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Abstract—In distributed storage systems, an [n, k] code encodes
k message symbols into n codeword symbols which are then
stored on n nodes in the system. Recent work has shown that sig-
nificant savings in storage space can be obtained by tuning n and
k to variations in device failure rates. Such tuning necessitates
code conversion: the process of converting data encoded under
an [nI , kI ] code to its equivalent under an [nF , kF ] code. The
default approach for code conversion places significant burden
on system resources. Convertible codes are a recently proposed
class of codes for enabling resource-efficient conversions. Existing
work on convertible codes has focused on minimizing access cost,
i.e., the number of nodes accessed during conversion. Bandwidth,
which corresponds to the amount of data read and transferred,
is another important resource to optimize during conversions.

In this paper, we initiate the study on the fundamental limits on
conversion bandwidth and present constructions for conversion-
bandwidth optimal convertible codes. First, we model the code
conversion problem using information flow graphs with variable
capacity edges. Second, focusing on MDS codes and an impor-
tant subclass of convertible codes, we derive a lower bound on
conversion bandwidth. The derived bound shows that conversion
bandwidth can be significantly reduced even in regimes where
access cost of conversion cannot be reduced. Third, we present
an explicit construction for MDS convertible codes which match
this lower bound and are thus conversion-bandwidth optimal.

I. INTRODUCTION

Erasure codes are a central tool in distributed storage sys-

tems used to add redundancy to data in order to avoid data loss

when failures occur [1]–[4]. In particular, maximum distance

separable (MDS) codes are widely used in practice because

they require the minimum amount of storage overhead for

a given level of failure tolerance. In this setting, an [n, k]
MDS code over finite field Fq is used to encode a message

m ∈ F
k
q into a codeword c ∈ F

n
q . Each of the n codeword

symbols is then stored in a distinct node of the distributed

storage system. Large-scale distributed storage systems usually

comprise hundreds to thousands of nodes, while n is much

smaller in comparison, meaning that these systems store many

such codewords distributed across different subsets of nodes.

The MDS property ensures that any subset of k out of the n
symbols in the codeword is enough to decode m. This provides

tolerance for up to (n− k) node failures.
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Fig. 1: Conversion process of codewords of an [nI , kI ] code

into codewords of an [nF , kF ] code.

The parameters n and k are typically set based on the

reliability of storage devices and additional requirements on

system performance and storage overhead. Recent work by

Kadekodi et al. [5] has shown that the failure rate of disks

can vary drastically over time, and that significant savings in

storage space (and hence operating costs) can be achieved by

tuning the code rate to the observed failure rates. Such tuning

typically needs to change both n and k of the code, due

to other practical system constraints on these parameters [5].

Other reasons for tuning parameters include changing k in

response to changes in data popularity, and adapting the code

rate to limit the total amount of storage space used. Such

tuning of parameters requires converting the already encoded

data from one set of parameters to the newly chosen set of

parameters. The default approach to achieving this is to read

the encoded data, decode if necessary, re-encode it under the

new code, and write it back. However, such an approach

necessitates significantly high overhead in terms of network

bandwidth, I/O, and CPU resources in the cluster.

This has led to the study of the code conversion problem [6].

Code conversion [6] (see Fig. 1) is the process of transform-

ing a collection of codewords encoding data under an initial

[nI , kI ] code CI into a collection of codewords encoding the

same data under a final [nF , kF ] code CF (I and F stand

for initial and final, respectively). Given certain parameters

and decodability constraints (such as the MDS property) for

CI and CF, the goal is to design the codes CI and CF along

with a conversion procedure from CI to CF that is efficient

(according to some notion of conversion cost as will be dis-

cussed subsequently). Existing works [6], [7] on convertible

codes have studied efficiency in terms of the access cost of

conversion, which corresponds to the number of codeword



symbols accessed during conversion.

