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ABSTRACT

The Segregation Index quantifies the degree of segregation of social groups or classes. Because of the
increasing use of fine-grained spatiotemporal activity and flow data, the conventional segregation
measurements’ inclusiveness is challenged. We add population flow to the conventional place-based
spatial exposure index to identify spatiotemporal segregation changes. Specifically, we considered
the population-flow network, hierarchical structure, and time. In Chicago’s demonstration case study,
we first used the time-dependent Twitter Origin-Destination flow matrices and their hierarchical
structure information to estimate interactions between areal units at the neighborhood level. Then
we computed the new population composition of units based on their interactions with other units
and estimated the proposed spatiotemporal exposure index for different times. Finally, we system-
atically compared their differences with the conventional indices at global and local scales to see how
population-flow patterns affect the exposure index. The results show that the population-flow
patterns reflect valuable information in neighborhood interactions in temporal and spatial dimen-
sions, but it is missing information in the conventional segregation computations. Furthermore, we
emphasize that the hierarchical structures of flow patterns and the choice of appropriate parameters
are also important factors for a rational segregation evaluation.

ARTICLE HISTORY
Received 28 December 2020
Accepted 5 August 2021

KEYWORDS
Spatiotemporal exposure
index; flow network;
hierarchical structure;
spatiotemporal activity and
trajectory data; residential
segregation

1. Introduction

Spatiotemporal activity and trajectory big data play an
increasingly important role in measuring the degree of
segregation of social groups or classes (Farber et al.,
2015; Wong & Shaw, 2011; Yip et al, 2016). Social
segregation implies a lack of communication between
groups and indicates an uneven distribution of popula-
tion or resources and varying interactions. Due to data
limitations, conventional segregation studies rely heav-
ily on census data and focus on static residential spaces
(Kwan, 2009). Over the past decade, spatiotemporal
activity and trajectory data helped researchers to char-
acterize changes in individual or group activity spaces
(D. Wang et al, 2012) and flow patterns (Gao et al,,
2013; Guo et al.,, 2012) at different time scales (Silm &
Ahas, 2014). The observed people’s movement connects
the city’s various spaces and creates an entire network of
interactions. In turn, the population-flow network and
its interaction information are instrumental to our
understanding of cities (Batty, 2013).

However, flow patterns, which contain interaction
information, have not been fully investigated in segre-
gation studies. Our first question focuses on methodol-
ogy: how can we incorporate flow patterns into
conventional segregation calculations with minimal

modifications of conventional formulas? Our second
question is about observing indices from
a comparative perspective: when comparing the new
index to the conventional one, where and when do the
two exhibit significant differences? What factors influ-
ence the extent of their differences? Answering the
above questions will allow us not only to build
a comparable system to link traditional research and
current research with new data, to form a succession
and continuation of research, but also to provide
a baseline for using the richer spatiotemporal activity
and flow data.

We try to incorporate time-dependent population-
flow patterns into conventional segregation indices
computation. Specifically, we use the information on
the flow network, time, and hierarchy structure to
estimate interactions between areal units. By utilizing
more flow information, we expect to comprehensively
evaluate the interactions and then compute the segre-
gation more accurately. Also, we also systematically
compare the new flow-based segregation index with
the conventional index. Based on the comparison
results, we want to understand better the impact of
including population-flow patterns into the segrega-
tion indices.
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We organize this paper as follows:

e Section 2 briefly reviews the development of the
segregation index and the progress of methods
using new data.

o Section 3 covers the study area and demonstration
data.

e Section 4 illustrates the methodology used in this
paper, including how to construct flow patterns,
compute the segregation with flow data, and the
comparison method.

e Section 5 shows the results. We first conducted
a descriptive analysis of flow patterns of different
neighborhood types in the Chicago area. We then
compared the segregation index changes after
incorporating flow patterns at both the global and
local scales.

o Sections 6 shows the implications of adding flow
data to segregated studies and insights from the
comparative results. We also provided some future
research plans.

e Section 7 gives a brief conclusion.

