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ABSTRACT
The Segregation Index quantifies the degree of segregation of social groups or classes. Because of the 
increasing use of fine-grained spatiotemporal activity and flow data, the conventional segregation 
measurements’ inclusiveness is challenged. We add population flow to the conventional place-based 
spatial exposure index to identify spatiotemporal segregation changes. Specifically, we considered 
the population-flow network, hierarchical structure, and time. In Chicago’s demonstration case study, 
we first used the time-dependent Twitter Origin-Destination flow matrices and their hierarchical 
structure information to estimate interactions between areal units at the neighborhood level. Then 
we computed the new population composition of units based on their interactions with other units 
and estimated the proposed spatiotemporal exposure index for different times. Finally, we system-
atically compared their differences with the conventional indices at global and local scales to see how 
population-flow patterns affect the exposure index. The results show that the population-flow 
patterns reflect valuable information in neighborhood interactions in temporal and spatial dimen-
sions, but it is missing information in the conventional segregation computations. Furthermore, we 
emphasize that the hierarchical structures of flow patterns and the choice of appropriate parameters 
are also important factors for a rational segregation evaluation.
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1. Introduction

Spatiotemporal activity and trajectory big data play an 
increasingly important role in measuring the degree of 
segregation of social groups or classes (Farber et al., 
2015; Wong & Shaw, 2011; Yip et al., 2016). Social 
segregation implies a lack of communication between 
groups and indicates an uneven distribution of popula-
tion or resources and varying interactions. Due to data 
limitations, conventional segregation studies rely heav-
ily on census data and focus on static residential spaces 
(Kwan, 2009). Over the past decade, spatiotemporal 
activity and trajectory data helped researchers to char-
acterize changes in individual or group activity spaces 
(D. Wang et al., 2012) and flow patterns (Gao et al., 
2013; Guo et al., 2012) at different time scales (Silm & 
Ahas, 2014). The observed people’s movement connects 
the city’s various spaces and creates an entire network of 
interactions. In turn, the population-flow network and 
its interaction information are instrumental to our 
understanding of cities (Batty, 2013).

However, flow patterns, which contain interaction 
information, have not been fully investigated in segre-
gation studies. Our first question focuses on methodol-
ogy: how can we incorporate flow patterns into 
conventional segregation calculations with minimal 

modifications of conventional formulas? Our second 
question is about observing indices from 
a comparative perspective: when comparing the new 
index to the conventional one, where and when do the 
two exhibit significant differences? What factors influ-
ence the extent of their differences? Answering the 
above questions will allow us not only to build 
a comparable system to link traditional research and 
current research with new data, to form a succession 
and continuation of research, but also to provide 
a baseline for using the richer spatiotemporal activity 
and flow data.

We try to incorporate time-dependent population- 
flow patterns into conventional segregation indices 
computation. Specifically, we use the information on 
the flow network, time, and hierarchy structure to 
estimate interactions between areal units. By utilizing 
more flow information, we expect to comprehensively 
evaluate the interactions and then compute the segre-
gation more accurately. Also, we also systematically 
compare the new flow-based segregation index with 
the conventional index. Based on the comparison 
results, we want to understand better the impact of 
including population-flow patterns into the segrega-
tion indices.

CONTACT Xinyue Ye xinyue.ye@tamu.edu
Supplemental data for this article can be accessed here.

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 
https://doi.org/10.1080/15230406.2021.1965915

© 2021 Cartography and Geographic Information Society



We organize this paper as follows:

� Section 2 briefly reviews the development of the 
segregation index and the progress of methods 
using new data.

� Section 3 covers the study area and demonstration 
data.

� Section 4 illustrates the methodology used in this 
paper, including how to construct flow patterns, 
compute the segregation with flow data, and the 
comparison method.

� Section 5 shows the results. We first conducted 
a descriptive analysis of flow patterns of different 
neighborhood types in the Chicago area. We then 
compared the segregation index changes after 
incorporating flow patterns at both the global and 
local scales.

� Sections 6 shows the implications of adding flow 
data to segregated studies and insights from the 
comparative results. We also provided some future 
research plans.

� Section 7 gives a brief conclusion.

2. Literature review

The temporal and spatial perspective provided by geo-
graphers is far-reaching for quantifying segregation. 
Since the dissimilarity index (Duncan & Duncan, 
1955) was first designed, many segregation indices 
have been proposed. Much literature has continually 
criticized, improved, and generalized these segregation 
indices by considering areal units’ spatial arrangement/ 
structure in the study area when evaluating segregations 
(Yao et al., 2019). Spatial interactions are the most 
discussed spatial structure in the literature. Without 
spatial interactions, the corresponding segregation 
degree depends only on the areal unit’s demographic 
composition. The segregation index will not change, 
even if the areal units are shuffled into different spatial 
arrangements, because the shuffle will not change areal 
units’ own demographic composition (White, 1983). 
Researchers refer to the problem of disengaging from 
spatial arrangements as the checkerboard problem 
(Morril, 1991; Wong, 1993). How to accurately describe 
these spatial interactions between units becomes cru-
cialto solving the checkerboard problem.

