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Abstract—Distributed storage systems typically use erasure
codes to provide tolerance against node failures. An erasure code
encodes a message into a codeword made up of several symbols,
which are then distributed among nodes in the system. Maximum
distance separable (MDS) [n, k] scalar codes are commonly used
in practice, which have the property that any subset of k£ out of n
nodes is enough to decode the message. However, in applications
such as geo-distributed storage systems, decodability from many
of these subsets is unnecessary. In this paper, we study codes
where only certain subsets of nodes, named access sets, are
required to satisfy decodability.

Our analysis focuses on two metrics of practical importance:
update cost and storage overhead. For minimizing these metrics,

we show that it is necessary to employ irregular array codes.

We derive a lower bound on update cost as a function of the
required access sets and show that it is achievable. Existing work
provides an achievable lower bound on storage overhead. While
both lower bounds are individually achievable, we show that they
are not simultaneously achievable in general. Due to the premium
in wide-area network bandwidth cost over storage cost, we focus
on codes with minimum update cost (termed MUC). Finally, we
derive a lower bound on the storage overhead of MUC codes and
show the existence of MUC codes meeting this lower bound via a
randomized construction. Our results thus show that it is possible
to achieve significant savings in update cost and storage overhead
by tailoring the design of codes to the required access sets.

1. INTRODUCTION

Erasure codes are commonly used in distributed storage
systems to provide resiliency against failures. In such appli-
cations, an [n, k] block code C' is used to encode a message
m consisting of & symbols into a codeword c consisting of
n symbols, where symbols are taken from a finite field F, of
size g. In a scalar code, each codeword symbol is then placed
in a different node in the system. Maximum distance separable
(MDS) codes are widely used in practice, because they require
the least amount of storage for a given level of failure tolerance.

Scalar MDS codes have the property that the message m
can be decoded from any subset of £ out of all n nodes. Some
applications, however, require the ability to decode the message
from only a few of those subsets. In some cases, it may even
be desirable to decode the message from certain subsets of
size smaller than k. An example of such an application is geo-
distributed storage systems [1]—[5]. In these systems, data is
encoded and distributed across different servers around the
globe. Clients in diverse geographical locations then decode
and update the data by communicating with these servers. One
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Fig. 1: (a) Example of arbitrary access sets over five nodes
and (b) an irregular array code that satisfies them.

important constraint is given by the maximum latency facing
clients when decoding data (i.e. read latency). Due to the geo-
distributed nature of this application, network latency across
pairs of clients and servers varies significantly. Thus each client
is only able to communicate with a small subset of nearby
servers under a given read latency threshold. On top of this, one
wants to provide certain failure tolerance guarantees, such as
ensuring that each client can decode the data even if one of the
nearby servers fails. This leads to the requirement that clients
must be able to decode data from specific subsets of nodes.

We formalize such constraints on decodability through the
notion of access sets. An access set is a subset of nodes S C
{1,...,n} expressing the requirement that the message m must
be decodable using only symbols stored in the nodes in S. We
say that a collection of access sets $ is satisfied by a code if the
message m is decodable from each of the access sets in $. Note
that there can be other subsets not in $ which are also sufficient
for decoding m. Our goal is to design a code satisfying the
given access sets while minimizing other cost metrics.

Existing work on codes with arbitrary access sets [6], [7]
has focused on minimizing storage overhead, i.e. the ratio
between the total number of symbols in a codeword and the
number of symbols in the message it encodes. In this paper, we
focus on an additional metric of practical importance: update
cost. The update cost of a code is the average number of
symbols communicated when a single symbol of the message
is updated. In the setting of geo-distributed storage systems,
these transmissions would consume the wide-area network
(WAN) bandwidth which is a scarce and expensive resource
in distributed systems [8]. Thus, update cost is an important
metric to minimize in geo-distributed storage systems.

When the access sets correspond to all (Z) subsets of size k,
it can be shown from basic results about MDS codes that the
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minimum storage overhead is 7/k and the minimum update cost
is (n — k + 1), both of which are simultaneously achieved by
systematic [n, k] Reed-Solomon codes (or other MDS codes).

