

minimum storage overhead is n/k and the minimum update cost

is (n− k + 1), both of which are simultaneously achieved by

systematic [n, k] Reed-Solomon codes (or other MDS codes).

Towards the goal of optimizing these two metrics in geo-

distributed storage systems, we ask the following question:

When the required access sets are more relaxed than all subsets

of size k, is it possible to reduce update cost and storage

overhead simultaneously by tailoring the code construction to

the access sets? We answer this question in the affirmative.

Consider the following toy example.

Example 1: Consider n = 5 nodes and access sets ❙ =
{{1, 2}, {1, 5}, {2, 3, 4}, {3, 4, 5}} (see Fig. 1a). A code that

satisfies ❙ is a systematic [5, 2] Reed-Solomon code, with

update cost 4 and storage overhead 5/2 = 2.5. Another code

that satisfies ❙ is the irregular array code shown on Fig. 1b,

which encodes the message m = (a, b, c). Note that m can be

fully decoded from any of the access sets in ❙, and that each

message symbol is present in only two different nodes. Thus,

this code has update cost 2 and storage overhead 6/3 = 2. x

In Example 1, it was possible to reduce storage overhead by

placing data unevenly on nodes. This kind of code is called an

irregular array code, which allows for the storage of a variable

number of symbols on each node, in contrast to scalar codes

which only store a single symbol per node. Note also that in

Example 1 the sparsity of the access sets makes it possible to

reduce update cost.

We study the problem of designing codes that satisfy the

given access sets while minimizing update cost and storage

overhead. We start by presenting the problem formally and

exploring its fundamental limits (§III). We do this by first deriv-

ing the minimum update cost achievable by an irregular array

code satisfying the given access sets (§III-A). We then focus on

analyzing update cost and storage overhead in conjunction, and

demonstrate that employing irregular array codes is necessary

for jointly minimizing both of these metrics (§III-B). We also

show that, unlike the case where all subsets of size k are access

sets, it is not always possible to simultaneously achieve the

minimum update cost and minimum storage overhead (§III-C).

Since the cost of WAN bandwidth tends to be higher than the

cost of storage [8], [9], we focus on codes with minimum update

cost (termed MUC) and minimize storage overhead subject

to this constraint. We model MUC codes using information

flow graphs, and use this model to derive a lower bound on

their storage overhead (§IV). Finally, we show the existence of

MUC codes meeting this lower bound through a randomized

construction (§IV). Overall, the results show that it is possible

to obtain significant savings in update cost and storage overhead

compared to traditional MDS codes when one adapts the design

of a code to the given access sets. This paper also exposes a

new trade-off space between update cost and storage overhead

under arbitrary access sets, which is of significance in geo-

distributed storage systems.

II. RELATED WORK AND EXISTING RESULTS

In this section, we summarize the related work and review

existing results which will be used in this paper.

A. Related work

The concept of codes with arbitrary access sets has been

previously studied in the information dispersal and secret

sharing literatures. Information dispersal [6], [7], [10] studies

the problem of encoding and distributing a given file f among

nodes in a way that satisfies prespecified access sets. While

[6], [7] study the minimum storage overhead required by

arbitrary access sets, to the best of our knowledge, work in the

information dispersal literature has not focused on update cost.

Secret sharing with general access structures [11] considers

the same scenario as information dispersal but adds a security

requirement: any subset of nodes that is not an access set leaks

no information about f . Security is not among the objectives

of this paper. Gonen et al. [12] consider collections of access

sets which are restricted to be of the same size k and study

the field size requirement of scalar codes satisfying them.

Irregular array codes have also been used by [13]–[15] in a

line of work called irregular MDS array codes. In this setting,

the following parameters are given as input: the number of

nodes n, the number of message symbols mi stored in node

i ∈ {1, . . . , n}, and a number k such that all message symbols

can be decoded from any k nodes. The goal in these works

is: 1) to determine the necessary number of parity symbols pi
stored in each node i while minimizing the total number of

parity symbols
∑n

i=1 pi, and 2) to design a code that stores

mi message symbols and pi parity symbols in node i such

that the message can be decoded from any k nodes.

