Software Impacts 10 (2021) 100121

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

% SOFTWARE
IMPACTS

Original software publication

Gradient descent training expert system

Jeremy Straub

Check for
updates

Department of Computer Science, North Dakota State University, 1320 Albrecht Blvd., Room 258; Fargo, ND 58108, United States of America

ARTICLE INFO ABSTRACT

Keywords:
Machine learning
Expert system
Training
Gradient descent
Rule-fact network

This software is used to build, train and present data for evaluation by a gradient descent training expert system
(GDES). A GDES uses a machine learning training method, gradient descent, in a manner similar to a neural
network; however, instead of a multi-layer network of densely connected nodes, it uses a known-meaning rule-
fact network. Thus, the logical relationships (rules) between nodes (facts) are human (or, potentially in the
future, autonomously) defined and can have an identified meaning; however, their weightings are optimized

using machine learning techniques. This provides the explainability of an expert system with the optimization

of a neural network.

Code metadata

Current Code version

Permanent link to code/repository used of this code version
Permanent link to Reproducible Capsule

Legal Code License

Code Versioning system used

Software Code Language used

Compilation requirements, Operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0
https://github.com/Softwarelmpacts/SIMPAC-2021-75

Apache License, 2.0
none

C#

Visual Studio 2019

jeremy.straub@ndsu.edu

Software metadata

Current software version

Permanent link to executables of this version

Permanent link to Reproducible Capsule

Legal Software License

Computing platform/Operating System

Installation requirements & dependencies

If available Link to user manual — if formally published include a reference to the
publication in the reference list

Support email for questions

v1.0
https://github.com/jeremystraub/GDES/blob/main/Executable.zip

Apache License, 2.0

Microsoft Windows and other environments that support the .Net framework
Dot-Net Framework

jeremy.straub@ndsu.edu

1. Introduction

Artificial intelligence and machine learning systems have found use
in numerous areas of society. They are used for applicant screening [1],
making medical recommendations [2] and even making sentencing
recommendations for those convicted of crimes [3-5]. However, de-
spite — or perhaps due to — the multitude of areas that these systems
are used in, the public is concerned about them [6]. One area of
pronounced concern is the systems’ potential “dark side” [7] that
may result in biased decisions which disenfranchise those from racial

E-mail address: jeremy.straub@ndsu.edu.

https://doi.org/10.1016/j.simpa.2021.100121

minorities, the poor and others. Concerns have been raised that training
processes may cause systems to learn and then reinforce dominant
power structures [8]. Due to these concerns, Noble has aptly termed
such systems as “algorithms of oppression” [9]. Discriminatory decision
making is only one example of the type of issues that may occur with
machine learning systems. More generally, they may make spurious
connections between non-causal data correlations that can lead to
extreme failure with certain data, while the system seems (and can be
shown via testing) to be working well overall. A sub-field of machine

Received 7 July 2021; Received in revised form 18 August 2021; Accepted 24 August 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.simpa.2021.100121
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100121&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-75
mailto:jeremy.straub@ndsu.edu
https://github.com/jeremystraub/GDES/blob/main/Executable.zip
mailto:jeremy.straub@ndsu.edu
mailto:jeremy.straub@ndsu.edu
https://doi.org/10.1016/j.simpa.2021.100121
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Straub

Fa F>
Ry
|
Fs

Fig. 1. Basic Rule-Fact Network Structure.

learning, eXplainable Artificial Intelligence (XAI), has developed due to
the limitations of Al systems’ to be able to “explain their autonomous
decisions to human users” and lack of human understandability [10].

While a variety of XAI techniques have been proposed [11], the goal
of explainability stops short of ideal. In [12], a “defensible” system was
proposed which utilizes an expert system (see, e.g., [13]) rule-fact net-
work as the basis for knowledge storage and backpropagation (see [14])
training to optimize the rule weighting values. Hence, it provides the
benefit of known-meaning nodes (facts) and associations (rules) while
also providing the optimization benefits of machine learning and neural
network systems.

This software article discusses a version of this system which has
been modified to be more user friendly and to process data for user
applications. Specifically, it provides the requisite functionality to build
the rule-fact network, load data into it, train the network (i.e., optimize
rule weightings) and present data for evaluation. It, thus, facilitates the
use of GDESes for relevant applications and additional analysis of the
technique.

2. Software description

The software operates in three phases: first, a rule-fact network
is defined; second, the system is trained; finally, data is loaded into
facts to prepare for the presentation of data and data is presented for
evaluation. The same approach can be used whether using the system
to support research or operations in a particular application domain or
if testing the system itself.

