyze those communities with neighborhood similar
to a target (query) community. Figure 2 illustrates a map
of road networks in a visualization system, on which a lens
(i.e., a circle with radius r) is specified by a user. The road-
network subgraph within the lens can be considered as a query
community, which is used to find other communities nearby
with similar road-network structures and POIs. Geologists or
other data analysts may be interested in studying community

Fig. 1. An example of lens on a road-network graph G.

structure in a particular spatial location (e.g. a city or a
country), our solution will help find/highlight different com-
munity structures in a specific location based on a given query
community. �

Inspired by the examples above, in this paper, we will
formulate and tackle a novel problem, namely top-k com-
munity similarity search (Top-kCS2), which efficiently and
effectively obtains top-k spatial communities that are similar
and spatially close to a given query community over road-
network graphs.

Note that, efficient and effective answering of the
Top-kCS2 query is rather challenging. A straightforward
method to process the Top-kCS2 query is to enumerate all
possible communities (subgraphs) in road-network graphs,
compute the similarity/distance between each community and
the query community, and return k communities with higher
similarities than a given threshold, θ and small distances.
However, this straightforward method is not very efficient, due
to the large number of candidate communities to refine on road
networks. What is more, it is not very trivial how to accurately
define the similarity between two communities that captures
their graph structural and POI similarities.

To our best knowledge, prior works (e.g., community
search in (geo-)social networks) did not consider finding
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Fig. 2. An example of a road-network graph G.

similar/close spatial communities on large-scale road-network
graphs. Therefore, previous techniques cannot be directly
applied to solve our Top-kCS2 problem. In order to tackle
the challenges of processing Top-kCS2 queries, in this paper,
we will propose a novel metric to measure the similarity be-
tween two spatial communities in road-network graphs, design
effective pruning strategies (w.r.t. similarity and distance) to
reduce the Top-kCS2 search space, as well as an effective
indexing mechanism, and develop an efficient Top-kCS2

processing algorithm via index that integrates our proposed
pruning methods.

In this paper, we make the following contributions.
• We formally define a novel problem, namely top-k com-

munity similarity search (Top-kCS2) query, over road-
network graphs in Section II.

• We present the framework for answering the Top-kCS2

query in Section III.
• We demonstrate the efficiency and effectiveness of our

proposed Top-kCS2 approach in Section IV.
In addition, Section V concludes this paper.

II. PROBLEM DEFINITION

In this section, we formally define top-k community simi-
larity search over road-network graphs.

A. Road-Network Graphs

Road Networks. In this paper, we model road networks by a
planar graph, defined as follows.

Definition 1. (Road-Network Graph) A road-network graph
is a connected planar graph G = (V (G), E(G),Φ(G)), where
V (G) and E(G) are the sets of vertices and edges in graph
G, respectively, and Φ(G) is a mapping function: V (G) ×
V (G)→ E(G).

In Definition 1, edges ei ∈ E(G) represent roads (line seg-
ments) in road networks G, where each edge ei is associated
with its length ei.l. Moreover, vertices vi ∈ V (G) correspond
to intersection points of road segments.

Example 2. Figure 2 shows an example of a road-network
graph G, where the vertex set V (G) = {v1, v2, ..., v8} and
the edge set E(G) = {e1, e2, ..., e10}. For example, edge e1
is a road segment connecting 2 ending vertices v1 and v2. �

Fig. 3. An example of patterns in road-network graphs.

Points of Interest. On edges ei ∈ E(G) of road networks
G, there are a number of points of interest (POIs), such as
restaurants and movie theatres, which are defined as follows:

Definition 2. (Points of Interest, POI) Given a road-network
graph G, a point of interest (POI), oj , is a facility (object)
located at oj .loc on an edge ei ∈ E(G).

In Definition 2, POIs on edge e ∈ E(G) can be of various
types, such as restaurants, shopping malls, supermarkets, cin-
emas, schools, churches, houses, and so on. We can represent
all POIs on edge e ∈ E(G) by a POI vector, e.vec, which
consists of counts (frequencies) of different POI types on edge
e. For example, assume that we only consider 4 types of POIs,
restaurant, church, house, and school. If an edge e contains 2
restaurants, 1 church, 3 houses, and 5 schools, then its POI
vector e.vec is given by e.vec = (2, 1, 3, 5).

