Bandwidth Cost of Code Conversions 1n
Distributed Storage: Fundamental Limits and
Optimal Constructions

Francisco Maturana and K. V. Rashmi
Carnegie Mellon University, Pittsburgh, PA, USA
Email: fmaturan@cs.cmu.edu, rvinayak @cs.cmu.edu

Abstract—In distributed storage systems, an [n, k] code encodes
k message symbols into n codeword symbols which are then
stored on n nodes in the system. Recent work has shown that sig-
nificant savings in storage space can be obtained by tuning »n and
k to variations in device failure rates. Such tuning necessitates
code conversion: the process of converting data encoded under
an [n’ k'] code to its equivalent under an [n”, k"] code. The
default approach for code conversion places significant burden
on system resources. Convertible codes are a recently proposed
class of codes for enabling resource-efficient conversions. Existing
work on convertible codes has focused on minimizing access cost,
i.e., the number of nodes accessed during conversion. Bandwidth,
which corresponds to the amount of data read and transferred,
is another important resource to optimize during conversions.

In this paper, we initiate the study on the fundamental limits on
conversion bandwidth and present constructions for conversion-
bandwidth optimal convertible codes. First, we model the code
conversion problem using information flow graphs with variable
capacity edges. Second, focusing on MDS codes and an impor-
tant subclass of convertible codes, we derive a lower bound on
conversion bandwidth. The derived bound shows that conversion
bandwidth can be significantly reduced even in regimes where
access cost of conversion cannot be reduced. Third, we present
an explicit construction for MDS convertible codes which match
this lower bound and are thus conversion-bandwidth optimal.

I. INTRODUCTION

Erasure codes are a central tool in distributed storage sys-
tems used to add redundancy to data in order to avoid data loss
when failures occur [1]-[4]. In particular, maximum distance
separable (MDS) codes are widely used in practice because
they require the minimum amount of storage overhead for
a given level of failure tolerance. In this setting, an [n, k]
MDS code over finite field ¥, is used to encode a message
m € IF’; into a codeword ¢ € Fj. Each of the n codeword
symbols is then stored in a distinct node of the distributed
storage system. Large-scale distributed storage systems usually
comprise hundreds to thousands of nodes, while n is much
smaller in comparison, meaning that these systems store many
such codewords distributed across different subsets of nodes.
The MDS property ensures that any subset of k£ out of the n
symbols in the codeword is enough to decode m. This provides
tolerance for up to (n — k) node failures.

This work was funded in part by an NSF CAREER award (CAREER-
1943409), an NSF CNS award (CNS-1956271), a Google faculty research
award, and a Facebook distributed systems research award.

978-1-5386-8209-8/21/$31.00 ©2021 IEEE

[nI kI] [nI kl]

,,__‘\

/

="

[nf, k] [nf, kF]
Fig. 1: Conversion process of codewords of an [n!, k!] code
into codewords of an [nf", k] code.

The parameters n and k are typically set based on the
reliability of storage devices and additional requirements on
system performance and storage overhead. Recent work by
Kadekodi et al. [5] has shown that the failure rate of disks
can vary drastically over time, and that significant savings in
storage space (and hence operating costs) can be achieved by
tuning the code rate to the observed failure rates. Such tuning
typically needs to change both n and k of the code, due
to other practical system constraints on these parameters [5].
Other reasons for tuning parameters include changing k in
response to changes in data popularity, and adapting the code
rate to limit the total amount of storage space used. Such
tuning of parameters requires converting the already encoded
data from one set of parameters to the newly chosen set of
parameters. The default approach to achieving this is to read
the encoded data, decode if necessary, re-encode it under the
new code, and write it back. However, such an approach
necessitates significantly high overhead in terms of network
bandwidth, I/0, and CPU resources in the cluster.

