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Abstract

Let Γn(p) be the level-p principal congruence subgroup of SLn(Z). Borel–Serre proved
that the cohomology of Γn(p) vanishes above degree

(︁
n
2

)︁
. We study the cohomology

in this top degree
(︁
n
2

)︁
. Let Tn(Q) denote the Tits building of SLn(Q). Lee–Szczarba

conjectured that H(n2)(Γn(p)) is isomorphic to ˜︁Hn−2(Tn(Q)/Γn(p)) and proved that this
holds for p = 3. We partially prove and partially disprove this conjecture by showing
that a natural map H(n2)(Γn(p)) → ˜︁Hn−2(Tn(Q)/Γn(p)) is always surjective, but is only
injective for p ≤ 5. In particular, we completely calculate H(n2)(Γn(5)) and improve
known lower bounds for the ranks of H(n2)(Γn(p)) for p ≥ 5.
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1 Introduction

The cohomology of arithmetic groups plays a fundamental role in algebraic K-theory and
number theory. The most basic examples of arithmetic groups are SLn(Z) and its finite-index
subgroups. For n ≥ 3, the congruence subgroup property [BaLaSe64, Me65] says that every
finite-index subgroup of SLn(Z) contains a principal congruence subgroup, i.e. the kernel
Γn(ℓ) of the map SLn(Z) → SLn(Z/ℓ) that reduces coefficients modulo ℓ. In this paper, we
study the high-dimensional cohomology of Γn(p) for a prime p.

Stable and unstable cohomology. Borel [Bo74] calculated Hi(Γn(p);Q) when n≫ i; the
resulting cohomology groups are known as the stable cohomology. Borel–Serre [BoSe73] later
showed that the rational cohomological dimension of Γn(p) is

(︁
n
2

)︁
, so Hi(Γn(p);Q) = 0 for

i >
(︁
n
2

)︁
. This even holds integrally if Γn(p) is torsion-free, i.e. if p ≥ 3. The “most unstable”

cohomology group of Γn(p) is thus in degree
(︁
n
2

)︁
. Our main theorem calculates this when

p ≤ 5 and greatly strengthens the known lower bounds on it when p > 5, partially proving
and partially disproving a conjecture of Lee–Szczarba [LeSz76].

Duality. Stating this conjecture requires some preliminaries. Borel–Serre [BoSe73] proved
that Γn(p) is a rational duality group of dimension

(︁
n
2

)︁
, which implies that

H(n2)−i(Γn(p);Q) ∼= Hi(Γn(p);D⊗Q) for all i

for a Γn(p)-module D called the dualizing module. This holds integrally if p ≥ 3. In particular,

H(n2)(Γn(p);Q) ∼= H0(Γn(p);D⊗Q) ∼= (D⊗Q)Γn(p),

where the subscript indicates that we are taking coinvariants.

Steinberg modules. The dualizing module D has the following beautiful description. For
a field F, let Tn(F) be the Tits building for SLn(F), that is, the simplicial complex whose
k-simplices are flags

0 ⊊ V0 ⊊ · · · ⊊ Vk ⊊ Fn.

This is an (n−2)-dimensional simplicial complex, and the Solomon–Tits theorem [So68, Br98]
says that Tn(F) is homotopy equivalent to a wedge of spheres of dimension (n − 2). The
Steinberg module for SLn(F), denoted Stn(F), is ˜︁Hn−2(Tn(F)). The action of SLn(F) on Tn(F)
descends to an action on Stn(F). For F = Q, the group Γn(p) acts on Stn(Q) via the inclusion
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Γn(p) ↪→ SLn(Z) ↪→ SLn(Q), and Borel–Serre proved that the dualizing module D for Γn(p)
is Stn(Q).

A first source of cohomology. The cohomology groups we are interested in are thus
isomorphic to (Stn(Q) ⊗ Q)Γn(p), with the ⊗Q unnecessary if p ≥ 3. One simple way to
get elements of this is as follows. There is a bijection between subspaces of Qn and direct
summands of Zn that takes V ⊂ Qn to V ∩Zn. The direct summand V ∩Zn can be reduced
modulo p, giving a subspace of Fn

p . This construction gives a map Tn(Q) → Tn(Fp), and
passing to homology yields a map

Stn(Q) = ˜︁Hn−2(Tn(Q)) → ˜︁Hn−2(Tn(Fp)) = Stn(Fp).

It is not hard to see that this map is a surjection. Since it is Γn(p)-invariant, it factors
through a surjection

H(n2)(Γn(p)) ∼= (Stn(Q))Γn(p) ↠ Stn(Fp).

Lee–Szczarba [LeSz76] proved that this map is an isomorphism for p = 3. Using their
techniques, it is not hard to see that it is also an isomorphism for p = 2 (after tensoring with
Q).

Larger primes. It is tempting to think that this might hold for all p, but unfortunately
this is false. Indeed, the Solomon–Tits theorem [So68, Br98] also says that Stn(Fp) is a free
Z-module of rank

p(
n
2), (1.1)

but a theorem of Paraschivescu [Par97] says that the rank of H(n2)(Γn(p)) is at least(︃
p− 1

2

)︃n−1

p(
n
2) (1.2)

for primes p ≥ 3. The equation (1.2) is greater than (1.1) for primes p ≥ 5.

A source of additional cohomology. The quotient map Tn(Q) → Tn(Q)/Γn(p) induces a
Γn(p)-invariant map

Stn(Q) = ˜︁Hn−2(Tn(Q)) −→ ˜︁Hn−2(Tn(Q)/Γn(p)). (1.3)

It will follow from our results (see below) that this map is surjective, so the coinvariants
(Stn(Q))Γn(p) are at least as large as ˜︁Hn−2(Tn(Q)/Γn(p)). For p ≤ 3, it turns out that
Tn(Q)/Γn(p) ∼= Tn(Fp), so the map (1.3) is really the map to Stn(Fp) we discussed above.
However, for p ≥ 5 the building Tn(Fp) is a proper quotient of Tn(Q)/Γn(p) and the map
(1.3) detects more of H(

n
2)(Γn(p)) than just an Stn(Fp)-factor. See Proposition 3.16 and

Remark 3.14 for more details about all of this.

Remark 1.1. We will show that (1.3) also detects more cohomology than Paraschivescu’s
bound (1.2).

Lee–Szczarba conjecture and our main theorem. In [LeSz76, remark on p. 28],
Lee–Szczarba conjectured that (1.3) detects all of H(n2)(Γn(p)):
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Conjecture 1.2 (Lee–Szczarba). For a prime p and n ≥ 2, the map

(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p))

induced by (1.3) is an isomorphism.

As we said above, they proved this for p = 3, and it is not hard to use their techniques
to also prove it for p = 2 (though they did not do this). However, Ash [As77] proved that
Conjecture 1.2 fails for n = 3 and p ≥ 7. The proofs of the results in [As77] were never
published, but they follow easily from the results in [LeSc82]. The methods of these papers
were specific to n = 3, and it seems hard to extend them to higher n.

Our main theorem completely characterizes when Conjecture 1.2 holds:

Theorem A. For a prime p and n ≥ 2, the map

(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p)) (1.4)

induced by (1.3) is a surjection. However, it is an injection if and only if p ≤ 5.

We thus see that Conjecture 1.2 is true for p ≤ 5, but is false for larger primes. In addition
to dealing with the case p = 5, our techniques also give a new proof for p = 2 and p = 3.

Even more cohomology. Our proof that (1.4) is not injective for p > 5 actually gives
explicit new cohomology classes, which allow us to give the following even better lower bound
on the rank of H(n2)(Γn(p)) for p > 5. For a vector space V , let Grk(V ) be the Grassmannian
of k-dimensional subspaces of V . See Theorem C below for a calculation of the rank of˜︁Hn−2(Tn(Q)/Γn(p)), which shows up in the following theorem.

Theorem B. Fix a prime p ≥ 3. For n ≥ 1, let tn be the rank of ˜︁Hn−2(Tn(Q)/Γn(p)). Also,
set t0 = 1. Then for n ≥ 3, the rank of H(n2)(Γn(p)) is at least

tn +
(p+ 2)(p− 3)(p− 5)(p− 1)

24
· |Gr2(Fn

p )| · tn−2

with equality if p = 3 or p = 5.

Remark 1.3. The astute reader will notice that the term (p+2)(p−3)(p−5)
24 in Theorem B is the

genus of the modular curve of level p. This is not a coincidence. Indeed, we construct a
surjective homomorphism from the kernel of

H(n2)(Γn(p)) → ˜︁Hn−2(Tn(Q)/Γn(p))

to a group obtained by inducing up the first homology group of the level p-modular curve
tensored with ˜︁Hn−4(Tn−2(Q)/Γn(p)).

Size of quotient space. Recall that the rank of ˜︁Hn−2(Tn(Fp)) is p(
n
2). There does not seem

to be a similar simple closed form expression for the rank of ˜︁Hn−2(Tn(Q)/Γn(p)). However,
we will establish the following recursive formula for it.
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Theorem C. Fix a prime p ≥ 3. For n ≥ 1, let tn be the rank of ˜︁Hn−2(Tn(Q)/Γn(p)). We
then have t1 = 1 and

tn =

(︃
p− 3

2
+

(︃
p− 1

2

)︃
· pn−1

)︃
tn−1 +

(p− 1)(p− 3)

4

n−2∑︂
k=1

pk · |Grk(Fn−1
p )| · tktn−k−1

for n ≥ 2.

Remark 1.4. An easy calculation shows that |Grk(Fn
p )| =

∏︁k−1
i=0

pn−pi

pk−pi
.

Relation with Paraschivescu’s bound. Recall from above that Paraschivescu [Par97]
proved that for p ≥ 3, the rank of H(n2)(Γn(p)) = (Stn(Q))Γn(p) is at least

t′n =

(︃
p− 1

2

)︃n−1

p(
n
2).

Letting tn be as in Theorem C, Theorem B shows that the rank of H(n2)(Γn(p)) is also at
least tn. For p ≥ 5 and n ≥ 2, our bound tn is always stronger than Paraschivescu’s bound
t′n. Indeed, t′n satisfies the recursive formula

t′1 = 1 and t′n =

(︃
p− 1

2

)︃
pn−1t′n−1 (n ≥ 2).

We thus have t1 = t′1, and for n ≥ 2 and p ≥ 5 we have

tn =

(︃
p− 3

2
+

(︃
p− 1

2

)︃
· pn−1

)︃
tn−1 +

(p− 1)(p− 3)

4

n−2∑︂
k=1

pk · |Grk(Fn−1
p )| · tktn−k−1

>

(︃
p− 1

2

)︃
pn−1tn−1 ≥

(︃
p− 1

2

)︃
pn−1t′n−1 = t′n.

Comments on bounds. To the best of our knowledge, Theorem B gives the best known
lower bounds on these ranks for general n. It gives a complete calculation of H(n2)(Γn(5)); see
Table 1 for a table of values for n ≤ 15. This table was produced in less than a second using
a personal computer, which can compute all tn for n ≤ 200 within a minute. There have been
extensive computer calculations of the cohomology of finite-index subgroups of SLn(Z) for
small n using the theory of Voronoi tessellations (see, e.g. [AsGMc02, AsGMc08, AsGMc10]).
However, for n ≥ 5 we believe that the computation in Theorem B is beyond the reach of
such computer calculations with present technology using those techniques.

Outline. The proof of Theorem A has two main ingredients: connectivity/non-connectivity
results for certain simplicial complexes built from bases of Fn

p , and a spectral sequence
argument.

The connectivity results are proven in §2, where the primary difficulty is the case p = 5. For
p = 2 or 3, the field Fp has the property that every unit lifts to a unit in Z, which greatly
simplifies the arguments. Although this is not true for p = 5, there still are not “too many”
units that do not come from units in Z. For example, a key property about the number 5
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n rkH(n2)(Γn(5))

1 1
2 11
3 621
4 176331
5 250654141
6 1781972405051
7 63346001119010061
8 11259312615761079960171
9 10006344346503001479394156381

10 44464067922769996760030750509009691
11 987899991107026778582667588995859270541101
12 109745515200463561297438405787408294210000904481611
13 60957982865169441101378571385234702783255341037103258372221
14 169295103797089744818524470008237065225058191012577153712309414663931
15 2350867829470159774034814041007591566603522538519291648712545382850352884817741

Table 1: Calculations of the ranks of H(n2)(Γn(5)) for n ≤ 15.

that we use is that if a and b are units in F5 which do not lift to units in Z, then there is a
choice of signs such that 1 = ±a± b.

The spectral sequence arguments are in §3, which contains the proof of Theorem A. For
p ≤ 5, this spectral sequence argument is relatively standard and is similar to the one used
by Church–Putman [ChuPu17]. However, for p > 5, it is more novel. We use the failure of
certain simplicial complexes to be highly acyclic to produce elements in the kernel of the map

H(n2)(Γn(p)) −→ ˜︁Hn−2(Tn(Q)/Γn(p)).

These classes in the kernel that we describe are all induced up in some sense from classes in
the kernel for n = 2. This new spectral sequence argument that we introduce in this paper
has had applications to other questions concerning the cohomology of arithmetic groups (see,
e.g., [MiPatWiY19]).

We close with the computational §4, which proves Theorems B and C.

Acknowledgments. We thank Ben McReynolds and Simon Rubinstein–Salzedo for helpful
conversations. We would also like to thank Avner Ash, Tom Church, and Paul Gunnells for
helpful comments on previous versions of this paper. Finally, the second and third authors
would like to thank MSRI for their hospitality.

2 Simplicial complexes associated to free R-modules

Fix a commutative ring R. Our proof will require various simplicial complexes associated to
a free R-module. The rings we will make serious use of are R = Z and R a field.

6



2.1 Complexes of bases and augmented bases

We start by discussing four versions of these complexes: the complexes of partial R×-bases,
augmented partial R×-bases, partial ±-bases, and augmented partial ±-bases.

2.1.1 Partial R×-bases

Let R× be the set of units in R. We make the following definition.

Definition 2.1. An R×-vector in Rn is a set of the form {cv⃗ | c ∈ R×} for a nonzero v⃗ ∈ Rn.
Given a nonzero v⃗ ∈ Rn, we will write [v⃗] for the associated R×-vector.

We then make the following definition.

Definition 2.2. A partial basis for Rn is a set of elements of Rn that is a subset of a free
basis for Rn. A partial R×-basis for Rn is a set {[v⃗1], . . . , [v⃗k]} of R×-vectors in Rn such
that the set {v⃗1, . . . , v⃗k} is a partial basis for Rn. This does not depend on the choice of the
representatives v⃗i.

We now turn these into a simplicial complex as follows. Here and throughout the rest of this
paper, we will define simplicial complexes by specifying that their simplices are certain sets.
What we mean by this is that the k-simplices are such sets containing (k + 1)-elements, and
the face relations between simplices are simply inclusions of sets.

Definition 2.3. The complex of partial R×-bases for Rn, denoted B×
n (R), is the simplicial

complex whose simplices are partial R×-bases for Rn.

To understand B×
n (R) in an inductive way, we will need to understand links of simplices in

it. We thus make the following definition.

Definition 2.4. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define B×
n,m(R) =

LinkB×
n+m(R){[e⃗1], . . . , [e⃗m]}.

Recall that a simplicial complex X is Cohen–Macaulay of dimension r if it satisfies the
following conditions:

• X is r-dimensional and (r − 1)-connected, and
• for all k-simplices σ of X, the complex LinkX(σ) is (r − k − 1)-dimensional and
(r − k − 2)-connected.

Church–Putman [ChuPu17] proved the following.

Theorem 2.5 ([ChuPu17, Theorem 4.2]). The complex B×
n,m(Z) is Cohen–Macaulay of

dimension (n− 1) for all n,m ≥ 0.
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We will need the analogous fact with Z replaced by a field:

Proposition 2.6. For a field F, the complex B×
n,m(F) is Cohen–Macaulay of dimension

(n− 1) for all n,m ≥ 0.

Proof. Since the link of a k-simplex in B×
n,m(F) is isomorphic to B×

n−k−1,m+k+1(F), it is enough
to prove that B×

n,m(F) is (n − 2)-connected for all n,m ≥ 0. Let Bn,m(F) be the complex
defined just like B×

n,m(F) but using actual vectors rather than R×-vectors. By [VdK80,
Theorem 2.6], the complex Bn,m(F) is (n− 2)-connected. Let π : Bn,m(F) → B×

n,m(F) be the
projection. For each R×-vector v in Fn+m, choose an arbitrary v⃗ ∈ v. We can then define a
simplicial map ϕ : B×

n,m(F) → Bn,m(F) via the formula ϕ(v) = v⃗ for all vertices v of B×
n,m(F).

We clearly have π ◦ ϕ = id, so ϕ is an embedding and π is a retraction of Bn,m(F) onto the
image of ϕ. This implies that B×

n,m(F) is (n− 2)-connected, as desired.

Remark 2.7. Rather than deducing Proposition 2.6 from [VdK80, Theorem 2.6], it could
instead be proved by imitating the proof of [ChuPu17, Theorem 4.2]. We proved it the way
we did above to emphasize that the essential core of the result was in [VdK80].

2.1.2 Augmented partial R×-bases

We now add certain simplices to B×
n,m(R). The key definition is as follows.

Definition 2.8. An augmented partial R×-basis for Rn is a set {[v⃗0], . . . , [v⃗k]} of R×-vectors
in Rn that can be reordered such that the following hold:

• {[v⃗1], . . . , [v⃗k]} is a partial R×-basis for Rn.
• There exist units λ, ν ∈ R× such that v⃗0 = λv⃗1 + νv⃗2. The existence of λ and ν does

not depend on the choice of the representatives v⃗1 and v⃗2.