Example 3. As illustrated in Figure 2, there are two POI
objects o1 and o2 on edge e1, where object o1 represents a
house and object o2 is a school. Thus, the POI vector, e1.vec,
of edge e1 is given by (1, 1). �

B. The Spatial Community in Road-Network Graphs

Before we define the spatial community on road networks,
we first discuss patterns and unit patterns in road-network
graphs.

Road-Network Patterns. As shown in Figure 3, there are
many possible structural patterns in road-network graphs,
which may indicate different scenarios of road-network de-
signs. For example, in city areas, it is very likely that we have
a large number of grid structures of rectangular shape, due
to the block system planning. Note that, the grid pattern has
a lot of intersections and short roads, and a study [23] has
shown that the number of accidents is higher for this pattern
type than others.

The tree pattern is another common pattern found on road
networks. This type of pattern is very common in residential
areas, where houses, churches, and/or schools are usually
located at the leaves of trees.

The radial pattern is composed of a network of roads, which
radiate from a core. Such a pattern type usually indicates a
business area.

The mesh pattern is usually the results of unplanned road
networks, where there are a lot of structures of different pattern
types.

Unit Patterns in Road-Network Graphs. Figure 4 illustrates
several basic patterns, called unit patterns, on road networks,
which include edge, delta, rectangle, pentagon, hexagon, and
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Fig. 4. An example of unit patterns in road-network graphs.

so on. In particular, the edge unit pattern is an edge (a road
segment, but not in a circle), which can be a branch in the tree
pattern or a dead end in residential areas. Similarly, the delta
unit pattern contains 3 vertices, forming a circular triangular
structure.

In this paper, we consider road networks as a planar graph.
Thus, we can divide this planar road-network graph into non-
overlapping unit patterns of different types. Intuitively, unit
patterns such as rectangles correspond to blocks on road
networks.

Spatial Community. Next, we give the definition of a spatial
community in road-network graphs.

Definition 3. (Spatial Community in a Road-Network
Graph). Given a road-network graph G, a center vertex
vc ∈ V (G), and a radius r, a spatial community, Cl, is a
subgraph of G (i.e., Cl ⊆ G), such that:

1) subgraph Cl is connected, and;
2) all unit patterns c in Cl have the minimum distances to

vertex vc less than or equal to r (i.e., mindist(c, vc) ≤
r),

where mindist(c, vc) computes the minimum Euclidean dis-
tance from vertex vc to unit pattern c.

Intuitively, a spatial community is a subgraph of road
networks G, whose unit patterns (i.e., blocks) intersect with a
circle centered at vertex vc and with radius r.

Note that, in this paper, we assume that radius r is a
pre-defined system parameter, which can be specified by the
system (e.g., the radius of lens in a visualization system) or
tuned/inferred from historical users’ preferences (e.g., 10 miles
within users’ driving distances).

Example 4. In the example of Figure 5(a), assume that we
have a center vertex v4, and a radius r. Then, a spatial
community, C4, centered at vertex v4 and with radius r, is
given by a subgraph with vertices {v1, v2, v3, v4, v5, v6, v7, v8}
and edges e1 ∼ e10. Note that, edge e2 is considered to be
inside the community C4, since it is a part of the rectangle
unit pattern (i.e., �v1v2v3v4), denoted as c3, which partially
intersects with a circle centered at vertex v4 and with radius
r. �

C. Similarity Between Two Communities

In this subsection, we first propose a similarity metric to
measure the similarity between two unit patterns, and then
provide the definition of the similarity score between two
communities.

(a) A spatial community C4 (b) POI vector of C4

Fig. 5. An example of a spatial community.

The Similarity Score Between Unit Patterns. We first give
the definition of the similarity score between two unit patterns.
In particular, for two unit patterns of the same type (e.g., delta
or rectangle), we define their similarity based on their POIs
via the cosine similarity [24].

Definition 4. (The Similarity Score of Two Unit Patterns)
Assume that we have two unit patterns cx and cy , whose POI
vectors are represented by cx.vec and cy.vec, respectively.
Then, we can compute their similarity score as:

sim(cx, cy) = cos sim(cx.vec, cy.vec), (1)

where function cos sim(cx.vec, cy.vec) outputs the cosine
similarity [24] between vectors cx.vec and cy.vec.

In particular, given two vectors A = (A1, A2, · · · , An) and
B = (B1, B2, · · · , Bn), the cosine similarity, cos sim(A,B),
in Eq. (1) is given by the normalized dot product of vectors
A and B as follows:

cos sim(A,B) =
A ·B

||A|| · ||B||
=

∑n
h=1AhBh√∑n

h=1A
2
h

√∑n
h=1B

2
h

.