Several works have studied the cost of updates in storage

codes via different metrics, such as update complexity, update

efficiency, and update bandwidth. Update complexity [16]–

[30] is defined as the average number of codeword symbols

updated when a single message symbol is updated. In linear

codes, this is related to the fraction of non-zero entries (i.e.

density) of the generator matrix. Update efficiency [31]–[33]

refers to the asymptotic behavior of update complexity. Update

bandwidth [15] assumes a systematic irregular array code,

and is the average amount of symbols communicated among

nodes when all message symbols stored in a single node

are updated. All these metrics differ from the update cost

considered in our work, which is defined as the average number

of symbols communicated when a single message symbol is

updated. Update complexity and update efficiency focus on

the number of symbols updated, whereas update cost focuses

on the number of symbols communicated (when nodes store

multiple symbols, a single communicated symbol can be used

to update several symbols at a node). We focus on the number

of symbols communicated rather than updated in order to

capture the usage of WAN bandwidth in geo-distributed storage

systems. Update bandwidth also focuses on the number of

symbols communicated, but is defined for systematic codes

only and is motivated by a setting where data is generated at

the nodes, which is not a good fit for our target application

of geo-distributed storage systems. Several other works have

studied handling updates in storage systems in different settings,

such as multiversion coding [34] and oblivious updates [35].

The design of erasure codes for distributed storage systems

has also been studied by other lines of research with the goal

of optimizing other metrics. For example, regenerating codes

(e.g. [29], [36]–[42]) minimize the bandwidth cost of node

repair, locally repairable codes (e.g. [43]–[47]) reduce the

number of nodes that must participate in the repair of a single

node, and Piggyback codes [48]–[50] construct codes to reduce

the amount of data read and downloaded during repair while

having a low number of symbols per node (i.e., substripes).

B. Existing results on storage overhead for arbitrary access sets

In this subsection, we summarize results from previous works

that are used in this paper. Naor and Roth [6] proved a lower

bound on the minimum storage overhead of a code satisfying

given access sets ❙. Let [n] = {1, . . . , n}. Each node v ∈ [n]
is modeled as a variable wv ∈ [0, 1] denoting the size of node v
as a fraction of the size of the message m. One clear restriction

is that the combined size of the nodes in an access set must

be at least that of the message. Therefore, a lower bound on

storage overhead is given by the solution to the following linear

program (LP).

minimize
∑

v∈[n] wv

subject to
∑

v∈S wv ≥ 1, ∀S ∈ ❙

wv ∈ [0, 1], ∀v ∈ [n]
(LP1)

Theorem 1 [6], [7]: The minimum storage overhead of

irregular array codes satisfying access sets ❙ is given by LP1

and can be achieved by using a sufficiently long MDS code and

distributing symbols according to the weights {wv}v∈[n].

III. FUNDAMENTAL LIMITS ON CODES WITH ARBITRARY

ACCESS SETS

An irregular array code over finite field Fq with n nodes,

message of length k, and node sizes (ℓi)i∈[n] is defined by

a mapping C : F
k
q → F

N
q , where N =

∑

i∈[n] ℓi is the

length of a codeword. An irregular array code is said to be

linear if C is linear. Each codeword C(m) = (c1, . . . , cN) is

interpreted as an n-node array, with node i denoted as Ci(m) =
(c(ℓ<

i
+1), . . . , c(ℓ<

i
+ℓi)) where ℓ<i =

∑i−1
j=1 ℓj . Let the symbol ∗

denote an erasure and, for a subset S ⊆ [n], let CS(m) denote

the result of erasing every symbol in Ci(m) for i ∈ [n]\S. We

say that an irregular array code satisfies access sets ❙ ⊆ 2[n] if

m can be decoded from CS(m), i.e., there exists a decoding

function D : (Fq∪{∗})
N → F

k
q such that D(CS(m)) = m for

all m ∈ F
k
q and S ∈ ❙. Note that if it is possible to decode m

from an access set S, then it is possible to decode m from any

access set S′ ⊇ S. Thus, we assume without loss of generality

that all subsets in ❙ are minimal, and thus |❙| ≤
(

n
⌊n/2⌋

)