In this paper, we initiate the study of conversion bandwidth,

which is the total amount of data transferred between nodes

during conversion. We focus on MDS convertible codes that

incur minimum conversion bandwidth (i.e. bandwidth-optimal

convertible codes). To do this, we model code conversion us-

ing information flow graphs with variable capacity edges. We

specifically focus on a parameter regime known as the merge

regime, which has been shown to play the most critical role

in the analysis and construction of convertible codes [6]. The

merge regime corresponds to conversions where multiple ini-

tial codewords are merged into one final codeword (i.e. kF =
ςkI for integer ς ≥ 2) and arbitrary values for nI and nF .

We show that significant savings in conversion bandwidth

compared to the default approach are possible when kI >
(nF −kF ). This is perhaps surprising, since this includes large

parameter regimes where it is known that access cost cannot

be reduced [7]. In order to achieve this, we utilize vector codes

(also called array codes), which treat each code symbol as a

vector, in contrast to scalar codes of previous works [6], [7].

This allows for the download of only a fraction of each sym-

bol, which is essential for minimizing conversion bandwidth.

First, we model code conversion as an information flow

graph (§III). Then, by using this model, we derive a lower

bound on the conversion bandwidth of MDS convertible codes

in the merge regime (§IV). Next, we propose an explicit con-

struction for bandwidth-optimal MDS convertible codes in the

merge regime (§V). This construction considers fixed values

for the initial and final parameters. However, in practice the

exact value of the final parameters nF and kF might not be

known at the time of code construction, as it might depend

on future failure rates. Finally, we present a transformation to

ensure bandwidth-optimal conversion even in the case where

the final parameters are unknown ahead of time, but are drawn

from a finite set of possibilities (§V-B).

Proofs are omitted due to lack of space, and are available

in the extended version of this paper [8].

II. BACKGROUND AND RELATED WORK

We start by reviewing concepts from the literature and doing

an overview of related work.

A. Vector codes and puncturing

An [n, k, α] vector code C over a finite field Fq is an Fq-

linear subspace C ⊆ F
αn
q of dimension αk. For a given code-

word c ∈ C and i ∈ [n], define ci = (cα(i−1)+1, . . . , cαi) ∈ F
α
q

as the i-th symbol of c. We refer to elements from the base

field Fq as subsymbols. As an abuse of notation, we also

use C as an encoding function C(m) mapping messages to

codewords. A code C is said to be systematic if m is a prefix

of C(m) for all m ∈ F
kα
q . For linear codes, C(m) = mG

where G ∈ F
kα×nα
q is called the generator matrix of C, and

the columns of G are called encoding vectors. Vector code C
is maximum distance separable (MDS) iff any k out of the n
symbols suffice to recover m. A scalar code is a vector code

with α = 1 (we omit α in this case). A puncturing of a vector

code C is the vector code that results from removing a fixed

subset of symbols from every codeword c ∈ C.

B. Convertible codes [6], [7]

Let CI be an [nI , kI ] code over Fq , CF an [nF , kF ] code

over Fq , rI = (nI−kI), and rF = (nF−kF ). In order to allow

for a change in code dimension from kI to kF , a message

m of length M = lcm(kI , kF ) is considered. In the initial

configuration m is encoded as λI = (M/kI) codewords of CI

and in the final configuration it is encoded as λF = (M/kF )
codewords of CF . Symbols of m are mapped to different

codewords according to two partitions of [M ]: PI and PF .

For a subset I ⊆ [M ], we denote the restriction of m to the

coordinates in I as m|I . Convertible codes are defined as:

Definition 1 (Convertible code [6]): An (nI , kI ;nF , kF )
convertible code over Fq is defined by: (1) initial and final

codes (CI , CF ) over Fq , where CI is an [nI , kI ] code and CF

is an [nF , kF ] code, (2) initial and final partitions (PI ,PF )
of [M ] such that |P I

i | = kI for P I
i ∈ PI and |PF

j | = kF

for PF
j ∈ PF , (3) a conversion procedure that takes initial

codewords {CI(m|P I
i
) : i ∈ [λI ]} as input and outputs final

codewords {CF (m|PF
i
) : i ∈ [λF ]} for all m ∈ F

M
q . x

1) Access cost: Access cost is the sum of the number of

symbols read and number of symbols written during con-

version. An access-optimal convertible code has the mini-

mum access cost over all convertible codes with parame-

ters (nI , kI ;nF , kF ). Similarly, an [nI , kI ] code is (nF , kF )-
access-optimally convertible if it is the initial code of an

access-optimal (nI , kI ;nF , kF ) convertible code.