2. Literature review

The temporal and spatial perspective provided by geo-
graphers is far-reaching for quantifying segregation.
Since the dissimilarity index (Duncan & Duncan,
1955) was first designed, many segregation indices
have been proposed. Much literature has continually
criticized, improved, and generalized these segregation
indices by considering areal units’ spatial arrangement/
structure in the study area when evaluating segregations
(Yao et al,, 2019). Spatial interactions are the most
discussed spatial structure in the literature. Without
spatial interactions, the corresponding segregation
degree depends only on the areal unit’s demographic
composition. The segregation index will not change,
even if the areal units are shuffled into different spatial
arrangements, because the shuffle will not change areal
units’ own demographic composition (White, 1983).
Researchers refer to the problem of disengaging from
spatial arrangements as the checkerboard problem
(Morril, 1991; Wong, 1993). How to accurately describe
these spatial interactions between units becomes cru-
cialto solving the checkerboard problem.

There are two main classes of methods to describe
these interactions. One is based on spatial proximity
functions, and the other is based on topology or geometry
information. The spatial proximity functions follow the
principle of distance decay and assume that the farther
the distance between two areal units, the weaker their
interactions. White (1983) suggested four proximity

functions, including negative exponential functions and
inverse distance functions with different parameter set-
tings. With an empirical comparison between these
proximity functions, White concluded that the issue of
choosing appropriate proximity function forms and
parameters is still not yet resolved. Because there is no
better way to select a spatial proximity function and its
related parameters, Reardon and O’Sullivan (2004) left
the choice to users. While generalizing his predecessor’s
work, they used a notation to represent this spatial proxi-
mity function in terms of decreasing distance. They also
emphasized that any desired proximity function could be
used in their proposed generalized framework. This fra-
mework is promising but left subsequent researchers with
the difficult task of quantifying the spatial proximity
function.

The second class of methods uses topology, or geo-
metry information, to describe spatial interactions
between areal units. A simple topology-based approach
is to use the binary form of contiguity. If areal unit i and
j are neighbors, their corresponding weight, w(i, ), is set
to 1, and 0 otherwise (Morril, 1991). Subsequently,
Wong (1993) incorporates geometry properties, such
as shape and area of units, to adjust the interactions.
Wong assumes that longer shared boundaries would
lead to a stronger interaction between two units.
Wong (1998) also proposed a notion of composite popu-
lation count (CPC), which mixing its neighbors’ popula-
tions into the target unit population. After the mixing
procedure, the new population composition is used in
the subsequent calculations. CPC is another way to
describe the probability of the target unit population
interacts with its neighbors’ population. In short, both
above classes of methods attempt to provide descrip-
tions of neighbor interactions and eliminate the check-
erboard problem.

Although these two estimation methods can solve the
checkerboard problem, their estimation of the interac-
tions is subjective. No matter how complex the mathe-
matical forms, there is no guarantee that their
interaction estimation reflects the actual social interac-
tion across units. With the development of information
technology, the accumulation of massive amounts of
spatiotemporal activity and trajectory data provides
new insights into modeling and estimating social inter-
actions. First, researchers emphasize expanding static
residential space into other socio-geographical spaces
(Kwan, 2013; Wong & Shaw, 2011; Yip et al.,, 2016).
Many studies have demonstrated, from different per-
spectives, that spatiotemporal big data can provide
information in addition to traditional survey data. For
example, Shelton et al. (2015) examined residents’
tweeting activity on both sides of the imaginary “Oth