This has led to the study of the code conversion problem [6].
Code conversion [6] (see Fig. 1) is the process of transform-
ing a collection of codewords encoding data under an initial
[n!, k'] code C! into a collection of codewords encoding the
same data under a final [nf", k] code C¥ (I and F stand
for initial and final, respectively). Given certain parameters
and decodability constraints (such as the MDS property) for
C! and CF, the goal is to design the codes C! and C¥" along
with a conversion procedure from C! to C¥' that is efficient
(according to some notion of conversion cost as will be dis-
cussed subsequently). Existing works [6], [7] on convertible
codes have studied efficiency in terms of the access cost of
conversion, which corresponds to the number of codeword

2334

symbols accessed during conversion.

In this paper, we initiate the study of conversion bandwidth,
which is the total amount of data transferred between nodes
during conversion. We focus on MDS convertible codes that
incur minimum conversion bandwidth (i.e. bandwidth-optimal
convertible codes). To do this, we model code conversion us-
ing information flow graphs with variable capacity edges. We
specifically focus on a parameter regime known as the merge
regime, which has been shown to play the most critical role
in the analysis and construction of convertible codes [6]. The
merge regime corresponds to conversions where multiple ini-
tial codewords are merged into one final codeword (i.e. k¥ =
k! for integer ¢ > 2) and arbitrary values for n! and n’".

We show that significant savings in conversion bandwidth
compared to the default approach are possible when k! >
(nf' — k). This is perhaps surprising, since this includes large
parameter regimes where it is known that access cost cannot
be reduced [7]. In order to achieve this, we utilize vector codes
(also called array codes), which treat each code symbol as a
vector, in contrast to scalar codes of previous works [6], [7].
This allows for the download of only a fraction of each sym-
bol, which is essential for minimizing conversion bandwidth.

First, we model code conversion as an information flow
graph (§III). Then, by using this model, we derive a lower
bound on the conversion bandwidth of MDS convertible codes
in the merge regime (§IV). Next, we propose an explicit con-
struction for bandwidth-optimal MDS convertible codes in the
merge regime (§V). This construction considers fixed values
for the initial and final parameters. However, in practice the
exact value of the final parameters nf” and k¥ might not be
known at the time of code construction, as it might depend
on future failure rates. Finally, we present a transformation to
ensure bandwidth-optimal conversion even in the case where
the final parameters are unknown ahead of time, but are drawn
from a finite set of possibilities (§V-B).

Proofs are omitted due to lack of space, and are available
in the extended version of this paper [8].

II. BACKGROUND AND RELATED WORK

We start by reviewing concepts from the literature and doing
an overview of related work.

A. Vector codes and puncturing

An [n, k,a] vector code C over a finite field F, is an -
linear subspace C C Fg™ of dimension ak. For a given code-
word ¢ € Cand i € [n], define ¢; = (Ca(i—1)41;- - Cai) € Fy
as the i-th symbol of c. We refer to elements from the base
field F, as subsymbols. As an abuse of notation, we also
use C as an encoding function C(m) mapping messages to
codewords. A code C is said to be systematic if m is a prefix
of C(m) for all m € F}*. For linear codes, C(m) = mG
where G &€]F’;O‘X"O‘ is called the generator matrix of C, and
the columns of G are called encoding vectors. Vector code C
is maximum distance separable (MDS) iff any k& out of the n
symbols suffice to recover m. A scalar code is a vector code
with o = 1 (we omit « in this case). A puncturing of a vector

code C is the vector code that results from removing a fixed
subset of symbols from every codeword c € C.

B. Convertible codes [6], [7]

Let C! be an [n!, k'] code over F,, C¥ an [nf", k¥] code
over Fy, 7l = (nf—kT), and 7¥" = (n¥'—kF"). In order to allow
for a change in code dimension from k! to k¥, a message
m of length M = lem(k!, k¥") is considered. In the initial
configuration m is encoded as A/ = (M/k") codewords of C!
and in the final configuration it is encoded as A" = (M/xF)
codewords of C¥. Symbols of m are mapped to different
codewords according to two partitions of [M]: P; and Pp.
For a subset Z C [M], we denote the restriction of m to the
coordinates in Z as m|z. Convertible codes are defined as:

Definition 1 (Convertible code [6]): An (n!,kl;n EF)
convertible code over I, is defined by: (1) initial and final
codes (CT,CT") over F,, where C! is an [n!, k!] code and C¥'
is an [nf", k] code, (2) initial and final partitions (P;,Pr)
of [M] such that |P/| = k' for P/ € P; and |P}]'| = k¥
for PjF € Pr, (3) a conversion procedure that takes initial
codewords {C!(m)| pr) i€ [A]} as input and outputs final
codewords {C¥(m|pr) : i € [AF]} for all m € F). >

1) Access cost: Access cost is the sum of the number of
symbols read and number of symbols written during con-
version. An access-optimal convertible code has the mini-
mum access cost over all convertible codes with parame-
ters (n!, kT;n® k). Similarly, an [n!, k7] code is (nf", kF')-
access-optimally convertible if it is the initial code of an
access-optimal (nf, k%;n!" k) convertible code.

2) Conversion procedure: During conversion, each code-
word symbol is either an: (1) unchanged symbol, which is
present both in the initial and final codewords without mod-
ifications; (2) retired symbol, which is only present in the
initial codewords; or (3) new symbol, which is only present
in the final codewords. Both unchanged and retired symbols
can be read during conversion and used to write the new
symbols. Convertible codes which have the maximum number
of unchanged symbols (M when k! # k) are called stable.

3) Access-optimal code for merge regime: When 1 > ¥’
and 7 < E!, access-optimal codes in the merge regime
read 77 code symbols from each initial codeword. These
symbols are then used to compute r’ new code symbols.
In [6], a construction of access-optimal convertible codes for
all parameters in the merge regime is proposed. Codes built
using this construction are (1) systematic, (2) linear, (3) during
conversion only access the first %" parities from each initial
stripe (assuming r¥ < rl), and (4) when constructed with a
given value of A/ = ¢ and r" = r, the initial [n!, k'] code is
(nt', k*")-access-optimally convertible for all k' = ¢’k! and
nF = k¥ 4+ suchthat 1 < ¢’ <gand1 <+ <r. In§V
we use this code as part of our construction of conversion-
bandwidth optimal codes for the merge regime.

C. Network information flow [9]

For the purposes of this paper, an information flow graph is
adag G = (V,E), where E CV xV xR is a set of edges

2335

with non-negative capacities, and (4, j,c) € F represents that
information can be sent noiselessly from node ¢ to node j at
rate ¢. Let { X1, X2, ..., X;n} be mutually independent infor-
mation sources with rates {x1,xa, ..., x,,} respectively. Each
information source X; is associated with a source s; € V,
where it is generated, and a sink ¢; € V, where it is required.
In this paper we mainly make use of the information max-flow
bound [10] which indicates that z; < max-flow(s;,t;) for all
i € [m] is necessary. In our analysis, we consider s;-t;-cuts
of the information flow graph, which give an upper bound on
max-flow(s;,¢;) and thus an upper bound on x; as well.

D. Piggybacking framework for constructing vector codes

The Piggybacking framework [11], [12] constructs [n, k, o]
vector codes by using « instances of an existing [n, k] code as
a base code, and then adding carefully designed functions of
the data (called piggybacks) from one instance to the others.
Piggybacks in instance 2 < ¢ < « are a function of the data in
instances {1,...,7 — 1}. The piggyback functions are chosen
to confer additional properties to the resulting code. To decode
a piggybacked code, instance 1 is decoded first using the base
code decoding procedure. The data of instance 1 is then used to
subtract the piggybacks from instance 2 and the base code de-
coding procedure is then used to decode instance 2. Decoding
proceeds in this fashion until all instances have been decoded.
If the [n, k] base code is MDS, then the resulting [n, k, o]
vector code is MDS. In this paper, we use the Piggybacking
framework to design a code where piggybacks store data which
helps in making the conversion process efficient.

E. Other related work

Some special cases of code conversion have been studied
in the literature: [13], [14] study the problem of minimizing
bandwidth usage when adding extra parities (i.e. ¥/ = k¥ and
n! < nf"); [15] proposes two pairs of non-MDS codes that
support conversion; and [16] studies a type of conversion in
the context of distributed matrix multiplication.

