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INTRODUCTION

Rhinonyssidae (Mesostigmata) is a family of mites with more than 500 described species worldwide
(George, 1961; Fain, 1994; Dimov and de Rojas, 2012). Most of these mites are hematophagous
endoparasites that inhabit the nasal cavity of passerine birds (Vitzthum, 1935). Specifically, their
feeding activity may damage the nasal cavities of birds and may even lead to the death of the hosts
(Rhinonyssidosis avium disease) (Dimov, 2011). Also, though yet not investigated, these mites are
expected to be reservoirs or vectors of infections such as West Nile fever, Q fever, avian influenza,
and Lyme disease (Dimov, 2012; Arabkhazaeli et al., 2016).

However, mainly due to sampling difficulties (e.g., these mites usually can only be collected from
dead birds), this host-parasite system is very poorly understood. Almost all species of birds are
inhabited by rhinonyssid mites (Walter and Proctor, 2013). Despite their broad distribution, there
is almost no genomic information available for mites of this family (De Rojas et al., 2001, 2002;
Dimov and de Rojas, 2012), thus hampering studies on host-parasite system.

In this data report, with the aim of obtaining mitochondrial and bacterial information, we
performed shotgun whole genome sequencing of two species of Rhinonyssidae (Tinaminyssus
melloi and Ptilonyssus chloris) that inhabit the nasal cavity of Columba livia and Chloris chloris,
respectively. For both species, we assembled and functionally annotated their mitochondrial
genomes. We also carried out a metagenomic analysis (metagenomic classification and
genome-resolved metagenomics) of these two mite species to provide bacterial information for
these mite taxa for the first time (though note that this study should not be taken as a pathogen
survey). Our study presents highly valuable mitogenomic and metagenomic resources for this
host-parasite system, with implications for further eco-evolutionary studies.

SAMPLING, DNA EXTRACTION, AND SEQUENCING

We collected individual mites of Tinaminyssus melloi and Ptilonyssus chloris from freshly dead
host individuals by dissecting the nasal cavities of birds under a stereomicroscope. We conserved
the mites at —20°C in tubes with 100% ethanol. Then, mites were washed in ethanol (Andrews,
2013) and shipped to AllGenetics & Biology SL for DNA isolation, amplification, and library
preparation. Given the low amount of DNA obtained from DNA extractions of single individuals,
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individual mites of both species were pooled (6 mites for
Ptilonyssus chloris and 10 mites for Tinaminyssus melloi)
following previous studies on mites’ high-throughput sequencing
and mitogenome assembly (Esteban et al., 2018; Vizcaino et al.,
2018). The DNA was extracted from each pooled sample (i.e.,
not from individual mites) using the manufacturer’s protocols
of Quick-DNA MicroPrep Plus kit (Zymo). The libraries
were constructed for each sample using the NextFlex DNA
Sample Prep kit (Illumina) strictly following the manufacturer’s
protocols. The DNA was sheared and tagged at both 5 and 3’
ends, and samples were dual-indexed. The constructed libraries
were quantified using the Qubit dsDNA HT Assay kit (Thermo
Scientific) and quality-checked in an Agilent 2100 Bioanalyzer
(Agilent Technologies). Lastly, the libraries were pooled in
equimolar amounts according to the Qubit results and sequenced
in a fraction of an Illumina MiSeq 300PE (Novogen, China).

MITOCHONDRIAL GENOME ASSEMBLY
AND ANNOTATION

We assembled the mitochondrial genomes using the MitoZ
v2.4 pipeline (Meng et al, 2019). We used the “all” module
with default parameters. In brief, MitoZ first filters out raw
reads as follows: reads with many ambiguities (>10 N’s), low-
quality reads (Q < 17), and PCR duplicates. Then, MitoZ de-
novo assembles the mitogenome based on a modified version
of SOAPdenovo-Trans. We used the quick mode assembly
(default), and if any gene was missing after the assembly (see
results section “Mitochondrial genome assembly and annotation”
of Ptilonyssus chloris), we used the multi-kmer mode for
recovering the missing genes that failed in the previous step,
as recommended by the developers. Finally, MitoZ filters out
the candidate mitogenome sequences using a confidence score
and annotates the protein-coding genes, tRNA, and rRNA.
Additionally, we used the MITOS Web Server (Bernt et al,
2013) to compare the annotations and to ensure the correct
annotation of all the genes. Then, the mitogenomes were
plotted with OGDRAW v.1.3.1 (Greiner et al., 2019). Lastly,
we evaluated the potential incidence of index swapping (i.e., a
recently described sequencing artifact that results in 1 to 10%
of reads misassigned to the wrong sample; Esling et al., 2015;
Sinha et al., 2017; Owens et al., 2018). Specifically, we mapped
all raw reads from Tinaminyssus melloi to the Ptilonyssus chloris
mitochondrial genome assembly and, vice versa (i.e., all raw reads
from Ptilonyssus chloris to the Tinaminyssus melloi mitochondrial
genome assembly). For the read mapping analyses, we used
Geneious R.11 mapper (Kearse et al., 2012) with high sensitivity
and default parameters.