Street Divide” from the perspective of a collective activ-
ity distribution. Q. Wang et al. (2018) analyze georefer-
enced tweets to compare the travel patterns for
50 U.S. cities by racial/ethnic groups. Park and Kwan
(2018) proposed the individual segregation index to
depict when and how much segregation people experi-
ence dynamically throughout a day. Second, researchers
emphasize the importance of the interaction between
physical and social space in the study of segregation.
Farber et al. (2015) resorted to spatiotemporal paths to
describe individual trajectories and further assessed
interaction-based segregation. Xu et al. (2019) used
phone call records to portray interpersonal communi-
cation intensity and then estimated social segregation
based on friendship networks. These examples show the
promise of using new data to describe the distribution of
activities or interactions between regions within cities.
However, current conventional segregation studies
do not fully explore the dynamic interaction informa-
tion from population-flow patterns. First, without chan-
ging the conventional segregation index formula,
population-flow networks have not been fully discussed.
We argue that a population-flow network can be easily
integrated into conventional segregation indices with
only a few uncomplicated transformations. The linkage
exists in the notions of the CPC (Wong, 1998) or popu-
lation density of the local environment (Reardon &
O’Sullivan, 2004) or local population intensity (Feitosa
et al.,, 2007). All notions emphasize the exchanges/inter-
actions between residents and their neighbors. Thus,
measuring the intensity of such interaction becomes
crucial for segregation computation. In the CPC notion,
the interactions between two areal units are estimated
based on their contiguity. In comparison, the other two
notions underscore the distance decay functions in the
estimation. Although researchers have made many
modifications to the contiguity or set up many distance
decay functions, the assessments are still artificial.
Second, collective-level interactions change with
time, and the temporal dynamics need more attention.
The traditional definition of interaction is fixed and
artificial in not only the spatial dimension but also in
the temporal dimension. For example, if using contigu-
ity to construct spatial interactions, one’s neighbors do
not change from ten years ago to ten years later. The
same problem exists for the method of distance decay
functions. As data becomes more abundant, researchers
have realized the necessity of focusing on temporal
dynamics in segregation studies (Kwan, 2013; Lee &
Li, 2017; Silm & Ahas, 2014); however, the temporal
variations in interactions between areal units have
received little attention. Equally as important, the
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temporal interaction variations tell us when interracial
contact is lower or higher. This temporal pattern can
help us better understand segregations in today’s fast-
paced and mobile world and can provide a basis for
reviewing integration and planning policies (Silm &
Ahas, 2014). If we add population-flow information to
estimate interactions, one’s neighbors can change with
commuters traveling to work in the short term and
change with the city’s development in the long run.
Therefore, using population flows to determine spatial
interactions can avoid the static problem of segregation
index.

Finally, the hierarchical structure of population flow
has received little attention in segregation studies. Due to
information technology and transportation accessibility,
residential segregation becomes less and less important.
The contacts with distant neighborhoods or central cities
shape the external connections of the residents.
Residential segregation cannot represent the segregation
status in other activity spaces. We should pay more
attention to the mobility of residents and their position
in social and physical networks (Browning & Soller,
2014). Some researchers have begun to analyze the rela-
tionship between realistic characteristics (e.g. socioeco-
nomic and demographic characteristics) and the
structural features of population-flow networks
(Dorman et al., 2020; Q. Wang et al., 2018), and then
used them to understand actual segregation and isolation
(Prestby et al., 2020). The hierarchical structure is one
way to evaluate the importance of different neighbor-
hoods because it consists of mobility networks between
these neighborhoods in the city. Bassolas et al. (2019)
used flow data to assess the hierarchical structures of 301
cities worldwide and identified different hotspot levels for
areas in each city. The study found that cities with a more
robust flow hierarchy have a higher degree of population-
mixing, extensive public transportation, and a higher
walkability level. Liu et al. (2018) found that the core-
peripheral flow structure is in accordance with the visi-
tors’ distribution in one area and affects the residents’
and visitors’ meeting probability. The hierarchical infor-
mation facilitates a comprehensive picture of segregation
within the urban’s current spatial layout. Thus, the seg-
regation indices with hierarchical structure information
can be a meaningful reference for urban planners.

3. Study area and data

The 77 Chicago neighborhoods (Chicago Data Portal,
n.d.) have three main racial/ethnic groups, including
approximately 29% non-Hispanic Black, 32.5% non-
Hispanic White, and 29% Hispanic. Based on the
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Figure 1. The Population Distribution of Three Groups within Chicago 77 Neighborhoods (100 persons/dot, population data source:

2012-2016 American Community Survey 5-year Estimates).

population information of 2012-2016 American
Community Survey 5-year Estimates, Figure 1 shows
the three groups of the population reside in Chicago.
On the map, the colors of aqua, red, and green dots
represent non-Hispanic Black, non-Hispanic White,

and Hispanic groups, respectively (100 persons per
dot). Like other metropolitan areas in the United
States, Chicago’s racial diversity has been generally
increasing at an overall level. But at the neighborhood
level, it still exhibits significant residential segregation



(Walker, 2018). The non-Hispanic Black population
group is predominantly located in the South and
West. In contrast, the non-Hispanic White population
group is primarily located in the North, and the
Hispanic population group is interspersed between
the other two groups.