We will call the R×-vectors {[v⃗0], [v⃗1], [v⃗2]} the additive core of {[v⃗0], . . . , [v⃗k]}.

Remark 2.9. The additive core of an augmented partial R×-basis σ for Rn can be characterized
intrinsically as the set of all v ∈ σ such that σ \ {v} is a partial R×-basis for Rn.

A subset of an augmented partial R×-basis is either an augmented partial R×-basis (if the
subset contains the entire additive core) or a partial R×-basis (if the subset does not contain
the entire additive core). We thus can make the following definition.

Definition 2.10. The complex of augmented partial R×-bases for Rn, denoted BA×
n (R), is

the simplicial complex whose simplices consist of partial R×-bases and augmented partial
R×-bases for Rn.

Again, we will need to study links of simplices in BA×
n (R). However, for technical reasons

we will not study the entire link, but rather the following subcomplex of it.

Definition 2.11. Let σ = {[v⃗1], . . . , [v⃗k]} be a simplex of BA×
n (R). The augmented link of

σ, denoted ˆ︃LinkBA×
n (R)(σ), is the full subcomplex of LinkBA×

n (R)(σ) spanned by vertices [w⃗]
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of LinkBA×
n (R)(σ) such that w⃗ /∈ ⟨v⃗1, . . . , v⃗k⟩. This definition does not depend on the choice

of the representatives v⃗i or w⃗.

The simplices of ˆ︃LinkBA×
n (R)(σ) fall into the following three classes:

Definition 2.12. Let σ = {[v⃗1], . . . , [v⃗k]} be a simplex of BA×
n (R). Let η be a simplex ofˆ︃LinkBA×

n (R)(σ). Then one of the following three conditions hold.

• η is a partial R×-basis for Rn. We will then call η a standard simplex.
• η is an augmented partial R×-basis for Rn, i.e. we can write η = {[w⃗0], . . . , [w⃗ℓ]} such

that w⃗0 = λw⃗1 + νw⃗2 with λ, ν ∈ R×. We will then call η an internally additive
simplex.

• We can write η = {[w⃗0], . . . , [w⃗ℓ]} with w⃗0 = λw⃗1 + νv⃗i for some λ, ν ∈ R× and some
1 ≤ i ≤ k. We will then call η an externally additive simplex.

We will sometimes call a simplex that is either internally or externally additive simply an
additive simplex.

Just like for B×
n,m(R), we make the following definition.

Definition 2.13. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define BA×
n,m(R) =ˆ︃LinkBA×

n+m(R){[e⃗1], . . . , [e⃗m]}.

Church–Putman [ChuPu17] proved the following, which is an analogue of Theorem 2.5 for
BA×

n,m(Z).

Theorem 2.14 ([ChuPu17, Theorem C′]). The complex BA×
n,m(Z) is Cohen–Macaulay of

dimension n for all n ≥ 1 and m ≥ 0 with n+m ≥ 2.

We will need the analogous fact with Z replaced by a field:

Proposition 2.15. For a field F, the complex BA×
n,m(F) is Cohen–Macaulay of dimension n

for all n ≥ 1 and m ≥ 0 with n+m ≥ 2.

Proof. We start by briefly describing the proof of [ChuPu17, Theorem C′]. Consider a vertex
v of BA×

n,m(Z). Pick v⃗ ∈ v, and write v⃗ = (a1, . . . , an+m) ∈ Zn+m. Define

R(v) = |an+m| ∈ Z≥0.

This does not depend on the choice of v⃗. In [ChuPu17, Theorem C′], the function R(v) is
used as a sort of Morse function, and spheres in BA×

n,m(Z) are homotoped so as to decrease
the largest value of R(v) as v ranges over the vertices of the sphere. This homotopy makes use
of the division algorithm in Z via the observation that if {v1, . . . , vk} is a standard simplex of
BA×

n,m(Z) with R(v1) > 0 and if v⃗i ∈ vi are representatives, then we can find ν2, . . . , νk ∈ Z
such that letting v⃗′i = v⃗i + νiv⃗1 and v′i = [v⃗′i] for 2 ≤ i ≤ k, we have

R(v′i) < R(v1) (2 ≤ i ≤ k),
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while {v1, v′2, . . . , v′k} is still a standard simplex of BA×
n,m(Z). To extend this to the augmented

simplices, an elaborate analysis of the process of carrying during integer multiplication is
required.

A very similar (but much easier proof) works for BA×
n,m(F). The appropriate complexity

function R is defined as follows. Consider a vertex v of BA×
n,m(F). Pick v⃗ ∈ v, and write

v⃗ = (a1, . . . , an+m) ∈ Fn+m. Define

R(v) =

{︄
1 if an+m ̸= 0,

0 if an+m = 0.

The division algorithm is much easier in a field. Indeed, the appropriate analogue of the
above fact is that if {v1, . . . , vk} is a standard simplex of BA×

n,m(F) with R(v1) = 1 and if
v⃗i ∈ vi are representatives, then we can find ν2, . . . , νk ∈ F such that letting v⃗′i = v⃗i + νiv⃗1
and v′i = [v⃗′i] for 2 ≤ i ≤ k, we have

R(v′i) = 0 (2 ≤ i ≤ k),

while {v1, v′2, . . . , v′k} is still a standard simplex of BA×
n,m(Z). With this definition, the

entire proof of [ChuPu17, Theorem C′] goes through with minimal changes. We omit the
details.

2.1.3 Partial ±-bases

We now turn to a different complex where we only allow multiplication by −1. We start with
the following.

Definition 2.16. A ±-vector in Rn is a set v = {v⃗,−v⃗} with v⃗ ∈ Rn nonzero. Given a
nonzero v⃗ ∈ Rn, we will write ±v⃗ for the associated ±-vector {v⃗,−v⃗}.

We then make the following definition.

Definition 2.17. A partial ±-basis for Rn is a set {±v⃗1, . . . ,±v⃗k} of ±-vectors in Rn such
that the set {v⃗1, . . . , v⃗k} is a partial basis for Rn. This does not depend on the choice of the
representatives v⃗i.

These form a simplicial complex:

Definition 2.18. The complex of partial ±-bases for Rn, denoted B±
n (R), is the simplicial

complex whose simplices are partial ±-bases for Rn.

To understand B±
n (R) in an inductive way, we will need to understand links of simplices in

it. We thus make the following definition.

Definition 2.19. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define B±
n,m(R) =

LinkB±
n+m(R){±e⃗1, . . . ,±e⃗m}.
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Remark 2.20. Since Z× = {±1}, we have B±
n,m(Z) = B×

n,m(Z).

The following is the analogue for B±
n,m(F) of Proposition 2.6.

Proposition 2.21. For a field F, the complex B±
n,m(F) is Cohen–Macaulay of dimension

(n− 1) for all n,m ≥ 0.

Proof. We compare B±
n,m(F) with B×

n,m(F). For each vertex v of B×
n,m(F), choose an arbitrary

element v⃗ ∈ v. Define Λ = F×/{±1}, considered as a multiplicative group. Vertices of
B±
n,m(F) can then be identified with pairs (v, λ) with v a vertex of B×

n,m(F) and λ ∈ Λ
via the identification that takes (v, λ) to ±(λv⃗). This expression makes sense even though
λ ∈ Λ rather than F× since we are considering ±-vectors. Under this identification, a set
{(v0, λ0), . . . , (vk, λk)} forms a k-simplex precisely when {v0, . . . , vk} forms a k-simplex of
B×
n,m(F) (which implies that the vi are distinct). This means that B±

n,m(F) is a complete
join complex over B×

n,m(F) in the sense of [HWa10, Definition 3.2]. Proposition 2.6 says that
B×
n,m(F) is Cohen–Macaulay of dimension (n−1). In [HWa10, Proposition 3.5], Hatcher–Wahl

proved that if Y is a complete join complex over a complex X that is Cohen–Macaulay of
dimension r, then Y is also Cohen–Macaulay of dimension r. Applying this to our situation,
we deduce that B±

n,m(F) is Cohen–Macaulay of dimension (n− 1), as desired.

2.1.4 Augmented ±-bases

We now define the augmented version of B±
n,m(R). The key definition is as follows.

Definition 2.22. An augmented partial ±-basis for Rn is a set {±v⃗0, . . . ,±v⃗k} of ±-vectors
in Rn that can be reordered such that the following hold:

• {±v⃗1, . . . ,±v⃗k} is a partial ±-basis for Rn.
• There exist units λ, ν ∈ R× such that v⃗0 = λv⃗1 + νv⃗2. The existence of λ and ν does

not depend on the choice of the representatives v⃗1 and v⃗2 – making the other choice
merely multiplies them by −1.

We will call the ±-vectors {±v⃗0,±v⃗1,±v⃗2} the additive core of {±v⃗0, . . . ,±v⃗k}.

Remark 2.23. The additive core of an augmented partial ±-basis σ for Rn can be characterized
intrinsically as the set of all v ∈ σ such that σ \ {v} is a partial ±-basis for Rn.

A subset of an augmented partial ±-basis is either an augmented partial ±-basis (if the
subset contains the entire additive core) or a partial ±-basis (if the subset does not contain
the entire additive core). We thus can make the following definition.

Definition 2.24. The complex of augmented partial ±-bases for Rn, denoted BA±
n (R), is the

simplicial complex whose simplices consist of partial ±-bases and augmented partial ±-bases
for Rn.

Again, we will need to study links of simplices in BA±
n (R). Just like for BA×

n (R), we make
the following definition.
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Definition 2.25. Let σ = {±v⃗1, . . . ,±v⃗k} be a simplex of BA±
n (R). The augmented link of

σ, denoted ˆ︃LinkBA±
n (R)(σ), is the full subcomplex of LinkBA±

n (R)(σ) spanned by vertices ±w⃗
of LinkBA±

n (R)(σ) such that w⃗ /∈ ⟨v⃗1, . . . , v⃗k⟩. This definition does not depend on the choice
of the representatives v⃗i or w⃗.

The simplices of ˆ︃LinkBA±
n (R)(σ) fall into the following three classes:

Definition 2.26. Let σ = {±v⃗1, . . . ,±v⃗k} be a simplex of BA±
n (R). Let η be a simplex ofˆ︃LinkBA±

n (R)(σ). Then one of the following three conditions hold.

• η is a partial ±-basis for Rn. We will then call η a standard simplex.
• η is an augmented partial ±-basis for Rn, i.e. we can write η = {±w⃗0, . . . ,±w⃗ℓ} such

that w⃗0 = λw⃗1 + νw⃗2 with λ, ν ∈ R×. We will then call η an internally additive
simplex.

• We can write η = {±w⃗0, . . . ,±w⃗ℓ} with w⃗0 = λw⃗1 + νv⃗i for some λ, ν ∈ R× and some
1 ≤ i ≤ k. We will then call η an externally additive simplex.

We will sometimes call a simplex that is either internally or externally additive simply an
additive simplex.

Just like for BA×
n,m(R), we make the following definition.

Definition 2.27. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define BA±
n,m(R) =ˆ︃LinkBA±

n+m(R){±e⃗1, . . . ,±e⃗m}.

Remark 2.28. Since Z× = {±1}, we have BA±
n,m(Z) = BA×

n,m(Z).

The analogue of Proposition 2.15 is the following.

Proposition 2.29. For a field F, the complex BA±
n,m(F) is Cohen–Macaulay of dimension n

for all n ≥ 1 and m ≥ 0 with n+m ≥ 2.

Proof. Just like we did in the proof of Proposition 2.21, we compare BA±
n,m(F) with BA×

n,m(F).
For each vertex v of BA×

n,m(F), choose an arbitrary element v⃗ ∈ v. Define Λ = F×/{±1},
considered as a multiplicative group. Vertices of BA±

n,m(F) can then be identified with pairs
(v, λ) with v a vertex of BA×

n,m(F) and λ ∈ Λ via the identification that takes (v, λ) to ±(λv⃗).
This expression makes sense even though λ ∈ Λ rather than F× since we are considering
±-vectors. Under this identification, a set {(v0, λ0), . . . , (vk, λk)} forms a k-simplex precisely
when {v0, . . . , vk} forms a k-simplex of BA×

n,m(F); for additive simplices, the additive core
of {(v0, λ0), . . . , (vk, λk)} consists of the vi that lie in the additive core of {v0, . . . , vk}. This
means that BA±

n,m(F) is a complete join complex over BA×
n,m(F) in the sense of [HWa10,

Definition 3.2]. By [HWa10, Proposition 3.5], the fact that BA±
n,m(F) is Cohen–Macaulay of

dimension n now follows from Proposition 2.15, which says that BA×
n,m(F) is Cohen–Macaulay

of dimension n.

Remark 2.30. It is tempting to try to prove Proposition 2.29 by mimicking the proof of the
analogous result over Z from [ChuPu17], just like we did for Proposition 2.15. Since we will
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only use Proposition 2.29 and not Proposition 2.15 later in the paper, this would allow us
to totally ignore the complexes of R×-bases. Unfortunately, it turns out that the proof in
[ChuPu17] breaks down for BA±

n,m(F) (a certain retraction it uses breaks), so this strategy
does not work. This was why we ended up introducing the complexes of R×-bases.

2.2 Complexes of determinant-1 partial ±-bases

For our proof, what we really need are certain subcomplexes of the complexes of partial
±-bases where we impose a determinant condition.

2.2.1 Determinant-1 partial ±-bases

We make the following definition.

Definition 2.31. A partial ±-basis {±v⃗1, . . . ,±v⃗k} for Rn is a determinant-1 partial ±-basis
if it satisfies the following condition.

• If k = n, then we require that the determinant of the matrix (v⃗1 · · · v⃗n) whose columns
are the v⃗i is equal to either 1 or −1. This does not depend on the choice of the v⃗i or
their ordering.

• If k < n, then no additional condition needs to be satisfied.

These form a simplicial complex:

Definition 2.32. The complex of determinant-1 partial ±-bases for Rn, denoted BD±
n (R), is

the simplicial complex whose simplices are determinant-1 partial ±-bases for Rn.

Just like for B±
n (R), we need to consider links as well:

Definition 2.33. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define BD±
n,m(R) =

LinkBD±
n+m(R){±e⃗1, . . . ,±e⃗m}.

Remark 2.34. Since Z× = {±1}, we have BD±
n,m(Z) = B±

n,m(Z) = B×
n,m(Z).

With these definitions, we have the following key lemma. Recall that Γn(p) is the level-p
congruence subgroups of SLn(Z).

Lemma 2.35. For a prime p, we have B±
n (Z)/Γn(p) ∼= BD±

n (Fp) for all n ≥ 1.

Proof. For a commutative ring R, the complex BD±
n (R) can be viewed as the one whose

simplices are collections of ±-vectors {v1, . . . , vk} in Rn such that there exist representatives
v⃗i ∈ vi that arise as some of the columns in a matrix in SLn(R). We remark that we only
need matrices of determinant 1 (rather than ±1) since we are free to multiply the v⃗i by −1
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as needed. In light of the fact that BD±
n (Z) = B±

n (Z), the lemma now immediately follows
from the classical fact that the group homomorphism

SLn(Z) −→ SLn(Fp)

that reduces matrices modulo p is surjective with kernel Γn(p).

2.2.2 Augmented determinant-1 partial ±-bases

We make the following definition.

Definition 2.36. An augmented determinant-1 partial ±-basis for Rn is a set {±v⃗0, . . . ,±v⃗k}
of ±-vectors in Rn that can be reordered such that the following hold:

• {±v⃗1, . . . ,±v⃗k} is a determinant-1 partial ±-basis for Rn.
• There exist λ, ν ∈ {±1} such that v⃗0 = λv⃗1 + νv⃗2.

We will call the ±-vectors {±v⃗0,±v⃗1,±v⃗2} the additive core of {±v⃗0, . . . ,±v⃗k}.

Remark 2.37. The additive core of an augmented determinant-1 partial ±-basis σ for Rn

can be characterized intrinsically as the set of all v ∈ σ such that σ \ {v} is a determinant-1
partial ±-basis for Rn.

A subset of an augmented determinant-1 partial ±-basis is either an augmented determinant-1
partial ±-basis (if the subset contains the entire additive core) or a determinant-1 partial
±-basis (if the subset does not contain the entire additive core; this uses the fact that the
constants λ and ν are ±1 rather than general units). We thus can make the following
definition.

Definition 2.38. The complex of augmented determinant-1 partial ±-bases for Rn, denoted
BDA±

n (R), is the simplicial complex whose simplices consist of determinant-1 partial ±-bases
and augmented determinant-1 partial ±-bases for Rn.

We now make a series of definitions that are very similar to the ones we made for BA±
n (R).

Definition 2.39. Let σ = {±v⃗1, . . . ,±v⃗k} be a simplex of BDA±
n (R). The augmented link

of σ, denoted ˆ︃LinkBDA±
n (R)(σ), is the full subcomplex of LinkBDA±

n (R)(σ) spanned by vertices
±w⃗ of LinkBDA±

n (R)(σ) such that w⃗ /∈ ⟨v⃗1, . . . , v⃗k⟩. This definition does not depend on the
choice of the representatives v⃗i or w⃗.

The simplices of ˆ︃LinkBDA±
n (R)(σ) fall into the following three classes:

Definition 2.40. Let σ = {±v⃗1, . . . ,±v⃗k} be a simplex of BDA±
n (R). Let η be a simplex ofˆ︃LinkBDA±

n (R)(σ). Then one of the following three conditions hold.