Several works study the scaling problem [17]-[28]. This
problem considers upgrading an erasure-coded storage system
with s new empty data nodes. The general goal is to efficiently
and evenly redistribute each codeword’s data across all nodes,
while updating parities to reflect the new placement of the
data. This is a different problem from the code conversion
problem we study in this paper, due to the scaling problem’s
need to redistribute data from each codeword across nodes
which makes it an inefficient approach to achieve conversion.

III. MODELING CONVERSION FOR OPTIMIZING BANDWIDTH

In this section, we model conversion as an information
flow problem. We utilize this model to derive a lower bound
on conversion bandwidth. While we consider a single value
for the final parameters n" and k%', the resulting bound still
applies when multiple values are considered.

Previous work (§1I-B) considered only scalar codes, which
is sufficient when optimizing for access cost. However, when
optimizing for network bandwidth, vector codes can perform

50 O&Q@%@ OO@\({@@/@

Fig. 2: Information flow graph of conversion in the general
case. Unchanged, retired, and new nodes are shown in different
colors. Each unchanged node is drawn twice (in the initial
and final codewords) for clarity. Some representative edges are
labeled with their capacities.

better because they allow partial download from nodes. For

this reason, we consider the initial code C! as an [n!, k! q]

MDS code and the final code C¥ as an [nf', k¥ o] MDS

code, where o« > 1 is considered as a free parameter chosen

to minimize network bandwidth cost. For MDS convertible
codes, message size is B = Ma = lem(k!, k'), interpreted
as M symbols composed of o subsymbols. The number of
subsymbols downloaded from node s during conversion is

B(s) and we define 3(S) := > s B(s).

The information flow graph for a convertible code comprises

the following nodes (see Fig. 2):

o unchanged nodes U; j = {u;j1,. .., ju, |} for all i €
[M], 4 € [AF], which are present both in the initial and
final codewords (drawn twice in Fig. 2);

o retired nodes R; = {v;1,...,v;,r,} for i € [A'], which
are only present in the initial codewords;

o new nodes N = {wj1,...,w;n;} for j € [\F], which
are only present in the final codewords;

« source nodes s; for i € [\], representing the message;

« sink nodes ¢; for j € [\F], representing the data decoded;

e a coordinator node ¢, which models the central location
where new symbols are computed.

Symbols of m are modeled as information sources { X1, ...,
X} of rate « (over F,) each. Information source X, is
generated at node s; iff £ € P,;I , and recovered at node t; iff
JAS PJF . When x* is used as an index, it denotes union of the

indexed set over the range of that index, e.g. U, ; = Uf‘;l U ;.

The graph has the following set of edges E:

e {(siy7,0) 1z € Ui UR;} C E for each i € [M],
representing data stored on unchanged nodes;

o {(z,¢,8(x)) : z € Ui UR;} C E for each i € [A],
representing data downloaded from x;

e {(¢,y,a) : y € N;} C E for each j € [A], representing
data stored on new nodes; and

o {(y,tj,a) 1y € V;} C E for V; C U, ; UN; such that
|V;| = kT, for all j € [\F], representing data downloaded
to recover the message in a final codeword.

The set V; represents a choice of k symbols for decoding

a final codeword. A necessary condition for conversion is

2336

to satisfy all sinks ¢; for all possible Vi,...,Vy\r. The sets
Ui j,Ri, N, and the capacities S(z) are determined by the
conversion procedure of the convertible code.

Definition 2 (Conversion bandwidth): The conversion band-
width is the total network bandwidth used during conversion
v = B(Us URL) + [Ny
Information flow provides us with lower bounds on the capac-
ities 3(x). Therefore, part of designing convertible codes is to
set U; j, Ri, N so as to minimize the lower bound on .

IV. OPTIMIZING NETWORK BANDWIDTH OF CONVERSION
IN THE MERGE REGIME

In this section, we use the information flow model presented
in $III to derive a lower bound on conversion bandwidth for
MDS codes in the merge regime. We focus on this regime
because it is of practical importance and has been shown to
play a central role in the analysis of convertible codes in gen-
eral [7]. Recall from §II-B, that convertible codes in the merge
regime are those where k" = ¢k’ for some integer ¢ > 2, i.e.,
this regime corresponds to conversions were multiple initial
codewords are merged into a single final codeword. We omit
partitions from our analysis because in the merge regime all
choices of partitions are equivalent up to relabeling [6].