In the first phase, a rule-fact network is defined. The basic structure
of this network is shown in Fig. 1. The system, currently, requires all
rules to have exactly two input facts. Facts must have positive values
between 0 and 1 (inclusive) and rules include a weighting for each fact
between 0 and 1 with the two weightings for each rule summing to 1.

With this basic structure, a variety of more complex structures
can be implemented. For example, Fig. 2 shows how a rule might be
created to have one fact’s value set another fact’s value, if this was
a requirement of the system. Similarly, multiple rules can be used to
implement a concept that requires more than two input facts to model
an association.

The system also supports network designs that have more than
one pathway to set a fact’s value. Fig. 3 shows how a fact could
have its value set by two rules considering multiple different input
facts. Whatever value of a fact is set last is its current value. Different
pathways could, depending on application needs, produce conflicting
values for a fact, if desired.

In the second phase, the system is trained using a supervised train-
ing process by presenting fact inputs and desired outputs. One or more
facts values can be supplied as inputs (at least one must be supplied
in all cases and is included in the command that triggers the training
process) and a target fact is defined as the output. The desired value
of this target fact is also provided to the training system. Multiple
iterations of training are conducted with different inputs and outputs.
During each iteration, the weighting values of the rules are updated

Software Impacts 10 (2021) 100121

Fy F1
Fy Iﬁ_,

I) B
F,]

F,

Fig. 2. Rule setting one fact to the value of another.

Fi Fa

\—l—‘

R1

Fa

Fig. 3. Multiple rules setting a fact’s value.

Fig. 4. Training network.

(the rate at which they are updated is determined by a user-specified
velocity value). These weightings are not reset between training iter-
ations (or before the presentation of data for operations or testing).
Notably, while the system’s results are shaped by the training, the
initial network design also has a significant impact on system results.
More details about the training process can be found in [12] and in
Section 3.

The system supports training across an entire pathway of a network,
as it will be presented for operations or testing, as shown in Fig. 4.
Alternately, different areas of the network can be individually trained,
as shown in Fig. 5.

Finally, during the third phase, data is presented for processing by
the system. One or more facts have their values set and then the system
is launched to determine the value of a target output node. Notably,
the resulting values of other facts can be accessed with the query fact
command, if the result of operations on more than one fact needs to be
known.

J. Straub

Fy F, Fs Fs

R1 R,
l }
Fs Fe
[:]

)

Rs

l

k7

Fig. 5. Training subset of network.

While these three phases will typically be run in the order described,
this is not the only way the system can be used. For example, the
network could be built and trained. Then data could be presented for
evaluation. This could be followed by additional training and additional
presentation of data for evaluation. Obviously, a network must be
created, in all cases, before training or presentation for evaluation can
occur. The network can be augmented, if desired, after training and
data presentation have been conducted.

A list of commands for the system is presented, along with the
command format (please see the referenced manual for full details on
each command), in Table 1.

3. Algorithm

The software described herein implements the algorithms described
in [12]. The system is comprised of an expert system engine, which
processes rules in a forward fashion, and a training module, which is
used to optimize the rule weightings. The process, shown in Fig. 6,
starts with the user supplying their network design and initial rule
weight values. This network (including the rule weightings) and the
training data are used for training. The trained network and inputs for
specific operational or test cases are then used to generate results.

The expert system that has been implemented supports partial mem-
bership and ambiguity. In this system, facts can have a probabilistic or
partial membership value ranging between O and 1. Because of this,
rules utilize weighting values which indicate the comparative impact
of the input facts on the value of the output fact. Like fact values, rule
weightings must be between 0 and 1 and must sum to 1.

The training process is depicted in Figs. 7 and 8. Fig. 7 depicts the
training process overall while Fig. 8 depicts how the level of change
applied to each rule weighting is determined. The training process is,
at a high level, very similar to that of a neural network. The system
under training is run with the inputs specified by a data record and
the output result is compared to the result produced by the system.
A portion of the difference, determined by the user-specified velocity
value, is applied to the rule weightings. Multiple training epochs can be
performed for each training data record, as specified by the user. This
process, shown for a single training data record in Fig. 7, continues
until all training data is exhausted.

A key way that the software described herein (and the system
described in [12]) differs from a neural network is the process that is
used to determine the amount of change that is applied to each rule
during each training epoch. The algorithm for this is depicted in Fig. 8.