There are two main classes of methods to describe 
these interactions. One is based on spatial proximity 
functions, and the other is based on topology or geometry 
information. The spatial proximity functions follow the 
principle of distance decay and assume that the farther 
the distance between two areal units, the weaker their 
interactions. White (1983) suggested four proximity 

functions, including negative exponential functions and 
inverse distance functions with different parameter set-
tings. With an empirical comparison between these 
proximity functions, White concluded that the issue of 
choosing appropriate proximity function forms and 
parameters is still not yet resolved. Because there is no 
better way to select a spatial proximity function and its 
related parameters, Reardon and O’Sullivan (2004) left 
the choice to users. While generalizing his predecessor’s 
work, they used a notation to represent this spatial proxi-
mity function in terms of decreasing distance. They also 
emphasized that any desired proximity function could be 
used in their proposed generalized framework. This fra-
mework is promising but left subsequent researchers with 
the difficult task of quantifying the spatial proximity 
function.

The second class of methods uses topology, or geo-
metry information, to describe spatial interactions 
between areal units. A simple topology-based approach 
is to use the binary form of contiguity. If areal unit i and 
j are neighbors, their corresponding weight, ω i; jð Þ, is set 
to 1, and 0 otherwise (Morril, 1991). Subsequently, 
Wong (1993) incorporates geometry properties, such 
as shape and area of units, to adjust the interactions. 
Wong assumes that longer shared boundaries would 
lead to a stronger interaction between two units. 
Wong (1998) also proposed a notion of composite popu-
lation count (CPC), which mixing its neighbors’ popula-
tions into the target unit population. After the mixing 
procedure, the new population composition is used in 
the subsequent calculations. CPC is another way to 
describe the probability of the target unit population 
interacts with its neighbors’ population. In short, both 
above classes of methods attempt to provide descrip-
tions of neighbor interactions and eliminate the check-
erboard problem.

Although these two estimation methods can solve the 
checkerboard problem, their estimation of the interac-
tions is subjective. No matter how complex the mathe-
matical forms, there is no guarantee that their 
interaction estimation reflects the actual social interac-
tion across units. With the development of information 
technology, the accumulation of massive amounts of 
spatiotemporal activity and trajectory data provides 
new insights into modeling and estimating social inter-
actions. First, researchers emphasize expanding static 
residential space into other socio-geographical spaces 
(Kwan, 2013; Wong & Shaw, 2011; Yip et al., 2016). 
Many studies have demonstrated, from different per-
spectives, that spatiotemporal big data can provide 
information in addition to traditional survey data. For 
example, Shelton et al. (2015) examined residents’ 
tweeting activity on both sides of the imaginary “9th 
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Street Divide” from the perspective of a collective activ-
ity distribution. Q. Wang et al. (2018) analyze georefer-
enced tweets to compare the travel patterns for 
50 U.S. cities by racial/ethnic groups. Park and Kwan 
(2018) proposed the individual segregation index to 
depict when and how much segregation people experi-
ence dynamically throughout a day. Second, researchers 
emphasize the importance of the interaction between 
physical and social space in the study of segregation. 
Farber et al. (2015) resorted to spatiotemporal paths to 
describe individual trajectories and further assessed 
interaction-based segregation. Xu et al. (2019) used 
phone call records to portray interpersonal communi-
cation intensity and then estimated social segregation 
based on friendship networks. These examples show the 
promise of using new data to describe the distribution of 
activities or interactions between regions within cities.

However, current conventional segregation studies 
do not fully explore the dynamic interaction informa-
tion from population-flow patterns. First, without chan-
ging the conventional segregation index formula, 
population-flow networks have not been fully discussed. 
We argue that a population-flow network can be easily 
integrated into conventional segregation indices with 
only a few uncomplicated transformations. The linkage 
exists in the notions of the CPC (Wong, 1998) or popu-
lation density of the local environment (Reardon & 
O’Sullivan, 2004) or local population intensity (Feitosa 
et al., 2007). All notions emphasize the exchanges/inter-
actions between residents and their neighbors. Thus, 
measuring the intensity of such interaction becomes 
crucial for segregation computation. In the CPC notion, 
the interactions between two areal units are estimated 
based on their contiguity. In comparison, the other two 
notions underscore the distance decay functions in the 
estimation. Although researchers have made many 
modifications to the contiguity or set up many distance 
decay functions, the assessments are still artificial.

Second, collective-level interactions change with 
time, and the temporal dynamics need more attention. 
The traditional definition of interaction is fixed and 
artificial in not only the spatial dimension but also in 
the temporal dimension. For example, if using contigu-
ity to construct spatial interactions, one’s neighbors do 
not change from ten years ago to ten years later. The 
same problem exists for the method of distance decay 
functions. As data becomes more abundant, researchers 
have realized the necessity of focusing on temporal 
dynamics in segregation studies (Kwan, 2013; Lee & 
Li, 2017; Silm & Ahas, 2014); however, the temporal 
variations in interactions between areal units have 
received little attention. Equally as important, the 

temporal interaction variations tell us when interracial 
contact is lower or higher. This temporal pattern can 
help us better understand segregations in today’s fast- 
paced and mobile world and can provide a basis for 
reviewing integration and planning policies (Silm & 
Ahas, 2014). If we add population-flow information to 
estimate interactions, one’s neighbors can change with 
commuters traveling to work in the short term and 
change with the city’s development in the long run. 
Therefore, using population flows to determine spatial 
interactions can avoid the static problem of segregation 
index.