First, we derive a general lower bound on conversion band-
width in the merge regime by analyzing the information flow
graph of conversion. Intuitively, this lower bound emerges
from the fact that new symbols need to have a certain amount
of information from each initial codeword in order to fulfill
the MDS property of the final code.

Lemma 3: Consider an MDS (n!, k%;nf" ck!) convertible
code. Then v > (camin{rf k'} + rfa), where equality is
only possible for stable codes.

Note that access-optimal codes meet this bound when r
r¥ [6], making them also bandwidth-optimal in this case.

When ! < ¥, no savings in access cost are possible with
respect to the default approach [6]. However, we will next
derive a lower bound on conversion bandwidth which does
leave room for savings. In §IV, we show that this bound is
indeed tight, which implies that access-optimal codes are not
bandwidth-optimal in general.

The following bound is also derived from the information
flow graph. Intuitively, data downloaded from retired nodes is
“more useful” than data downloaded from unchanged nodes,
since unchanged nodes already form part of the final code-
word. At the same time, it is better to have the maximum
amount of unchanged nodes per initial codeword (k) because
this minimizes the number of new nodes that need to be
constructed. However, this leads to fewer retired nodes per
initial codeword (r!). If the number of retired nodes per initial
codeword is less than the number of new nodes (r! < r¥),
then conversion procedures are forced to download data from
unchanged nodes. This is because one needs to download at
least ¥« from each initial codeword (by Lemma 3) Since
data from unchanged nodes is “less useful”, more data needs
to be downloaded in order to construct the new nodes.

||
>

Lemma 4: Consider an MDS (n!, k;n!" ck!) convertible
code, with ! < r¥ < k!. Then:

I
72§a<r1+k1 (1—TF>)+TF0¢,
r

where equality is only possible for stable codes. []
By combining Lemmas 3 and 4 we obtain the following gen-
eral lower bound on conversion bandwidth of MDS convertible
codes in the merge regime.

Theorem 5: For all MDS (n?, kT;nt', ck!) convertible code:

samin{k!, 7} +rfa, if rf >rf or KT <o
7 ca(rl—kkl(l—;'—;))—l—rFa,

where equality is only possible for stable convertible codes. B
In §V, we show that this lower bound is achievable. We refer
to codes that meet this bound as conversion-bandwidth optimal
(abbreviated cBW-opt).

Definition 6 ((nt', k¥)-cBW-opt): An [n! k] code is said
to be (nf", k')-cBW-opt if it is the initial code of a cBW-opt
(n!, kT;nt k) convertible code.

The fraction of savings p € [0,1] in bandwidth relative to
the default approach obtained by cBW-opt codes can be com-
puted as a function of its parameters. Note that the bandwidth
used for writing is ¥ cv in both approaches, so we ignore it.

Corollary 7: Consider a cBW-opt MDS (n!, k!;nf", k)
convertible code, and let 7 = (r'/k?), 7' = (+" /&*"). Then:

otherwise,

1— 7, if 77 <7 and 7 < 1,
M —1), it <7 <1,
0, if #7 > 1.

p:

V. EXPLICIT CONSTRUCTION OF CBW-0oPT MDS
CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction of cBW-
opt codes in the merge regime. The key idea of our construc-
tion is to employ the Piggybacking framework (§II-D) with an
access-optimal convertible code as base code. First, in §V-A,
we describe our construction for fixed final parameters n! and
kF along with an example. Then, in §V-B, we show that initial
codes built with this construction are not only (nf", kf")-cBW-
opt, but also cBW-opt for other pairs of (n!", k¥'). Finally, we
present a construction which given any finite set of final pa-
rameters, constructs an [n!, k'] code which is simultaneously
(nt', kt")-cBW-opt for every (n’", kf") in that set.