(2)

Note that, in Eq. (2), we assume that vectors A and B (or
POI vectors of unit patterns in Eq. (1)) are normalized to have
length 1 (i.e., ||A|| = ||B|| = 1). As a result, we have:

cos sim(cx.vec, cy.vec) = cx.vec · cy.vec (3)

=
n∑
h=1

(
cx.vec[h]× cy.vec[h]

)
.

For example, assume that we have a query unit pattern
(edge) q1[1], whose POI vector is given by q1[1].vec =
(2, 2, 1, 1). From Figure 5, we have c1[1] which is an edge
similar to q1[1], where c1[1].vec = (2, 1, 1, 0). Now, the
similarity score between unit pattern c1[1].vec and q1[1].vec
can be calculated as cos sim(q1[1].vec, c1[1].vec), which is
equal to 7 (= 2× 2 + 2× 1 + 1× 1 + 1× 0).

The Similarity Score Between Spatial Communities. The
similarity score between a candidate community Cl and a
query community, Q, can be calculated below.
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Definition 5. (The Similarity Score Between Two Com-
munities). Given a community Cl, a query community, Q,
and their unit patterns (of the h-th type) ch ∈ Cl and
qh ∈ Q (1 ≤ h ≤ n), the similarity score, sim(Cl, Q),
between communities Cl and Q is given by the average cosine
similarity of POI vectors of each unit pattern type in ch and
qh, that is,

sim(Cl, Q) (4)

=

∑n
h=1 sim(ch, qh)

n

=
n∑
h=1

{∑|ch|
i=1

∑|qh|
j=1 cos sim(ch[i].vec,qh[j].vec)

|qh|

}
n

=
n∑
h=1

∑|ch|
i=1

∑|qh|
j=1 cos sim(ch[i].vec, qh[j].vec)

|qh| · n
,

where |qh| is the number of unit patterns of the h-th shape in
the query community Q, and ch[i] (or qh[j]) is the i-th (or j-th)
unit pattern (with the h-th shape) in Cl and Q, respectively.

Intuitively, the community Cl may contain n unit pattern
types, the h-th of which may have |ch| instances of such a
unit pattern type in Cl. The case of the query community Q
is similar. Thus, in Eq. (4), for the h-th unit pattern type, we
can compute the summed similarity between unit patterns ch[i]
and qh[j], divide it by |qh|, and then take the average score
for all the n unit pattern types.

As an example, in Figures 5 and 6, we have a candi-
date community C4 and a query community Q, respectively.
Here, C4 and Q have three types of unit patterns, edge
(c1), delta (c2) and rectangle (c3), with counts (1, 2, 1) and
(1, 1, 2), respectively. Thus, based on Eq. (4), the similarity
score sim(C4, Q) can be calculated as the average simi-
larity of all three unit pattern types in C4 and Q, that is,
sim(c1,q1)+sim(c2,q2)+sim(c3,q3)

3 .

D. Top-k Community Similarity Search in Road-Network
Graphs

We next define the problem of top-k community similarity
search (Top-kCS2).

Definition 6. (Top-k Community Similarity Search in Road-
Network Graphs, Top-kCS2) Given a query community Q,
a road-network graph G, a query vertex vq , and a similarity
threshold θ, a top-k community similarity search (Top-kCS2)
query retrieves k communities, Cl (for 1 ≤ l ≤ k), from G,
such that:
• similarity scores sim(Cl, Q) are greater than or equal

to θ (i.e., sim(Cl, Q) ≥ θ, and;
• for any community Cj (satisfying sim(Cj , Q) ≥ θ and
Cj 6= Cl), we have dist(vq, Cl) < dist(vq, Cj) (i.e.,
communities Cl are the closest to vq)

where the distance from vq to a community Cl is given by the
Euclidean Distance [25] between center vertices, vq and vc,
from communities Q and Cl, respectively.

Fig. 6. An example of communities in a large road-network graph.

As an example in Figure 6, we have a query community
Q, a query vertex, vq , and a radius r. In the figure, we have
some candidate communities {C1, C2, C3, C4}. Assume that
the similarity scores of communities C1, C2, C3, and C4 are
0.7, 0.5, 0.35 and 0.5, respectively. Moreover, the distances (in
miles) from vq to communities C1, C2, C3, and C4 are 0.6, 0.2,
0.55, and 0.4, respectively. If the similarity threshold θ is 0.5
and k = 1, then the Top-kCS2 problem will return C2 as the
answer. This is because the similarity score between C2 and
Q is greater than or equal to 0.5 (i.e., θ) and community C2

has the smallest distance to vq among communities C1 ∼ C4.
Table I depicts the commonly-used notations in this paper

and their descriptions.