2) Conversion procedure: During conversion, each code-

word symbol is either an: (1) unchanged symbol, which is

present both in the initial and final codewords without mod-

ifications; (2) retired symbol, which is only present in the

initial codewords; or (3) new symbol, which is only present

in the final codewords. Both unchanged and retired symbols

can be read during conversion and used to write the new

symbols. Convertible codes which have the maximum number

of unchanged symbols (M when kI 6= kF ) are called stable.

3) Access-optimal code for merge regime: When rI ≥ rF

and rF < kI , access-optimal codes in the merge regime

read rF code symbols from each initial codeword. These

symbols are then used to compute rF new code symbols.

In [6], a construction of access-optimal convertible codes for

all parameters in the merge regime is proposed. Codes built

using this construction are (1) systematic, (2) linear, (3) during

conversion only access the first rF parities from each initial

stripe (assuming rF ≤ rI ), and (4) when constructed with a

given value of λI = ς and rF = r, the initial [nI , kI ] code is

(nF , kF )-access-optimally convertible for all kF = ς ′kI and

nF = kF + r′ such that 1 ≤ ς ′ ≤ ς and 1 ≤ r′ ≤ r. In §V

we use this code as part of our construction of conversion-

bandwidth optimal codes for the merge regime.

C. Network information flow [9]

For the purposes of this paper, an information flow graph is

a dag G = (V,E), where E ⊆ V ×V ×R≥0 is a set of edges



with non-negative capacities, and (i, j, c) ∈ E represents that

information can be sent noiselessly from node i to node j at

rate c. Let {X1, X2, . . . , Xm} be mutually independent infor-

mation sources with rates {x1, x2, . . . , xm} respectively. Each

information source Xi is associated with a source si ∈ V ,

where it is generated, and a sink ti ∈ V , where it is required.

In this paper we mainly make use of the information max-flow

bound [10] which indicates that xi ≤ max-flow(si, ti) for all

i ∈ [m] is necessary. In our analysis, we consider si-ti-cuts

of the information flow graph, which give an upper bound on

max-flow(si, ti) and thus an upper bound on xi as well.

D. Piggybacking framework for constructing vector codes

The Piggybacking framework [11], [12] constructs [n, k, α]
vector codes by using α instances of an existing [n, k] code as

a base code, and then adding carefully designed functions of

the data (called piggybacks) from one instance to the others.

Piggybacks in instance 2 ≤ i ≤ α are a function of the data in

instances {1, . . . , i− 1}. The piggyback functions are chosen

to confer additional properties to the resulting code. To decode

a piggybacked code, instance 1 is decoded first using the base

code decoding procedure. The data of instance 1 is then used to

subtract the piggybacks from instance 2 and the base code de-

coding procedure is then used to decode instance 2. Decoding

proceeds in this fashion until all instances have been decoded.

If the [n, k] base code is MDS, then the resulting [n, k, α]
vector code is MDS. In this paper, we use the Piggybacking

framework to design a code where piggybacks store data which

helps in making the conversion process efficient.

E. Other related work

Some special cases of code conversion have been studied

in the literature: [13], [14] study the problem of minimizing

bandwidth usage when adding extra parities (i.e. kI = kF and

nI < nF ); [15] proposes two pairs of non-MDS codes that

support conversion; and [16] studies a type of conversion in

the context of distributed matrix multiplication.

Several works study the scaling problem [17]–[28]. This

problem considers upgrading an erasure-coded storage system

with s new empty data nodes. The general goal is to efficiently

and evenly redistribute each codeword’s data across all nodes,

while updating parities to reflect the new placement of the

data. This is a different problem from the code conversion

problem we study in this paper, due to the scaling problem’s

need to redistribute data from each codeword across nodes

which makes it an inefficient approach to achieve conversion.