Finally, the hierarchical structure of population flow 
has received little attention in segregation studies. Due to 
information technology and transportation accessibility, 
residential segregation becomes less and less important. 
The contacts with distant neighborhoods or central cities 
shape the external connections of the residents. 
Residential segregation cannot represent the segregation 
status in other activity spaces. We should pay more 
attention to the mobility of residents and their position 
in social and physical networks (Browning & Soller, 
2014). Some researchers have begun to analyze the rela-
tionship between realistic characteristics (e.g. socioeco-
nomic and demographic characteristics) and the 
structural features of population-flow networks 
(Dorman et al., 2020; Q. Wang et al., 2018), and then 
used them to understand actual segregation and isolation 
(Prestby et al., 2020). The hierarchical structure is one 
way to evaluate the importance of different neighbor-
hoods because it consists of mobility networks between 
these neighborhoods in the city. Bassolas et al. (2019) 
used flow data to assess the hierarchical structures of 301 
cities worldwide and identified different hotspot levels for 
areas in each city. The study found that cities with a more 
robust flow hierarchy have a higher degree of population- 
mixing, extensive public transportation, and a higher 
walkability level. Liu et al. (2018) found that the core- 
peripheral flow structure is in accordance with the visi-
tors’ distribution in one area and affects the residents’ 
and visitors’ meeting probability. The hierarchical infor-
mation facilitates a comprehensive picture of segregation 
within the urban’s current spatial layout. Thus, the seg-
regation indices with hierarchical structure information 
can be a meaningful reference for urban planners.

3. Study area and data

The 77 Chicago neighborhoods (Chicago Data Portal, 
n.d.) have three main racial/ethnic groups, including 
approximately 29% non-Hispanic Black, 32.5% non- 
Hispanic White, and 29% Hispanic. Based on the 
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population information of 2012–2016 American 
Community Survey 5-year Estimates, Figure 1 shows 
the three groups of the population reside in Chicago. 
On the map, the colors of aqua, red, and green dots 
represent non-Hispanic Black, non-Hispanic White, 

and Hispanic groups, respectively (100 persons per 
dot). Like other metropolitan areas in the United 
States, Chicago’s racial diversity has been generally 
increasing at an overall level. But at the neighborhood 
level, it still exhibits significant residential segregation 

Figure 1. The Population Distribution of Three Groups within Chicago 77 Neighborhoods (100 persons/dot, population data source: 
2012–2016 American Community Survey 5-year Estimates).
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(Walker, 2018). The non-Hispanic Black population 
group is predominantly located in the South and 
West. In contrast, the non-Hispanic White population 
group is primarily located in the North, and the 
Hispanic population group is interspersed between 
the other two groups.

Multiple spatiotemporal big data can be used to model the 
population-flow pattern, such as taxi, phone call records, and 
social media data (Hawelka et al., 2014; Tang et al., 2015). 
However, each of these data has its own limitations. For 
example, Twitter and taxi data are subject to representative-
ness bias, and phone call records are not easily available. 
Because of our limited availability of data and funding, we 
ended up using Twitter data to extract population move-
ments. We used Twitter Streaming Application 
Programming Interface (API). We collected georeferenced 
tweets within Chicago city from Oct.09 to Nov.16, 2016, 
using the Twitter Streaming API. The Twitter users of these 
tweets include tourists, residents, and commuters near the 
study area. To compare data with the traditional residential 
segregation, we must extract the residents’ users. We adopt 
the algorithm in Luo et al. (2016) by checking whether the 
user’s historical activity was clustered within the study area 
during the evening (8:00 pm-8:00 am). Therefore, we also 
collect each user’s historic tweets by the Twitter Timeline 
API. We got 3 million tweets for the demonstration study. 
While some studies have supported the applicability of using 
Twitter to extract collective population movements 
(Lenormand et al., 2014), we must always be cautious of 
the limitations of the Twitter data and the possible impact 
on the results.

4. Methodology

4.1. Construct the time-dependent flow network 

based on Twitter data

The time-dependent flow network is represented by an 
origin-destination (OD) flow matrix with a time restric-
tion. Each element of the matrix represents the number 
of flows between two areal units at time t. In theory, the 
time variable t can be continuous, meaning that the OD 
flow matrix has its specific values for any infinitesimal 
short time period. In practice, due to the limited amount 
of flow data, we can use only longer periods to obtain 
valid estimates of the OD flow matrix, such as 4 hours. 
For example, for a given time t, we extend 2 hours 
forward and backward, respectively, and use the flows 
that happened in this extended period to construct the 
OD flow matrix for time t.

We used the following steps to extract the OD flow 
matrix at a given time t based on geotagged tweets. 
According to Gao’s procedure (Gao et al., 2014), we 

first sequenced each Twitter user’s tweets by time, and 
then take each of the two temporal consecutive tweets as 
one valid move record, if the record satisfies two cri-
teria: 1) the time interval between two tweets is less than 
4 hours and 2) the straight-line distance between two 
tweets is longer than 100 meters (Liu et al., 2018). 
Criterion 1 ensures each move record’s integrity as 
much as possible based on Gao et al. (2014) inter- 
tweeting time analysis and criterion 2 help eliminate 
the uncertainty of the GPS signal. After extracting all 
qualified moves, we used the “points in polygon” opera-
tion to determine each move’s origin and destination 
neighborhood and kept only those moves which were 
across neighborhood boundaries. Finally, we created 
a time-dependent OD flow matrix by aggregating 
moves according to their origin, destination, and speci-
fied time at the neighborhood level. In many studies, the 
OD flow matrix is a measure of the interaction between 
spatial units (Guo et al., 2012). Besides, the adoption of 
the OD flow matrix as spatial interaction gives us a more 
general framework that makes it possible to integrate 
other movement data. We must note that the above-
mentioned time sequence construction method is only 
one possible way to extract population movements, and 
we do not exclude other flow extraction approaches 
(Palchykov et al., 2015).