TABLE I
NOTATIONS AND DESCRIPTIONS

Notation Description
o a point of interest (POI)
c a unit pattern
Cl a spatial community in road-network graph G
Q a given query community
n the total no. of unit pattern types
ch a unit pattern of type h (1 ≤ h ≤ n) in community Cl

qh a unit pattern of type h in query community, Q
ch[i].vec a POI vector for i-th unit pattern of ch (1 ≤ i ≤ |ch|)
qh[j].vec a POI vector for j-th unit pattern of qh (1 ≤ i ≤ |qh|)
|ch| the count of the unit pattern of type h in Cl

|qh| the count of the unit pattern of type h in Q

III. THE FRAMEWORK FOR Top-kCS2 QUERY
ANSWERING

In this section, we present a framework for Top-kCS2

query answering in road-network graphs, G, in Algorithm 1.
Specifically, our framework helps retrieve top-k similar

communities that satisfy the similarity threshold when com-
pared to the query community, Q, and are closer to the query
vertex, vq , which consists of offline pre-processing and online
computation phases.

In the offline pre-processing phase, we first detect all the
unit patterns, c, on road networks G (line 1), by invoking our
proposed algorithm, Get Unit(G). Then, we insert all the
unit patterns, c ∈ G, into an aggregate R-tree index, I , that
is, aR-tree [26], and offline pre-compute all the communities
(with radius r) in the road-network graph G, whose statistics
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Algorithm 1: The Top-kCS2 Answering Framework
Input: a road-network graph G, a similarity threshold θ, radius r, a query

community Q, and a query vertex vq
Output: top-k communities, Cl, (1 ≤ l ≤ k) with similarity scores ≥ θ
//Offline Pre-Processing Phase

1 detect all the unit patterns c ∈ G
2 insert all the unit patterns into an aR-tree I
3 obtain some communities Cl(1 ≤ l ≤ |V |) containing each unit pattern and

update aggregates in aR-tree I
//Online Computation Phase

4 for each unit pattern type qh ∈ Q, 1 ≤ h ≤ n do
5 for each unit pattern qh[i], 1 ≤ i ≤ |qh| do
6 find a set of unit patterns similar to qh[i] via index I

7 sort candidate unit patterns based on their similarity scores
8 obtain a list of candidate communities, cand list, based on the sets of

candidate unit patterns w.r.t. qh ∈ Q
9 for each candidate community Cl ∈ cand list do

10 calculate an upper bound, ub sim(Cl, Q), of the similarity score
sim(Cl, Q)

11 if ub sim(Cl, Q) < θ then
12 prune community Cl

13 else
14 calculate the exact score of Cl, sim(Cl, Q)
15 if sim(Cl, Q) < θ then
16 prune community Cl

17 else
18 if comm count < k then
19 add Cl to a sorted top-k list ans list
20 comm count++
21 else
22 if dist(Cl, vq) < dist(Ck, vq) then
23 add Cl to the top-k list ans list
24 remove Ck from the top-k list ans list

25 return the top-k answer list ans list

(e.g., lower/upper bounds of pattern counts) can be used as
aggregates for unit patterns in the aR-tree (lines 2-3).

In the online computation phase, for each unit pattern qh
in the query community Q, we use the aR-Tree to retrieve a
set of similar candidate unit patterns, in descending order of
similarity scores (lines 4-7). Next, we use these candidate unit
patterns, with respect to qh (1 ≤ h ≤ n), to obtain a number
of candidate communities Cl in a list cand list (line 8). For
each candidate community, Cl ∈ cand list, we first calculate
the upper bound similarity score, ub sim(Cl, Q) (lines 9-
10). If the similarity upper bound score of Cl is less than
threshold θ (i.e. ub sim(Cl, Q) < θ), we can safely prune
the community Cl (lines 11-12). Otherwise, we calculate the
exact similarity score, sim(Cl, Q), for candidate community
Cl (line 14). If it holds that sim(Cl, Q) < θ, then we can
safely rule out community Cl (lines 15-16). On the other hand,
if sim(Cl, Q) ≥ θ holds, we will check whether we have
k candidate communities in the current top-k list, ans list
(lines 17-24). When the count, comm count, of communities
in the current top-k list ans list is less than k, we can
directly add community Cl to this list and increase the count,
comm count, by 1 (lines 18-20). When comm count is
equal to k, we will consider the constraint of the distance
of community Cl to query vertex vq . If Cl is closer than the
k-th closest community Ck in the top-k list ans list, then
we remove community Ck from the list and insert Cl into the
top-k list ans list (lines 22-24). Finally, we return the top-k
answer list, ans list, after checking all candidate communities

in cand list (line 25).