III. MODELING CONVERSION FOR OPTIMIZING BANDWIDTH

In this section, we model conversion as an information

flow problem. We utilize this model to derive a lower bound

on conversion bandwidth. While we consider a single value

for the final parameters nF and kF , the resulting bound still

applies when multiple values are considered.

Previous work (§II-B) considered only scalar codes, which

is sufficient when optimizing for access cost. However, when

optimizing for network bandwidth, vector codes can perform

U1,∗ UλI ,∗

U∗,1 U∗,λF

R1 RλI

N1 NλF

s1 sλI

t1 tλF

c

α α

β(x)

α
α

α α

Fig. 2: Information flow graph of conversion in the general

case. Unchanged, retired, and new nodes are shown in different

colors. Each unchanged node is drawn twice (in the initial

and final codewords) for clarity. Some representative edges are

labeled with their capacities.

better because they allow partial download from nodes. For

this reason, we consider the initial code CI as an [nI , kI , α]
MDS code and the final code CF as an [nF , kF , α] MDS

code, where α ≥ 1 is considered as a free parameter chosen

to minimize network bandwidth cost. For MDS convertible

codes, message size is B = Mα = lcm(kI , kF )α, interpreted

as M symbols composed of α subsymbols. The number of

subsymbols downloaded from node s during conversion is

β(s) and we define β(S) :=
∑

s∈S β(s).
The information flow graph for a convertible code comprises

the following nodes (see Fig. 2):

• unchanged nodes Ui,j = {ui,j,1, . . . , ui,j,|Ui,j |} for all i ∈
[λI ], j ∈ [λF ], which are present both in the initial and

final codewords (drawn twice in Fig. 2);

• retired nodes Ri = {vi,1, . . . , vi,|Ri|} for i ∈ [λI ], which

are only present in the initial codewords;

• new nodes Nj = {wj,1, . . . , wj,|Nj |} for j ∈ [λF ], which

are only present in the final codewords;

• source nodes si for i ∈ [λI ], representing the message;

• sink nodes tj for j ∈ [λF ], representing the data decoded;

• a coordinator node c, which models the central location

where new symbols are computed.

Symbols of m are modeled as information sources {X1, . . . ,
XM} of rate α (over Fq) each. Information source Xℓ is

generated at node si iff ℓ ∈ P I
i , and recovered at node tj iff

ℓ ∈ PF
j . When ∗ is used as an index, it denotes union of the

indexed set over the range of that index, e.g. U∗,j =
⋃λI

i=1 Ui,j .

The graph has the following set of edges E:

• {(si, x, α) : x ∈ Ui,∗ ∪ Ri} ⊆ E for each i ∈ [λI ],
representing data stored on unchanged nodes;

• {(x, c, β(x)) : x ∈ Ui,∗ ∪ Ri} ⊆ E for each i ∈ [λI ],
representing data downloaded from x;

• {(c, y, α) : y ∈ Nj} ⊆ E for each j ∈ [λF ], representing

data stored on new nodes; and

• {(y, tj , α) : y ∈ Vj} ⊆ E for Vj ⊆ U∗,j ∪ Nj such that

|Vj | = kF , for all j ∈ [λF ], representing data downloaded

to recover the message in a final codeword.

The set Vj represents a choice of k symbols for decoding

a final codeword. A necessary condition for conversion is



to satisfy all sinks tj for all possible V1, . . . , VλF . The sets

Ui,j ,Ri,Nj and the capacities β(x) are determined by the

conversion procedure of the convertible code.

Definition 2 (Conversion bandwidth): The conversion band-

width is the total network bandwidth used during conversion

γ := β(U∗,∗ ∪R∗) + |N∗|α.

Information flow provides us with lower bounds on the capac-

ities β(x). Therefore, part of designing convertible codes is to

set Ui,j ,Ri,Nj so as to minimize the lower bound on γ.