(by

Sperner’s theorem [51]). The storage overhead of an irregular

array code is defined as the ratio N/k. We define the update cost

of an irregular array code as the average number of symbols

communicated to nodes when a single symbol of the message is

updated. In general, update cost is at least the average number

of nodes that are updated when a single message symbol is

updated, since at least one symbol must be communicated

to each updated node. In linear codes, both the number of

symbols communicated and the number of nodes updated are

equivalent because if message symbol mi is updated to m′
i it

suffices to send symbol ∆mi = (m′
i −mi) to every updated

node. Each node then scales ∆mi by the appropriate factor

and updates its symbols. Thus, for linear codes update cost is:

update-cost(C) :=

∑k
i=1 |{j ∈ [n] : Cj(ei) 6= 0}|

k
,

where ei ∈ F
k
q is the i-th standard basis vector. When ℓi = ℓ

for all i ∈ [n] we say that the code is a regular array code,

and when ℓ = 1 we say that it is a scalar code.

Our ultimate goal is to construct codes that minimize update

cost and storage overhead while satisfying the given access sets

❙. We begin by studying update cost in isolation (§III-A). Then,

we study both update cost and storage overhead in conjunction

(§III-C). Along the way, we show that using irregular array

codes is necessary for minimizing these two metrics (§III-B).

A. Minimum update cost

Now, we derive a lower bound on the update cost of a code

satisfying the given access sets ❙. To achieve this, we model

each node v ∈ [n] with a binary variable ẇv ∈ {0, 1} indicating

whether the node is updated or not when updating any single

arbitrarily chosen message symbol. Observe that if a symbol of

the message is updated, then at least one node in each access

set S ∈ ❙ has to be updated, since otherwise the output of the

decoding function on this access set would remain unchanged.

Thus, one can compute a lower bound on the number of nodes

updated by a single symbol update and, by extension, a lower

bound on update cost, through the following integer program

(IP).
minimize

∑

v∈[n] ẇv

subject to
∑

v∈S ẇv ≥ 1, ∀S ∈ ❙

ẇv ∈ {0, 1}, ∀v ∈ [n]
(IP1)

Note that this formulation corresponds to computing a set cover

of the access sets by nodes, where a node v is said to cover

access set S if v ∈ S.

Lemma 2: IP1 gives a lower bound on the update cost of

irregular array codes satisfying access sets ❙.

We show that this bound is achievable via strategic replication.

Lemma 3: The bound of Lemma 2 is achievable.

Proof: Let {ẇ∗
v}v∈[n] be the optimal solution to IP1.

Consider a code that places a full copy of the message m on

each node v where ẇ∗
v = 1. Clearly, this code achieves the

minimum update cost and satisfies the access sets ❙.

The next theorem follows from Lemmas 2 and 3.

Theorem 4: The minimum update cost of an irregular array

code satisfying access sets ❙ is given by IP1 and is achieved

by strategic replication.

Minimum update sets or µ-sets: IP1 may have multiple optimal

solutions for the given access sets ❙. Each optimal solution

can be interpreted as a subset of nodes U where v ∈ U iff

ẇv = 1. We call such subsets of nodes a minimum update

set or µ-set, and denote the collection of all µ-sets for the

given access sets as U . Note that a code can have minimum

update cost only if every update to a message symbol updates

4 5

6

1

23

7

node 1 a b

node 2 c d

node 3 e f

node 4 a+ e d+ e

node 5 a+f c+f

node 6 b+ e c+ e

node 7 b+f d+f

(a) (b)

Fig. 2: (a) Access sets over seven nodes defined by the Fano

plane and (b) an array code that satisfies it.

a number of nodes equal to the minimum update cost. Because

of this, µ-sets are important for studying codes with minimum

update cost, and each message symbol must be associated to

a specific µ-set that is updated when that message symbol is

updated. As a consequence, in codes with minimum update

cost, a node v depends on a certain message symbol iff it

belongs to its corresponding µ-set. For example, in Example 1,

one can verify that the minimum update cost is 2, and that each

message symbol updates a µ-set: a updates {1, 3}, b updates

{1, 4}, and c updates {2, 5}. Note that the size of U can be

exponential in n and, like ❙, it is upper bounded by
(

n
⌊n/2⌋

)

.

B. The necessity of irregular array codes

In this subsection, we show that considering irregular array

codes (instead of traditional scalar codes) is not only important

for the sake of generality, but also a necessity for reducing

both update cost and storage overhead.

Lemma 5: Irregular array codes are necessary for achieving

the minimum storage overhead of arbitrary access sets.