• η is a determinant-1 partial ±-basis for Rn. We will then call η a standard simplex.
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• η is an augmented determinant-1 partial ±-basis for Rn, i.e. we can write η =
{±w⃗0, . . . ,±w⃗ℓ} such that w⃗0 = λw⃗1 + νw⃗2 with λ, ν ∈ {±1}. We will then call
η an internally additive simplex.

• We can write η = {±w⃗0, . . . ,±w⃗ℓ} with w⃗0 = λw⃗1 + νv⃗i for some λ, ν ∈ {±1} and
some 1 ≤ i ≤ k. We will then call η an externally additive simplex.

We will sometimes call a simplex that is either internally or externally additive simply an
additive simplex.

Definition 2.41. Let {e⃗1, . . . , e⃗n+m} be the standard basis for Rn+m. Define BDA±
n,m(R) =ˆ︃LinkBDA±

n+m(R){±e⃗1, . . . ,±e⃗m}.

Remark 2.42. Since Z× = {±1}, we have BDA±
n,m(Z) = BA±

n,m(Z) = BA×
n,m(Z).

The analogue of Lemma 2.35 for BDA±
n (Z) = BA±

n (Z) is as follows.

Lemma 2.43. For a prime p, we have BA±
n (Z)/Γn(p) ∼= BDA±

n (Fp) for all n ≥ 2.

Proof. For a standard simplex {±v⃗1, . . . ,±v⃗k} of BA±
n (Z) = BDA±

n (Z), there are precisely
two choices of ±v⃗0 such that {±v⃗0, . . . ,±v⃗k} is an additive simplex whose additive core is
{±v⃗0,±v⃗1,±v⃗2}, namely

±v⃗0 = ±(v⃗1 + v⃗2) and ± v⃗0 = ±(v⃗1 − v⃗2).

A similar observation holds for BDA±
n (Fp) (unless p = 2, in which case both of the above

choices are the same). From this, the lemma easily follows from Lemma 2.35.

2.2.3 The case n = 2

We now specialize to the case n = 2, where these complexes have a simple description.

Lemma 2.44. For a prime p ≥ 3, the complex BDA±
2 (Fp) is homeomorphic to a closed

oriented surface of genus (p+2)(p−3)(p−5)
24 . Also, the complex BDA±

2 (F2) is contractible.

Proof. The complex BDA±
2 (F2) is easily seen to be a single triangle with vertices ±(1, 0) and

±(0, 1) and ±(1, 1), and is thus contractible. Assume now that p is an odd prime.

Consider the usual bordification of the upper half plane H2 whose points are

H2
= H2 ∪ (Q ∪ {∞}) ⊂ C ∪ {∞}.

In this bordification, the topology on H2 restricts to the usual topology on H2, but the
topology on H2 is not the subspace topology from C ∪ {∞}, but rather one where open
horoballs centered at the ideal points Q ∪ {∞} form neighborhood bases of these ideal
points. The group SL2(Z) acts on H2 by linear fractional transformations, and the quotient
H2
/Γ2(p) is the level-p modular curve. This modular curve is a closed oriented surface of
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genus (p+2)(p−3)(p−5)
24 ; see [Gu62, Theorem 8]. It is enough, therefore, to prove that there is

an SL2(Z)-equivariant homeomorphism between BDA±
2 (Z) and H2.

This homeomorphism is implicit in [ChuPu17, pp. 1002–1004], so we only briefly describe it:

• For a vertex ±(a, b) of BDA±
2 (Z), the associated point of H2 is a/b ∈ Q ∪ {∞}.

• For an edge e of BDA±
2 (Z), the associated portion of H2 is the hyperbolic geodesic

joining the ideal points corresponding to the endpoints of e.
• For a triangle t of BDA±

2 (Z), the associated portion of H2 is the hyperbolic ideal
triangle whose boundary consists of the geodesics corresponding to the boundary of
t.

2.2.4 The unaugmented determinant-1 complex is highly connected

We now turn to proving that the complexes BD±
n,m(F) are Cohen–Macaulay.

Proposition 2.45. For a field F, the complex BD±
n,m(F) is Cohen–Macaulay of dimension

(n− 1) for all n,m ≥ 0.

The heart of the proof of Proposition 2.45 is the following.

Lemma 2.46. For a field F, the complex BD±
n,m(F) is a retract of B±

n,m(F) for all n,m ≥ 0.

Before proving Lemma 2.46, we derive Proposition 2.45 from it.

Proof of Proposition 2.45, assuming Lemma 2.46. Combining Lemma 2.46 with Proposition
2.21 (which says that B±

n,m(F) is (n− 2)-connected), we deduce that BD±
n,m(F) is (n− 2)-

connected. Since the link of a k-simplex in BD±
n,m(F) is isomorphic to BD±

n−k−1,m+k+1(F),
this implies that BD±

n,m(F) is Cohen–Macaulay of dimension (n− 1), as desired.

Proof of Lemma 2.46. Let {e⃗1, . . . , e⃗n+m} be the standard basis for the vector space Fn+m.
To define a retraction ρ : B±

n,m(F) → BD±
n,m(F), it is enough to say what ρ does to a simplex

σ of B±
n,m(F) that does not lie in BD±

n,m(F). The only such simplices are (n− 1)-dimensional
simplices σ = {v1, . . . , vn} such that {±e⃗1, . . . ,±e⃗m, v1, . . . , vn} is not a determinant-1 total
±-basis for Fn+m. Arbitrarily pick some v⃗i ∈ vi for 1 ≤ i ≤ n, and let d ≠ ±1 be the
determinant of the matrix

(e⃗1 · · · e⃗m v⃗1 · · · v⃗n).

Let S(σ) be the result of subdividing σ with a new vertex xσ. The top-dimensional simplices
of S(σ) are then of the form

{v1, . . . , ˆ︁vi, . . . , vn, xσ} (1 ≤ i ≤ n).
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Define
ρ|σ : σ ∼= S(σ) −→ B±

n,m(F)

to be the map that fixes the vertices v1, . . . , vn and takes the vertex xσ to 1
d(v⃗1 + · · ·+ v⃗n).

We must check that this extends over the top-dimensional simplices of S(σ), which follows
from the calculation

det

(︃
e⃗1 · · · e⃗m v⃗1 · · · ˆ︁v⃗i · · · v⃗n

1

d
(v⃗1 + · · ·+ v⃗n)

)︃
=

1

d
det
(︂
e⃗1 · · · e⃗m v⃗1 · · · ˆ︁v⃗i · · · v⃗n v⃗i

)︂
= ±d/d = ±1.

2.2.5 The augmented determinant-1 complex is highly connected

We now prove that the complex BDA±
n,m(F) is (n − 2)-connected. We remark that it is

n-dimensional, so this is a weaker range of connectivity than would be implied by it being
Cohen–Macaulay.

Proposition 2.47. For a field F, the complex BDA±
n,m(F) is (n − 2)-connected for all

n,m ≥ 0.

Remark 2.48. For F = Fp with p ≤ 5, we will improve this to (n−1)-connected in Proposition
2.50 below.

Proposition 2.45 implies that BD±
n,m(F) is (n − 2)-connected, so Proposition 2.47 is an

immediate consequence of the following lemma.

Lemma 2.49. For a field F, the inclusion map BD±
n,m(F) ↪→ BDA±

n,m(F) induces a surjection
on πk for 0 ≤ k ≤ n− 1 for all n,m ≥ 0.

Proof. Let X be a compact simplicial complex of dimension at most (n− 1) and let ϕ : X →
BDA±

n,m(F) be a simplicial map. It is enough to prove that ϕ can be homotoped to a map
whose image is contained in BD±

n,m(F).

If the image of ϕ is not contained in BD±
n,m(F), then the image of ϕ contains either a

2-dimensional internally additive simplex or a 1-dimensional externally additive simplex. Let
σ be a simplex of X whose image is of this form whose dimension ℓ is as large as possible.
Since ϕ need not be injective, it might be the case that ℓ > dim(ϕ(σ)) ∈ {1, 2}.

Let ∗ be the simplicial join, so σ ∗ LinkX(σ) ⊂ X. Let

f : σ ∗ LinkX(σ) → BDA±
n,m(F)

be the restriction of ϕ. What we will do is construct a subdivision Z of σ ∗ LinkX(σ) along
with a map g : Z → BDA±

n,m(F) with the following properties:

• No simplices of ∂σ ∗ LinkX(σ) are subdivided when forming Z.
• f and g restrict to the same map on ∂σ ∗ LinkX(σ).
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• f and g are homotopic through maps fixing ∂σ ∗ LinkX(σ).
• There are no simplices of dimension at least ℓ in Z that map to either 2-dimensional

internally simplices or 1-dimensional externally additive simplices.

From this, we see that we can subdivide X to replace σ∗LinkX(σ) with Z and then homotope
ϕ so as to replace f by g. This eliminates σ, and repeating this over and over again homotopes
ϕ to a map whose image is contained in BD±

n,m(F), as desired.

It remains to construct Z and g. We will show how to do this when η = ϕ(σ) is a 2-dimensional
internally additive simplex. The case where η is a 1-dimensional externally additive simplex
is similar. Write η = {±v⃗0,±v⃗1,±v⃗2} with v⃗0 = λv⃗1 + νv⃗2 for some λ, ν ∈ {±1}.

Since the dimension of σ is as large as possible, we have

f (LinkX (σ)) ⊂ LinkBDA±
n,m(F) (η) .

Setting η′ = {±v⃗1,±v⃗2}, the key observation is that

LinkBDA±
n,m(F) (η) = LinkBD±

n,m(F)
(︁
η′
)︁ ∼= BD±

n−2,m+2(F).

Proposition 2.45 says that BD±
n−2,m+2(F) is (n− 4)-connected. Since X has dimension at

most (n − 1) and σ has dimension ℓ ≥ 2, the complex LinkX(σ) has dimension at most
(n− 4). We conclude that the map

LinkX (σ) −→ LinkBDA±
n,m(F) (η) (2.1)

obtained by restricting f is nullhomotopic.

Letting {p0} denote a 1-point space, we conclude that (2.1) extends to a continuous map

F : {p0} ∗ LinkX (σ) → LinkBDA±
n,m(F) (η)

that is simplicial with respect to some subdivision Z ′ of its domain that does not subdivide
any simplices of LinkX(σ). Define

Z = ∂σ ∗ Z ′ ∼= ∂σ ∗ {p0} ∗ LinkX (σ) ∼= σ ∗ LinkX (σ) .

The ∼= here are topological homeomorphisms where the domain is a subdivision of the
codomain. Finally, define g : Z → BDA±

n,m(F) to be

Z = ∂σ ∗ Z ′ ∼= ∂σ ∗ ({p0} ∗ LinkX (σ))
f |∂σ∗F−−−−→ BDA±

n,m(F).

It is clear that this has the desired properties.

2.3 Improving the connectivity for small primes

In this section, we show that the connectivity range for BDA±
n (Fp) can be improved for

p ≤ 5. We state our result and give the skeleton of its proof in §2.3.1. This depends on
several lemmas which are proved in subsequent sections.
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2.3.1 Statement and skeleton of proof

Our result is as follows.

Proposition 2.50. For a prime p ≤ 5, the complex BDA±
n (Fp) is (n − 1)-connected for

n ≥ 1.

Remark 2.51. For primes p > 5, Lemma 2.44 implies that this is false for n = 2. We do not
know whether or not it holds for p > 5 and n ≥ 3.

Skeleton of proof of Proposition 2.50. We outline the proof of the proposition, reducing it to
several lemmas. For n = 1, the complex BDA±

n (Fp) is a single point and the proposition is
trivial, so we can assume that n ≥ 2. For p ∈ {2, 3}, we have BDA±

n (Fp) = BA±
n (Fp), so the

proposition follows from Proposition 2.29. We thus only need to deal with the case p = 5.

The proof will be by induction on n. The base case n = 2 follows from Lemma 2.44, which
says that BDA±

2 (F5) is homeomorphic to a 2-sphere. Assume now that n > 2 and that the
result is true for all smaller n. Proposition 2.47 says that BDA±

n (F5) is (n− 2)-connected, so
we must only show that πn−1(BDA

±
n (F5)) = 0.

Lemma 2.49 says that the inclusion ι : BD±
n (F5) ↪→ BDA±

n (F5) induces a surjection on πn−1,
so it is enough to prove that it also induces the zero map on πn−1. We will do this by
identifying generators for πn−1(BD

±
n (F5)) and then showing that these generators all lie in

the kernel of the map ι∗ : πn−1(BD
±
n (F5)) → πn−1(BDA

±
n (F5)). Since n ≥ 3, Proposition

2.45 says that BD±
n (F5) is 1-connected, so we can ignore basepoints and represent elements

of πn−1(BD
±
n (F5)) by unbased maps of (n− 1)-spheres into BD±

n (F5).

Lemma 2.46 says that there is a retraction ρ : B±
n (F5) → BD±

n (F5), so if S is a generating set
for πn−1(B

±
n (F5)), then {ρ∗(s) | s ∈ S} is a generating set for πn−1(BD

±
n (F5)). To describe

generators for πn−1(B
±
n (F5)), we first introduce some notation.

Notation 2.52. Let X be a simplicial complex and let ∆k−1 be an (k − 1)-simplex.

• Let v1, . . . , vk be (not necessarily distinct) vertices of X such that {v1, . . . , vk} is a
simplex. Define vv1, . . . , vkw to be the map

vv1, . . . , vkw : ∆k−1 −→ X

taking the vertices of ∆k−1 to the vi.
• Let v1, . . . , vk be (not necessarily distinct) vertices of X such that {v1, . . . , ˆ︁vi, . . . , vk}

is a simplex of X for all 1 ≤ i ≤ k. Define vv1, . . . , vkw to be the map

vv1, . . . , vkw : ∂∆k−1 −→ X

taking the vertices of ∂∆k−1 to the vi.
• Let Y and Z be simplicial complexes and let f : Y → X and g : Z → X be simplicial

maps. Assume that for all simplices σ of Y and η of Z, the join f(σ) ∗ g(η) is a simplex
of X. Then let f ∗ g denote the natural map f ∗ g : Y ∗ Z → X.
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The following lemma now gives generators for πn−1(B
±
n (F5)). It will be proved in §2.3.2. For

a finite-dimensional F5-vector space V , we write B±(V ) for the complex of partial ±-bases
of V , so B±

n (F5) = B±(Fn
5 ).

Lemma 2.53. For n ≥ 3, the group πn−1(B
±
n (F5)) is generated by the following two families

of generators.

• The initial D-triangle maps. Let σ = {±v⃗0,±v⃗1,±v⃗2} be a 2-dimensional additive
simplex of BA±

n (F5) with v⃗0 = λv⃗1 + νv⃗2 for some λ, ν ∈ {±1}. Let f : Sn−3 →
LinkBA±

n (F5)
(σ) be a simplicial map for some triangulation of Sn−3. The associated

initial D-triangle map is then

v±v⃗0,±v⃗1,±v⃗2w ∗ f : ∂∆2 ∗ Sn−3 ∼= Sn−1 −→ B±
n (F5).

• The initial D-suspend maps. Let v⃗ ∈ Fn
5 be a nonzero vector, let W ⊂ Fn

5 be an
(n− 1)-dimensional subspace such that Fn

5 = ⟨v⃗⟩ ⊕W , and let w⃗ ∈W be nonzero. Let
f : Sn−2 → B±(W ) be a simplicial map for some triangulation of Sn−2. The associated
initial D-suspend map is then

v±v⃗,±(v⃗ + w⃗)w ∗ f : ∂∆1 ∗ Sn−2 ∼= Sn−1 −→ B±
n (F5).

Remark 2.54. The “D” in D-triangle and D-suspend maps are there to distinguish them from
more general ones we will introduce in the next section. Since n ≥ 3 in Lemma 2.53, the σ
in the definition of an initial D-triangle map is actually a simplex of BDA±

n (F5); however, we
define it like we did since later we will talk about them when n = 2, in which case we do not
want to require a determinant condition.

To finish the proof, it is now enough to prove the following two lemmas.

Lemma 2.55 (Kill initial D-triangle maps). For some n ≥ 3, let g : Sn−1 → B±
n (F5) be an

initial D-triangle map, let ρ : B±
n (F5) → BD±

n (F5) be the retraction given by Lemma 2.46,
and let ι : BD±

n (F5) ↪→ BDA±
n (F5) be the inclusion. Then ι ◦ ρ ◦ g : Sn−1 → BDA±

n (F5) is
nullhomotopic.

Lemma 2.56 (Kill initial D-suspend maps). For some n ≥ 3, let g : Sn−1 → B±
n (F5) be an

initial D-suspend map, let ρ : B±
n (F5) → BD±

n (F5) be the retraction given by Lemma 2.46,
and let ι : BD±

n (F5) ↪→ BDA±
n (F5)be the inclusion. Assume that πn−2(BDA

±
n−1(F5)) = 0.

Then ι ◦ ρ ◦ g : Sn−1 → BDA±
n (F5) is nullhomotopic.

We will prove Lemma 2.55 in §2.3.4 and Lemma 2.56 in §2.3.5.

Here is an outline of the remainder of this section. In §2.3.2, we will prove Lemma 2.53
above. Next, in §2.3.3 we will prove some preliminary results about the retraction given by
Lemma 2.46. Finally, in §2.3.4 and §2.3.5 we will prove Lemmas 2.55 and 2.56.