Towards the goal of optimizing these two metrics in geo-
distributed storage systems, we ask the following question:
When the required access sets are more relaxed than all subsets
of size k, is it possible to reduce update cost and storage
overhead simultaneously by tailoring the code construction to
the access sets? We answer this question in the affirmative.

Consider the following toy example.

Example 1: Consider n = 5 nodes and access sets $ =
{{1,2},{1,5},{2,3,4},{3,4,5}} (see Fig. 1a). A code that
satisfies $ is a systematic [5,2] Reed-Solomon code, with
update cost 4 and storage overhead 5/2 = 2.5. Another code
that satisfies $ is the irregular array code shown on Fig. 1b,
which encodes the message m = (a, b, ¢). Note that m can be
fully decoded from any of the access sets in 3, and that each
message symbol is present in only two different nodes. Thus,
this code has update cost 2 and storage overhead 6/3 =2. »
In Example 1, it was possible to reduce storage overhead by
placing data unevenly on nodes. This kind of code is called an
irregular array code, which allows for the storage of a variable
number of symbols on each node, in contrast to scalar codes
which only store a single symbol per node. Note also that in
Example 1 the sparsity of the access sets makes it possible to
reduce update cost.

We study the problem of designing codes that satisfy the
given access sets while minimizing update cost and storage
overhead. We start by presenting the problem formally and
exploring its fundamental limits (§11I). We do this by first deriv-
ing the minimum update cost achievable by an irregular array
code satisfying the given access sets (§III-A). We then focus on
analyzing update cost and storage overhead in conjunction, and
demonstrate that employing irregular array codes is necessary
for jointly minimizing both of these metrics (§1II-B). We also
show that, unlike the case where all subsets of size k are access
sets, it is not always possible to simultaneously achieve the
minimum update cost and minimum storage overhead (§III-C).
Since the cost of WAN bandwidth tends to be higher than the
cost of storage [8], [9], we focus on codes with minimum update
cost (termed MUC) and minimize storage overhead subject
to this constraint. We model MUC codes using information
flow graphs, and use this model to derive a lower bound on
their storage overhead (§IV). Finally, we show the existence of
MUC codes meeting this lower bound through a randomized
construction (§IV). Overall, the results show that it is possible
to obtain significant savings in update cost and storage overhead
compared to traditional MDS codes when one adapts the design
of a code to the given access sets. This paper also exposes a
new trade-off space between update cost and storage overhead
under arbitrary access sets, which is of significance in geo-
distributed storage systems.

II. RELATED WORK AND EXISTING RESULTS

In this section, we summarize the related work and review
existing results which will be used in this paper.

A. Related work

The concept of codes with arbitrary access sets has been
previously studied in the information dispersal and secret
sharing literatures. Information dispersal [6], [7], [10] studies
the problem of encoding and distributing a given file f among
nodes in a way that satisfies prespecified access sets. While
[6], [7] study the minimum storage overhead required by
arbitrary access sets, to the best of our knowledge, work in the
information dispersal literature has not focused on update cost.
Secret sharing with general access structures [11] considers
the same scenario as information dispersal but adds a security
requirement: any subset of nodes that is not an access set leaks
no information about f. Security is not among the objectives
of this paper. Gonen et al. [12] consider collections of access
sets which are restricted to be of the same size k£ and study
the field size requirement of scalar codes satisfying them.

Irregular array codes have also been used by [13]-[15] in a
line of work called irregular MDS array codes. In this setting,
the following parameters are given as input: the number of
nodes n, the number of message symbols m; stored in node
i €{1,...,n}, and a number k such that all message symbols
can be decoded from any k nodes. The goal in these works
is: 1) to determine the necessary number of parity symbols p;
stored in each node ¢ while minimizing the total number of
parity symbols Z?:l pi, and 2) to design a code that stores
m,; message symbols and p; parity symbols in node ¢ such
that the message can be decoded from any k& nodes.