Multiple spatiotemporal big data can be used to model the
population-flow pattern, such as taxi, phone call records, and
social media data (Hawelka et al, 2014; Tang et al, 2015).
However, each of these data has its own limitations. For
example, Twitter and taxi data are subject to representative-
ness bias, and phone call records are not easily available.
Because of our limited availability of data and funding, we
ended up using Twitter data to extract population move-
ments. We used Twitter Streaming Application
Programming Interface (API). We collected georeferenced
tweets within Chicago city from Oct.09 to Nov.16, 2016,
using the Twitter Streaming API. The Twitter users of these
tweets include tourists, residents, and commuters near the
study area. To compare data with the traditional residential
segregation, we must extract the residents’ users. We adopt
the algorithm in Luo et al. (2016) by checking whether the
user’s historical activity was clustered within the study area
during the evening (8:00 pm-8:00 am). Therefore, we also
collect each user’s historic tweets by the Twitter Timeline
API We got 3 million tweets for the demonstration study.
While some studies have supported the applicability of using
Twitter to extract collective population movements
(Lenormand et al., 2014), we must always be cautious of
the limitations of the Twitter data and the possible impact
on the results.

4. Methodology

4.1. Construct the time-dependent flow network
based on Twitter data

The time-dependent flow network is represented by an
origin-destination (OD) flow matrix with a time restric-
tion. Each element of the matrix represents the number
of flows between two areal units at time ¢. In theory, the
time variable ¢ can be continuous, meaning that the OD
flow matrix has its specific values for any infinitesimal
short time period. In practice, due to the limited amount
of flow data, we can use only longer periods to obtain
valid estimates of the OD flow matrix, such as 4 hours.
For example, for a given time f, we extend 2 hours
forward and backward, respectively, and use the flows
that happened in this extended period to construct the
OD flow matrix for time t.

We used the following steps to extract the OD flow
matrix at a given time t based on geotagged tweets.
According to Gao’s procedure (Gao et al, 2014), we
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first sequenced each Twitter user’s tweets by time, and
then take each of the two temporal consecutive tweets as
one valid move record, if the record satisfies two cri-
teria: 1) the time interval between two tweets is less than
4 hours and 2) the straight-line distance between two
tweets is longer than 100 meters (Liu et al, 2018).
Criterion 1 ensures each move record’s integrity as
much as possible based on Gao et al. (2014) inter-
tweeting time analysis and criterion 2 help eliminate
the uncertainty of the GPS signal. After extracting all
qualified moves, we used the “points in polygon” opera-
tion to determine each move’s origin and destination
neighborhood and kept only those moves which were
across neighborhood boundaries. Finally, we created
a time-dependent OD flow matrix by aggregating
moves according to their origin, destination, and speci-
fied time at the neighborhood level. In many studies, the
OD flow matrix is a measure of the interaction between
spatial units (Guo et al., 2012). Besides, the adoption of
the OD flow matrix as spatial interaction gives us a more
general framework that makes it possible to integrate
other movement data. We must note that the above-
mentioned time sequence construction method is only
one possible way to extract population movements, and
we do not exclude other flow extraction approaches
(Palchykov et al., 2015).

To provide a global overview of the interactions
among the three racial/ethnic groups in the case study,
we classified the 77 neighborhoods into four types
according to their demographic composition: non-
Hispanic Black-majority neighborhood, non-Hispanic
White-majority neighborhood, Hispanic-majority neigh-
borhood, and Mixed-neighborhood. A neighborhood is
classified as racially majority if one racial/ethnic group is
larger than the other two and accounts for more than 50%
of its population; if there are no racially majority groups,
it is classified as Mixed-neighborhood. For simplicity of
description, only the initials are used below to represent
the majority type: B-neighborhood, W-neighborhood,
H-neighborhood, and M-neighborhood.

4.2. Segregation indices with flow patterns

Measures of spatial segregation require defining the
spatial interactions between all pairs of units in region
R at time t. The difference between our proposed
extended spatiotemporal exposure index and spatial
indices lies in calculating spatial interactions. To
demonstrate our proposed extension method, we
applied it to the exposure index, which is an important
dimension of segregation assessment. Massey & Denton
defined exposure index to “measure the extent to which
minority and majority members physically confront one
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another by virtue of sharing a common residential area.”
For consistency, we used the notation from Reardon
and O’Sullivan (2004), but we use the traditional poly-
gon as the basic units (i.e. neighborhoods). Let R denote
the entire study region. Assume that R is split into
n non-overlapping areal units, which are indexed by
i or j. Suppose there are M racial/ethnic groups in
R (M = 3 in the case study), and we index them by
x or y, e.g. Black or White group. Let 7 denote popula-
tion. Use a tilde (~) to indicate the mixing procedure
between the target areal unit and other interacted units.
Also, use t to express the specified time. We have:

@,(i,7): flow size from unit i to unit j at time ¢.
w (i, j): the standardized interaction weight from unit
i to unit j at time £.
Ti x+: population size of group x in unit i at time ¢.
7;: population size in unit i at time ¢ (note

M
that 7;, = > Tjxy).
x=1

T, x¢: population size of group x in unit i at time
t after a mixing procedure.
T;s: population size in unit i at time ¢ after
a mixing procedure.
T, ;: population size of group x in R at time ¢ (note

n
that Tx,t = Z TiA,x,t)'
i=1
We assume that the strength of the spatial interac-
tions at time f is proportional to ¢,(i, ). If we set the

value of ¢,(i, i) to 0, then the composite population of
unit 7 at time ¢ can be expressed as 7;.

- 1 - .
Tit :W;Tﬁt¢[(l7])a (1)

where @:(i,-) = > ¢,(i,j) and ¢,(i,i) = 0. By moving
=1

®,(i,-) into the summation notation in Equation (1),
we get:

Ty = Zwt(ﬁj)'f;‘,n 2
j=1

wilir) = S5,

where

and Y wi(i,j)=1 and
i
w¢(i,i) = 0. Higher values of w(i,j) mean stronger
interactions from unit i to unit j at time . Equation
(2) is analogous to the spatial lag of population of unit
i at specified time ¢ (i.e. the weighted average of neigh-
bors’ population of unit i). Here, w;(i, j) is equivalent to
the elements in the row-standardized spatial weight
matrix at time ¢. However, it is worth noting that in
the flow-based spatial weight matrix, the number of

elements with values greater than zero (i.e. w(i,j)>0)
is much larger than those in the matrix constructed by
the contiguity-based method.

Although we set w(i,i) to zero, the flow-based
matrices we have constructed so far are sufficient to
compute the spatial dissimilarity index. The computa-
tion process does not involve w;(i, i), and we can see the
description of the spatial dissimilarity equation in
(Cortes et al., 2020) and (Wong, 1993). However, the
determination of w,(i,i) becomes crucial for Exposure
and Isolation index. In the literature, the equal weights
strategy (Wong, 1998) or the distance decay function
strategy (White, 1983) are common ways to determine
the w(i,i). These two approaches are, to some extent,
a compromise in the absence of real interaction data.
The resulting w(i, i) does not reflect the true weights and
does not describe the temporal variation of weights. We
propose a hierarchy-based strategy to estimate w,(i, i) to
measure the weights more accurately. Our assumption
is that the higher the rank of hierarchy the higher the
degree of mixing in the area (Bassolas et al., 2019), and
the lower the w,(i, ). This strategy has two steps:

Step 1) determines hierarchy-level (hotspot-level)
,hi(i), for each unit at time ¢ by the Lorenz curve method
(Bassolas et al., 2019). The Lorentz curve method
arranges the outflow size of all areal units of all times
in ascending order and plots them by normalizing the
cumulative number of units (x-axis) vs. the fraction of
total flow (y-axis). Then it takes the derivative of the
Lorenz curve at (1, 1) and extrapolates it to the point at
which it intersects the x-axis to get the threshold. We
assign h;(i) to k-level for the areal units on the x-axis
greater than this threshold (k starts from 1, which is the
highest hierarchy-level). Then we remove the units of
k-level and recalculate the threshold to obtain (k + 1)-
level. Repeat this process to assign h,(i) for all areal units
in each time until the threshold is close to zero or the
hierarchy-level reaches an upper limit m, and the rest of
unassigned units will go to the last level. In the case
study, we set the upper limit, m, to 6.

Step 2) derives w;(i,i) for unit i at time ¢ by its
hierarchy-level h(i). w;(i,i) is obtained by a piecewise
function in which each hierarchy-level k(i) is mapped
to an interval of [a,f] (0 < a < < 1). In practice, « is
the self-mixing rate for the most active unit (at the top
hierarchy-level) in the study area among all times.
Similarly, B is the self-mixing rate which is assigned to
the least active unit (at the bottom hierarchy-level)
among all times. According to Equation (3), the w,(i, i)
is a value between « and 8 which represents the self-
mixing rate in the population mixing procedure. When
target unit i interacts more actively with other units at
a time f, w,(i,i) will shift toward «, indicating the



decreasing influence of its own population size in the
mixing procedure. Conversely, when the target unit
i becomes less active, the self-mixing ratio moves toward
B. To get w(i,i) according to hierarchy-level, we are
using a piecewise function as Equation (3):

f—a

we(i, i) = a+ (he; — 1)m_ !