2.3.2 Identifying the generators

This section proves Lemma 2.53, which identifies generators for πn−1(B
±
n (F5)). The main

idea of our proof will be to include B±
n (F5) into BA±

n (F5), which by Proposition 2.29 is
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(n− 1)-connected. We will construct our generators inductively, and this section is the one
where it will be important for us to use the complexes B±

n,m(F5) built from links.

We start by proving two results that work over any field. Our initial results will be phrased in
terms of homology groups rather than homotopy groups since that is how our proofs function
(and it allows us to avoid worrying about basepoints). We will later use the Hurewicz theorem
to translate this into information about homotopy groups. Throughout this section, our
convention is that S−1 is the empty set.

Lemma 2.57 (Inductive generators). Let F be a field. Let n ≥ 1 and m ≥ 0 be such that
n+m ≥ 2. Then the group ˜︁Hn−1(B

±
n,m(F)) is generated by the images of the fundamental

classes under the following two families of maps.

• The initial triangle maps, which require n ≥ 2. Let σ = {±v⃗0,±v⃗1,±v⃗2} be a
2-dimensional internally additive simplex of BA±

n,m(F), so v⃗0 = λv⃗1 + νv⃗2 for some
λ, ν ∈ F×. Let f : Sn−3 → LinkBA±

n,m(F)(σ) be a simplicial map for some triangulation
of Sn−3. The associated initial triangle map is then

v±v⃗0,±v⃗1,±v⃗2w ∗ f : ∂∆2 ∗ Sn−3 ∼= Sn−1 −→ B±
n,m(F).

• The initial external suspend maps, which require m ≥ 1. Let σ = {±v⃗0,±v⃗1} be a
1-dimensional externally additive simplex of BA±

n,m(F). Let f : Sn−2 → LinkBA±
n,m(F)(σ)

be a simplicial map for some triangulation of Sn−2. The associated initial external
suspend map is then

v±v⃗0,±v⃗1w ∗ f : ∂∆1 ∗ Sn−2 ∼= Sn−1 −→ B±
n,m(F).

Proof. Proposition 2.29 says that BA±
n,m(F) is (n− 1)-connected, so the long exact sequence

in homology for the pair (BA±
n,m(F),B±

n,m(F)) contains the segment

Hn(BA
±
n,m(F),B±

n,m(F)) → ˜︁Hn−1(B
±
n,m(F)) → 0.

The group ˜︁Hn−1(B
±
n,m(F)) is thus generated by the image under the boundary map of

generators for Hn(BA
±
n,m(F),B±

n,m(F)).

For a k-simplex {±v⃗0, . . . ,±v⃗k} of BA±
n,m(F), write [±v⃗0, . . . ,±v⃗k] for the associated element

of the relative simplicial chains Ck(BA
±
n,m(F),B±

n,m(F)). We thus have [±v⃗0, . . . ,±v⃗k] = 0
if {±v⃗0, . . . ,±v⃗k} is a standard simplex. We now identify two important subcomplexes of
C•(BA

±
n,m(F),B±

n,m(F)).

Step 1. Let s = (±v⃗0,±v⃗1,±v⃗2) be an ordered internally additive simplex of BA±
n,m(F). We

then define a subcomplex D•(s) of the chain complex C•(BA
±
n,m(F),B±

n,m(F)) such that the
image of the composition

Hn(D•(s)) → Hn(BA
±
n,m(F),B±

n,m(F)) → ˜︁Hn−1(B
±
n,m(F))

is contained in the subgroup generated by the images of the fundamental classes under the
initial triangle maps.
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Proof of Step 1. For all k, let Dk(s) be the subgroup of Ck(BA
±
n,m(F),B±

n,m(F)) spanned by
elements of the form [±v⃗0, . . . ,±v⃗k], where {±v⃗0, . . . ,±v⃗k} is an internally additive simplex
of BA±

n,m(F) starting with the elements of s. For any 0 ≤ i ≤ 2, deleting ±v⃗i from this gives
a standard simplex, so

∂[±v⃗0, . . . ,±v⃗k] =
k∑︂

i=0

[±v⃗0, . . . ,ˆ︃±v⃗i, . . . ,±v⃗k]
=

k∑︂
i=3

(−1)i[±v⃗0, . . . ,ˆ︃±v⃗i, . . . ,±v⃗k].
It follows that D•(s) is a subcomplex of the chain complex C•(BA

±
n,m(F),B±

n,m(F)). Moreover,
our boundary formula also implies that

D•(s) ∼= ˜︁C•−3(LinkBA±
n,m(F)({±v⃗0,±v⃗1,±v⃗2}))

∼= ˜︁C•−3(LinkB±
n,m(F)({±v⃗1,±v⃗2})).

The complex
LinkB±

n,m(F)({±v⃗1,±v⃗2}) ∼= B±
n−2,m+2(F)

is (n− 4)-connected by Proposition 2.21, so

˜︁Hn−3(LinkB±
n,m(F)({±v⃗1,±v⃗2}))

is generated by the images of fundamental classes under maps

f : Sn−3 → LinkB±
n,m(F)({±v⃗1,±v⃗2})

that are simplicial for some triangulation of Sn−3. The claim about the image of Hn(D•(s))
in ˜︁Hn−1(B

±
n,m(F)) follows.

Step 2. Let t = (±v⃗0,±v⃗1) be an ordered externally additive simplex of BA±
n,m(F). We then

define a subcomplex E•(t) of the chain complex C•(BA
±
n,m(F),B±

n,m(F)) such that the image
of the composition

Hn(E•(t)) → Hn(BA
±
n,m(F),B±

n,m(F)) → ˜︁Hn−1(B
±
n,m(F))

is contained in the subgroup generated by the images of the fundamental classes under the
initial external suspend maps.

Proof of Step 2. For all k, let Ek(t) be the subgroup of Ck(BA
±
n,m(F),B±

n,m(F)) spanned by
elements of the form [±v⃗0, . . . ,±v⃗k], where {±v⃗0, . . . ,±v⃗k} is an externally additive simplex
of BA±

n,m(F) starting with the elements of t. Just like in Step 1, this is a subcomplex of
C•(BA

±
n,m(F),B±

n,m(F)). Generators for the image of Hn(E•(t)) in ˜︁Hn−1(B
±
n,m(F)) can also

be calculated just like in Step 1, so we omit the details.

To conclude the proof, let I be the set of all 2-dimensional internally additive simplices of
BA±

n,m(F) and let J be the set of all 1-dimensional externally additive simplices of BA±
n,m(F).
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We thus have I = ∅ if n = 1 and J = ∅ if m = 0. Endow each element of I and J with
an arbitrary ordering. Examining the above constructions, we then see that we have an
isomorphism

C•(BA
±
n,m(F),B±

n,m(F)) ∼=

(︄⨁︂
s∈I

D• (s)

)︄
⊕

(︄⨁︂
t∈J

E• (t)

)︄
of chain complexes. The above two steps show that the image in ˜︁Hn−1(B

±
n,m(F)) of the nth

homology group of each term on the right-hand side of this isomorphism is contained in the
subgroup generated by the generators claimed in the lemma. The lemma follows.

Lemma 2.58 (Absolute generators). Let F be a field. Let n ≥ 1 and m ≥ 0 be such that
n+m ≥ 2. Then the group ˜︁Hn−1(B

±
n,m(F)) is generated by the images of the fundamental

classes under maps of the form

f1 ∗ · · · ∗ fk : ∂∆r1 ∗ · · · ∗ ∂∆rk ∼= Sn−1 → B±
n,m(F),

where the fi are as follows. There exists a decomposition Fn+m = Fm ⊕A1 ⊕ · · · ⊕Ak, and
for 1 ≤ i ≤ k the map fi falls into one of the following two classes:

• A triangle. There exists a 2-dimensional internally additive simplex {±v⃗0,±v⃗1,±v⃗2}
of BA±

n,m(F) such that

fi = v±v⃗0,±v⃗1,±v⃗2w : ∂∆2 → B±
n,m(F)

and such that Ai = ⟨v⃗0, v⃗1, v⃗2⟩. Note that Ai is 2-dimensional.
• A suspend. There exist nonzero vectors v⃗ ∈ Ai and w⃗ ∈ Fm ⊕ A1 ⊕ · · · ⊕ Ai−1 and

some λ ∈ F× such that

fi = v±v⃗,±(λv⃗ + w⃗)w : ∂∆1 → B±
n,m(F)

and such that Ai = ⟨v⃗⟩. Note that Ai is 1-dimensional.

Proof. To simplify our exposition, we will abuse notation and identify maps of spheres into
B±
n,m(F) with the associated elements of reduced homology. Let Λn,m be the subgroup

of ˜︁Hn−1(B
±
n,m(F)) generated by the indicated generators. We must prove that Λn,m =˜︁Hn−1(B

±
n,m(F)). We will prove this by induction on n.

The base case n = 1 follows immediately from Lemma 2.57. Indeed, in this base case, for
dimension reasons there are no initial triangle maps, so Lemma 2.57 says that ˜︁Hn−1(B

±
n,m(F))

is generated by initial suspend maps, which in this degenerate case are simply f1 : ∂∆1 →
B±
n,m(F) with f1 a suspend.

Assume now that n ≥ 2 and that the lemma is true for all smaller n. Applying Lemma 2.57,
it is enough to prove that Λn,m contains all initial triangle maps and initial suspend maps.
The proofs of these two facts are similar, so we will show how to prove that initial triangle
maps are in Λn,m and leave the case of initial suspend maps to the reader.

Consider an initial triangle map

v±v⃗0,±v⃗1,±v⃗2w ∗ f : ∂∆2 ∗ Sn−3 ∼= Sn−1 −→ B±
n,m(F). (2.2)
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By definition, σ = {±v⃗0,±v⃗1,±v⃗2} is a 2-dimensional internally additive simplex of BA±
n,m(F)

and f : Sn−3 → B±
n,m(F) is a simplicial map for some triangulation of Sn−3 whose image lies

in
LinkBA±

n,m(F)(σ) = LinkB±
n,m

({±v⃗1,±v⃗2}) ∼= B±
n−2,m+2(F).

Let
Ψ: B±

n−2,m+2(F) → LinkBA±
n,m(F)(σ)

be this isomorphism. By induction, Λn−2,m+2 = ˜︁Hn−3(B
±
n−2,m+2(F)). For each generator f ′

of Λn−2,m+2, the map
v±v⃗0,±v⃗1,±v⃗2w ∗Ψ(f ′)

is a generator for Λn,m. Since Ψ−1(f) ∈ ˜︁Hn−3(B
±
n−2,m+2(F)) = Λn−2,m+2 can be expressed

as a product of these generators, it follows that (2.2) lies in Λn,m, as desired.

We now give a useful variant of Lemma 2.58 for F = F5.

Lemma 2.59 (Absolute generators, F5). Let n ≥ 1 and m ≥ 0 be such that n +m ≥ 2.
Then the group ˜︁Hn−1(B

±
n,m(F5)) is generated by the images of the fundamental classes under

maps of the form

f1 ∗ · · · ∗ fk : ∂∆r1 ∗ · · · ∗ ∂∆rk ∼= Sn−1 → B±
n,m(F5),

where the fi are as follows. There exists a decomposition Fn+m
5 = Fm

5 ⊕A1 ⊕ · · · ⊕Ak, and
for 1 ≤ i ≤ k the map fi falls into one of the following three classes:

• A D-triangle. There is a 2-dimensional internally additive simplex {±v⃗0,±v⃗1,±v⃗2}
of BA±

n,m(F5) with v⃗0 = λv⃗1 + νv⃗2 for some λ, ν ∈ {±1} such that

fi = v±v⃗0,±v⃗1,±v⃗2w : ∂∆2 → B±
n,m(F5)

and such that Ai = ⟨v⃗0, v⃗1, v⃗2⟩. Note that Ai is 2-dimensional.
• A D-suspend. There are nonzero vectors v⃗ ∈ Ai and w⃗ ∈ Fm

5 ⊕A1 ⊕ · · · ⊕Ai−1 and
such that

fi = v±v⃗,±(v⃗ + w⃗)w : ∂∆1 → B±
n,m(F5)

and such that Ai = ⟨v⃗⟩. Note that Ai is 1-dimensional.
• A double-suspend. There is a nonzero vector v⃗ ∈ Ai such that

fi = v±v⃗,±2v⃗w : ∂∆1 → B±
n,m(F5)

and such that Ai = ⟨v⃗⟩. Note that Ai is 1-dimensional.

Moreover, if m = 0 then at least one of the fi is either a D-triangle or a D-suspend.

Proof. To simplify our exposition, we will abuse notation and identify maps of spheres
into B±

n,m(F5) with the associated elements of reduced homology. Lemma 2.58 says that˜︁Hn−1(B
±
n,m(F5)) is generated by maps f1 ∗ · · · ∗ fk, where each fi is either a triangle or a

suspend. To express this in terms of our new generators, it is enough to show how to write
triangles and suspends as sums of D-triangles, D-suspends, and double-suspends.
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v1+v2⃗ ⃗

v1⃗

2v1+2v2⃗ ⃗

v2⃗ v1⃗

2v1+v2⃗ ⃗

v2⃗

2v1⃗

v⃗

2v⃗

2v+w⃗ ⃗

Figure 1: Decomposing triangles/suspends into sums of D-triangles, D-suspends, and double suspends.
To avoid clutter, we omit the ±’s.

We start with triangles. Consider a triangle v±v⃗0,±v⃗1,±v⃗2w. By definition, {±v⃗0,±v⃗1,±v⃗2}
is an internally additive simplex of BA±

n,m(F5). We thus have v⃗0 = λv⃗1 + νv⃗2 with λ, ν ∈ F×
5 .

We remark that no reordering of the v⃗i is necessary for this. Multiplying v⃗1 and/or v⃗2 by −1
if necessary, we can assume that λ, ν ∈ {1, 2}. There are now three cases.

If λ = ν = 1, then our triangle is already a D-triangle.

If λ = ν = 2, then as in Figure 1 we can write

v±(2v⃗1 + 2v⃗2),±v⃗1,±v⃗2w =v±(v⃗1 + v⃗2),±v⃗1,±v⃗2w

+ v±(v⃗1 + v⃗2),±2(v⃗1 + v⃗2)w ∗ v±v⃗2,±v⃗1w

=v±(v⃗1 + v⃗2),±v⃗1,±v⃗2w

+ v±(v⃗1 + v⃗2),±2(v⃗1 + v⃗2)w ∗ v±v⃗2,±(v⃗2 − (v⃗1 + v⃗2))w.

The right-hand side of our equation consists of a D-triangle and the join of a double-suspend
and a D-suspend.

Assume now that one of λ and ν is 1 and the other is 2. Swapping them if necessary, we can
assume that λ = 2 and ν = 1. As in Figure 1, we can write

v±(2v⃗1 + v⃗2),±v⃗1,±v⃗2w =v±(2v⃗1 + v⃗2),±2v⃗1,±v⃗2, w
− v±v⃗1,±2v⃗1w ∗ v±v⃗2,±(v⃗2 + 2v⃗1)w.

The right-hand side of our equation consists of a D-triangle and the join of a double-suspend
and a D-suspend.

Having dealt with triangles, we now must deal with suspends. Consider a suspend v±v⃗,±(λv⃗ + w⃗)w.
We thus have λ ∈ F×

5 . Multiplying v⃗ by −1 if necessary, we can assume that λ ∈ {1, 2}. If
λ = 1, then our suspend is already a D-suspend. If λ = 2, then as in Figure 1, we can write

v±v⃗,±(2v⃗ + w⃗)w = v±v⃗,±2v⃗w + v±2v⃗,±(2v⃗ + w⃗)w.

This is the sum of a double-suspend and a D-suspend.

All that remains to prove is the final claim of the lemma: if m = 0, then in our generators we
can require at least one of the fi to either be a D-triangle or a D-suspend. For this, observe
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that the condition m = 0 ensures that in the generators f1 ∗ · · · fk given by Lemma 2.58, the
term f1 must be a triangle (there is no way to choose a nonzero w⃗ as in the definition of a
suspend for it). When we expand out the triangle f1 as above, every term that appears has
either a D-triangle or a D-suspend in it. The lemma follows.

We finally prove Lemma 2.53.

Proof of Lemma 2.53. Fix some n ≥ 3. Recall that our goal is to prove that πn−1(B
±
n (F5))

is generated by the initial D-triangle maps and the initial D-suspend maps. Proposition
2.21 says that B±

n (F5) is (n− 2)-connected, so the Hurewicz theorem gives an isomorphism
πn−1(B

±
n (F5)) ∼= Hn−1(B

±
n (F5)). It is thus enough to prove that Hn−1(B

±
n (F5)) is generated

by the images of the fundamental classes under these generators. To simplify our expressions,
we will abuse notation and identify our generators with the images of the fundamental classes
in Hn−1(B

±
n (F5)) under them.

Consider one of the generators

f1 ∗ · · · ∗ fk : ∂∆r1 ∗ · · · ∗ ∂∆rk ∼= Sn−1 → B±
n (F5)

for Hn−1(B
±
n (F5)) identified by Lemma 2.59. Let Fn

5 = A1⊕ · · ·⊕Ak be the associated direct
sum decomposition. We will prove that up to signs, in Hn−1(B

±
n (F5)) the element f1 ∗ · · · ∗ fk

equals either an initial D-triangle map or an initial D-suspend map.