IV. EXPERIMENTAL EVALUATION

In this section, we verify the effectiveness and efficiency
of our proposed Top-kCS2 algorithm over both real and
synthetic road-network graphs.

A. Experimental Settings

Real/synthetic data sets. We used both real and synthetic
data sets for our experimental evaluation. Specifically, for real
data set, we use the California Road Network [27], denoted
as CA, which contains 21,048 road intersection points, 21,693
road segments, and 104,770 points of interests (POIs). CA is
originally obtained from Digital Chart of the World Server
and U.S. Geological Survey. Each vertex in CA data set is
represented by (longitude, latitude).

For synthetic data, we first generate vertices of a road-
network graph on a spatial data space, following either the
Uniform or Clustered distribution. For the Uniform distribu-
tion, we generate vertices uniformly in a designated spatial
data space; for the clustered data set, we first randomly obtain
seed vertices in a spatial space, and then generate other vertices
close to these seeds. Here, the clustered data set can simulate
dense road networks (i.e., clusters of vertices) in cities. Next,
we connect vertices via edges (road segments) on road net-
works, that is, linking each vertex to d ∈ [degmin, degmax]
random nearest neighbors nearby (avoiding road intersections
on the planar graph). This way, we can obtain a random road-
network graph, G, with an average degree deg. By using
different spatial distributions of vertices, we produce two types
of graph, uniform and cluster.
Measures. To evaluate the Top-kCS2 query performance,
we select 15 random query vertices from road networks, and
obtain query communities (with radius r). We report the wall
clock time and I/O cost. Here, the wall clock time is the average
time cost to answer Top-kCS2 queries; the I/O cost is the
number of node accesses in the aR-tree.
Competitor. To our best knowledge, no prior works studied
the top-k community search problem in large-scale road-
network graphs, which has different community semantics
from that on social networks. Thus, in this paper, we compare
our Top-kCS2 approach with a baseline algorithm, named
baseline, which is a naive approach without using any index.
In particular, the baseline method first scans the road-network
graph G to retrieve unit patterns from G that are similar to
query unit patterns in the query community Q, and then com-
putes k communities (containing the retrieved unit patterns)
that satisfy the similarity threshold, θ and are closest to Q.
Parameter settings. Table II depicts the parameter settings,
where default values are in bold. Each time we vary the values
of one parameter, while other parameters are set to their default
values. We ran all the experiments on a machine with Intel
Core i7-6600U 2.60GHz CPU, Windows 10 OS, and 512 GB
memory. All algorithms were implemented in C++.
The Top-kCS2 performance vs. real/synthetic data sets.
Figure 7 compares our Top-kCS2 approach with the baseline
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TABLE II
THE PARAMETER SETTINGS.

Parameters Values
k 1, 5, 10, 15, 20
deg 2, 3, 4
r 0.1, 0.5, 1, 1.5, 2
θ 0.5, 0.55, 0.6, 0.65, 0.7

|V (G)| 10K, 20K, 30K, 50K, 100K

Fig. 7. The Top-kCS2 performance vs. real/synthetic data sets.

algorithm over real/synthetic data sets, in terms of the wall
clock time. From the figure, we can see that the efficiency of
the Top-kCS2 query outperforms that of baseline for all the
three data sets. This is because Top-kCS2 applies effective
pruning methods with the help of the index. The experimental
results confirm the effectiveness of our pruning methods, and
efficiency of our Top-kCS2 approach.

V. CONCLUSIONS

In this paper, we formulate and tackle a novel problem of
top-k community similarity search (Top-kCS2) over large-
scale road-network graphs, which retrieves k spatial commu-
nities having high structural and POI similarities and with
spatial closeness, with respect to a given query community.
To tackle this problem, we propose effective pruning strategies
and indexing mechanism, and develop an efficient Top-kCS2

query processing algorithm. We have demonstrated through
extensive experiments the efficiency and effectiveness of our
proposed Top-kCS2 approach over both real and synthetic
road-network graphs.
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