To provide a global overview of the interactions 
among the three racial/ethnic groups in the case study, 
we classified the 77 neighborhoods into four types 
according to their demographic composition: non- 
Hispanic Black-majority neighborhood, non-Hispanic 
White-majority neighborhood, Hispanic-majority neigh-
borhood, and Mixed-neighborhood. A neighborhood is 
classified as racially majority if one racial/ethnic group is 
larger than the other two and accounts for more than 50% 
of its population; if there are no racially majority groups, 
it is classified as Mixed-neighborhood. For simplicity of 
description, only the initials are used below to represent 
the majority type: B-neighborhood, W-neighborhood, 
H-neighborhood, and M-neighborhood.

4.2. Segregation indices with flow patterns

Measures of spatial segregation require defining the 
spatial interactions between all pairs of units in region 
R at time t. The difference between our proposed 
extended spatiotemporal exposure index and spatial 
indices lies in calculating spatial interactions. To 
demonstrate our proposed extension method, we 
applied it to the exposure index, which is an important 
dimension of segregation assessment. Massey & Denton 
defined exposure index to “measure the extent to which 
minority and majority members physically confront one 
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another by virtue of sharing a common residential area.” 
For consistency, we used the notation from Reardon 
and O’Sullivan (2004), but we use the traditional poly-
gon as the basic units (i.e. neighborhoods). Let R denote 
the entire study region. Assume that R is split into 
n non-overlapping areal units, which are indexed by 
i or j. Suppose there are M racial/ethnic groups in 
R (M = 3 in the case study), and we index them by 
x or y, e.g. Black or White group. Let τ denote popula-
tion. Use a tilde (~) to indicate the mixing procedure 
between the target areal unit and other interacted units. 
Also, use t to express the specified time. We have:

�t i; jð Þ: flow size from unit i to unit j at time t.
ωt i; jð Þ: the standardized interaction weight from unit 

i to unit j at time t.
τi;x;t : population size of group x in unit i at time t.

τi;t : population size in unit i at time t (note 

that τi;t ¼
PM

x¼1
τi;x;t).

~τi;x;t : population size of group x in unit i at time 
t after a mixing procedure.

~τi;t : population size in unit i at time t after 
a mixing procedure.

Tx;t : population size of group x in R at time t (note 

that Tx;t ¼
Pn

i¼1
τi;x;t).

We assume that the strength of the spatial interac-
tions at time t is proportional to �t i; jð Þ. If we set the 
value of �t i; ið Þ to 0, then the composite population of 
unit i at time t can be expressed as ~τi;t . 

~τi;t ¼ 1
Φt i; �ð Þ

Xn

j¼1
τi;t�t i; jð Þ; (1) 

where Φt i; �ð Þ ¼ Pn

j¼1
�t i; jð Þ and �t i; ið Þ ¼ 0. By moving 

Φt i; �ð Þ into the summation notation in Equation (1), 
we get: 

~τi;t ¼
Xn

j¼1
ωt i; jð Þτi;t; (2) 

where ωt i; jð Þ ¼ �t i;jð Þ
Φt i;�ð Þ , and 

P
j

ωt i; jð Þ ¼ 1 and 

ωt i; ið Þ ¼ 0. Higher values of ωt i; jð Þ mean stronger 
interactions from unit i to unit j at time t. Equation 
(2) is analogous to the spatial lag of population of unit 
i at specified time t (i.e. the weighted average of neigh-
bors’ population of unit i). Here, ωt i; jð Þ is equivalent to 
the elements in the row-standardized spatial weight 
matrix at time t. However, it is worth noting that in 
the flow-based spatial weight matrix, the number of 

elements with values greater than zero (i.e. ωt i; jð Þ>0) 
is much larger than those in the matrix constructed by 
the contiguity-based method.

Although we set ωt i; ið Þ to zero, the flow-based 
matrices we have constructed so far are sufficient to 
compute the spatial dissimilarity index. The computa-
tion process does not involve ωt i; ið Þ, and we can see the 
description of the spatial dissimilarity equation in 
(Cortes et al., 2020) and (Wong, 1993). However, the 
determination of ωt i; ið Þ becomes crucial for Exposure 
and Isolation index. In the literature, the equal weights 
strategy (Wong, 1998) or the distance decay function 
strategy (White, 1983) are common ways to determine 
the ω i; ið Þ. These two approaches are, to some extent, 
a compromise in the absence of real interaction data. 
The resulting ω i; ið Þ does not reflect the true weights and 
does not describe the temporal variation of weights. We 
propose a hierarchy-based strategy to estimate ωt i; ið Þ to 
measure the weights more accurately. Our assumption 
is that the higher the rank of hierarchy the higher the 
degree of mixing in the area (Bassolas et al., 2019), and 
the lower the ωt i; ið Þ. This strategy has two steps:

Step 1) determines hierarchy-level (hotspot-level) 
,ht ið Þ, for each unit at time t by the Lorenz curve method 
(Bassolas et al., 2019). The Lorentz curve method 
arranges the outflow size of all areal units of all times 
in ascending order and plots them by normalizing the 
cumulative number of units (x-axis) vs. the fraction of 
total flow (y-axis). Then it takes the derivative of the 
Lorenz curve at (1, 1) and extrapolates it to the point at 
which it intersects the x-axis to get the threshold. We 
assign ht ið Þ to k-level for the areal units on the x-axis 
greater than this threshold (k starts from 1, which is the 
highest hierarchy-level). Then we remove the units of 
k-level and recalculate the threshold to obtain (k + 1)- 
level. Repeat this process to assign ht ið Þ for all areal units 
in each time until the threshold is close to zero or the 
hierarchy-level reaches an upper limit m, and the rest of 
unassigned units will go to the last level. In the case 
study, we set the upper limit, m, to 6.