Assume first that there exists some 1 ≤ i0 ≤ k such that fi0 is a D-triangle. We then have
ri0 = 2. As in the definition of a D-triangle, write

fi0 = v±v⃗0,±v⃗1,±v⃗2w : ∂∆2 → B±
n (F5)

for an additive simplex σ = {±v⃗0,±v⃗1,±v⃗2} of BA±
n (F5) with v⃗0 = λv⃗1 + νv⃗2 for some

λ, ν ∈ {±1}. Set

f = f1 ∗ · · · ∗ ˆ︂fi0 ∗ · · · ∗ fk : ∂∆r1 ∗ · · · ∗ ˆ︂∂∆ri0 ∗ · · · ∗ ∂∆rk ∼= Sn−3 → B±
n (F5).

We thus have that the image of f lies in LinkBA±
n (F5)

(σ). Up to signs, in Hn−1(B
±
n (F5)) the

element f1 ∗ · · · ∗ fk equals the initial D-triangle map

v±v⃗0,±v⃗1,±v⃗2w ∗ f : ∂∆2 ∗ Sn−3 → B±
n (F5),

as desired.

We thus can assume that none of the fi are D-triangles. Since at least one of the fi is either
a D-triangle or a D-suspend, there must exist some 1 ≤ i0 ≤ k such that fi0 is a D-suspend.
Pick i0 such that it is as large as possible. Set

W = A1 ⊕ · · · ⊕ ˆ︂Ai0 ⊕ · · · ⊕Ak,

and as in the definition of a D-suspend write

fi0 = v±v⃗,±(v⃗ + w⃗)w : ∂∆1 → B±
n (F5).
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We thus have v⃗ ∈ Ai0 and w⃗ ∈W . Moreover, setting

f = f1 ∗ · · · ∗ ˆ︂fi0 ∗ · · · ∗ fk : ∂∆r1 ∗ · · · ∗ ˆ︂∂∆ri0 ∗ · · · ∗ ∂∆rk ∼= Sn−2 → B±
n (F5)

we have that the image of f lies in B±(W ) (this is where we use the fact that i0 is as large as
possible). Up to signs, in Hn−1(B

±
n (F5)) the element f1 ∗ · · · ∗ fk equals the initial D-suspend

map
v±v⃗,±(v⃗ + w⃗)w ∗ f : ∂∆2 ∗ Sn−3 → B±

n (F5),

as desired.

2.3.3 The retraction

We now discuss the retraction ρ : B±
n (F5) → BD±

n (F5) provided by Lemma 2.46. In fact, for
later use we will extend it to the following larger complex.

Definition 2.60. Let BAO±
n (F5) be the subcomplex of BA±

n (F5) consisting of BDA±
n (F5)

along with all standard simplices of BA±
n (F5).

We will construct a retraction ρ : BAO±
n (F5) → BDA±

n (F5) that extends the one given by
Lemma 2.46. The only simplices of BAO±

n (F5) that do not lie in BDA±
n (F5) are of the form

σ = {±v⃗1, . . . ,±v⃗n} with det(v⃗1 · · · v⃗n) = ±2. Letting S(σ) be the result of subdividing σ
with a new vertex xσ, the map ρ is defined by setting ρ(xσ) = ±w⃗ and extending linearly,
where w⃗ ∈ Fn

5 is chosen such that

det(v⃗1 · · · ˆ︁v⃗i · · · v⃗n w⃗) = ±1 for all 1 ≤ i ≤ n.

The only possible choices for w⃗ are of the form

w⃗ = 2c1v⃗1 + · · ·+ 2cnv⃗n for some c1, . . . , cn ∈ {±1}.

It is annoying that ρ depends on the choice of these ci; however, the following lemma implies
that all possible choices result in homotopic ρ:

Lemma 2.61. For some n ≥ 2, let v⃗1, . . . , v⃗n ∈ Fn
5 be such that det(v⃗1 · · · v⃗n) = ±2. Let

w⃗1, w⃗2 ∈ Fn
5 be such that

det(v⃗1 · · · ˆ︁v⃗i · · · v⃗n w⃗j) = ±1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2.

Then the maps
v±w⃗1w ∗ v±v⃗1, . . . ,±v⃗nw : ∆0 ∗ ∂∆n−2 → BDA±

n (F5)

and
v±w⃗2w ∗ v±v⃗1, . . . ,±v⃗nw : ∆0 ∗ ∂∆n−2 → BDA±

n (F5)

are homotopic relative to ∂(∆0 ∗ ∂∆n−2) = ∆n−2.

Before we prove this lemma, we highlight how we will use it:
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v2⃗

v3⃗

v1⃗v1⃗

w1⃗

w1+v3⃗ ⃗

w1⃗ w1⃗ w1⃗

v1⃗v1⃗ v1⃗v1⃗ v2⃗ v2⃗

w1+v3⃗ ⃗ w1+v3⃗ ⃗ w1+v3⃗ ⃗

Figure 2: The sphere in the proof of Lemma 2.61 in the case n = 3, along with the result of breaking
it into n = 3 spheres. To avoid clutter, we omit the ±’s.

Principle 2.62. Given a map f : Sn−1 → BAO±
n (F5) that is simplicial with respect to a

triangulation of Sn−1, if we want to prove that ρ ◦ f : Sn−1 → BDA±
n (F5) is nullhomotopic in

BDA±
n (F5), then we can choose any way we want to subdivide the image of any (n−1)-simplex

σ in Sn−1 such that f(σ) is not a simplex of BDA±
n (F5).

Indeed, by Lemma 2.61 we can make an initial homotopy of ρ ◦ f to change the original
subdivision coming from ρ to our arbitrary one.

We now turn to the proof of Lemma 2.61. This proof will require the following lemma.

Lemma 2.63. For some n ≥ 2, let {±v⃗1, . . . ,±v⃗n} be an (n−1)-simplex in BD±
n (F5). Then

the map
v±v⃗1, . . . ,±v⃗n,±(v⃗1 + · · ·+ v⃗n)w : ∂∆

n → BD±
n (F5)

is nullhomotopic in BDA±
n (F5).

Proof. Using Lemma 2.35, we can find an (n−1)-simplex {±V⃗ 1, . . . ,±V⃗ n} in B±
n (Z) mapping

to {±v⃗1, . . . ,±v⃗n} under the projection B±
n (Z) = BD±

n (Z) → BD±
n (F5). Changing the signs

of the V⃗ i, we can assume that V⃗ i ∈ Zn projects to v⃗i ∈ Fn
5 for all i. We then have a map

v±V⃗ 1, . . . ,±V⃗ n,±(V⃗ 1 + · · ·+ V⃗ n)w : ∂∆
n → B±

n (Z)

whose postcomposition with the projection B±
n (Z) → BD±

n (F5) is the map we are trying to
prove is nullhomotopic. Theorem 2.14 says that F is nullhomotopic in BA×

n (Z) = BA±
n (Z).

Composing this homotopy with the projection BA±
n (Z) → BDA±

n (F5) given by Lemma 2.43,
we get our desired homotopy.

Proof of Lemma 2.61. Write

w⃗1 = 2c1v⃗1 + · · ·+ 2cnv⃗n and w⃗2 = 2d1v⃗1 + · · ·+ 2dnv⃗n

with ci, di ∈ {±1} for all 1 ≤ i ≤ n. It is enough to deal with the case where all but one of
the ci and di are equal. Reordering the v⃗i, possibly multiplying them by −1, and possibly
flipping w⃗1 and w⃗2, we can assume that ci = di = 1 for 1 ≤ i ≤ n− 1 and that cn = 1 and
dn = −1. Since 2cn = 2 and 2dn = −2 = 3, we thus have that w⃗2 = w⃗1 + v⃗n.
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v3⃗

w⃗

v1+v2⃗ ⃗v1⃗

v2⃗

w⃗ w⃗

w⃗

v3⃗ v3⃗

v1+v2⃗ ⃗
v1+v2⃗ ⃗

v1+v2⃗ ⃗

v1⃗

v1⃗

v2⃗

v2⃗

Figure 3: On the left is the sphere ρ ◦ f in the proof of Lemma 2.64 in the case n = 3 with its three
subdivided faces. On the right is the n = 3 spheres it can be cut into (with the required subdivisions
omitted to improve readability). To avoid clutter, we omit the ±’s.

Our goal is equivalent to proving that

v±w⃗1,±(w⃗1 + v⃗n)w ∗ v±v⃗1, . . . ,±v⃗nw : ∂∆1 ∗ ∂∆n−1 ∼= Sn−1 → BD±
n (F5)

is nullhomotopic in BDA±
n (F5); see Figure 2. As is clear from that figure, as an element of

πn−1(BDA
±
n (F5)) our sphere is the sum of the following n spheres:

v±v⃗1, . . . ,ˆ︃±v⃗i, . . . ,±v⃗n,±w⃗1,±(w⃗1 + v⃗n)w (1 ≤ i ≤ n).

For 1 ≤ i ≤ n − 1, these are the boundaries of additive simplices, and thus are trivially
nullhomotopic in BDA±

n (F5). For i = n, since

±(w⃗1 + v⃗n) = ±(2v⃗1 + · · ·+ 2v⃗n−1 + 3v⃗n) = ±(3v⃗1 + · · ·+ 3v⃗n−1 + 2v⃗n)

= ±(w⃗1 + v⃗1 + · · ·+ v⃗n−1),

this is precisely the sphere that Lemma 2.63 says is nullhomotopic. The lemma follows.

2.3.4 Killing initial D-triangle maps

We now turn to proving Lemma 2.55, whose statement we will recall below. This will require
the following lemma.

Lemma 2.64. For some n ≥ 2, let ρ : BAO±
n (F5) → BDA±

n (F5) be the retraction constructed
in §2.3.3. Let {v⃗1, . . . , v⃗n} be a basis of Fn

5 . Then

ρ ◦ v±(v⃗1 + v⃗2),±v⃗1, . . . ,±v⃗nw : ∂∆n → BDA±
n (F5)

is nullhomotopic.

Proof. Set f = v±(v⃗1 + v⃗2),±v⃗1, . . . ,±v⃗nw. If det(v⃗1 · · · v⃗n) = ±1, then ρ ◦ f = f and the
image of f is the boundary of an additive simplex of BDA±

n (F5), so the lemma is trivial. We
can thus assume that this determinant is ±2.
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v3⃗

w⃗

v1+v2⃗ ⃗

v1⃗

u⃗u⃗

v3⃗

w⃗

v1+v2⃗ ⃗

v1⃗

u⃗

Figure 4: On the left is the sphere appearing in the case i = 2 of the proof of Lemma 2.64 for the
case n = 3. On the right is the result of homotoping it to the union of two tetrahedra. To avoid
clutter, we omit the ±’s.

In the image of ρ ◦ f , exactly 3 faces of the image of f are subdivided, namely the images of

{±v⃗1,±v⃗2,±v⃗3, . . . ,±v⃗n} and {±(v⃗1 + v⃗2),±v⃗2,±v⃗3, . . . ,±v⃗n}
and {±v⃗1,±(v⃗1 + v⃗2),±v⃗3, . . . ,±v⃗n}.

See Figure 3. By Principle 2.62, we can choose the ±-vector we use for each subdivision
arbitrarily. We will use ±w⃗ with

w⃗ = 2v⃗1 − 2v⃗2 + 2v⃗3 + · · ·+ 2v⃗n

for {±v⃗1,±v⃗2,±v⃗3, . . . ,±v⃗n} and leave the others unspecified (for the moment).

As in Figure 3, in πn−1(BDA
±
n (F5)) the sphere ρ ◦ f is the sum of the n spheres ρ ◦ fi with

fi = v±w⃗,±(v⃗1 + v⃗2),±v⃗1, . . . ,ˆ︃±v⃗i, . . . ,±v⃗nw for 1 ≤ i ≤ n.

For 3 ≤ i ≤ n, we have ρ ◦ fi = fi and the image of fi is the boundary of an augmented
simplex in BDA±

n (F5), so it is trivially nullhomotopic. We thus must only deal with i = 1
and i = 2. The proofs in these two cases are similar, so we will do the case i = 2 and leave
the case i = 1 to the reader.

When forming ρ ◦ f2 for

f2 = v±w⃗,±(v⃗1 + v⃗2),±v⃗1,±v⃗3, . . . ,±v⃗nw,

only two faces are subdivided, namely the images of

{±(v⃗1 + v⃗2),±v⃗1,±v⃗3, . . . ,±v⃗n} and {±w⃗,±(v⃗1 + v⃗2),±v⃗3, . . . ,±v⃗n}. (2.3)

See Figure 4. The key observation is that by Principle 2.62 we can use the same vertex for
both of these faces, namely ±u⃗ with

u⃗ = v⃗1 − 2v⃗2 + 2v⃗3 + · · ·+ 2v⃗n.

This follows from the fact that

v⃗1 − 2v⃗2 + 2v⃗3 + · · ·+ 2v⃗n = −2(v⃗1 + v⃗2)− 2v⃗1 + 2v⃗3 + · · ·+ 2v⃗n
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and

v⃗1 − 2v⃗2 + 2v⃗3 + · · ·+ 2v⃗n = 2(v⃗1 + v⃗2) + 2w⃗ − 2v⃗3 − · · · − 2v⃗n

= 2(v⃗1 + v⃗2) + 2(2v⃗1 − 2v⃗2 + 2v⃗3 + · · ·+ 2v⃗n)− 2v⃗3 − · · · − 2v⃗n.

The two (n− 1)-dimensional faces (2.3) meet in a common (n− 2)-dimensional simplex

η = {±(v⃗1 + v⃗2),±v⃗3, . . . ,±v⃗n}.

As in Figure 4, we can homotope ρ ◦ f2 so as to replace the two subdivisions of the faces
(2.3) with a single subdivision of the (n − 2)-simplex η by ±u⃗. The result is the sum in
πn−1(BDA

±
n (F5)) of (n− 1) different spheres

v±w⃗,±v⃗1,±u⃗,±v⃗3, . . . ,±v⃗nw

and v±w⃗,±v⃗1,±u⃗,±(v⃗1 + v⃗2),±v⃗3, . . . ,ˆ︃±v⃗i, . . .± v⃗nw for 3 ≤ i ≤ n.

These correspond to all the ways of replacing a vertex of η with ±u⃗ and then adding the
vertices ±w⃗ and ±v⃗1 that do not appear in η. Since w⃗ = u⃗+ v⃗1, these are all the boundaries
of additive simplices in BDA±

n (F5), and hence are all nullhomotopic.

Proof of Lemma 2.55. We first recall the statement. For some n ≥ 3, let g : Sn−1 → B±
n (F5)

be an initial D-triangle map, let ρ : B±
n (F5) → BD±

n (F5) be the retraction given by Lemma
2.46, and let ι : BD±

n (F5) ↪→ BDA±
n (F5) be the inclusion. We must prove that ι◦ρ◦g : Sn−1 →

BDA±
n (F5) is nullhomotopic.

By definition, the initial D-triangle map g is of the following form. Let σ = {±v⃗0,±v⃗1,±v⃗2}
be a 2-dimensional additive simplex of BA±

n (F5) such that v⃗0 = λv⃗1 + νv⃗2 with λ, ν ∈ {±1}.
Multiplying v⃗1 and/or v⃗2 by −1 if necessary, we can assume that λ = ν = 1. Let f : Sn−3 →
LinkBA±

n (F5)
(σ) be a simplicial map for some triangulation of Sn−3. We then have

g = v±v⃗0,±v⃗1,±v⃗2w ∗ f = v±(v⃗1 + v⃗2),±v⃗1,±v⃗2w ∗ f : ∂∆2 ∗ Sn−3 ∼= Sn−1 −→ B±
n (F5).

Our goal then is to show that the map

ι ◦ ρ ◦
(︂

v±(v⃗1 + v⃗2),±v⃗1,±v⃗2w ∗ f
)︂
: ∂∆2 ∗ Sn−3 → BDA±

n (F5)

is nullhomotopic.

It is enough to show that it extends over ∆2 ∗ Sn−3. The only simplices of ∆2 ∗ Sn−3 whose
image under this map are not simplices of BDA±

n (F5) are of the form ∆2 ∗ σ where σ maps
to a simplex {±v⃗3, . . . ,±v⃗n} such that det(v⃗1 · · · v⃗n) = ±2. By obstruction theory, it is
enough to show that ∂(∆2 ∗ σ) is mapped to an (n− 1)-sphere that is nullhomotopic. Since
the restriction of our map to ∂(∆2 ∗ σ) is

v±(v⃗1 + v⃗2),±v⃗1,±v⃗2,±v⃗3, . . . ,±v⃗nw,

this follows immediately from Lemma 2.64.
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v2⃗

v3⃗

v1⃗v1⃗ v1⃗v1⃗ v1⃗v1⃗2v1+2v2⃗⃗

v3+v1⃗ ⃗

2v1+2v2⃗⃗ 2v1+2v2⃗⃗

v3⃗ v3⃗ v3⃗

v3+v1⃗ ⃗ v3+v1⃗ ⃗ v3+v1⃗ ⃗

v2⃗ v2⃗

Figure 5: The sphere in the proof of Lemma 2.65 in the case n = 3, along with the result of breaking
it into n = 3 spheres. To avoid clutter, we omit the ±’s.

2.3.5 Killing initial D-suspend maps

We now turn to proving Lemma 2.56, whose statement we will recall below. This will require
two lemmas.