IV. OPTIMIZING NETWORK BANDWIDTH OF CONVERSION

IN THE MERGE REGIME

In this section, we use the information flow model presented

in §III to derive a lower bound on conversion bandwidth for

MDS codes in the merge regime. We focus on this regime

because it is of practical importance and has been shown to

play a central role in the analysis of convertible codes in gen-

eral [7]. Recall from §II-B, that convertible codes in the merge

regime are those where kF = ςkI for some integer ς ≥ 2, i.e.,

this regime corresponds to conversions were multiple initial

codewords are merged into a single final codeword. We omit

partitions from our analysis because in the merge regime all

choices of partitions are equivalent up to relabeling [6].

First, we derive a general lower bound on conversion band-

width in the merge regime by analyzing the information flow

graph of conversion. Intuitively, this lower bound emerges

from the fact that new symbols need to have a certain amount

of information from each initial codeword in order to fulfill

the MDS property of the final code.

Lemma 3: Consider an MDS (nI , kI ;nF , ςkI) convertible

code. Then γ ≥ (ςαmin{rF , kI} + rFα), where equality is

only possible for stable codes.

Note that access-optimal codes meet this bound when rI ≥
rF [6], making them also bandwidth-optimal in this case.

When rI < rF , no savings in access cost are possible with

respect to the default approach [6]. However, we will next

derive a lower bound on conversion bandwidth which does

leave room for savings. In §IV, we show that this bound is

indeed tight, which implies that access-optimal codes are not

bandwidth-optimal in general.

The following bound is also derived from the information

flow graph. Intuitively, data downloaded from retired nodes is

“more useful” than data downloaded from unchanged nodes,

since unchanged nodes already form part of the final code-

word. At the same time, it is better to have the maximum

amount of unchanged nodes per initial codeword (kI ) because

this minimizes the number of new nodes that need to be

constructed. However, this leads to fewer retired nodes per

initial codeword (rI ). If the number of retired nodes per initial

codeword is less than the number of new nodes (rI < rF ),

then conversion procedures are forced to download data from

unchanged nodes. This is because one needs to download at

least rFα from each initial codeword (by Lemma 3) Since

data from unchanged nodes is “less useful”, more data needs

to be downloaded in order to construct the new nodes.

Lemma 4: Consider an MDS (nI , kI ;nF , ςkI) convertible

code, with rI < rF ≤ kI . Then:

γ ≥ ςα

(

rI + kI
(

1−
rI

rF

))

+ rFα,

where equality is only possible for stable codes.

By combining Lemmas 3 and 4 we obtain the following gen-

eral lower bound on conversion bandwidth of MDS convertible

codes in the merge regime.

Theorem 5: For all MDS (nI , kI ;nF , ςkI) convertible code:

γ ≥

{

ςαmin{kI , rF }+ rFα, if rI ≥ rF or kI ≤ rF

ςα
(

rI + kI
(

1− rI

rF

))

+ rFα, otherwise,

where equality is only possible for stable convertible codes.

In §V, we show that this lower bound is achievable. We refer

to codes that meet this bound as conversion-bandwidth optimal

(abbreviated cBW-opt).

Definition 6 ((nF , kF )-cBW-opt): An [nI , kI ] code is said

to be (nF , kF )-cBW-opt if it is the initial code of a cBW-opt

(nI , kI ;nF , kF ) convertible code.

The fraction of savings ρ ∈ [0, 1] in bandwidth relative to

the default approach obtained by cBW-opt codes can be com-

puted as a function of its parameters. Note that the bandwidth

used for writing is rFα in both approaches, so we ignore it.

Corollary 7: Consider a cBW-opt MDS (nI , kI ;nF , ςkI)
convertible code, and let r̃I = (rI/kI), r̃F = (rF/kF ). Then:

ρ =











1− r̃F , if r̃F ≤ r̃I and r̃F < 1,

r̃I(1/r̃F − 1), if r̃I < r̃F < 1,

0, if r̃F ≥ 1.