GENE REARRANGEMENT ANALYSES

We evaluated the mitochondrial gene order in these taxa, because
mitochondrial genome rearrangements have been reported in
some mesostigmatid mites species (Li et al., 2019). We used CREx
(Bernt et al., 2007), to determine the gene arrangement in the
two assembled mite mitochondrial genomes. In particular, we

constructed a gene order distance matrix using common intervals
for Tinaminyssus melloi and Ptilonyssus chloris and compared
both of them (1) with each other, (2) with the mitochondrial gene
order of Varroa destructor, an obligate parasite of Apis mellifera
(Navajas et al., 2002), and (3) with the established ancestral gene
order of the arthropods (Staton et al., 1997).

METAGENOMIC ANALYSES:
METAGENOMIC CLASSIFICATION AND
GENOME-RESOLVED METAGENOMICS

To characterize the overall taxonomic content of the
metagenomes, we used the metagenomic classifier Kaiju (Menzel
et al., 2016) with the following parameters: Reference database:
nr +euk; Database date: 2017-05-16; SEG low complexity filter:
yes; Run mode: greedy; Minimum match length: 11; Minimum
match score: 75; Allowed mismatches: 5.

Then, we processed raw reads with the complete metaWRAP
v1.1.5 pipeline (Uritskiy et al., 2018) using the recommended
databases. These analyses were carried out on a 4 AMD Opteron
with 16 2.4 GHz processors and 64 CPU cores and 504 GB
RAM, maintained by the UIUC Life Sciences Computing Services
(University of Illinois, Urbana, IL, USA). (1) We used the
metaWRAP Read_qc module (default parameters) to quality-
trim the reads of each sample. (2) Then, as recommended
for assembling and binning low-abundance organisms, we co-
assembled reads from the two samples with the metaWRAP
Assembly module (-use-metaspades option) (Nurk et al., 2017).
(3) After the assembly, we binned reads with the metaWRAP
Binning module (-maxbin2 -concoct —metabat2 options). (4)
We consolidated the resulting bins into a final bin set with both
metaWRAP’s Bin_refinement module (-c 1 -x 1 options) and
the Reassemble_bins module. (5) We quantified the bins (i.e.,
resulting from the Bin_refinement module) with Salmon (Patro
et al., 2017) using the Quant_bins module (default parameters).
(6) Finally, we classified bins using the Classify_bins module.
This module uses Taxator-tk, which gives highly accurate but
conservative classifications (Droge et al., 2014). Accordingly, we
uploaded our final bacterial bin to MiGA for a complementary
analysis to determine the most likely taxonomic classification and
novelty rank of the bins (Rodriguez et al., 2018). We used the
NCBI Genome database (Prokaryotes) for this analysis.

GENOME ORGANIZATION, STRUCTURE,
AND COMPOSITION

For Tinaminyssus melloi, we obtained a total of 3,600,154 raw
reads. The assembled mitogenome was circular and 14,759 bp
in length (mean coverage: 99.3X). The base composition was
39.9% A, 18.9% C, 8.8% of G, 33.0% of T. The GC content was
27.7%. We recovered a total of 37 genes: 13 protein-coding genes
(PCGs), 22 tRNA, and 2 rRNA (Figure 1).

For Ptilonyssus chloris, we obtained a total of 1,554,790 raw
reads and assembled a complete circular mitogenome with 14,433
bp in length (mean coverage: 197X). The base composition was
40.4% of A, 6.1% of C, 10.1% of G, and 43.4% of T. The
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FIGURE 1 | Mitochondrial genome gene map of Tinaminyssus melloi. Gene components are color-coded. The inner circle graph depicts GC content across the

GC content was 16.2%. Using the MitoZ annotation module,
we recovered a total of 34 genes, containing 12 protein-coding
genes (PCGs), 21 tRNA, and 1 rRNA. However, ND6, trnS,
and the I-rRNA genes were missing. These genes were still
missing after using the multi-kmer mode recommended for
recovering genes missed during the assembly. Nonetheless, using
the MITOS annotation Web Server, we found 37 genes in
the assembly, including the three genes missed by the MitoZ
pipeline (Figure S2).

A very low incidence of index-swapping was found in both
assemblies. In particular, only 10 out of 1,800,077 raw reads
(<0.001%) mapped to the wrong sample in Ptilonyssus chloris
analysis and 13 out of 777,395 raw reads (0.001%) did so in the
Tinaminyssus melloi analysis. Therefore, index swapping should
not have impacted our assemblies.