Lemma 2.65. For some n ≥ 2, let ρ : BAO±
n (F5) → BDA±

n (F5) be the retraction constructed
in §2.3.3. Let {v⃗1, . . . , v⃗n} be a basis for Fn

5 such that det(v⃗1 · · · v⃗n) = ±2. Pick some
u⃗ ∈ ⟨v⃗1, . . . , v⃗n−1⟩ ⊂ Fn

5 . Then the maps

ρ ◦
(︂

v±v⃗nw ∗ v±v⃗1, . . . ,±v⃗n−1,±(2v⃗1 + · · ·+ 2v⃗n−1)w
)︂
: ∆0 ∗ ∂∆n−1 −→ BD±

n (F5)

and

ρ ◦
(︂

v±(v⃗n + u⃗)w ∗ v±v⃗1, . . . ,±v⃗n−1,±(2v⃗1 + · · ·+ 2v⃗n−1)w
)︂
: ∆0 ∗ ∂∆n−1 −→ BD±

n (F5)

are homotopic in BDA±
n (F5) through maps fixing ∂(∆0 ∗ ∂∆n−1) = ∂∆n−1.

Proof. It is enough to deal with the case where u⃗ = v⃗i for some 1 ≤ i ≤ n− 1; the general
case can then be deduced via a sequence of these homotopies. Since everything is symmetric,
we can in fact assume that u⃗ = v⃗1.

Our goal is equivalent to showing that the map

ρ ◦
(︂

v±v⃗n,±(v⃗n + v⃗1)w ∗ v±v⃗1, . . . ,±v⃗n−1,±(2v⃗1 + · · ·+ 2v⃗n−1)w
)︂
:

∂∆1 ∗ ∂∆n−1 −→ BD±
n (F5)

is nullhomotopic in BDA±
n (F5). See Figure 5. As is shown in that figure, as an element of

πn−1(BDA
±
n (F5)) this is the sum of n spheres.

The first is the sphere

ρ ◦ v±v⃗n,±(v⃗n + v⃗1),±v⃗1, . . . ,±v⃗n−1w : ∂∆n −→ BDA±
n (F5),

which is nullhomotopic by Lemma 2.64.
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v2⃗

e3⃗

v1⃗v1⃗

⃗e3+w⃗

2v1+2v2 v2⃗

e3⃗

v1⃗v1⃗

⃗e3+w⃗

⃗ ⃗

Figure 6: The homotopy we are trying to achieve in Lemma 2.66 for n = 3. To avoid clutter, we
omit the ±’s.

The other (n− 1) are the spheres

ρ ◦ v±v⃗n,±(v⃗n + v⃗1),±v⃗1, . . . ,ˆ︃±v⃗i, . . . ,±v⃗n−1,±(2v⃗1 + · · ·+ 2v⃗n−1)w :

∂∆1 ∗ ∂∆n−1 −→ BDA±
n (F5)

for 1 ≤ i ≤ n− 1. These are of two types:

• For 2 ≤ i ≤ n− 1, these are nullhomotopic by Lemma 2.64.
• For i = 1, this is a bit more unusual. The key observation here is that precisely one

face of this is subdivided by ρ, namely

v±v⃗n,±(v⃗n + v⃗1),±v⃗2, . . . ,±v⃗n−1w.

By Principle 2.62, we can choose the vertex we use in this subdivision arbitrarily. If we
use ±w⃗ with

w⃗ = −2v⃗n + 2(v⃗n + v⃗1) + 2v⃗2 + · · ·+ 2v⃗n−1 = 2v⃗1 + · · ·+ 2v⃗n−1,

then our sphere is the degenerate sphere

v±(2v⃗1 + · · ·+ 2v⃗n−1),±(2v⃗1 + · · ·+ 2v⃗n−1)w ∗ v±v⃗n,±(v⃗n + v⃗1),±v⃗2, . . . ,±v⃗n−1w,

which is trivially nullhomotopic.

Lemma 2.66. For some n ≥ 3, let ρ : BAO±
n (F5) → BDA±

n (F5) and ρ′ : BAO±
n−1(F5) →

BDA±
n−1(F5) be the retractions constructed in §2.3.3. Let {e⃗1, . . . , e⃗n} be the standard basis

of Fn
5 , let {v⃗1, . . . , v⃗n−1} be some basis of Fn−1

5 ⊂ Fn
5 , and let u⃗ ∈ Fn−1

5 . Then the maps

ρ ◦
(︂

v±e⃗n,±(e⃗n + u⃗)w ∗ v±v⃗1, . . . ,±v⃗n−1w

)︂
: ∂∆1 ∗∆n−1 → BDA±

n (F5)

and
v±e⃗n,±(e⃗n + u⃗)w ∗

(︁
ρ′ ◦ v±v⃗1, . . . ,±v⃗n−1w

)︁
: ∂∆1 ∗∆n−1 → BDA±

n (F5)

are homotopic through maps fixing ∂(∂∆1 ∗∆n−1) = ∂∆1 ∗ ∂∆n−1.

Proof. If det(v⃗1 · · · v⃗n−1 e⃗n) = ±1, then these maps are equal, so assume that this deter-
minant is ±2. In this case, ∂∆1 ∗ ∆n−1 consists of two n-simplices the image of both of
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which under the first map above are subdivided by ρ. Moreover, ρ′ subdivides the image of
v±v⃗1, . . . ,±v⃗n−1w. Using Principle 2.62, we can use ±w⃗ with

w⃗ = 2v⃗1 + · · ·+ 2v⃗n−1

for this subdivision. See Figure 6 for a picture of the homotopy we are trying to achieve.
The key observation is that this is really a disguised version of Lemma 2.65; indeed, if you
cut it open along the central

v±v⃗1, . . . ,±v⃗n−1,±(2v⃗1 + · · ·+ 2v⃗n−1)w

you get precisely the two discs that Lemma 2.65 claims are homotopic via a homotopy fixing
their boundary. The lemma follows.

Proof of Lemma 2.56. We first recall the statement. For some n ≥ 3, let g : Sn−1 → B±
n (F5)

be an initial D-suspend map, let ρ : B±
n (F5) → BD±

n (F5) be the retraction given by Lemma
2.46, and let ι : BD±

n (F5) ↪→ BDA±
n (F5) be the inclusion. Assume that πn−2(BDA

±
n−1(F5)) =

0. We must prove that ι ◦ ρ ◦ g : Sn−1 → BDA±
n (F5) is nullhomotopic.

By definition, the initial D-suspend map g is of the following form. Let v⃗ ∈ Fn
5 be a nonzero

vector, let W ⊂ Fn
5 be an (n − 1)-dimensional subspace such that Fn

5 = ⟨v⃗⟩ ⊕W , and let
w⃗ ∈ W be nonzero. Let f : Sn−2 → B±(W ) be a simplicial map for some triangulation of
Sn−2. We then have

g = v±v⃗,±(v⃗ + w⃗)w ∗ f : ∂∆1 ∗ Sn−2 ∼= Sn−1 −→ B±
n (F5).

Let {e⃗1, . . . , e⃗n} be the standard basis of Fn
5 . Changing coordinates with an element of

SLn(F5), we can assume that v⃗ = e⃗n and that W = Fn−1
5 . Our map f thus lands in B±

n−1(F5),
and our goal is to prove that the map

ι ◦ ρ ◦
(︂

v±e⃗n,±(e⃗n + w⃗)w ∗ f
)︂
: ∂∆1 ∗ Sn−2 → BDA±

n (F5)

is nullhomotopic.

Let ρ′ : BAO±
n−1(F5) → BDA±

n−1(F5) be the retraction constructed in §2.3.3. Applying
Lemma 2.66 to S0 ∗ σ for each (n− 2)-simplex σ of Sn−2, we see that our map is homotopic
to

v±e⃗n,±(e⃗n + w⃗)w ∗ (ρ′ ◦ f) : ∂∆1 ∗ Sn−2 → BDA±
n (F5). (2.4)

Since BDA±
n−1(F5) is (n − 2)-connected, the map ρ′ ◦ f is nullhomotopic in BDA±

n−1(F5).
Since the suspension of BDA±

n−1(F5) with suspension points e⃗n and e⃗n+ w⃗ lies in BDA±
n (F5),

we conclude that (2.4) is nullhomotopic, as desired.

3 The Lee–Szczarba conjecture

This section contains the proofs of our main results. It has two sections. In §3.1, we discuss
some preliminary results, and in §3.2, we prove Theorem A.
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3.1 Preliminaries

There are two sections of preliminaries. In §3.1.1, we review the map-of-posets spectral
sequence, and in §3.1.2, we give a concrete description of the quotient of the Tits building
Tn(Q) by the congruence subgroup Γn(p).

3.1.1 The map-of-posets spectral sequence

In this subsection, we review some results about the homology of posets with coefficients
in a functor and about the map-of-posets spectral sequence. Much of this is due to Quillen
[Q78] and Charney [Cha87]. We begin with some definitions concerning posets.

Definition 3.1. Let X be a poset and x ∈ X. We say x has height m and write ht(x) = m
if m is the largest integer such that there exists a chain

x0 < · · · < xm = x with xi ∈ X for all 0 ≤ i ≤ m.

We write X>x for the subposet of X consisting of elements strictly larger than x. For a map
f : Y → X of posets, we write f≤x for the subposet of Y consisting of all y ∈ Y such that
f(y) ≤ x.

A poset X can be viewed as a category with a single morphism from x ∈ X to x′ ∈ X precisely
when x ≤ x′. Letting Ab denote the category of abelian groups, we now recall the definition
of the homology of a poset with coefficients in a functor F : X → Ab.

Definition 3.2. Let X be a poset and let F : X → Ab be a functor. Define C•(X;F ) to be
the following chain complex. For k ≥ 0, we set

Ck(X;F ) =
⨁︂

x0<···<xk

F (x0),

where the xi are understood to be elements of X. The differential ∂ : Ck(X;F ) → Ck−1(X;F )
is defined to be

∑︁k
i=0(−1)i∂i, where ∂i : Ck(X;F ) → Ck−1(X;F ) is as follows:

• For 0 < i ≤ k, the map ∂i takes the x0 < · · · < xk summand of Ck(X;F ) to the
x0 < · · · < ˆ︁xi < · · · < xk summand of Ck−1(X;F ) via the identity map F (x0) → F (x0).

• The map ∂0 takes the x0 < · · · < xk summand of Ck(X;F ) to the x1 < · · · < xk
summand of Ck−1(X;F ) via the induced map F (x0) → F (x1).

We define Hk(X;F ) = Hk(C•(X;F )).

Example 3.3. Fix a poset X. For a commutative ring R, we will write R for the constant
functor on X with value R. We then have Hk(X;R) ∼= Hk(|X|;R), where |X| is the geometric
realization of X. We will often simply write this as Hk(X;R).

These homology groups can be very difficult to calculate. One case where there is an easy
formula is where the functor F is supported on elements of height m, i.e. where F (x) = 0
for all x ∈ X with ht(x) ̸= m. We then have the following lemma. See e.g. [MiPatWiY19,
Lemma 3.2] for a proof.
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Lemma 3.4. Let X be a poset and let F : X → Ab be a functor that is supported on elements
of height m. Then

Hk(X;F ) ∼=
⨁︂

ht(x)=m

˜︁Hk−1(|X>x|;F (x)),

where the coefficients F (x) are simply regarded as an abelian group.

Our main interest in the homology of a poset with coefficients in a functor is due to the
following spectral sequence. See Quillen [Q78, Section 7] or Charney [Cha87, Section 1] for a
proof, and see Remark 3.6 for why we use the nonstandard indices (k, h).

Theorem 3.5 (Map-of-posets spectral sequence). Let f : Y → X be a map of posets. Then
there is a homologically graded spectral sequence

E2
kh = Hk(X; [x ↦→ Hh(f≤x)]) =⇒ Hk+h(Y).

Remark 3.6. We use the nonstandard indices (k, h) since for us, p is always a prime (so we
cannot use (p, q)) and n is always a dimension (so we cannot use (n,m)).

We will need a way to show that the map-of-posets spectral sequence vanishes in a large
range. The following lemma will be the key to this.

Lemma 3.7. Let f : Y → X be a map of posets and let E2
kh be the map-of-posets spectral

sequence for it given by Theorem 3.5. For some d, e, r ≥ 0, assume that the following hold
for all x ∈ X.

• ˜︁Hh(|f≤x|) = 0 for all h /∈ [ht(x) + d− r, ht(x) + d].
• ˜︁Hk(|X>x|) = 0 for all k ̸= e− ht(x)− 1

Then E2
kh = 0 for all k ≥ 0 and h ≥ 1 satisfying k + h /∈ [d+ e− r, d+ e].

For the proof of Lemma 3.7, we need the following lemma.

Lemma 3.8. Let X be a poset and let F : X → Ab be a functor. For some b ≥ a ≥ 0 and
e ≥ 0, assume that the following hold for all x ∈ X.

• F (x) = 0 whenever ht(x) /∈ [a, b].
• ˜︁Hk(|X>x|) = 0 for all k ̸= e− ht(x)− 1.

Then Hk(X;F ) = 0 for all k /∈ [e− b, e− a].

Proof. The proof will be by induction on b− a. The base case b− a = 0 follows from Lemma
3.4, which says that setting m = a = b we have

Hk(X;F ) =
⨁︂

ht(x)=m

˜︁Hk−1(|X>x|;F (x)).
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Since F (x) here is just an abelian group, this vanishes by assumption when k−1 ̸= e−m−1.
Assume now that b− a > 0. Define G : X → Ab via the formula

G(x) =

{︄
F (x) if a < ht(x) ≤ b,

0 otherwise.

We then have a short exact sequence of functors

0 −→ G −→ F −→ F/G −→ 0,

where G(x) = 0 for all x ∈ X with ht(x) /∈ [a + 1, b] and F/G(x) = 0 for all x ∈ X with
ht(x) ̸= a. The associated long exact sequence in homology contains segments of the form

Hk(X;G) −→ Hk(X;F ) −→ Hk(X;F/G).

Our inductive hypothesis says that Hk(X;G) = 0 for all k /∈ [e − b, e − a − 1] and that
Hk(X;F/G) = 0 for all k ̸= e − a. We conclude that Hk(X;F ) = 0 for all k such that
k /∈ [e− b, e− a− 1] and k ̸= e− a, i.e. such that k /∈ [e− b, e− a].

Proof of Lemma 3.7. Consider some h ≥ 1. Let Fh : X → Ab be the functor defined via the
formula Fh(x) = Hh(f≤x). By assumption, for all x ∈ X we have that Fh(x) = 0 whenever
h /∈ [ht(x) + d − r, ht(x) + d], i.e. whenever ht(x) /∈ [h − d, h − d + r]. Applying Lemma
3.8, we see that E2

kh = Hk(X;Fh) = 0 for all k /∈ [e− (h− d+ r), e− (h− d)], i.e. for all k
satisfying k + h /∈ [d+ e− r, d+ e], as desired.

3.1.2 The quotient of the Tits building by a congruence subgroup

In order to prove/disprove the Lee–Szczarba conjecture, we need a concrete description of
the quotient of the Tits building for Q by a congruence subgroup. We begin by generalizing
the definition of the Tits building to an arbitrary commutative ring.

Definition 3.9 (Tits building). Let R be a commutative ring and let V be a finite-rank free
R-module. Define T(V ) to be the poset of proper nonzero direct summands of Rn, ordered
by inclusion. Also, let T (V ) denote the geometric realization of T(V ), viewed as a simplicial
complex. For n ≥ 1, we will write Tn(R) = T(Rn) and Tn(R) = T (Rn).

The following lemma helps clarify the action of SLn(Z) on Tn(Q).

Lemma 3.10. For n ≥ 1, we have Tn(Z) ∼= Tn(Q).

Proof. This follows from the fact that there is a bijection between subspaces of Qn and direct
summands of Zn taking a subspace V ⊂ Qn to V ∩ Zn and a direct summand W ⊂ Zn to
W ⊗Q.

We now decorate our buildings by appropriate versions of orientations.
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Definition 3.11 (±-orientation). Let R be a commutative ring and let V be a rank-d free
R-module, so ∧dV ∼= R1. An orientation on V is an element ω ∈ ∧dV that generates it as an
R-module. The group R× of units acts simply transitively on the set of orientations on V by
scalar multiplication. A ±-orientation on V is a ±-vector ±ω such that ω is an orientation
on V .

Example 3.12. If V is a rank-d free Z-module, then ∧dV ∼= Z1. Since the units of Z are
{±1}, there is a unique ±-orientation on V .

Definition 3.13 (±-oriented Tits building). Let R be a commutative ring and let V be a
finite-rank free R-module. Define T±(V ) to be the poset of proper nonzero direct summands of
V equipped with a ±-orientation. The poset structure is simply inclusion; the ±-orientations
play no role in it. Let T ±(V ) denote the geometric realization of T±(V ), viewed as a
simplicial complex. Finally, let T±

n (R) = T±(Rn) and T ±
n (R) = T ±(Rn). We call T ±

n (R)
the ±-oriented Tits building.

Remark 3.14. We have T ±
n (R) = Tn(R) if and only if R× = {±1}. In particular, T ±

n (Z) =
Tn(Z) and T ±

n (Fp) = Tn(Fp) if and only if p ∈ {2, 3}.

For a field F, the Solomon–Tits theorem [So68, Br98] says that Tn(F) is Cohen–Macaulay of
dimension (n− 2). The following is the analogue of this for the ±-oriented Tits building.

Lemma 3.15. For any field F and any n ≥ 1, the complex T ±
n (F) is Cohen–Macaulay of

dimension (n− 2).

Proof. As we said above, it follows from the Solomon–Tits theorem [So68, Br98] that Tn(F)
is Cohen–Macaulay of dimension (n− 2). The complex T ±

n (F) is a complete join complex
over Tn(F) in the sense of Hatcher–Wahl [HWa10, Definition 3.2], so the lemma follows from
[HWa10, Proposition 3.5].

We now come to the main result of this section.