V. EXPLICIT CONSTRUCTION OF CBW-OPT MDS

CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction of cBW-

opt codes in the merge regime. The key idea of our construc-

tion is to employ the Piggybacking framework (§II-D) with an

access-optimal convertible code as base code. First, in §V-A,

we describe our construction for fixed final parameters nF and

kF along with an example. Then, in §V-B, we show that initial

codes built with this construction are not only (nF , kF )-cBW-

opt, but also cBW-opt for other pairs of (nF , kF ). Finally, we

present a construction which given any finite set of final pa-

rameters, constructs an [nI , kI ] code which is simultaneously

(nF , kF )-cBW-opt for every (nF , kF ) in that set.

A. Bandwidth-optimal MDS codes with fixed final parameters

When rF ≥ kI , the default approach is bandwidth-optimal,

and when rI ≥ rF , access-optimal codes are also conversion-

bandwidth optimal. Thus, we assume rF < kI and rI < rF .

The main challenge in this case is that rI is too small for

access-optimal codes to be efficient. To solve this, we use pig-

gybacks to store information from an access-optimal code with

larger rI which can enable more efficient conversion. We start

by describing the base code used in our construction, followed

by the design of the piggybacks and the conversion procedure,

and end with a detailed example of the construction.



initial codeword i (CI)

a4i−3 b4i−3
... ...

a4i b4i

a(i)pI
1 b(i)pI

1 + a(i)pI
2

final codeword (CF )

a1 b1
... ...

a8 b8

apF
1 bpF

1

apF
2 bpF

2

Fig. 3: Example of a bandwidth-optimal (5, 4; 10, 8) convert-

ible code. Each block represents a codeword, and each row

is a symbol made up of α = 2 subsymbols. Shaded rows

correspond to retired nodes in the initial codewords, and new

nodes in the final codeword. Text color is used to emphasize

piggybacks and the subsymbols they produce.

a) Base code for piggybacking: As the base code, we

use a punctured initial code of an access-optimal (kI + rF , kI ;
nF , kF ) convertible code (CI ′, CF ′

) (as described in §II-B3).

Let CI ′′ be the puncturing of CI ′ where the last (rF − rI)
parity symbols are removed.

b) Piggyback design: Now, we describe how to construct

the [nI , kI , α] initial vector code CI and the [nF , kF , α] fi-

nal vector code CF that make up the conversion-bandwidth

optimal (nI , kI ;nF , ςkI) convertible code. This piggybacking

design is inspired by one of the designs proposed in [12].

The first step is to choose the value of α. By examining

Theorem 5, we can see that the bound is met when α = rF

and β1 = rF subsymbols are downloaded from each retired

node and β2 = (rF − rI) subsymbols are downloaded from

each unchanged node.

The next step is to design the piggybacks. Intuitively, we

can use the β2 subsymbols from unchanged nodes to store β2

piggyback on each retired node. Since β2 is also the number

of new nodes, we can recover rI subsymbols for each new

node from the piggybacks.

Let m
(s)
j ∈ F

kI

q be the message of instance j ∈ [α] of

the base code in initial codeword s ∈ [λI ]. Since CI ′′ is

systematic, m
(s)
j corresponds to the j-th coordinate of the kI

systematic symbols in initial codeword s. Let cIi,j(s) denote

the j-th coordinate of parity symbol i in initial codeword s of

CI , and cFi,j let denote the same for the final codeword of CF .

Then, for s ∈ [λI ]:

cIi,j(s) =

{

m
(s)
j pI

i , for i ∈ [rI ], 1 ≤ j ≤ rI ,

m
(s)
j pI

i +m
(s)
i pI

j , for i ∈ [rI ], rI < j ≤ rF ,

cFi,j = [m
(1)
j · · ·m

(λI)
j ]pF

i , for i ∈ [rF ], j ∈ [rF ],

where pI
i (resp. pF

i ) is the encoding vector of the i-th parity

of CI ′ (resp. CF ′
). By using the access-optimal conversion

of the base code, we can compute cFi,j = [m
(1)
j · · ·m

(λI)
j ]pF

i

from {m
(s)
j pI

i : s ∈ [λI ]} for all i ∈ [rF ] and j ∈ [rF ].
c) Conversion procedure: Execute the following steps.