A. Bandwidth-optimal MDS codes with fixed final parameters

When " > k!, the default approach is bandwidth-optimal,
and when rI > ¥, access-optimal codes are also conversion-
bandwidth optimal. Thus, we assume ¥ < k! and r! < rF.
The main challenge in this case is that r! is too small for
access-optimal codes to be efficient. To solve this, we use pig-
gybacks to store information from an access-optimal code with
larger ! which can enable more efficient conversion. We start
by describing the base code used in our construction, followed
by the design of the piggybacks and the conversion procedure,
and end with a detailed example of the construction.

2337

final codeword (CT")

initial codeword i (CT)

ay b1

a4i-3 byi—3 - ;
£ b as b8
A4 4i F P
(i) I (i) T (i)l ap; bp;
a'’py b®p; +apy " F
ap; bp;

Fig. 3: Example of a bandwidth-optimal (5,4; 10, 8) convert-
ible code. Each block represents a codeword, and each row
is a symbol made up of @ = 2 subsymbols. Shaded rows
correspond to retired nodes in the initial codewords, and new
nodes in the final codeword. Text color is used to emphasize
piggybacks and the subsymbols they produce.

a) Base code for piggybacking: As the base code, we
use a punctured initial code of an access-optimal (k! + 7', k7
n¥, kF) convertible code (C!',CF") (as described in §1I-B3).
Let C*" be the puncturing of C!" where the last (r¥ —)
parity symbols are removed.

b) Piggyback design: Now, we describe how to construct
the [nf, k! a] initial vector code C! and the [nf", kT a] fi-
nal vector code C* that make up the conversion-bandwidth
optimal (n, kT;n®' ck!) convertible code. This piggybacking
design is inspired by one of the designs proposed in [12].

The first step is to choose the value of o. By examining
Theorem 5, we can see that the bound is met when o = ¥
and 3; = r subsymbols are downloaded from each retired
node and By = (rf — r!) subsymbols are downloaded from
each unchanged node.

The next step is to design the piggybacks. Intuitively, we
can use the 85 subsymbols from unchanged nodes to store (5
piggyback on each retired node. Since (3 is also the number
of new nodes, we can recover r! subsymbols for each new
node from the piggybacks.

Let m;s) € IFZI be the message of instance j € [a] of
the base code in initial codeword s € [A]. Since C!” is
systematic, més) corresponds to the j-th coordinate of the k'
systematic symbols in initial codeword s. Let c{’ J(s) denote
the j-th coordinate of parity symbol ¢ in initial codeword s of
C!, and cf’; let denote the same for the final codeword of C¥".

i,
Then, for s € [A]:

forie[rl], 1<j <0l
ph, forie [rf], rf < g <oF,
] g et
where p! (resp. pl’) is the encoding vector of the i-th parity
of CI' (resp. C*'"). By using the access-optimal conversion
of the base code, we can compute cf:j = [mgl) e g)‘)]
from {mg-s)pf :s € [M]} foralli € [rF] and j € [rF].
c) Conversion procedure: Execute the following steps.
1) Download D = {més) cse M), rl<j<rl}, 0 =
{c”(s):se M, ie[rf], 1 <j<rl} and Cy =
{c”(s):se[MNM],iepl], »f <j<rF)
2) Recover the piggybacks C3 = {m§s)pl

(1) . <A>

m; pF, fori €|

’L

e M, ! <

i <r¥, 1< 7 <r!} by computing ml(-s)

obtaining m(Ipl = chi(s) — mz(-s)pjl- using Cs.

3) Compute the remalmng base code symbols from the punc-
tured symbols Cy = {m® pl s e M, <i<
rf rl < j <rF} using D.

4) Compute the parity symbols of the final codeword C5 =
{cf; i e[r"], j € [r"]} using the conversion from the
base code on C7,Cs, C3, Cy.

Now we show a concrete example of our construction.
Example 8 (Bandwidth-optimal conversion in the merge

regime): We construct a conversion-bandwidth optimal (5, 4;

10, 8) convertible code over I, (assume g is sufficiently large).