Proposition 3.16. For all primes p and all n ≥ 1, we have Tn(Q)/Γn(p) ∼= T ±
n (Fp).

For the proof of this proposition, we need two definitions and a lemma.

Definition 3.17. Let V be a rank-n free Z-module, let V be an n-dimensional Fp-vector
space, and let π : V → V be a surjection (so ker(π) = pV ). The image under π of the unique
±-orientation on V is the ±-orientation on V that is induced by π.

Definition 3.18. Let V be a finite-dimensional vector space equipped with a ±-orientation
±ω. A basis {x⃗1, . . . , x⃗n} for V is compatible with ±ω if ±ω = ±(x⃗1 ∧ · · · ∧ x⃗n).

Lemma 3.19. Let V be a rank-n free Z-module, let V be an n-dimensional Fp-vector space,
and let π : V → V be a surjection. Let ±ω be the ±-orientation on V induced by π and
let {x⃗1, . . . , x⃗n} be a basis for V that is compatible with ±ω. For some 0 ≤ m < n, let
{X⃗1, . . . , X⃗m} be a partial basis for V such that π(X⃗i) = x⃗i for 1 ≤ i ≤ m. We can then
complete our partial basis to a basis {X⃗1, . . . , X⃗n} for V such that π(X⃗i) = x⃗i for 1 ≤ i ≤ n.
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Proof. Let W ⊂ V be the span of {X⃗1, . . . , X⃗m} and let GL(V,W ) be the subgroup of GL(V )
consisting of automorphisms of V acting as the identity on W . Also, let W ⊂ V be the span of
{x⃗1, . . . , x⃗m}, let SL±(V ) be the subgroup of GL(V ) consisting of matrices with determinant
±1, and let SL±(V ,W ) be the subgroup of SL±(V ) consisting of automorphisms of V with
determinant ±1 acting as the identity on W . We then have a surjection GL(V,W ) →
SL±(V ,W ). The group GL(V,W ) acts simply transitively on the set of free bases for V
containing {X⃗1, . . . , X⃗m}, and the group SL±(V ,W ) acts simply transitively on the set of
bases for V that contain {x⃗1, . . . , x⃗m} and are compatible with ±ω. The lemma follows.

Proof of Proposition 3.16. By Lemma 3.10, the proposition is equivalent to the assertion
that Tn(Z)/Γn(p) ∼= T ±

n (Fp). Let π : Zn → Fn
p be the mod-p reduction map, and let

ψ : Tn(Z) → T ±
n (Fp) be the map taking a direct summand V ⊂ Zn to π(V ) ⊂ Fn

p equipped
with the ±-orientation induced by the restriction of π to V . The map ψ is clearly Γn(p)-
invariant, and thus induces a map Tn(Z)/Γn(p) → T ±

n (Fp). To prove this is an isomorphism,
we must prove the following two facts.

Claim. Let σ be a simplex of T ±
n (Fp). Then there exist a simplex σ of Tn(Z) such that

ψ(σ) = σ.

Proof of claim. Let σ be the flag

0 ⊊ V 0 ⊊ · · · ⊊ V k ⊊ Fn
p , (3.1)

where V i is equipped with the ±-orientation ±ωi. Set ni = dim(V i). We can then find a
basis {x⃗1, . . . , x⃗n} for Fn

p with the following two properties:

• {x⃗1, . . . , x⃗n} is compatible with the ±-orientation on Fn
p induced by the surjection

π : Zn → Fn
p .

• For 0 ≤ i ≤ k, the set {x⃗1, . . . , x⃗ni} is a basis for V i that is compatible with ±ωi.

Using Lemma 3.19, we can find a basis {X⃗1, . . . , X⃗n} such that π(X⃗i) = x⃗i for 1 ≤ i ≤ n.
For 0 ≤ i ≤ k, let Vi be the span of {X⃗1, . . . , X⃗ni}. We thus have a flag

0 ⊊ V0 ⊊ · · · ⊊ Vk ⊊ Zn

of direct summands of Zn, and hence a simplex σ of Tn(Z). By construction, ψ(σ) = σ.

Claim. Let σ and σ′ be simplices of Tn(Z) such that ψ(σ) = ψ(σ′). Then there exists some
f ∈ Γn(p) such that f(σ) = σ′.

Proof of claim. Set σ = ψ(σ) = ψ(σ′). Let σ be the flag

0 ⊊ V 0 ⊊ · · · ⊊ V k ⊊ Fn
p , (3.2)

where V i is equipped with the ±-orientation ±ωi. Set ni = dim(V i). Finally, let σ and σ′

be the flags
0 ⊊ V0 ⊊ · · · ⊊ Vk ⊊ Zn and 0 ⊊ V ′

0 ⊊ · · · ⊊ V ′
k ⊊ Zn.

Just like in the previous claim, we can find a basis {x⃗1, . . . , x⃗n} for Fn
p with the following

two properties:
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• {x⃗1, . . . , x⃗n} is compatible with the ±-orientation on Fn
p induced by the surjection

π : Zn → Fn
p .

• For 0 ≤ i ≤ k, the set {x⃗1, . . . , x⃗ni} is a basis for V i that is compatible with ±ωi.

Applying Lemma 3.19 recursively to each Vi and then finally to Zn, we can find a free basis
{X⃗1, . . . , X⃗n} for Zn such that π(X⃗i) = x⃗i for all 1 ≤ i ≤ n and such that {X⃗1, . . . , X⃗ni}
is a basis for Vi for all 1 ≤ i ≤ k. Similarly applying Lemma 3.19 recursively to each V ′

i

and then finally to Zn, we can find a free basis {X⃗ ′
1, . . . , X⃗

′
n} for Zn such that π(X⃗

′
i) = x⃗i

for all 1 ≤ i ≤ n and such that {X⃗ ′
1, . . . , X⃗

′
ni
} is a basis for V ′

i for all 1 ≤ i ≤ k. Let
f : Zn → Zn be the automorphism taking X⃗i to X⃗

′
i for all 1 ≤ i ≤ n. By construction, we

have f(σ) = σ′. Moreover, we also have f ∈ ker(GLn(Z) → GLn(Fp)). If p ̸= 2, then this
implies that f ∈ Γn(p) and we are done. If p = 2, then this might not hold since f might
have determinant −1 instead of 1; however, in this case we can replace X⃗1 by −X⃗1 and fix
f to have determinant 1.

This completes the proof of Proposition 3.16.

3.2 Resolution of the Lee–Szczarba conjecture

The proof of Theorem A is in §3.2.2, which is preceded by the preliminary §3.2.1, which
explains how to relate our complexes of augmented partial bases to the Steinberg module.

3.2.1 Relating augmented partial bases to the Steinberg module

Recall from Lemma 3.10 that the Steinberg module Stn(Q) is isomorphic to ˜︁Hn−2(Tn(Z)).
We now explain how to relate this to our complexes of augmented partial bases. We start
with the following definition.

Definition 3.20. Let R be a commutative ring. Define BDA±
n (R)

′ to be the subcomplex of
BDA±

n (R) consisting of simplices {±v⃗0, . . . ,±v⃗k} such that the R-span of the v⃗i is a proper
submodule of Rn.

In [ChuPu17], Church–Putman gave a new proof of a beautiful presentation for Stn(Q) that
was originally proved by Bykovskĭı [By03]. During their proof, they established the following
result. For a simplicial complex X, write P(X) for the poset of simplices of X.

Lemma 3.21 ([ChuPu17, §2.2]). For n ≥ 2, we have isomorphisms

Hn−1(BDA
±
n (Z),BDA±

n (Z)′)
∂−→∼=
˜︁Hn−2(BDA

±
n (Z)′)

Φ∗−−→∼=
˜︁Hn−2(Tn(Z)) ∼= Stn(Q),

where ∂ and Φ are as follows:

• ∂ is the boundary map in the long exact sequence of a pair in reduced homology.
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• Φ: P(BDA±
n (Z)′) → Tn(Z) is the poset map taking a simplex {±v⃗0, . . . ,±v⃗k} of

BDA±
n (Z)′ to the Z-span of the v⃗i.

Remark 3.22. The map Φ in the above lemma makes sense since BDA±
n (Z)′ is precisely the

subcomplex of BDA±
n (Z) where the indicated span is a proper summand of Zn.

The Lee–Szczarba conjecture (Conjecture 1.2) concerns the map

(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p)). (3.3)

Our next goal is to understand this map in terms of our complexes using Lemma 3.21. The
first result is as follows.

Lemma 3.23. For all n ≥ 2 and all primes p, we have

(Stn(Q))Γn(p)
∼= Hn−1(BDA

±
n (Fp),BDA

±
n (Fp)

′).

Proof. Since BDA±
n (Z)′ is an (n− 1)-dimensional complex containing the (n− 2)-skeleton of

BDA±
n (Z) and BDA±

n (Z) is n-dimensional, we have

Hn−1(BDA
±
n (Z),BDA±

n (Z)′) ∼= coker(Cn(BDA
±
n (Z)) → Cn−1(BDA

±
n (Z),BDA±

n (Z)′)).

Similarly, we have

Hn−1(BDA
±
n (Fp),BDA

±
n (Fp)

′) ∼= coker(Cn(BDA
±
n (Fp)) → Cn−1(BDA

±
n (Fp),BDA

±
n (Fp)

′)).

The relative chains Cn−1(BDA
±
n (Z),BDA±

n (Z)′)) are the free abelian group with basis the
standard simplices of BDA±

n (Z), and similarly over Fp. Using this, the same argument as in
the proof of Lemma 2.35 shows that

(Cn−1(BDA
±
n (Z),BDA±

n (Z)′))Γn(p)
∼= Cn−1(BDA

±
n (Fp),BDA

±
n (Fp)

′)).

Also, the same argument as in the proof of Lemma 2.43 shows that

(Cn(BDA
±
n (Z)))Γn(p)

∼= Cn(BDA
±
n (Fp)).

The lemma follows from the above four equations along with the fact that taking coinvariants
is right-exact.

Proposition 3.16 says that Tn(Q)/Γn(p) ∼= T ±
n (Fp). Combining this with Lemma 3.23, we

see that the map (3.3) can be identified with a map

Hn−1(BDA
±
n (Fp),BDA

±
n (Fp)

′) −→ ˜︁Hn−2(T ±
n (Fp)). (3.4)

This map is described in the following lemma.

Lemma 3.24. For n ≥ 2 and p a prime, the map (3.4) equals the composition

Hn−1(BDA
±
n (Fp),BDA

±
n (Fp)

′)
∂−→ ˜︁Hn−2(BDA

±
n (Fp)

′)
Ψ∗−−→ ˜︁Hn−2(T ±

n (Fp)),

where the maps are as follows:
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• ∂ is the boundary map in the long exact sequence of a pair in reduced homology.
• Ψ: P(BDA±

n (Fp)
′) → T±

n (Fp) is the poset map taking a simplex σ = {±v⃗0, . . . ,±v⃗k}
of BDA±

n (Fp)
′ to the Fp-span of the v⃗i equipped with the following ±-orientation:

– If σ is a standard simplex, then the ±-orientation is ±(v⃗0 ∧ · · · ∧ v⃗k).
– If σ is an additive simplex and is ordered such that v⃗0 = λv⃗1+νv⃗2 with λ, ν ∈ {±1},

then the ±-orientation is ±(v⃗1 ∧ · · · ∧ v⃗k).

Moreover, ∂ is always surjective and is injective if p ≤ 5.

Remark 3.25. It is an easy exercise to see that the ±-orientations described in Lemma 3.24
are independent of the various choices.

Proof of Lemma 3.24. That (3.4) is the indicated map is immediate from the definitions, so
all we must prove are the claims about ∂. The long exact sequence in reduced homology of
the pair (BDA±

n (Fp),BDA
±
n (Fp)

′) contains the segment

˜︁Hn−1(BDA
±
n (Fp)) → Hn−1(BDA

±
n (Fp),BDA

±
n (Fp)

′)

∂−→ ˜︁Hn−2(BDA
±
n (F)′) → ˜︁Hn−2(BDA

±
n (Fp)).

Proposition 2.47 says that BDA±
n (Fp) is (n− 2)-connected, so ˜︁Hn−2(BDA

±
n (Fp)) = 0 and ∂

is surjective. Also, Proposition 2.50 says that if p ≤ 5, then BDA±
n (Fp) is (n− 1)-connected,

so ˜︁Hn−1(BDA
±
n (Fp)) = 0 and ∂ is injective.

3.2.2 The proof of Theorem A

Theorem A asserts that for a prime p and n ≥ 2, the induced map

(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p)) (3.5)

is always a surjection, but is an injection if and only if p ≤ 5.

We will prove something more precise than this. Since the mechanisms in the cases n = 2
and n ≥ 3 are slightly different, we will treat these two cases separately. The case n = 2 is
dealt with in the following theorem.

Theorem 3.26. For all odd primes p, we have a short exact sequence

0 −→ Z
(p+2)(p−3)(p−5)

12 −→ (St2(Q))Γ2(p) −→ ˜︁H0(T2(Q)/Γ2(p)) −→ 0.

Also, (St2(Q))Γ2(2)
∼= ˜︁H0(T2(Q)/Γ2(2)).

For the proof, we need the following observation.

Lemma 3.27. Let V be a vector space over a field. Then there is a bijection between the
following two sets:

• The set of ±v⃗ with v⃗ ∈ V nonzero.
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• The set of ±-oriented 1-dimensional subspaces of V .

Proof. The bijection takes ±v⃗ with v⃗ ∈ V nonzero to the subspace spanned by v⃗ equipped
with the ±-orientation ±v⃗.

Proof of Theorem 3.26. Lemma 3.23 says that

(St2(Q))Γ2(p)
∼= H1(BDA

±
2 (Fp),BDA

±
2 (Fp)

′),

and Proposition 3.16 says that

T2(Q)/Γ2(p) ∼= T ±
2 (Fp).

Identifying the domain and codomain of (3.5) using these isomorphisms, Lemma 3.24 says
that for n = 2 the map (3.5) can be identified with the composition

H1(BDA
±
2 (Fp),BDA

±
2 (Fp)

′)
∂−→ ˜︁H0(BDA

±
2 (Fp)

′)
Ψ∗−−→ ˜︁H0(T ±

2 (Fp)),

where ∂ is the boundary map in the long exact sequence of a pair and Ψ: P(BDA±
2 (Fp)

′) →
T±
2 (Fp) is a poset map defined in that lemma.

The simplicial complex BDA±
2 (Fp)

′ is the discrete set
{︁
±v⃗ | v⃗ ∈ F2

p nonzero
}︁
, and T±

2 (Fp)
is the set of ±-oriented 1-dimensional subspaces of F2

p. By Lemma 3.27, the map Ψ is
a bijection, so Ψ∗ is an isomorphism. Moreover, since BDA±

2 (Fp)
′ is discrete, we have

H1(BDA
±
2 (Fp)

′) = 0. Finally, Lemma 3.24 says that ∂ is a surjection onto ˜︁H0(BDA
±
2 (Fp)

′).

Summarizing, we see that the long exact sequence for the pair (BDA±
2 (Fp),BDA

±
2 (Fp)

′)
contains the segment

0 −−→ H1(BDA
±
2 (Fp)) −−→ H1(BDA

±
2 (Fp),BDA

±
2 (Fp)

′) −−→ ˜︁H0(BDA
±
2 (Fp)

′) −−→ 0⏐⏐↓=

⏐⏐↓∼=
⏐⏐↓∼=

0 −−→ H1(BDA
±
2 (Fp)) −−→ (St2(Q))Γ2(p) −−→ ˜︁H0(T ±

2 (Fp)) −−→ 0.

Lemma 2.44 implies that

H1(BDA
±
2 (Fp)) =

{︄
Z

(p+2)(p−3)(p−5)
12 if p > 2,

0 if p = 2.

The theorem follows.

The case n ≥ 3 is as follows.

Theorem 3.28. Fix a prime p and some n ≥ 3, and let Pn
2 denote the set of ±-oriented

2-dimensional subspaces of Fn
p . Then the map

(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p))

is surjective. It is injective for p ≤ 5, while for p > 5 its kernel surjects onto Z[Pn
2 ] ⊗˜︁Hn−4(T ±

n−2(Fp))⊗H1(BDA
±
2 (Fp)).
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Remark 3.29. To deduce the fact that the map is not injective for p > 5, we need to know
two things:

• H1(BDA
±
2 (Fp)) is a nontrivial free Z-module. In fact, by Lemma 2.44 it is isomorphic

to Z
(p+2)(p−3)(p−5)

12 .
• ˜︁Hn−4(T ±

n−2(Fp)) is a nontrivial free Z-module (we remark that in the degenerate case
n = 3, we have T ±

1 (Fp) = ∅ and thus ˜︁H−1(T ±
1 (Fp)) ∼= Z). In fact, Lemma 3.15 says that

T ±
n−2(Fp) is Cohen–Macaulay of dimension (n− 4), so ˜︁Hn−4(T ±

n−2(Fp)) is automatically
a free Z-module. The fastest way to see that it is nontrivial is to use the fact that
forgetting the ±-orientations gives a map˜︁Hn−4(T ±

n−2(Fp)) −→ ˜︁Hn−4(Tn−2(Fp)) ∼= Stn−2(Fp).

The Solomon–Tits theorem [So68, Br98] says that Stn−2(Fp) ̸= 0, and it is easy to see
that its generators (given by “apartments”) lift to nontrivial elements of ˜︁Hn−4(T ±

n−2(Fp)).
We remark that Theorem C (proved in §4 below) actually calculates ˜︁Hn−4(T ±

n−2(Fp)).