1) Download D = {m
(s)
j : s ∈ [λI ], rI < j ≤ rF }, C1 =

{cIi,j(s) : s ∈ [λI ], i ∈ [rI ], 1 ≤ j ≤ rI}, and C2 =
{cIi,j(s) : s ∈ [λI ], i ∈ [rI ], rI < j ≤ rF }.

2) Recover the piggybacks C3 = {m
(s)
j pI

i : s ∈ [λI ], rI <

i ≤ rF , 1 ≤ j ≤ rI} by computing m
(s)
i pI

j from D and

obtaining m
(s)
j pI

i = cIj,i(s)−m
(s)
i pI

j using C2.

3) Compute the remaining base code symbols from the punc-

tured symbols C4 = {m
(s)
i pI

j : s ∈ [λI ], rI < i ≤
rF , rI < j ≤ rF } using D.

4) Compute the parity symbols of the final codeword C5 =
{cFi,j : i ∈ [rF ], j ∈ [rF ]} using the conversion from the

base code on C1, C2, C3, C4.

Now we show a concrete example of our construction.

Example 8 (Bandwidth-optimal conversion in the merge

regime): We construct a conversion-bandwidth optimal (5, 4;
10, 8) convertible code over Fq (assume q is sufficiently large).

As a base code, we use a punctured access-optimal (6, 4; 10,
8) convertible code. Thus, CI ′ is a [6, 4] code, CF ′

is a [10, 8]
code, and CI ′′ is a [5, 4] code. Let pI

1,p
I
2 ∈ F

4×1
q be the

encoding vectors for the parities of CI ′, and pF
1 ,p

F
2 ∈ F

8×1
q

be the encoding vector for the parities of CF ′
. Since α = 2, we

construct a [5, 4, 2] initial vector code CI and a [10, 8, 2] final

vector code CF . Let a(i) = (a4i−3, . . . , a4i), a = (a(1),a(2))
and likewise for b. Figure 3 shows the resulting code.

During conversion, only 12 subsymbols need to be down-

loaded: b and the parity symbols from both codewords. From

these subsymbols, we recover the piggybacks a(1)pI
2 and

a(2)pI
2, and compute b(1)pI

2 and b(2)pI
2 from b. Finally, we

use all these subsymbols with the access-optimal conversion

to compute apF
1 ,ap

F
2 ,bp

F
1 and bpF

2 . The default approach

would require one to download 16 subsymbols from the initial

nodes. Both approaches require downloading 4 subsymbols

from the coordinator node. Thus, the proposed construction

leads to 20% reduction in conversion bandwidth. x

B. Convertible codes with bandwidth-optimal conversion for

multiple final parameters

In practice, (nF , kF ), and thus (λI , rF ), may be unknown

at code construction time. To solve this problem, we present

convertible codes which support conversion-bandwidth opti-

mal conversion simultaneously for multiple final parameters.
1) Supporting multiple values of λI : Due to property (4)

(see §II-B), the construction from §V given λI = ς inherently

supports bandwidth-optimal conversion for any λI = ς ′ < ς .
2) Supporting multiple values of rF : Consider two cases:

Case 1 (rF ≤ rI ): due to property (4) (§II-B), the base code

supports access-optimal conversion for any rF = r such that

r ≤ rI . Thus, one can achieve bandwidth-optimal conversion

for any r ≤ rI by using the access-optimal conversion on the

α instances of the base code, ignoring the piggybacks.

Case 2 (rF > rI ): to support rF ∈ {r1, . . . , rs} such that

ri > rI (i ∈ [s]), we start with an access-optimal code having

rF = maxi ri. Then repeat the piggybacking step (§V-A) for

each ri, using the output from step i (with the punctured sym-

bols from CI ′ added back) as a base code for step (i+1). Thus,

the code has α =
∏s

i=1 ri. Since piggybacking preserves the

MDS property of a base code, the resulting code will be MDS.

Conversion for one of the supported rF = ri is performed as

described in §V-A on each of the additional instances created

by steps (i+ 1), . . . , s (i.e.
∏s

i′=(i+1) ri′ in total).
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