As a base code, we use a punctured access-optimal (6, 4; 10,

8) convertible code. Thus, C!" is a [6,4] code, C* is a [10, 8]

code, and C!” is a [5,4] code. Let p!,pl € F7*! be the

encoding vectors for the parities of C! ', and pl,pt € Fg“

p} from D and

be the encoding vector for the parities of CF' ', Since a = 2, we
construct a [5,4, 2] initial vector code C! and a [10, 8, 2] final
vector code CF'. Let a¥) = (ag;i_3,...,a4;), a = (a),a?)
and likewise for b. Figure 3 shows the resulting code.
During conversion, only 12 subsymbols need to be down-
loaded: b and the parity symbols from both codewords. From
these subsymbols, we recover the piggybacks a’)pl and
a®pl, and compute b(Mpl and bPps from b. Finally, we
use all these subsymbols with the access-optimal conversion
to compute ap’, apl’, bp!" and bpl. The default approach
would require one to download 16 subsymbols from the initial
nodes. Both approaches require downloading 4 subsymbols
from the coordinator node. Thus, the proposed construction
leads to 20% reduction in conversion bandwidth. >

B. Convertible codes with bandwidth-optimal conversion for
multiple final parameters

In practice, (n%", k¥"), and thus (A, %), may be unknown
at code construction time. To solve this problem, we present
convertible codes which support conversion-bandwidth opti-
mal conversion simultaneously for multiple final parameters.

1) Supporting multiple values of A': Due to property (4)
(see §1I-B), the construction from §V given M =¢ inherently
supports bandwidth-optimal conversion for any A = ¢’ <.

2) Supporting multiple values of r¥: Consider two cases:

Case 1 (rf" < r1): due to property (4) (§1I-B), the base code
supports access-optimal conversion for any " = r such that
r < L. Thus, one can achieve bandwidth-optimal conversion
for any r < r/ by using the access-optimal conversion on the
« instances of the base code, ignoring the piggybacks.

Case 2 (r™ > r!): to support ' € {r1,...,rs} such that
r; > r! (i € [s]), we start with an access-optimal code having
r¥ = max; r;. Then repeat the piggybacking step (§V-A) for
each r;, using the output from step ¢ (with the punctured sym-
bols from C!" added back) as a base code for step (i+1). Thus,
the code has a = Hle r;. Since piggybacking preserves the
MDS property of a base code, the resulting code will be MDS.
Conversion for one of the supported r" = r; is performed as
described in §V-A on each of the additional instances created

by steps (i +1),...,s (i.e. [/ ;1) 7o in total).

2338

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003, M. L. Scott and L. L. Peterson, Eds. ACM, 2003, pp. 29-43.
D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “HDFS
RAID - Facebook,” available on: http://www.slideshare.net/ydn/hdfs-
raid-facebook. Accessed: 2019-07-23.

C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in Windows Azure storage,” in 2012
USENIX Annual Technical Conference, Boston, MA, USA, June 13-15,
2012, G. Heiser and W. C. Hsieh, Eds. USENIX Association, 2012,
pp. 15-26.

Apache Software Foundation, “Apache hadoop: HDFS erasure cod-
ing,” available on: https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-hdfs/HDFSErasureCoding.html. Accessed: 2019-07-23.

S. Kadekodi, K. V. Rashmi, and G. R. Ganger, “Cluster storage sys-
tems gotta have HeART: improving storage efficiency by exploiting
disk-reliability heterogeneity,” in /7th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25-28, 2019,
A. Merchant and H. Weatherspoon, Eds. USENIX Association, 2019,
pp. 345-358.

F. Maturana and K. V. Rashmi, “Convertible codes: new class of codes
for efficient conversion of coded data in distributed storage,” in //th
Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, ser. LIPIcs, T. Vidick,
Ed., vol. 151. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020, pp. 66:1-66:26.

F. Maturana, V. S. C. Mukka, and K. V. Rashmi, “Access-optimal lin-
ear MDS convertible codes for all parameters,” in IEEE International
Symposium on Information Theory, ISIT 2020, Los Angeles, California,
USA, June 21-26, 2020, 2020.

F. Maturana and K. V. Rashmi, “Bandwidth cost of code conversions
in distributed storage: Fundamental limits and optimal constructions,”
2020, arXiv:2008.12707.