Several works have studied the cost of updates in storage
codes via different metrics, such as update complexity, update
efficiency, and update bandwidth. Update complexity [16]—
[30] is defined as the average number of codeword symbols
updated when a single message symbol is updated. In linear
codes, this is related to the fraction of non-zero entries (i.e.
density) of the generator matrix. Update efficiency [31]-[33]
refers to the asymptotic behavior of update complexity. Update
bandwidth [15] assumes a systematic irregular array code,
and is the average amount of symbols communicated among
nodes when all message symbols stored in a single node
are updated. All these metrics differ from the update cost
considered in our work, which is defined as the average number
of symbols communicated when a single message symbol is
updated. Update complexity and update efficiency focus on
the number of symbols updated, whereas update cost focuses
on the number of symbols communicated (when nodes store
multiple symbols, a single communicated symbol can be used
to update several symbols at a node). We focus on the number
of symbols communicated rather than updated in order to
capture the usage of WAN bandwidth in geo-distributed storage
systems. Update bandwidth also focuses on the number of
symbols communicated, but is defined for systematic codes
only and is motivated by a setting where data is generated at
the nodes, which is not a good fit for our target application
of geo-distributed storage systems. Several other works have
studied handling updates in storage systems in different settings,
such as multiversion coding [34] and oblivious updates [35].
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The design of erasure codes for distributed storage systems
has also been studied by other lines of research with the goal
of optimizing other metrics. For example, regenerating codes
(e.g. [29], [36]-[42]) minimize the bandwidth cost of node
repair, locally repairable codes (e.g. [43]-[47]) reduce the
number of nodes that must participate in the repair of a single
node, and Piggyback codes [48]-[50] construct codes to reduce
the amount of data read and downloaded during repair while
having a low number of symbols per node (i.e., substripes).

B. Existing results on storage overhead for arbitrary access sets

In this subsection, we summarize results from previous works
that are used in this paper. Naor and Roth [6] proved a lower
bound on the minimum storage overhead of a code satisfying
given access sets 3. Let [n] = {1,...,n}. Each node v € [n]
is modeled as a variable w, € [0, 1] denoting the size of node v
as a fraction of the size of the message m. One clear restriction
is that the combined size of the nodes in an access set must
be at least that of the message. Therefore, a lower bound on
storage overhead is given by the solution to the following linear
program (LP).

minimize  }°, 1, Wo

subject to  » _cw, >1, VS ec$
wy € [0, 1], Yo € [n]

(LP1)

Theorem 1 [6], [7]: The minimum storage overhead of
irregular array codes satisfying access sets $ is given by LP1
and can be achieved by using a sufficiently long MDS code and
distributing symbols according to the weights {w,},c[n). B

III. FUNDAMENTAL LIMITS ON CODES WITH ARBITRARY
ACCESS SETS

An irregular array code over finite field I, with n nodes,
message of length &, and node sizes (£;);c[,) is defined by
a mapping C' : ]FZ — IFfIV, where N = Zie[n] l; is the
length of a codeword. An irregular array code is said to be
linear if C' is linear. Each codeword C'(m) = (cy,...,cn) is
interpreted as an n-node array, with node ¢ denoted as C;(m) =
(Clez41ys - -+ Ce= 14,)) Where s = Z;;ll £;. Let the symbol =
denote an erasure and, for a subset S C [n], let Cs(m) denote
the result of erasing every symbol in C;(m) for i € [n]\ S. We
say that an irregular array code satisfies access sets $ C 20 if
m can be decoded from Cg(m), i.e., there exists a decoding
function D : (F,U{x})" — F¥ such that D(Cs(m)) = m for
allm € IFS and S € $. Note that if it is possible to decode m
from an access set S, then it is possible to decode m from any
access set S’ D S. Thus, we assume without loss of generality
that all subsets in $ are minimal, and thus |$| < (L*:;z j) (by
Sperner’s theorem [51]). The storage overhead of an irregular
array code is defined as the ratio ¥ /k. We define the update cost
of an irregular array code as the average number of symbols
communicated to nodes when a single symbol of the message is
updated. In general, update cost is at least the average number
of nodes that are updated when a single message symbol is
updated, since at least one symbol must be communicated
to each updated node. In linear codes, both the number of

symbols communicated and the number of nodes updated are
equivalent because if message symbol m; is updated to m it
suffices to send symbol Am; = (m/ —m;) to every updated
node. Each node then scales Am,; by the appropriate factor
and updates its symbols. Thus, for linear codes update cost is:

S0 1 € [n] : Cj(e;) # 0}
k b

where e; € ]F’; is the i-th standard basis vector. When ¢; = /¢
for all ¢ € [n| we say that the code is a regular array code,
and when ¢ = 1 we say that it is a scalar code.