Proof: The proof proceeds by contradiction using an exam-

ple. Consider Example 1. Notice that any coding scheme that

places the same number of symbols in each node must place at

least k/2 symbols on each node, due to decoding set {1, 2} and

Theorem 1. This results in an storage overhead of at least 2.5.

On the other hand, the code proposed in Example 1 achieves the

minimum storage overhead, which is 2 by Theorem 1 (consider

the solution w1 = 2/3 and wv = 1/3 for v ∈ {2, . . . , 5}). This

means that storing a different amount of symbols in each node

is necessary for minimizing storage overhead.

In general, irregular array codes tend to achieve better storage

overhead than scalar codes when the access sets are of different

sizes, and when nodes belong to different number of access

sets. These two situations arise naturally in geo-distributed

storage systems because of the difference in density of servers

in distinct regions. Note that existing codes for arbitrary access

sets with reduced storage overhead compared to MDS codes

(from the literature on information dispersal [6], [7], [10] and

secret sharing [11]) are indeed irregular array codes.

Lemma 6: Even for access sets where scalar codes can

achieve the minimum storage overhead, array codes are neces-

sary for additionally minimizing the update cost.

We use the next example in the proof to this lemma.

Example 2: Consider n = 7 and the access sets ❙ defined

1

2

3 4

5

Fig. 3: Example of access sets for which minimum update cost

and storage overhead cannot be simultaneously achieved.

by the Fano plane, where each subset of three nodes is in ❙ iff

they lie on the same line (see Fig. 2a). The minimum storage

overhead for ❙ is 7/3, by Theorem 1. The minimum update

cost is 3, by Theorem 4 (every line is a µ-set). The access

sets ❙ are satisfied by a systematic [7, 3] Reed-Solomon code,

which has the minimum storage overhead and its update cost

is 5 (higher than the minimum update cost). The access sets ❙

are also satisfied by the irregular array code shown in Fig. 2b,

which encodes the message m = (a, b, c, d, e, f), and has the

minimum storage overhead and the minimum update cost. x

Proof of Lemma 6: The proof proceeds by contradiction

using an example. Consider Example 2. For these access

sets, no code which places a single symbol per node and has

minimum storage overhead can achieve the minimum update

cost, as explained below. Clearly, the µ-sets associated with the

message symbols must cover all nodes, as otherwise uncovered

nodes would never be updated. Thus, the code must have k = 3,

since at least three µ-sets are needed to cover every node, and

there are exactly three nodes in each access set. However, for

these access sets, any triple of µ-sets that covers all nodes

must intersect at exactly one node. No code that places a single

symbol in each node can satisfy the access sets in such a triple,

since two of the nodes in it would be a function of the same

message symbol, and the remaining node would be a function

of all three message symbols.

C. Tradeoff of update cost vs. storage overhead

So far, we looked at update cost and storage overhead

separately, and saw how to construct codes that achieve the

minimum cost possible on each metric separately. However,

it is easy to see that while the constructions in Theorem 1

and Lemma 3 achieve the minimum cost with respect to one

metric, they do not perform well with respect to the other.

Therefore, it is a natural question to ask whether it is possible

to construct codes that minimize both of these metrics at the

same time. For some collections of access sets, it is possible

to simultaneously achieve both the minimum update cost and

minimum storage overhead. For instance, the collections of

access sets discussed in Examples 1 and 2 both have this

property. As another example, the access sets consisting of all

size k subsets of [n] are satisfied by a systematic [n, k] MDS

code, which achieves the minimum update cost (n−k+1) and

minimum storage overhead (n/k). However, as the next example

shows, this is impossible for some collections of access sets and

there is a tradeoff between update cost and storage overhead.

Example 3: Consider n = 5 and access sets ❙ = {{i, j} :
i 6= j ∈ [5]}\{{4, 5}} (see Fig. 3). From Theorem 1, it follows

X

XU1 XU2
XU|U|

Y1 Y2 Y3 Y4 Yn

ZS1
ZS|❙|

message

µ-sets

nodes

access sets

kU

∞

ℓv

Fig. 4: Information flow graph for given access sets.

that the minimum storage overhead for ❙ is 5/2. Here, the

only µ-set is U = {1, 2, 3}, since any other subset of at most

three nodes leaves at least one access set uncovered. Thus the

minimum update cost is 3.