Step 2) derives ωt i; ið Þ for unit i at time t by its 
hierarchy-level ht ið Þ. ωt i; ið Þ is obtained by a piecewise 
function in which each hierarchy-level ht ið Þ is mapped 
to an interval of [α,β] (0 � α � β � 1). In practice, α is 
the self-mixing rate for the most active unit (at the top 
hierarchy-level) in the study area among all times. 
Similarly, β is the self-mixing rate which is assigned to 
the least active unit (at the bottom hierarchy-level) 
among all times. According to Equation (3), the ωt i; ið Þ
is a value between α and β which represents the self- 
mixing rate in the population mixing procedure. When 
target unit i interacts more actively with other units at 
a time t, ωt i; ið Þ will shift toward α, indicating the 
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decreasing influence of its own population size in the 
mixing procedure. Conversely, when the target unit 
i becomes less active, the self-mixing ratio moves toward 
β. To get ωt i; ið Þ according to hierarchy-level, we are 
using a piecewise function as Equation (3): 

ωt i; ið Þ ¼ α þ ht;i � 1
� � β � α

m � 1
(3) 

where m is the total hierarchy level. Note that, after 
getting the new ωt i; ið Þ, we need to adjust (shrink) 
other elements in the same row with ωt i; ið Þ to ensure 
that 

P
j

ωt i; jð Þ ¼ 1. After obtaining the flow-based spa-

tial weight matrix at time t, we can then compute the 
flow-based segregation via Equation (4), referred to as 
the Flow-based Spatial Exposure Index (FSxPy). For 
comparison, we also compute 1) the Boundary-based 
Spatial Exposure Index (BSxPy) (Cortes et al., 2020; 
Wong, 1993) and 2) the Distance Decay-based Spatial 
Exposure Index (DDSxPy) (Morgan, 1983). BSxPy and 
DDSxPy are calculated by Equation (5), and they con-
struct the interaction weights by using the length of 
shared boundaries and the distance decay function, 
respectively. In addition to the different methods of 
constructing spatial weight matrices, they do not have 
temporal subscripts, meaning that these spatial weight 
matrices do not change with time. To demonstrate the 
basic mechanism of the algorithm, we use a hypothetical 
example to show how flow impacts the BSxPy and 
FSxPy in a typical weekday. See Table A1 in Appendix. 

xPyðtÞ ¼
Xn

i¼1

τi;x;t

Tx;t
� ~τi;y;t

~τi;t
(4) 

xPy ¼
Xn

i¼1

τi;x

Tx
� ~τi;y

~τi
(5) 

Equations (4) and (5) are global indices, which provide 
one summarized index for the entire study area. To 
investigate the local variation of differences, we choose 
the local variant of spatial exposure index, as shown in 
Equation (6) (Feitosa et al., 2007; Wong & Shaw, 2011): 

xPyði; tÞ ¼ τi;x;t

Tx;t
� ~τi;y;t

~τi;t
(6) 

4.3. Comparative inference

We compare the segregation indices mentioned in the 
previous section. For any set of comparisons, we use the 
simulation approach to test whether there is a statistical 
difference. This simulation approach is an extension of 
the “systematic” inference approach described in (Cortes 

et al., 2020). The “systematic” approach adds randomness 
to the current population distribution and calculates seg-
regation for each simulation. In the step of adding ran-
domness, it draws samples from a multinomial 
distribution, with the success probabilities being the pro-
portions of the population of our interested racial/ethnic 
group in each areal unit, and with the number of inde-
pendent trials being the total population of our interested 
racial group in the entire study area. For any of the indices 
in the comparison, we conduct 9999 “systematic” simula-
tions, and eventually, we generate two simulating distri-
butions (each contains 9999 simulated results) for one 
comparison process. For each simulating distribution, we 
use the mean value as its point estimate and the Highest 
Density Interval (HDI) at a certain significance level as its 
most credible interval (Kruschke, 2014, p. 87). In practice, 
given a significance level sα (e.g. 5%), the HDI is defined 
by the sα=2 and 1 � sα=2ð Þ percentiles of the simulating 
distribution. During a comparison, if two HDIs intersect, 
we infer that there is no difference between two calculated 
indices. Otherwise, the difference of the two indices 
(referred as indices distance) is calculated as the difference 
of the two point estimates. However, the variance of the 
difference between the two point estimates is not calcu-
lated in this paper because it is not the main concern in 
the context. In this article, we choose 5% as the signifi-
cance level and we will use d0:95 to denote the indices 
difference in the following context as in Figure 2.