Our ultimate goal is to construct codes that minimize update
cost and storage overhead while satisfying the given access sets
3. We begin by studying update cost in isolation (§II1I-A). Then,
we study both update cost and storage overhead in conjunction
(§$III-C). Along the way, we show that using irregular array
codes is necessary for minimizing these two metrics (§I1I-B).

update-cost(C) :=

A. Minimum update cost

Now, we derive a lower bound on the update cost of a code
satisfying the given access sets $. To achieve this, we model
each node v € [n] with a binary variable w, € {0, 1} indicating
whether the node is updated or not when updating any single
arbitrarily chosen message symbol. Observe that if a symbol of
the message is updated, then at least one node in each access
set S € $ has to be updated, since otherwise the output of the
decoding function on this access set would remain unchanged.
Thus, one can compute a lower bound on the number of nodes
updated by a single symbol update and, by extension, a lower
bound on update cost, through the following integer program
(Ip).

minimize ), ¢, Wo
subject to Y g, > 1, VS €S
wy € {0,1}, Vv € [n]

Note that this formulation corresponds to computing a set cover
of the access sets by nodes, where a node v is said to cover
access set S if v € S.

Lemma 2: TP1 gives a lower bound on the update cost of
irregular array codes satisfying access sets 5. [ ]
We show that this bound is achievable via strategic replication.

Lemma 3: The bound of Lemma 2 is achievable.

Proof: Let {w}},c[n be the optimal solution to IP1.
Consider a code that places a full copy of the message m on
each node v where w; = 1. Clearly, this code achieves the
minimum update cost and satisfies the access sets 3. [ |
The next theorem follows from Lemmas 2 and 3.

Theorem 4: The minimum update cost of an irregular array
code satisfying access sets $ is given by IP1 and is achieved
by strategic replication. [ ]
Minimum update sets or u-sets: IP1 may have multiple optimal
solutions for the given access sets $. Each optimal solution
can be interpreted as a subset of nodes U where v € U iff
w, = 1. We call such subsets of nodes a minimum update
set or u-set, and denote the collection of all pu-sets for the
given access sets as . Note that a code can have minimum
update cost only if every update to a message symbol updates

(IP1)
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Fig. 2: (a) Access sets over seven nodes defined by the Fano
plane and (b) an array code that satisfies it.

a number of nodes equal to the minimum update cost. Because
of this, p-sets are important for studying codes with minimum
update cost, and each message symbol must be associated to
a specific u-set that is updated when that message symbol is
updated. As a consequence, in codes with minimum update
cost, a node v depends on a certain message symbol iff it
belongs to its corresponding p-set. For example, in Example 1,
one can verify that the minimum update cost is 2, and that each
message symbol updates a u-set: a updates {1,3}, b updates
{1,4}, and c updates {2,5}. Note that the size of I can be
exponential in n and, like $, it is upper bounded by (L“% J)'

B. The necessity of irregular array codes

In this subsection, we show that considering irregular array
codes (instead of traditional scalar codes) is not only important
for the sake of generality, but also a necessity for reducing
both update cost and storage overhead.

Lemma 5: Trregular array codes are necessary for achieving
the minimum storage overhead of arbitrary access sets.

Proof: The proof proceeds by contradiction using an exam-
ple. Consider Example 1. Notice that any coding scheme that
places the same number of symbols in each node must place at
least k/2 symbols on each node, due to decoding set {1,2} and
Theorem 1. This results in an storage overhead of at least 2.5.
On the other hand, the code proposed in Example 1 achieves the
minimum storage overhead, which is 2 by Theorem 1 (consider
the solution wy = 2/3 and w, = 1/3 for v € {2,...,5}). This
means that storing a different amount of symbols in each node
is necessary for minimizing storage overhead. ]
In general, irregular array codes tend to achieve better storage
overhead than scalar codes when the access sets are of different
sizes, and when nodes belong to different number of access
sets. These two situations arise naturally in geo-distributed
storage systems because of the difference in density of servers
in distinct regions. Note that existing codes for arbitrary access
sets with reduced storage overhead compared to MDS codes
(from the literature on information dispersal [6], [7], [10] and
secret sharing [11]) are indeed irregular array codes.