The mitochondrial gene order was the same for
both mite species (FigureS1). We found that they
did not retain the established ancestral mitochondrial

organization of arthropods (Staton et al, 1997). In addition,
the mitochondrial gene order was also different from
that of Varroa destructor (Mesostigmata) (Figure S1).
Specifically, compared to Varroa, these mitogenomes
contain transpositions in trnY, trnM, trnP, and rrnS, and
inversions in trnC, trnY-trnQ-nadl, trnF-trnE, and trnT.
Mitochondrial genomes rearranged or highly rearranged in
gene order have been previously described and studied in
mesostigmatid mite species (Li et al, 2019). Interestingly,
to our knowledge, the rhynonissid mitochondrial genome
organization plan found here has not been found in other
mesostigmatid families.
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FIGURE 2 | Krona plot showing the relative distribution of Bacteria in Tinaminyssus melloi. Note that while this chart depicts Kaiju results, the taxonomic level
displayed differs from that of Tables S1, S2 (see full interactive krona plots for comparisons at the same taxonomic level; Links to the Deposited Data section).
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For Tinaminyssus melloi, the top three bacterial species in terms
of the number of assigned reads were (Figure 2; Tables S1, S2):
(1) Clostridioides difficile [n (i.e., number of assigned reads)
= 15,019], (2) Ralstonia solanacearum (n = 4,518), and (3)
Kingdom Bacteria (n = 3,194). Note that some hits could not be
identified at the species level. For Ptilonyssus chloris, the top three
bacterial species were: (1) Ralstonia solanacearum (n = 1,609), (2)
Clostridioides difficile (n = 1,341), and (3) Delftia (n = 990). Some
of these bacteria may be pathogenic [e.g., Clostridioides difficile,
which may cause diarrhea and mortality in humans, and also may
cause clinical disease in livestock and birds (Lawson et al., 2016;
Moono et al., 2016)] but also may have an environmental origin
(Zhu et al., 2018). Further studies are needed on the potential role
of rhynonissid mites as reservoirs of pathogenic bacteria.

From the genome-resolved metagenomic approach, 1,517,456
and 3,549,318 high-quality reads were used after running
the read_qc module of metaWRAP for Tinaminyssus melloi
and Ptilonyssus chloris, respectively. We retrieved a single
bacterial metagenome-assembled genome (MAG) from the co-
assembly. According to CheckM, the MAG was 26% complete
(Salmon contig coverage: 26X), with 0.46% contamination, GC
= 0.32, N50 = 1,539, and the total length was 382,098 bp.
The metaWRAP Classify_bins module classified the MAG as
belonging to the family Bartonellaceae. A further taxonomic
classification analysis in MiGA revealed highly congruent results.
Specifically, the closest related species found was Bartonella
bacilliformis KC583 (NC008783; 52.27% AAI, i.e., maximum
average amino acid identity). In addition, the MAG was classified
as possibly belonging to the family Bartonellaceae (p-value: 0.37).
Interestingly, Bartonellaceae taxa have been found consistently
associated with mites, though the particular role of these bacteria
is still unknown (Kim et al., 2005; Hubert et al., 2017; Dona
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et al., 2019). We also found the MAG most likely belongs
to a species not represented in the MiGA database (p-value:
0.0015) and probably belongs to a genus not represented in the
database (p-value: 0.08). Lastly, the MAG was more abundant
in Tinaminyssus melloi (68.06 genome copies per million reads)
than in Ptilonyssus chloris (1.75 genome copies per million reads),
in which this very low abundance require further study to rule
out methodological issues (e.g., index-swapping) (Esling et al.,
2015; Sinha et al., 2017; Owens et al., 2018). Future studies are
needed to fully assemble the genome of this bacterial taxon,
ideally with higher coverage to ultimately uncover its potential
role in these mites.

Discrepancies between the genome-resolved metagenomic
and Kaiju results (e.g., in which a relatively small number of
reads was classified as Bartonella) may reflect the already known
differences between these two approaches (i.e., assembly-based
and read-based analyses), in which many variables affect (e.g.,
database completeness; Quince et al., 2017). In addition, given
that our coverage for the metagenomic assemblies was not very
high, many bins belonging to taxa with a higher number of reads
in Kaiju may have been discarded throughout the metaWRAP
pipeline because of high levels of heterogeneity in the assembled
bin/MAGs. Future metagenomic studies with higher coverage
are encouraged to provide genomic resources of the whole
community of microbial taxa associated with these mites.

Overall, the resources presented here contained useful
information for future studies on rhinonyssid mites, a largely
neglected group of parasites. In particular, the data provided here
can be useful for phylogenomic studies, studies on mitochondrial
genome evolution, studies of the microbiomes of parasitic mites,
and for studies of disease dynamics.

LINKS TO THE DEPOSITED DATA

The mitogenome sequences of Tinaminyssus melloi and
Ptilonyssus chloris are available at NCBI genome database with
the BioProject number PRJNA575688. The high-throughput
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