5. Results

5.1. Descriptive analysis of Twitter flow data

Based on the neighborhood classification method in 
Section 4.1, we classified the 77 neighborhoods into 
four types of neighborhoods (i.e. B-, W-, H- and 
M-neighborhood). Table 1 shows the number, percen-
tage of the total population, and outflow for each type of 
neighborhoods. We see that a substantially larger share 
of total Twitter outflows originated in the W- than in 
the B- and H-neighborhoods, with 28% of the popula-
tion contributing 63% of Chicago’s total Twitter out-
flows. It could be a concrete manifestation of the digital 
divide in different types of neighborhoods or reflect that 
the White population tends to enable their geocoding in 
tweets more than other racial/ethnic populations do.

Table 2 shows the row-standardized flow percentage 
between the four neighborhoods’ types, the row represent-
ing the origin and the column representing the destination. 
We find that outflows most happen between the same type 
of neighborhoods (diagonal elements are all more than 
50%) except for the H-neighborhood. The outflow from 
H-neighborhood is mainly drawn to the W- and 
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M-neighborhoods. Second, the percentage of outflow is 
asymmetric across different types of neighborhoods. For 
example, 14% of total outflow from B-neighborhood goes 
to W-neighborhoods, but conversely, only 2% of total 
outflow from W-neighborhood is destined for 
B-neighborhoods. Similarly, there is a significant asymme-
try in the proportion of outflows between H- and 
W-neighborhoods (36% vs. 4%). It is clear that 
W-neighborhoods are the most popular destinations in 
Chicago city. The asymmetry pattern is consistent with 
Q. Wang et al.’s finding (2018).

Figure 3 shows the average outflow size of four 
neighborhood types on a typical weekday and weekend. 
Figure 4 shows their average travel distance. We find 
that more flows came from the W-neighborhoods than 
from the other three types of neighborhoods at any time 

during a typical weekday or weekend (Figure 3(a,b)). In 
contrast, the distance traveled from the W- neighbor-
hoods are significantly shorter than that of the other 
three types of neighborhoods (Figure 4(a,b)). This 
observation is similar to Huang & Wong’s finding 
(Huang & Wong, 2016), which claimed Twitter users 
of poor communities in D.C. had larger activity spaces 
than the other wealthier groups. The longer travel dis-
tances of the disadvantaged groups are mainly caused by 
the spatial mismatch of their work location and resi-
dence location (Easley, 2018). Since the general activity 
space represented by Twitter data includes work loca-
tions, we observed the effects of long work commutes 
for residents in the B-neighborhoods.

Although the average outflow size and travel distance 
on weekdays have similar trends with that on weekends, 
we also see some differences. For example, weekday 
outflow curves show two flow peaks (at 14:00, 19:00 in 
Figure 3(a)) while weekends show only one (at 14:00 in 
Figure 3(b)). Besides, the weekend maximum peak flow 
is 44% (i.e. (2.08k-1.16k)/2.08k) less than the weekday 
peak flow. This discrepancy of weekday and weekend 
travel patterns is also reflected in taxi and phone call 

Figure 2. Two scenarios of simulating distribution comparison. The HDI of each distribution is the horizontal line drawn at the bottom: 
a) Since the two HDIs do not intersect, we say that the point estimate of blue distribution is statistically significantly less than its 
comparing index (green distribution). Their indices distance is calculated as the difference of the two point estimates, as marked by 
d0:95; b) Since the two HDIs intersect, we say that the point estimate of blue distribution is not statistically significantly different from 
its comparing index (green distribution).

Table 1. Basic statistics of four types of neighborhoods regarding count, percentage of the population, and percentage of twitter 
outflows.

B- W- H- M- Total

Neighborhood Counts 28 18 16 15 77
Population Size (%) 694,770 (26%) 770,809 (28%) 557,613 (21%) 691,420 (25%) 2,714,612 (100%)
Twitter Outflow Size (%) 17,262 (7%) 156,085 (63%) 20,069 (8%) 54,499 (22%) 247,915 (100%)

Table 2. The row standardized percentage of flow size between 
four types of neighborhoods.

To  
From B- W- H- M-

Total outflow 
size

B- 59% 14% 13% 14% 17,262 (100%)
W- 2% 83% 4% 11% 156,085 (100%)
H- 10% 36% 29% 25% 20,069 (100%)
M- 4% 33% 9% 54% 54,499 (100%)
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records datasets (Calabrese et al., 2011; Zhu et al., 2017). 
For demonstration purposes in the Chicago case study, we 
only use the weekday flow data to estimate the interactions 
between neighborhoods when calculating the FSxPy.

5.2. Comparison result of global exposure index

According to Section 4.2, we know that the major 
difference between the global exposure indices of 
FSxPy, BSxPy, DDSxPy is their ways of constructing 
the spatial weight matrix. Therefore, we can focus on 
the parameters of construction methods when com-
paring FSxPy to BSxPy or FSxPy to DDSxPy. As an 
example, we calculated only the exposure index of 
black to white racial/ethical groups. We first compare 
black-white FSxPy to BSxPy in Figure 5. From 
Figure 5(a–f), the x-axis and y-axis represent the 

time parameter t of FSxPy and the parameter of 
ω i; ið Þ of BSxPy, respectively. The z-axis represents 
their indices distance (d0:95) with FSxPy as the refer-
ence index. We also added the 2-D heat map of the 
difference surface in Appendix Figure A1. For illus-
tration purposes, we assume that if one unit has the 
bottom level in the hierarchical flow structure, it has 
no interactions with other units. So, we set β equal to 
1.0 and only change α in FSxPy. Increasing α from 
0.0 to 1.0 is the process of weakening the influence 
of flow data in the weights. Figure 5(a–f) show how 
the gradually increasing α affects the indices distance 
between black-white FSxPy and BSxPy. We use gra-
dient colors from red to blue to represent the high 
(positive) to low (negative) values of indices distance. 
We also use the same color to plot contours of 
indices distance on top of each 3-D figure. But we 

Figure 3. Average Outflow Size on Weekday and Weekend by Origin Neighborhood’s Type: a) average outflow size on a typical 
weekday; b) average outflow size on a typical weekend.