The process starts by identifying all of the nodes that directly impact
the target fact (i.e., the fact that the training data supplies the target

Software Impacts 10 (2021) 100121

User Builds
Network

User Sets Initial
Rule Weight
Values

Training Data

v

Network Training
Process

A

Trained Network

y

Run Network

Result

Fig. 6. Overview of system operations.

result for) and the system determines the level of their contribution.
Once these initial nodes that directly impact the target fact have been
identified, they are added to a contributions list. Then, all nodes that
impact the target fact indirectly are iteratively identified, their indirect
contributions are calculated and they are added to the contributions
list. Note that contribution to all other applicable contributions list
nodes is determined for each node that is added. The node adding
process continues until an iteration runs without adding nodes.

Each rule’s contribution is either direct or determined by multiply-
ing rules that pass through other rules for impact by the cumulative
impact of the intervening rules. The contribution of a rule, Ci, to the
target fact can be determined using the equation [12]:

C=W;x H WRimn @
(APT)
For this equation, W; is the relevant weighting for the given rule (i).
Wrmn is the weighting of each rule (m indicates the rule and h
indicates the relevant weight value) which the value passes through
before the final fact. This rule set is denoted by {APT}. Notably, rules
may have multiple contribution (C,) values if they are part of multiple
paths; however, only the highest contribution value is maintained and
used.

A velocity setting value determined percentage of the error between
the system output target fact value and training output value is applied
to each contributing rule’s weightings based on its contribution level
and facts’ values. Additional or reduced weight is given to the higher
and lower values’ input fact weightings, depending on the type of
change that is needed.

The change that will be made to a particular rule is determined by
summing all contributions to a target fact and dividing the contribution
of a particular rule (C;) by the contributions sum (Cr,,) and applying
the velocity (V) and 4R value, which is the difference between the
expected (training data value) and actual value for a training run. The
difference value (D;) is computed using the equation [12]:

P

= XV xA 2
' CTotaI R

J. Straub

Table 1
System commands and format.

Software Impacts 10 (2021) 100121

Command type Command format

Create fact
Create rule

F####:{FGUID}=000.000:Description (VAR)
R####:{R1GUID}:{F1GUID}=0.000+{F2GUID}=0.000>>{F3GUID}:Description (VAR)

Train TR:{FGUID}=000.000>####:0.00>{FGUID}=000.000

Present for evaluation
Set fact
Query fact

SF: {FGUID}=000.000
QF: {FGUID}

PR:{FGUID}=000.000>>{FGUID}

Note that # and 0 indicate numeric values, {GUID} indicates a .Net format globally unique identifier (GUID) and “Description
(VAR)” indicates a variable length description field. All other symbols must be used exactly as presented in the rule format.

Set Initial Rule
Values

Training Epoch

A 4

Network Under
I Training
| v
|
—T» Run Network

Training Data

[—

|

|

|

|

|

|

I Compare Result to |
: Training Data
|

|

|

|

|

|

v

(—
Difference
Value

[Apply Portion of Difference
to Network Under Training

Epoch Count
Reached?

Yes

End

Fig. 7. Training Process.

Source: Modified

from [12].

It uses the 4R value that is calculated using the equation [12]:

Rp — R
ag= ARe =Rl 3
MAX(Rp, Ry)
For this equation, Rp is the target value and Ry is the value
produced by the network under training. The MAX function returns the

largest value passed into it.
4. Advantages and limitations of the approach

The software presented herein provides key advantages as compared
to both classical expert systems and neural networks. As compared
to classical expert systems with fractional value support, it provides
a mechanism to automate the optimization of rules. This allows the

Store Contribution
Values for Rules
that Directly
Impact End Fact

v

Store Contribution
Values for Rules

that Directly <
Impact Facts in

Contributions List

v

Store Contribution
Values for all
Indirect
Contributions of
New List Additions

Contributions
Added?

No

Sum all
Contributions For
Final Fact

Determine Each
Rule’s Proportion
of Contribution

Apply Change
Based on Velocity
and Contribution

Proportion

Fig. 8. Node Change Algorithm [12].

system to better reflect the real-world phenomena that it is modeling
and to provide better recommendations, decisions or predictions.

As compared to neural networks, the system provides two key
benefits. First, by utilizing a known-meaning network, network sizes
will inherently be smaller than the densely connected networks used
by neural network systems. This will reduce the number of nodes that
must have their values computed and set during each training epoch
and thus have training time benefits. Second, because all nodes (facts)
and relationships (rules) have a known value, the decisions that the
system makes are inherently human understandable and can be easily
explained in terms of the decision-making factors that were considered
and the relative importance given to each. This allows decisions to

J. Straub

be logically defended, as opposed to being opaque to users or simply
explained in terms of system state and processes. This is directly
responsive to the issues of public concern [6] and decision making
bias [7-9] which are discussed in Section 1.