R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204-1216, 2000.

R. W. Yeung, A First Course in Information Theory.
Springer US, 2002.

K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,” in
2013 IEEE International Symposium on Information Theory, ISIT 2013,
Istanbul, Turkey, July 7-12, 2013. 1EEE, 2013, pp. 331-335.

, “A piggybacking design framework for read-and download-
efficient distributed storage codes,” IEEE Transactions on Information
Theory, vol. 63, no. 9, pp. 5802-5820, 2017.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node repair in
any erasure code for distributed storage,” in 2011 IEEE International
Symposium on Information Theory Proceedings, ISIT 2011, St. Peters-
burg, Russia, July 31 - August 5, 2011, A. Kuleshov, V. M. Blinovsky,
and A. Ephremides, Eds. IEEE, 2011, pp. 1235-1239.

S. Mousavi, T. Zhou, and C. Tian, “Delayed parity generation in MDS
storage codes,” in 2018 IEEE International Symposium on Information
Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018. 1EEE, 2018, pp.
1889-1893.

M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of two erasure
codes in HDFS,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February
16-19, 2015, J. Schindler and E. Zadok, Eds. USENIX Association,
2015, pp. 213-226.

X. Su, X. Zhong, X. Fan, and J. Li, “Local re-encoding for coded matrix
multiplication,” in IEEE International Symposium on Information The-
ory, ISIT 2020, Los Angeles, California, USA, June 21-26, 2020, 2020.
G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to RAID-5 scaling,” IEEE Transactions on Computers, vol. 59,
no. 3, pp. 345-357, 2010.

W. Zheng and G. Zhang, “Fastscale: accelerate RAID scaling by mini-
mizing data migration,” in 9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, 2011, G. R. Ganger
and J. Wilkes, Eds. USENIX, 2011, pp. 149-161.

C. Wu and X. He, “GSR: A global stripe-based redistribution approach to
accelerate RAID-5 scaling,” in 415t International Conference on Parallel

Boston, MA:

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

2339

Processing, ICPP 2012, Pittsburgh, PA, USA, September 10-13, 2012.
IEEE Computer Society, 2012, pp. 460—469.

G. Zhang, W. Zheng, and K. Li, “Rethinking RAID-5 data layout for
better scalability,” IEEE Transactions on Computers, vol. 63, no. 11, pp.
2816-2828, 2014.

J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: an efficient
scaling scheme for RS-coded storage clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 6, pp. 1704-1717, 2015.
S. Wu, Y. Xu, Y. Li, and Z. Yang, “I/O-efficient scaling schemes for
distributed storage systems with CRS codes,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 9, pp. 2639-2652, 2016.
X. Zhang, Y. Hu, P. P. C. Lee, and P. Zhou, “Toward optimal storage
scaling via network coding: from theory to practice,” in 20/8 IEEE
Conference on Computer Communications, INFOCOM 2018, Honolulu,
HI, USA, April 16-19, 2018. 1EEE, 2018, pp. 1808-1816.

Y. Hu, X. Zhang, P. P. C. Lee, and P. Zhou, “Generalized optimal storage
scaling via network coding,” in 2018 IEEE International Symposium
on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018.
IEEE, 2018, pp. 956-960.

X. Zhang and Y. Hu, “Efficient storage scaling for MBR and MSR
codes,” IEEE Access, vol. 8, pp. 78992-79 002, 2020.

B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha, “On adaptive distributed
storage systems,” in /[EEE International Symposium on Information The-
ory, ISIT 2015, Hong Kong, China, June 14-19, 2015. 1EEE, 2015, pp.
1482-1486.

B. K. Rai, “On adaptive (functional MSR code based) distributed storage
systems,” in 2015 International Symposium on Network Coding, NetCod
2015, Sydney, Australia, June 22-24, 2015. 1EEE, 2015, pp. 46-50.
S. Wu, Z. Shen, and P. P. C. Lee, “On the optimal repair-scaling trade-
off in locally repairable codes,” in 2020 IEEE Conference on Computer
Communications, INFOCOM 2020, Virtual Conference, July 6-9, 2020.
IEEE, 2020.