Figure 4. Average Travel Distance in Weekday and Weekend by Origin Neighborhood’s Type: a) average travel distance on a typical 
weekday; b) average travel distance on a typical weekend.
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Figure 5. Statistical difference between black-white FSxPy (interested parameters are α; β,Time (slot) t) and BSxPy (the interested 
parameter is ω i; ið Þ) (FSxPy – BSxPy): a) α=0.0 and β=1.0; b) α = 0.2 and β = 1.0; c) α = 0.4 and β = 1.0; d) α = 0.6 and β = 1.0; e) α = 0.8 
and β = 1.0; f) α = 1.0 and β = 1.0.
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use a black line to indicate d0:95 equal to 0.0, and it 
means the FSxPy index has the same segregation 
results as BSxPy.

From Figure 5(a–e), we see a clear temporal pattern 
along the x-axis (time t). For any given ω i; ið Þ of BSxPy 
(x-axis), the indices distance, d0:95, reaches the lowest 
value at 4:00 and maximum value at some point between 
12:00, 20:00. This finding echoes with the outflow pattern 
in Figure 3(a). Besides, for any given time t (y-axis), 
a greater indices distance appears when ω i; ið Þ increases 
of BSxPy. From Figure 5(a–f) contour plots, we find that 
the area of red contour lines (i.e. d0:95 � 0) is shrinking 
until it disappears when α ¼ β ¼ 1:0 in Figure 5(f).

Similarly, we compared black-white FSxPy and 
DDSxPy (Figure 6(a–f) and Appendix Figure A2 for 
2-D heat map). In DDSxPy, we use the Gaussian kernel 
with the bandwidth parameter to model the distance 
decay interactions. We let the y-axis represents the band-
width in Figure 6(a–f); the x- and z-axis have the same 
meanings as in Figure 5. When bandwidth increases, the 
Gaussian kernel will become flattened, which corre-
sponds to a smaller ω i; ið Þ in BSxPy. Thus, the bandwidth 
of DDSxPy and ω i; ið Þ of BSxPy have an inverse effect on 
d0:95. For example, two surfaces in Figures 5(a and 6(a)) 
are oriented in different directions. Except for the orien-
tation, the d0:95 3-D surface in Figure 6 exhibits the same 
V-shaped pattern in the time dimension as in Figure 5. 
Besides, we could identify the points where three indices 
have no differences by following the black contours lines.

To better examine the effect of the variation of para-
meter α, we draw the contours of d0:95 ¼ 0for each of the 
six 3-D plots in Figures 5 and 6 in one plot (see Figure 7(a, 
b)). We can see that a singularity is formed at 4:00 when 
the results of FSxPy are always less than or equal to BSxPy 
and DDSxPy, regardless of what αto be chosen. It corre-
sponds to the flow data of Figure 3(a), in which the flow 
reaches its minimum at 4:00. Population returns to its 
place of residence at that time, the exchange between 
areal units reaches its minimum. Accordingly, residential 
segregation will dominate when the interaction weights of 
FSxPy reach a minimum value. However, the weight 
construction method of using boundary length (BSxPy) 
or the distance decay function (DDSxPy) ignores these 
decreasing interactions at 4:00, resulting in a biased 
(higher positive bias) exposure result.

5.3. Comparison result of local exposure index

We employed Equation (6) to compare the local version 
of black-white FSxPy and BSxPy. Two maps were cre-
ated to show the indices distance heterogeneity at the 
local scale at the time 4:00 (2:00–6:00) and 12:00 (10:00– 

2:00) (Figure 8). The colors of green to red represents 
the difference between FSxPy and BSxPy from low to 
high, and different infill styles describe the neighbor-
hood types.

In Figure 8, we find that the spatial clustering of the 
negative indices distance regions (green clusters in 
Figure 8(a)) or positive indices distance regions (red clus-
ters in Figure 8(b)) are almost identical to the distribution 
of B-neighborhoods. It means that black-white FSxPy 
results of B-neighborhoods are significantly less than 
the corresponding BSxPy results at 4:00 (Figure 8(a)) 
and significantly larger than BSxPy at 12:00 (Figure 8 
(b)). In contrast, the indices distance between black- 
white FSxPy and BSxPy was not statistically significant 
for almost all W-neighborhoods, meaning 
W-neighborhoods are barely affected by the flow pat-
terns. This seems to contradict the fact that the outflow 
from W-neighborhoods is significantly larger than that of 
B-neighborhoods (Figure 3(a)) if we assume that more 
flow leads to more impact on segregation computation. 
However, considering that users from B-neighborhoods 
are more likely to travel to W-neighborhoods and the 
reverse does not stand (Table 2), it is not surprising that 
adding flow patterns have more effect on 
B-neighborhoods than W-neighborhoods.