The principal limitation of the proposed approach is that a network
must be created to reflect the phenomena being modeled. This, cur-
rently, is a potentially time-consuming manual process. Additionally,
this manual creation process requires the phenomena to be well under-
stood. Neural networks and some other machine learning technologies
provide a key benefit, which the software described herein - in its
current form — lacks: being able to model a phenomena that is not fully
understood based solely on input data and results.

5. Use and impacts

This software is based on the software that was used for [12]
with modifications to facilitate its more general use. Specifically, the
network generation and characterization routines which were devel-
oped specifically for and enabled the experimentation in [12] are not
included and have been replaced with a command format and processor
for building rule-fact networks, training them and presenting facts for
processing. The system is currently being used for two e-laws projects
(focusing on U.S. federal sentencing guidelines and patentability assess-
ment), an intentionally deceptive online content identification project
and a phishing link identification project.

The federal sentencing guidelines project [15] is using the soft-
ware to develop an application which will, based on key facts of a
criminal offense (or set of related offenses), recommend a sentence
for the offender. It is being developed based on federal sentencing
guideline rules [16] and trained using data from the federal sentencing
guidelines commission [17]. The proposed system will provide an en-
tirely transparent and human-understandable sentence determination
process, taking into account typical applications of judicial sentencing
discretion within the sentencing guidelines.

The patentability assessment project [15] is using the software to
develop an application which will be provided patent application de-
tails and make a recommendation regarding several key characteristics
of patentability. It is being developed based on the U.S. Patent and
Trademark Office’s (USPTO) Patent Examiner’s Handbook [18] and
being trained using details from the USPTQ’s Patent Application Infor-
mation Retrieval (PAIR) system and a USPTO curated dataset [19,20].
The proposed system aims to provide greater patentability decision
consistency and increase patent assessment processing speed.

The intentionally deceptive online content identification and phish-
ing link identification projects [21] are using existing data sets initially
collected for prior projects using neural networks. Both systems aim
to use a smaller network size (and, thus, require reduced training
time) to produce results which are similar to the prior neural network
implementations. In both cases, the opaque decision-making criteria of
the neural network will be replaced by a completely transparent and
human-understandable decision-making process.

Declaration of competing interest
The author declares that he has no known competing financial in-

terests or personal relationships that could have appeared to influence
the work reported in this paper.

Software Impacts 10 (2021) 100121
Acknowledgments

Thanks are given to researchers on the four projects that are cur-
rently using this software for feedback on their system needs and
system functionality. This work has been supported, in part, by the U.S.
National Science Foundation (NSF Award # 1757659).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.simpa.2021.100121. Supplemental material
includes a user maual and example scripts.

References

[1] D.K. Malhotra, K. Malhotra, R. Malhotra, Evaluating Consumer Loans using
Machine Learning Techniques, Emerald Publishing Limited, 2020, http://dx.doi.
org/10.1108/50276-897620200000020004.

[2] X. Zhou, Y. Li, W. Liang, Cnn-rnn based intelligent recommendation for online
medical pre-diagnosis support, IEEE/ACM Trans. Comput. Biol. Bioinform. 1
(2020) http://dx.doi.org/10.1109/tcbb.2020.2994780.

[3] A. Deeks, The judicial demand for explainable artificial intelligence, Columbia
Law Rev. 119 (2019) 1829-1850.

[4] N. Stobbs, D. Hunter, M. Bagaric, Can sentencing be enhanced by the use of
artificial intelligence? Crim. Law J. 41 (2017) 261-277, https://eprints.qut.edu.
au/115410/ (accessed February 24, 2021).

[5] V. Chiao, Predicting proportionality: The case for algorithmic sentencing, Crim.
Justice Ethics 37 (2018) 238-261, http://dx.doi.org/10.1080/0731129X.2018.
1552359.

[6] T. Araujo, N. Helberger, S. Kruikemeier, C.H. de Vreese, In AI we trust?
Perceptions about automated decision-making by artificial intelligence, Al Soc.
35 (2020) 611-623, http://dx.doi.org/10.1007/s00146-019-00931-w.

[7]1 C. O’Neil, Weapons of Math Destruction, Broadway Books, New York, NY, USA,
2016.

[8] C. D’Ignazio, L.F. Klein, Data Feminism, MIT Press, Cambridge, MA, 2020.

[9] S.U. Noble, Algorithms of Oppression: How Search Engines Reinforce Racism
Paperback, NYU Press, New York, NY, USA, 2018.