Proof of Theorem 3.28. Lemma 3.24 says that the map we are concerned with can be identi-
fied with the map

Hn−1(BDA
±
n (Fp),BDA

±
n (Fp)

′)
∂−→ ˜︁Hn−2(BDA

±
n (Fp)

′)
Ψ∗−−→ ˜︁Hn−2(T ±

n (Fp)),

where ∂ is the boundary map in the long exact sequence of a pair and Ψ: P(BDA±
n (Fp)

′) →
T±
n (Fp) is a poset map defined in that lemma. Lemma 3.24 also says that ∂ is always

surjective and is injective for p ≤ 5. It is thus enough to show that the map

Ψ∗ : ˜︁Hn−2(BDA
±
n (Fp)

′) → ˜︁Hn−2(T ±
n (Fp))

is always surjective, is injective for p ≤ 5, and has a kernel surjecting onto H1(BDA
±
2 (Fp))⊗

Z[Pn
2 ]⊗ ˜︁Hn−4(T ±

n−2(Fp)) for p > 5. Since n ≥ 3, we have n− 2 ≥ 1 and thus we can work
with unreduced homology.

We will do this by studying the map-of-posets spectral sequence (Theorem 3.5) of the poset
map Ψ: P(BDA±

n (Fp)
′) → T±

n (Fp). This takes the form

E2
kh = Hk(T±

n (Fp); [V ↦→ Hh(Ψ≤V )]) =⇒ Hk+h(P(BDA±
n (Fp)

′)).

We wish to apply Lemma 3.7 to this to deduce a vanishing range. This requires the following
two facts. Consider V ∈ T±

n (Fp).

• We have
Ψ≤V

∼= BDA±
dim(V )(Fp) = BDA±

ht(V )+1(Fp).

Proposition 2.47 says that this is (ht(V ) − 1)-connected. Since it has dimension at
most (ht(V ) + 1), we conclude that˜︁Hh(|Ψ≤V |) = 0 for all h /∈ [ht(V ),ht(V ) + 1]. (3.6)

For later use, observe that the dimension is exactly (ht(V )+1) except in the degenerate
case of ht(V ) = 0. In this case, BDA±

1 (Fp) is a single point, so ˜︁Hh(BDA
±
1 (Fp)) = 0 for

all h. The upshot is that

the functor V ↦→ H1(Ψ≤V ) is supported on elements of height 1. (3.7)
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• We have (︁
T±
n (Fp)

)︁
>V

∼= T±
n−dim(V )(Fp) = T±

n−1−ht(V )(Fp).

Lemma 3.15 says that this is Cohen–Macaulay of dimension (n− 3− ht(V )), which
implies that

˜︁Hk(|(T±
n (Fp))>V |) = 0 for all k ̸= n− 3− ht(V ). (3.8)

Facts (3.6) and (3.8) imply that we can apply Lemma 3.7 with d = 1 and r = 1 and e = n−2.
This lemma implies that

E2
hk = 0 for all k ≥ 0 and h ≥ 1 satisfying k + h /∈ [d+ e− r, d+ e] = [n− 2, n− 1].

We now analyze the bottom row E2
k0. Proposition 2.47 implies that BDA±

dim(V )(Fp) is
connected when dim(V ) ≥ 2, and BDA±

1 (Fp) is a single point and is also thus connected
(this is one key place where it is important that we are using ±-vectors and requiring the
determinant to be ±1). We thus see that

E2
k0 = Hk(T±

n (Fp); [V ↦→ H0(Ψ≤V )]) = Hk(T±
n (Fp);Z) =

⎧⎪⎨⎪⎩
Hn−2(T ±

n (Fp)) if k = n− 2,

Z if k = 0,

0 if k ̸= 0, n− 2.

This last equality uses Lemma 3.15.

Summarizing the above two calculations, the only potentially nonzero terms in our spectral
sequence are of the form

E2
0,n−1

E2
0,n−2 E2

1,n−2

E2
1,n−3

. . .

. . . E2
n−4,3

E2
n−4,2 E2

n−3,2

E2
n−3,1 E2

n−2,1

Z Hn−2(T ±
n (Fp))

Observe that no nontrivial differentials come into or out of the E2
n−2,0 = Hn−2(T ±

n (Fp)) term,
so this term survives until E∞. This edge value in our spectral sequence is the image of the
map

Ψ∗ : Hn−2(BDA
±
n (Fp)

′) → Hn−2(T ±
n (Fp)),

so we deduce that this map is surjective, which is one of the conclusions of the theorem.

As for the other conclusions of the theorem, we separate things into two cases.

Case 1. p ≤ 5.

In this case, we can replace our invocations of Proposition 2.47 with Proposition 2.50, which
improves the degree of connectivity of BDA±

n (Fp) by 1. This causes all the terms on the
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k+ h = n− 2 diagonal other than E2
n−2,0 = Hn−2(T ±

n (Fp)) to vanish. The conclusion is that
the map

Ψ∗ : Hn−2(BDA
±
n (Fp)

′) → Hn−2(T ±
n (Fp))

is an isomorphism, as desired.

Case 2. p > 5.

In this case, observe that there are no nontrivial differentials going into or out of the E2
n−3,1-

term, so this term survives until E∞. By definition, this implies that the kernel of the
map

Ψ∗ : Hn−2(BDA
±
n (Fp)

′) → Hn−2(T ±
n (Fp))

surjects onto E2
n−3,1, so it is enough to prove that

E2
n−3,1

∼= Z[Pn
2 ]⊗ ˜︁Hn−4(T ±

n−2(Fp))⊗H1(BDA
±
2 (Fp)), (3.9)

where we recall that Pn
2 is the set of ±-oriented 2-dimensional subspaces of Fn

p .

By definition,
E2
n−3,1 = Hn−3(T±

n (F); [V ↦→ H1(Ψ≤V )]).

As we observed in (3.7), the functor V ↦→ H1(Ψ≤V ) is supported on elements of height 1.
Applying Lemma 3.4, we see that E2

n−3,1 is isomorphic to

E2
n−3,1

∼=
⨁︂

ht(V )=1

˜︁Hn−4((T±
n (Fp))>V ; H1(Ψ≤V ))

∼=
⨁︂

dim(V )=2

˜︁Hn−4(T±
n−2(Fp); H1(BDA

±
2 (Fp)))

∼=
⨁︂

dim(V )=2

˜︁Hn−4(T±
n−2(Fp))⊗H1(BDA

±
2 (Fp)).

There are precisely |Pn
2 | terms in this direct sum, so (3.9) follows.

4 Computational results

We close the paper by proving Theorem C in §4.1 and Theorem B in §4.2.

4.1 The recursive formula for the rank

Our goal in this section is to prove Theorem C, which gives a recursive formula for the rank
of ˜︁Hn−2(Tn(Q)/Γn(p)). Before we do this, we will prove the following combinatorial lemma.
For a vector space V and a line ℓ ⊂ V , write Xk(V, ℓ) for the set of all W ∈ Grk(V ) such
that ℓ /∈ W . In the following lemma (and throughout this section), we emphasize to the
reader that |S| means the cardinality of the set S (as opposed to something like a geometric
realization).
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Lemma 4.1. Let p be a prime. For some n ≥ 2, let ℓ be a line in Fn
p . Then

|Xk(Fn
p , ℓ)| = pk|Grk(Fn−1

p )|.

Proof. Pick some nonzero x⃗ ∈ ℓ. Define

X = {(U, ζ) | U ⊂ Fn
p a (k + 1)-dimensional subspace with x⃗ ∈ U

and ζ : U → Fp a linear map with ζ(x⃗) = 1}.

The map X → Xk(Fn
p , ℓ) taking (U, ζ) to ker(ζ) is a bijection; its inverse takes W ∈ Xk(Fn

p , ℓ)
to the pair (U, ζ) where U = ⟨W, x⃗⟩ and ζ : U → Fp is the unique linear map satisfying
ζ|W = 0 and ζ(x⃗) = 1. It is thus enough to count |X|. The possible choices for U are in
bijection with Grk(Fn

p/ℓ), so there are |Grk(Fn−1
p )| of them. For a fixed U , there are pk

choices of ζ such that (U, ζ) ∈ X; indeed, picking a basis {x⃗1, . . . , x⃗k+1} for U with x⃗1 = x⃗,
the linear map ζ must satisfy ζ(x⃗1) = 1, but the values of ζ(x⃗i) for 2 ≤ i ≤ k + 1 can be
arbitrary elements of Fp. The lemma follows.

Proof of Theorem C. Recall that the statement we must prove is as follows. Fix a prime
p ≥ 3. For n ≥ 1, let tn be the rank of ˜︁Hn−2(Tn(Q)/Γn(p)), so trivially t1 = 1. We then
must prove that

tn =

(︃
p− 3

2
+

(︃
p− 1

2

)︃
· pn−1

)︃
tn−1 +

(p− 1)(p− 3)

4

n−2∑︂
k=1

pk · |Grk(Fn−1
p )| · tktn−k−1

for n ≥ 2.

Proposition 3.16 says that
Tn(Q)/Γn(p) ∼= T ±

n (Fp),

so we must calculate the rank of ˜︁Hn−2(T ±
n (Fp)). Our argument for this is inspired by the

discrete Morse theory proof of the Solomon–Tits theorem in [Be08, Proof of Theorem 5.1].

Fix a line ℓ ⊂ Fn
p . For 0 ≤ k ≤ n− 1, define subcomplexes Yk of T ±

n (Fp) as follows.

• Let Y0 be the full subcomplex of T ±
n (Fp) spanned by ±-oriented subspaces V of Fn

p

such that ℓ ⊂ V .
• For 1 ≤ k ≤ n − 1, let Yk be the full subcomplex of T ±

n (Fp) spanned by Yk−1 along
with all ±-oriented subspaces V of Fn

p such that ℓ ̸⊂ V and dim(V ) = k.

We thus have
Y0 ⊂ Y1 ⊂ · · · ⊂ Yn−1 = T ±

n (Fp).

We inductively determine the homotopy type of these Yk as follows. For a subspace V of Fn
p ,

let Or(V ) be the discrete set of all ±-orientations on V , so |Or(V )| = p−1
2 and Or(V ) is a

wedge of p−3
2 copies of S0.

Claim. Y0 is homotopy equivalent to a wedge of (p−3
2 ) · tn−1 copies of Sn−2.
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Proof of claim. Indeed, Y0 is homeomorphic to the join of the following two spaces:

• The discrete set Or(ℓ), which is homeomorphic to a wedge of p−3
2 copies of S0.

• The full subcomplex of T ±
n (Fp) spanned by ±-oriented subspaces V with ℓ ⊊ V . This

is homeomorphic to T ±(Fn
p/ℓ)

∼= T ±
n−1(Fp), and thus is homotopy equivalent to a wedge

of tn−1 copies of Sn−3.

We conclude that Y0 is homotopy equivalent to a wedge of (p−3
2 ) · tn−1 copies of S0 ∗ Sn−3 ∼=

Sn−2, as desired.

Claim. For 1 ≤ k ≤ n− 2, the complex Yk is homotopy equivalent to the wedge of Yk−1 and

(p− 1)(p− 3)

4
· pk · |Grk(Fn−1

p )| · tktn−k−1

copies of Sn−2.

Proof of claim. The new vertices that are added to Yk−1 to form Yk consist of the ±-oriented
k-dimensional subspaces V of Fn

p such that ℓ ̸⊂ V . There are p−1
2 possible ±-orientations on

each such k-dimensional subspace, so by Lemma 4.1 there are

p− 1

2
· pk|Grk(Fn−1

p )| (4.1)

new vertices.

Let V be one of these new vertices and let L(V ) be its link in Yk. The vertex V is not
adjacent to any other new vertices, so L(V ) is entirely contained in Yk−1. We deduce that
Yk is homeomorphic to the space obtained from Yk−1 by coning off all these L(V ). Below we
will prove that L(V ) is homotopy equivalent to a wedge of(︃

p− 3

2

)︃
· tktn−k−1 (4.2)

copies of Sn−3. Since by induction we already know that Yk−1 is homotopy equivalent to a
wedge of copies of Sn−2, this will imply that L(V ) is nullhomotopic in Yk−1 and thus that
coning it off changes the homotopy type of Yk−1 by wedging it with the suspension ΣL(V ),
which is homotopy equivalent to a wedge of (4.2) copies of Sn−2. Since we are doing this
(4.1) times, the claim follows.

It remains to prove that L(V ) is homotopy equivalent to a wedge of (4.2) copies of Sn−3.
The link of V in the whole complex T ±

n (Fp) consists of flags of ±-oriented subspaces such
that the flag does not contain V , but such that V can be inserted into it. In other words,
the link of V in T ±

n (Fp) consists of flags of ±-oriented subspaces of Fn
p of the form

0 ⊊ A0 ⊊ · · · ⊊ Ar ⊊ Br+1 ⊊ · · · ⊊ Br+s ⊊ Fn
p , (4.3)

where each Ai is properly contained in V and each Bj properly contains V . For this flag to
lie in L(V ), each ±-oriented subspace in it must lie in Yk. The Ai have dimension less than
dim(V ) = k, so they automatically lie in Yk. For the Bj ’s, however, the only way they can
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lie in Yk is for them to lie in Y0, i.e. for them to contain ℓ. Since Bj already contains V , we
deduce that it must contain V ′ = ⟨V, ℓ⟩. This containment need not be proper, i.e. possibly
Bj = V ′ with some ±-orientation.

In summary, L(V ) consists of flags of ±-oriented subspaces of Fn
p as in (4.3) where each Ai

is properly contained in V and each Bj contains (and possibly even equals) V ′. This implies
that L(V ) is homeomorphic to the join of the following spaces:

• The subcomplex T ±(V ), which since V is k-dimensional is by induction homotopy
equivalent to a wedge of tk copies of Sk−2.

• The discrete subspace Or(V ′) of Yk−1, which is homotopy equivalent to a wedge of p−3
2

copies of S0.
• The full subcomplex of T ±

n (Fp) spanned by ±-oriented subspaces W with V ′ ⊊ W .
This is homeomorphic to T ±(Fn

p/V
′) ∼= T ±

n−k−1(Fp), and thus is homotopy equivalent
to a wedge of tn−k−1 copies of Sn−k−3.

We conclude that L(V ) is homotopy equivalent to a wedge of

tk ·
(︃
p− 3

2

)︃
· tn−k−1

copies of Sk−2 ∗ S0 ∗ Sn−k−3 ∼= Sn−3, as desired.

Claim. The complex Yn−1 is homotopy equivalent to the wedge of Yn−2 and

p− 1

2
· pn−1 · tn−1

copies of Sn−2.

Proof of claim. This is almost identical to the proof of the previous claim, so we only list
the differences:

• There are now
p− 1

2
· pn−1|Grn−1(Fn−1

p )| = p− 1

2
· pn−1

new vertices.
• This time the link L(V ) is just homeomorphic to T ±(V ) ∼= T ±

n−1(Fp) since ⟨V, ℓ⟩ is the
whole vector space Fn

p and thus does not contribute vertices to the building. It is thus
homotopy equivalent to tn−1 copies of Sn−2.

Adding up the contributions coming from the above three claims, we deduce the desired
recursive formula.

4.2 Improving the bound on the top cohomology group

We close by proving Theorem B.
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Proof of Theorem B. We first recall what we must prove. Fix a prime p ≥ 3. For n ≥ 1, let
tn be the rank of ˜︁Hn−2(Tn(Q)/Γn(p)) ∼= ˜︁Hn−2(T ±

n (Fp))

given by Theorem C. Also, set t0 = 1. We must prove that for n ≥ 3, the rank of

H(
n
2)(Γn(p)) ∼= (Stn(Q))Γn(p)

is at least
tn +

(p+ 2)(p− 3)(p− 5)(p− 1)

24
· |Gr2(Fp)| · tn−2

with equality if p = 3 or p = 5.

For p = 3 and p = 5, this follows from Theorem A, so we can assume that p > 5. Let Pn
2

be the set of ±-oriented 2-dimensional subspaces of Fn
p . Theorem 3.28 says that there is a

surjective map
(Stn(Q))Γn(p) −→ ˜︁Hn−2(Tn(Q)/Γn(p)) (4.4)

whose kernel surjects onto

Z[Pn
2 ]⊗ ˜︁Hn−4(T ±

n−2(Fp))⊗H1(BDA
±
2 (Fp)). (4.5)

Since there are p−1
2 choices of ±-orientation on a 2-dimensional subspace of Fn

p , the rank of
Z[Pn

2 ] is p−1
2 · |Gr2(Fp)|. Lemma 2.44 says that the rank of H1(BDA

±
2 (Fp)) is (p+2)(p−3)(p−5)

12 .
Finally, the rank of ˜︁Hn−4(T ±

n−2(Fp)) is tn−2. We deduce that the rank of (4.5) is

(p+ 2)(p− 3)(p− 5)(p− 1)

24
· |Gr2(Fp)| · tn−2.

Since the rank of the target of (4.4) is tn, the theorem follows.

Remark 4.2. It follows from work of Lee–Schwermer ([LeSc82]; see [Ad97] for an alternate,
more topological proof) that the rank of H3(Γ3(p)) is at least (p3−1)(p3−3p2−p+15)

12 + 1. This
is generally larger than the bound we give in Theorem B for n = 3. One can likely use this
bound to give a lower bound for the rank of H2(BDA

±
3 (Fp)) which can then be plugged into

the map-of-posets spectral sequence to obtain an even better lower bound for the rank of
H(n2)(Γn(p)) for n > 3. We do not pursue this approach here.
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