6. Discussion

It is promising to introduce the population mobility 
network, hierarchical structure, and temporal informa-
tion into the conventional segregation indices. This 
paper provides a general framework to support 
a timely and dynamic response to segregation changes. 
The proposed population-flow-based method has 
unique advantages over interaction estimation methods 
based on topology, geometry properties, or distance 
decay functions. It can better reflect the impacts of 
population movements on the degree of segregation in 
both the temporal and spatial dimensions. First, the 
V-shaped curve along the time dimension demonstrates 
the dynamic nature of the temporal dimension in the 
case study. It is consistent with our expectation of 
population movement over time. Second, the spatial 
clustering patterns in Figure 8 clearly show the hetero-
geneity of impacts of population flow in the spatial 
dimension, and this local variation is closely related to 
the type of the neighborhood and their flow patterns. 
Besides, the choice of parameters significantly influ-
enced segregation results. For example, with a fixed β, 
in the process of increasing α from 0.0 to 1.0, we observe 
a progressively shallower V-shaped curve along the time 
dimension. And by controlling the bandwidth in the 
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Figure 6. Statistical difference between black-white FSxPy (interested parameters are α,β,Time (slot) t) and DDSxPy (the interested 
parameter is bandwidth) (FSxPy – DDSxPy): a) α=0.0 and β=1.0; b) α = 0.2 and β = 1.0; c) α = 0.4 and β = 1.0; d) α = 0.6 and β = 1.0; e) 
α = 0.8 and β = 1.0; f) α = 1.0 and β = 1.0.
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distance decay method or the ω i; ið Þ in the topology- 
based method would boost or weaken the difference 
between FSxPy and the other two conventional segrega-
tion indices.

In the case study, we also found that the black-white 
FSxPy results of B-neighborhoods change significantly 
over time. But we need to interpret this change behavior 
with caution. We note that at 12:00, the FSxPy of 

B-neighborhoods is significantly elevated on average, 
which clearly implies that the black-white exposure is 
improved. If we conclude that the B-neighborhoods are 
becoming less segregated at 12:00, we may overlook the 
other side of the inequality. By combining the flow patterns 
shown in Section 5.1, we can see that reduction in segrega-
tion comes at the cost of distance and time for 
B-neighborhoods users, who must travel a longer distance 

Figure 7. The Equal Lines of the new and old indices: a) FSxPy vs BSxPy; b) FSxPy vs. DDSxPy.

Figure 8. Map of Differences between two black-white exposure index (FSxPy – BSxPy) at the time a) 4:00 and b) 12:00.
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to get to other neighborhoods (as shown in Figure 4). 
Therefore, we cannot rely on one dimension of the index 
alone but need to integrate other dimensions to study the 
underlying segregation or inequality mechanism.

We demonstrated how to include the population 
mobility patterns into segregation indices and how the 
flow-based segregation indices differ from conventional 
indices. We also conducted a systematic comparison 
study and provided a baseline for the future segregation 
study with flow data. But there are still some limitations, 
and future work needs to be done. First, we did not 
determine the α and β for the Chicago area because of 
the absence of proper data. As mentioned in section 4.2, 
α and β represent the proportion of the population of 
their own unit in the population mixing process for the 
most and least active neighborhoods at all observed 
times, respectively. In the future, we plan to use the 
residence and workplace surveys from the U.S. census 
bureau to estimate α and β. But when determining the 
value of α and β for one study, we also need to consider 
the spatial scale (level) of the study area. For example, if 
our study units change from a neighborhood level to 
a county level, the impact of population flow on the 
demographic composition of each unit tends to 
decrease. Therefore, a reasonable α at the county level 
should be larger than α at the neighborhood level.

Second, we use only Twitter data to demonstrate 
the proposed method in Chicago city. Twitter data has 
limitations. Biases in the data (e.g. the underrepresen-
tation of older populations) and the failure to associ-
ate users with socioeconomic attributes (e.g. we do 
not know the Twitter user’s racial/ethnic information) 
significantly limit its effectiveness and applications. 
One of the pressing issues is how to mitigate the 
representative bias of Twitter data. In the future, we 
want to conduct more studies on the representative-
ness of Twitter data and verify our method’s extend-
ibility using other flow datasets, such as taxi data and 
phone call records. On the other hand, to get 
a complete picture of the improvements in integration 
in Chicago with the integration of mobility data, we 
need to calculate the exposure index proposed in this 
paper in more cities to establish a comparative 
benchmark.

Finally, while we use the mobility data and its structure to 
enrich the exposure index, we do not extend its inherent 
concept. According to Massey and Denton (1988)’s defini-
tion, the exposure index only depicts the potential contact 
probability, not the actual contact and engagement of two 
groups. With the introduction of flow data, we still cannot 
distinguish whether there is a real interaction between the 
users. Clearly, there is room for future research in this direc-
tion. When measuring segregation, we need to look beyond 

single segregation indices to describe the two groups’ segrega-
tion in a broader context. In the future, we want to find the 
association between the population flow and the actual 
engagement of groups.

7. Conclusion

In summary, we proposed a method to add population 
mobility patterns to conventional segregation indices to 
portray the dynamics of segregation over time and 
space. From the systematic comparison of indices, we 
demonstrated that neighborhood flow networks, hier-
archical structure information, time information, and 
the choice of parameters are all crucial factors to the 
segregation estimation. The segregation index calcula-
tion is a valuable reference to identify segregated popu-
lations and areas, but understanding its mechanism 
needs a multi-dimensional approach. This study facil-
itates the broader use of flow data in segregation 
research. It provides a powerful tool for urban planners 
to gain a more comprehensive understanding of the 
dimension of segregation dynamics.
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