Any MUC code cannot place any symbols in node 4 or 5,

since any update to those nodes would require updating more

nodes than the minimum. Since {1, 4}, {2, 4}, and {3, 4} are

access sets and 4 is empty, 1, 2, and 3 each must have at least

a full copy of message m. This requires storage overhead of

at least 3, which is higher than the minimum. x

Since, in general, it is impossible to achieve the minimum

cost of both metrics simultaneously, and due to the premium in

WAN bandwidth cost over storage cost, we focus on codes with

minimum update cost and then minimize the storage overhead

subject to that constraint. This approach attains one of the

Pareto-optimal points in the tradeoff.

Definition 1 (MUC code): An irregular array code satisfying

access sets ❙ is said to be a minimum update cost (MUC)

code if it achieves the minimum update cost (Theorem 4)

corresponding to ❙.

IV. STORAGE OVERHEAD OF MUC CODES: LOWER BOUND

AND ACHIEVABILITY

In this section, we focus on deriving a lower bound on the

storage overhead of MUC codes. In order to derive a lower

bound on storage overhead, we model the decoding process as

a network information flow graph [52].

Recall from §III-A that in MUC codes every message symbol

is associated to a µ-set U ∈ U that is updated whenever that

message symbol is updated. For given access sets ❙, we build

an information flow graph with the following vertices:

• X , for the message m;

• {XU}U∈U , for the fraction of m encoded in µ-set U ;

• {Yv}v∈[n], for the contents of node v;

• {ZS}S∈❙, for the decoding of access set S.

The graph also contains the following directed edges:

• {(X,XU)}U∈U , where (X,XU) has capacity kU ;

• {(XU , Yv) : v ∈ U}U∈U , each with unlimited capacity;

• {(Yv, ZS) : v ∈ S}S∈❙, where (Yv, ZS) has capacity ℓv .

A necessary condition for a MUC code with parameters n,

k =
∑

U∈U kU , and (ℓi)i∈[n] to exist is that in its information

flow graph the maximum flow from the source to each sink is at

least k. Therefore, the values of {kU}U∈U and {ℓv}v∈[n] must

be set in order to allow the flows while minimizing the ratio
∑

v∈[n] ℓv/
∑

U∈U kU , which corresponds to the storage overhead.

In order to model the information flow graph, we introduce

the following variables:

• xU ∈ [0, 1] for U ∈ U representing the fraction of message

m associated with µ-set U , i.e., xU := kU/k;

• yv ∈ [0, 1] for v ∈ [n] representing the size of node v as a

fraction of the size of the message m, i.e., yv := ℓv/k;

• zU,v,S ∈ [0, 1] representing the flow from µ-set U through

node v when access set S is used as the sink.

The following LP captures the information flow graph:

minimize
∑

v∈[n] yv
subject to:
∑

U∈U xU = 1
zU,v,S ≤ ✶{v ∈ (U ∩ S)}, ∀U ∈ U , v ∈ [n], S ∈ ❙

xU =
∑

v∈[n] zU,v,S , ∀U ∈ U , S ∈ ❙
∑

U∈U zU,v,S ≤ yv, ∀v ∈ [n], S ∈ ❙

xU ∈ [0, 1], ∀U ∈ U
yv ∈ [0, 1], ∀v ∈ [n]
zU,v,S ∈ [0, 1], ∀U ∈ U , v ∈ [n], S ∈ ❙

(LP2)

where ✶{·} is equal to 1 if the condition inside the braces is

true, and 0 otherwise.

Theorem 7: For a MUC code satisfying access sets ❙, LP2

gives a lower bound on the storage overhead.

Proof: Let fS be the flow of size k from source X to sink

ZS , where fS(u, v) denotes the flow from vertex u to v. Clearly,

because k =
∑

U∈U kU , it must be the case that fS(X,XU) =
kU for all U ∈ U . Similarly, due to the conservation of flow

on the XU vertices, it must hold that
∑

v∈S fS(XU , Yv) = kU .

Finally, due to the conservation of flow on the Yv vertices,

it must hold that
∑

U∈U fS(XU , Yv) = fS(Yv, ZS) ≤ ℓv. By

defining zU,v,S := fS(XU , Yv)/k and substituting these inequali-

ties with the relevant variables, we obtain the constraints of

LP2. A storage overhead lower bound can thus be obtained by

specifying storage overhead as the minimization objective.