[10] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, Xai-explainable
artificial intelligence, Sci. Robot. 4 (2019) http://dx.doi.org/10.1126/scirobotics.
aay7120.

[11] G. Vilone, L. Longo, Explainable artificial intelligence: A systematic review, 2020,
ArXiv, http://arxiv.org/abs/2006.00093 (accessed April 27, 2021).

[12] J. Straub, Expert system gradient descent style training: Development of a
defensible artificial intelligence technique, Knowl.-Based Syst. (2021) 107275,
http://dx.doi.org/10.1016/j.knosys.2021.107275.

[13] D. Waterman, A Guide to Expert Systems, Addison-Wesley Pub. Co., Reading,
MA, 1986.

[14] R. Rojas, The backpropagation algorithm, in: Neural Networks, Springer Berlin,
Heidelberg, Berlin, 1996, pp. 149-182, http://dx.doi.org/10.1007/978-3-642-
61068-4_7.

[15] L. Brown, R. Pezewski, J. Straub, Determining sentencing recommendations
and patentability using a machine learning trained expert system, 2021, https:
//arxiv.org/abs/2108.04088v1 (accessed August 9, 2021).

[16] U. Sentencing Commission, United states sentencing commission variable code-
book for individual offenders standardized research data documentation for,
1999.

[17] Commission Datafiles, US Sentencing Comm, 2021.

[18] Examiner handbook to the U.S. patent classification system, 2016 US Patent and
Trademark Office. https://www.uspto.gov/patents/laws/examiner-handbook-us-
patent-classification-system.

[19] A.V. Giczy, D. Scientist, A.A. Toole, C. Economist, N.A. Pairolero, Identifying
artificial intelligence (Al) invention : A novel Al patent dataset, 2021.

[20] Artificial intelligence patent dataset, 2021 https://www.uspto.gov/ip-policy/
economic-research/research-datasets/artificial-intelligence-patent-dataset.

[21] B. Fitzpatrick, X. Sherwin Liang, J. Straub, Fake news and phishing detection
using a machine learning trained expert system, 2021, https://arxiv.org/abs/
2108.08264v1 (accessed August 18, 2021).

https://doi.org/10.1016/j.simpa.2021.100121
http://dx.doi.org/10.1108/s0276-897620200000020004
http://dx.doi.org/10.1108/s0276-897620200000020004
http://dx.doi.org/10.1108/s0276-897620200000020004
http://dx.doi.org/10.1109/tcbb.2020.2994780
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb3
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb3
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb3
https://eprints.qut.edu.au/115410/
https://eprints.qut.edu.au/115410/
https://eprints.qut.edu.au/115410/
http://dx.doi.org/10.1080/0731129X.2018.1552359
http://dx.doi.org/10.1080/0731129X.2018.1552359
http://dx.doi.org/10.1080/0731129X.2018.1552359
http://dx.doi.org/10.1007/s00146-019-00931-w
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb8
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb9
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb9
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb9
http://dx.doi.org/10.1126/scirobotics.aay7120
http://dx.doi.org/10.1126/scirobotics.aay7120
http://dx.doi.org/10.1126/scirobotics.aay7120
http://arxiv.org/abs/2006.00093
http://dx.doi.org/10.1016/j.knosys.2021.107275
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb13
http://dx.doi.org/10.1007/978-3-642-61068-4_7
http://dx.doi.org/10.1007/978-3-642-61068-4_7
http://dx.doi.org/10.1007/978-3-642-61068-4_7
https://arxiv.org/abs/2108.04088v1
https://arxiv.org/abs/2108.04088v1
https://arxiv.org/abs/2108.04088v1
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb16
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb16
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb16
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb16
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb16
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb17
https://www.uspto.gov/patents/laws/examiner-handbook-us-patent-classification-system
https://www.uspto.gov/patents/laws/examiner-handbook-us-patent-classification-system
https://www.uspto.gov/patents/laws/examiner-handbook-us-patent-classification-system
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00048-8/sb19
https://www.uspto.gov/ip-policy/economic-research/research-datasets/artificial-intelligence-patent-dataset
https://www.uspto.gov/ip-policy/economic-research/research-datasets/artificial-intelligence-patent-dataset
https://www.uspto.gov/ip-policy/economic-research/research-datasets/artificial-intelligence-patent-dataset
https://arxiv.org/abs/2108.08264v1
https://arxiv.org/abs/2108.08264v1
https://arxiv.org/abs/2108.08264v1

	Gradient descent training expert system
	Introduction
	Software description
	Algorithm
	Advantages and limitations of the approach
	Use and impacts
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary Material
	References