Lemma 6: Even for access sets where scalar codes can
achieve the minimum storage overhead, array codes are neces-
sary for additionally minimizing the update cost.

We use the next example in the proof to this lemma.

Example 2: Consider n = 7 and the access sets $ defined

Fig. 3: Example of access sets for which minimum update cost
and storage overhead cannot be simultaneously achieved.

by the Fano plane, where each subset of three nodes is in 5 iff
they lie on the same line (see Fig. 2a). The minimum storage
overhead for $ is 7/3, by Theorem 1. The minimum update
cost is 3, by Theorem 4 (every line is a u-set). The access
sets $ are satisfied by a systematic [7, 3] Reed-Solomon code,
which has the minimum storage overhead and its update cost
is 5 (higher than the minimum update cost). The access sets
are also satisfied by the irregular array code shown in Fig. 2b,
which encodes the message m = (a, b, ¢, d, e, f), and has the
minimum storage overhead and the minimum update cost. »

Proof of Lemma 6: The proof proceeds by contradiction
using an example. Consider Example 2. For these access
sets, no code which places a single symbol per node and has
minimum storage overhead can achieve the minimum update
cost, as explained below. Clearly, the p-sets associated with the
message symbols must cover all nodes, as otherwise uncovered
nodes would never be updated. Thus, the code must have k = 3,
since at least three u-sets are needed to cover every node, and
there are exactly three nodes in each access set. However, for
these access sets, any triple of u-sets that covers all nodes
must intersect at exactly one node. No code that places a single
symbol in each node can satisfy the access sets in such a triple,
since two of the nodes in it would be a function of the same
message symbol, and the remaining node would be a function
of all three message symbols. [ ]

C. Tradeoff of update cost vs. storage overhead

So far, we looked at update cost and storage overhead
separately, and saw how to construct codes that achieve the
minimum cost possible on each metric separately. However,
it is easy to see that while the constructions in Theorem 1
and Lemma 3 achieve the minimum cost with respect to one
metric, they do not perform well with respect to the other.
Therefore, it is a natural question to ask whether it is possible
to construct codes that minimize both of these metrics at the
same time. For some collections of access sets, it is possible
to simultaneously achieve both the minimum update cost and
minimum storage overhead. For instance, the collections of
access sets discussed in Examples 1 and 2 both have this
property. As another example, the access sets consisting of all
size k subsets of [n] are satisfied by a systematic [n, k] MDS
code, which achieves the minimum update cost (n —k+ 1) and
minimum storage overhead (7/k). However, as the next example
shows, this is impossible for some collections of access sets and
there is a tradeoff between update cost and storage overhead.

Example 3: Consider n = 5 and access sets $ = {{4,j} :
i # j € [5]}\{{4,5}} (see Fig. 3). From Theorem 1, it follows

3005



message
L-sets
nodes

access sets

Fig. 4: Information flow graph for given access sets.

that the minimum storage overhead for $ is 5/2. Here, the
only u-set is U = {1, 2,3}, since any other subset of at most
three nodes leaves at least one access set uncovered. Thus the
minimum update cost is 3.

Any MUC code cannot place any symbols in node 4 or 5,
since any update to those nodes would require updating more
nodes than the minimum. Since {1,4}, {2,4}, and {3, 4} are
access sets and 4 is empty, 1, 2, and 3 each must have at least
a full copy of message m. This requires storage overhead of
at least 3, which is higher than the minimum. >

Since, in general, it is impossible to achieve the minimum
cost of both metrics simultaneously, and due to the premium in
WAN bandwidth cost over storage cost, we focus on codes with
minimum update cost and then minimize the storage overhead
subject to that constraint. This approach attains one of the
Pareto-optimal points in the tradeoff.