Now, we show that MUC codes achieving the lower bound of

Theorem 7 exist over finite fields of size q > |❙|. The key idea

is to construct a generator matrix with carefully chosen entries

set to zero in order to ensure that the code has minimum update

cost, and random entries elsewhere. When the field size is large

enough, the probability that the constructed code satisfies ❙ is

strictly greater than zero, thus showing that such codes exist.

Theorem 8: MUC codes over Fq satisfying given access

sets ❙ with storage overhead matching the lower bound of

Theorem 7 exist for q > |❙|.

Proof sketch: Given a solution to LP2, one can construct

a generator matrix G where the number of rows is given by

the xU variables, the number of columns is given by the yv
variables, and the location of non-zero entries is given by the

zU,v,S variables. Let GS be the submatrix associated to access

set S ∈ ❙. The LP constraints ensure that the probability that

each GS is not full-rank is at most q−1. Thus, by union bound,

the probability that any GS is not full-rank is at most |❙|q−1,

which is less than one if q > |❙|.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford, “Spanner: Google’s globally distributed database,”
ACM Trans. Comput. Syst., 2013.

[2] M. Subramanian, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, S. Viswanathan, L. Tang, and S. Kumar, “f4: Facebook’s warm
BLOB storage system,” in 11th USENIX Symp. Operating Syst. Design

and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014.

[3] H. C. H. Chen, Y. Hu, P. P. C. Lee, and Y. Tang, “NCCloud: a network-
coding-based storage system in a cloud-of-clouds,” IEEE Trans. Comput.,
2014.

[4] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips,
“Giza: erasure coding objects across global data centers,” in 2017 USENIX

Annual Tech. Conf., USENIX ATC 2017, Santa Clara, CA, USA, July

12-14, 2017.

[5] M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Madhyastha,
“Near-optimal latency versus cost tradeoffs in geo-distributed storage,” in
17th USENIX Symp. Netw. Syst. Des. and Implementation, NSDI 2020,

Santa Clara, CA, USA, February 25-27, 2020.

[6] M. Naor and R. M. Roth, “Optimal file sharing in distributed networks,”
SIAM J. Comput. (SICOMP), 1995.

[7] P. Béguin and A. Cresti, “General information dispersal algorithms,”
Theor. Comput. Sci., 1998.

[8] “Bandwidth pricing details,” [Online] https://web.archive.org/web/
20210503232035/https: / /azure.microsoft .com/en-us/pricing/details /
bandwidth/, accessed: 2021-05-03.

[9] “Azure storage overview pricing,” [Online] https://web.archive.org/
web/20210503231640/https://azure.microsoft.com/en-us/pricing/details/
storage/, accessed: 2021-05-03.

[10] A. D. Santis and B. Masucci, “On information dispersal algorithms,” in
IEEE ISIT 2002, Lausanne, Switzerland, July 30-July 5, 2002.

[11] A. Beimel, “Secret-sharing schemes: A survey,” in Coding and Cryptology

- Third Int. Workshop, IWCC 2011, Qingdao, China, May 30-June 3, ser.
Lecture Notes in Computer Science. Springer, 2011.

[12] M. Gonen, I. Haviv, M. Langberg, and A. Sprintson, “Minimizing the
alphabet size of erasure codes with restricted decoding sets,” in IEEE

ISIT 2020, Los Angeles, CA, USA, June 21-26, 2020.

[13] C. Chen, S. Lin, and N. Yu, “Irregular MDS array codes with fewer
parity symbols,” IEEE Commun. Lett., 2019.

[14] F. Tosato and M. Sandell, “Irregular MDS array codes,” IEEE Trans. Inf.

Theory, 2014.

[15] Z. Li and S. Lin, “Update bandwidth for distributed storage,” in IEEE

ISIT 2019, Paris, France, July 7-12, 2019.

[16] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE

Trans. Comput., 1995.

[17] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”
IEEE Trans. Inf. Theory, 1999.

[18] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Inf. Theory, 1996.

[19] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE Trans.

Inf. Theory, 1999.

[20] J. Hartline, T. Kanungo, and J. Hafner, “R5X0: an efficient high distance
parity-based code with optimal update complexity,” IBM Research Report,
vol. RJ 10322, no. A0408-005, 01 2004.

[21] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-Code: a new RAID-6 code with
optimal properties,” in Proc. 23rd Int. Conf. Supercomputing, Yorktown

Heights, NY, USA, June 8-12, 2009. ACM, 2009.

[22] Z. Huang, H. Jiang, K. Zhou, C. Wang, and Y. Zhao, “XI-Code: a family
of practical lowest density MDS array codes of distance 4,” IEEE Trans.

Commun., 2016.

[23] S. Lin, G. Wang, D. S. Stones, X. Liu, and J. Liu, “T-Code: 3-erasure
longest lowest-density MDS codes,” IEEE J. Sel. Areas Commun., 2010.

[24] M. Li and J. Shu, “On cyclic lowest density MDS array codes constructed
using starters,” in IEEE ISIT 2010, Austin, Texas, USA, June 13-18, 2010.

[25] Y. Cassuto and J. Bruck, “Cyclic lowest density MDS array codes,” IEEE

Trans. Inf. Theory, 2009.

[26] E. Louidor and R. M. Roth, “Lowest density MDS codes over extension
alphabets,” IEEE Trans. Inf. Theory, 2006.

[27] Z. Huang, H. Jiang, K. Zhou, Y. Zhao, and C. Wang, “Lowest density
MDS array codes of distance 3,” IEEE Commun. Lett., 2015.

[28] Z. Huang, H. Jiang, and N. Xiao, “Efficient lowest density MDS array
codes of column distance 4,” in IEEE ISIT 2017, Aachen, Germany, June

25-30, 2017.
[29] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with

optimal rebuilding,” IEEE Trans. Inf. Theory, 2013.
[30] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array

codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, 2017.
[31] N. P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, “Update-

efficient codes for erasure correction,” in Allerton, 2010.
[32] A. Mazumdar, G. W. Wornell, and V. Chandar, “Update efficient codes

for error correction,” in IEEE ISIT 2012, Cambridge, MA, USA, July

1-6, 2012.
[33] A. Mazumdar, V. Chandar, and G. W. Wornell, “Update-efficiency and

local repairability limits for capacity approaching codes,” IEEE J. Sel.

Areas Commun., 2014.
[34] Z. Wang and V. R. Cadambe, “Multi-version coding - an information-

theoretic perspective of consistent distributed storage,” IEEE Trans. Inf.

Theory, 2018.
[35] P. Nakkiran, N. B. Shah, and K. Rashmi, “Fundamental limits on

communication for oblivious updates in storage networks,” in 2014 IEEE

Global Commun. Conf. IEEE, 2014.
[36] A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-

dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.

Theory, 2010.
[37] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating

codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, 2011.

[38] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Interfer-
ence alignment in regenerating codes for distributed storage: necessity
and code constructions,” IEEE Trans. Inf. Theory, 2012.

[39] C. Suh and K. Ramchandran, “Exact-repair MDS code construction using
interference alignment,” IEEE Trans. Inf. Theory, Mar. 2011.

[40] D. Papailiopoulos, A. Dimakis, and V. Cadambe, “Repair optimal erasure
codes through Hadamard designs,” IEEE Trans. Inf. Theory, May 2013.

[41] S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating
codes for all parameters,” IEEE Trans. Inf. Theory, 2017.

[42] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS codes
with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory, 2017.

[43] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Trans. Inf. Theory, 2012.

[44] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal
linear codes with a local-error-correction property,” in IEEE ISIT 2012,

Cambridge, MA, USA, July 1-6, 2012.
[45] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,

“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, 2013.

[46] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, 2014.

[47] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, 2014.

[48] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Trans. Inf. Theory, 2017.

[49] R. Hulett and M. Wootters, “Limitations of piggybacking codes with
low substriping,” in Allerton. IEEE, 2017, pp. 1131–1138.

[50] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS code
constructions with small sub-packetization and near-optimal repair band-
width,” IEEE Trans. Inf. Theory, 2018.

[51] S. Jukna, Extremal Combinatorics - With Applications in Computer

Science, ser. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2011.

[52] R. W. Yeung, A First Course in Information Theory. Boston, MA:
Springer US, 2002.