Definition 1 (MUC code): An irregular array code satisfying
access sets B is said to be a minimum update cost (MUC)
code if it achieves the minimum update cost (Theorem 4)
corresponding to 5.

IV. STORAGE OVERHEAD OF MUC CODES: LOWER BOUND
AND ACHIEVABILITY

In this section, we focus on deriving a lower bound on the
storage overhead of MUC codes. In order to derive a lower
bound on storage overhead, we model the decoding process as
a network information flow graph [52].

Recall from §III-A that in MUC codes every message symbol
is associated to a p-set U € U that is updated whenever that
message symbol is updated. For given access sets 3, we build
an information flow graph with the following vertices:

o X, for the message m,;

o {Xv}ueu, for the fraction of m encoded in p-set U;

o {Y,}vepn, for the contents of node v;

e {Zs}ses, for the decoding of access set S.

The graph also contains the following directed edges:

o {(X, Xvu)}vueu, where (X, Xy7) has capacity ky;

e {(Xv,Y,) : v € Ulyeu, each with unlimited capacity;
e {(Yy,Zs) : v € S}tses, where (Y, Zs) has capacity £,.

A necessary condition for a MUC code with parameters n,
k=73 ey kv, and (;);cp to exist is that in its information
flow graph the maximum flow from the source to each sink is at
least k. Therefore, the values of {ky }uecy and {€, },¢},) must

be set in order to allow the flows while minimizing the ratio
Xvem b0/, < ku, which corresponds to the storage overhead.

In order to model the information flow graph, we introduce
the following variables:

e xy € [0,1] for U € U representing the fraction of message
m associated with p-set U, i.e., xy := kv /k;

e Yy € [0,1] for v € [n] representing the size of node v as a
fraction of the size of the message m, i.e., y, := % /k;

e Zuw,s € [0,1] representing the flow from p-set U through
node v when access set S is used as the sink.

The following LP captures the information flow graph:

minimize  >°, () Yo

subject to:

Yveyuru =1

2v0s <M{ve (UNS)}, YWeld,ven],Sel

TU = Y pe[n] U0, YU eU,SeS (LP2)
Uer 2Uw,S < Yo, Yv €[n], S

xy € 10,1], YU e U
€ [0,1], Vo € [n]

2uv,s € 10,1], YUelU,ven],Sed

where 1{-} is equal to 1 if the condition inside the braces is
true, and O otherwise.

Theorem 7: For a MUC code satisfying access sets $, LP2
gives a lower bound on the storage overhead.

Proof: Let fg be the flow of size k from source X to sink

Zg, where fs(u,v) denotes the flow from vertex u to v. Clearly,
because k = ) ;. kv, it must be the case that fs(X, Xy) =
ky for all U € U. Similarly, due to the conservation of flow
on the Xy vertices, it must hold that ) ¢ fs(Xv,Ys) = ku.
Finally, due to the conservation of flow on the Y, vertices,
it must hold that ), fs(Xv,Yy) = fs(Ye, Zs) < £,. By
defining zy , s 1= fs(Xv,Yu)/k and substituting these inequali-
ties with the relevant variables, we obtain the constraints of
LP2. A storage overhead lower bound can thus be obtained by
specifying storage overhead as the minimization objective. W

Now, we show that MUC codes achieving the lower bound of
Theorem 7 exist over finite fields of size ¢ > |3|. The key idea
is to construct a generator matrix with carefully chosen entries
set to zero in order to ensure that the code has minimum update
cost, and random entries elsewhere. When the field size is large
enough, the probability that the constructed code satisfies $ is
strictly greater than zero, thus showing that such codes exist.

Theorem 8: MUC codes over F, satisfying given access
sets $ with storage overhead matching the lower bound of
Theorem 7 exist for ¢ > [$].

Proof sketch: Given a solution to LP2, one can construct

a generator matrix G where the number of rows is given by
the xy variables, the number of columns is given by the y,
variables, and the location of non-zero entries is given by the
Zu,,s variables. Let G be the submatrix associated to access
set S € 3. The LP constraints ensure that the probability that
each Gy is not full-rank is at most q_l. Thus, by union bound,
the probability that any G is not full-rank is at most |$|g~1,
which is less than one if ¢ > [$]. [ |
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