3)

where m is the total hierarchy level. Note that, after

getting the new w(i,i), we need to adjust (shrink)

other elements in the same row with w,(i, i) to ensure

that > w(i,j) = 1. After obtaining the flow-based spa-
j

tial weight matrix at time ¢, we can then compute the
flow-based segregation via Equation (4), referred to as
the Flow-based Spatial Exposure Index (FSxPy). For
comparison, we also compute 1) the Boundary-based
Spatial Exposure Index (BSxPy) (Cortes et al.,, 2020;
Wong, 1993) and 2) the Distance Decay-based Spatial
Exposure Index (DDSxPy) (Morgan, 1983). BSxPy and
DDSxPy are calculated by Equation (5), and they con-
struct the interaction weights by using the length of
shared boundaries and the distance decay function,
respectively. In addition to the different methods of
constructing spatial weight matrices, they do not have
temporal subscripts, meaning that these spatial weight
matrices do not change with time. To demonstrate the
basic mechanism of the algorithm, we use a hypothetical
example to show how flow impacts the BSxPy and
FSxPy in a typical weekday. See Table Al in Appendix.

n -
Tixt Tiyt
* ;V() i=1 Tx,t Tit ( )
p — i@@ (5)
v T, 7

i=1

Equations (4) and (5) are global indices, which provide
one summarized index for the entire study area. To
investigate the local variation of differences, we choose
the local variant of spatial exposure index, as shown in
Equation (6) (Feitosa et al., 2007; Wong & Shaw, 2011):

. Tixt '~f‘, ot
WPy t) = 220 22 (6)
xt  Tit

4.3. Comparative inference

We compare the segregation indices mentioned in the
previous section. For any set of comparisons, we use the
simulation approach to test whether there is a statistical
difference. This simulation approach is an extension of
the “systematic” inference approach described in (Cortes
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etal,, 2020). The “systematic” approach adds randomness
to the current population distribution and calculates seg-
regation for each simulation. In the step of adding ran-
domness, it draws samples from a multinomial
distribution, with the success probabilities being the pro-
portions of the population of our interested racial/ethnic
group in each areal unit, and with the number of inde-
pendent trials being the total population of our interested
racial group in the entire study area. For any of the indices
in the comparison, we conduct 9999 “systematic” simula-
tions, and eventually, we generate two simulating distri-
butions (each contains 9999 simulated results) for one
comparison process. For each simulating distribution, we
use the mean value as its point estimate and the Highest
Density Interval (HDI) at a certain significance level as its
most credible interval (Kruschke, 2014, p. 87). In practice,
given a significance level s, (e.g. 5%), the HDI is defined
by the s,/2 and (1 — s,/2) percentiles of the simulating
distribution. During a comparison, if two HDIs intersect,
we infer that there is no difference between two calculated
indices. Otherwise, the difference of the two indices
(referred as indices distance) is calculated as the difference
of the two point estimates. However, the variance of the
difference between the two point estimates is not calcu-
lated in this paper because it is not the main concern in
the context. In this article, we choose 5% as the signifi-
cance level and we will use djo5 to denote the indices
difference in the following context as in Figure 2.

5. Results
5.1. Descriptive analysis of Twitter flow data

Based on the neighborhood classification method in
Section 4.1, we classified the 77 neighborhoods into
four types of neighborhoods (i.e. B-, W-, H- and
M-neighborhood). Table 1 shows the number, percen-
tage of the total population, and outflow for each type of
neighborhoods. We see that a substantially larger share
of total Twitter outflows originated in the W- than in
the B- and H-neighborhoods, with 28% of the popula-
tion contributing 63% of Chicago’s total Twitter out-
flows. It could be a concrete manifestation of the digital
divide in different types of neighborhoods or reflect that
the White population tends to enable their geocoding in
tweets more than other racial/ethnic populations do.
Table 2 shows the row-standardized flow percentage
between the four neighborhoods’ types, the row represent-
ing the origin and the column representing the destination.
We find that outflows most happen between the same type
of neighborhoods (diagonal elements are all more than
50%) except for the H-neighborhood. The outflow from
H-neighborhood is mainly drawn to the W- and
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Figure 2. Two scenarios of simulating distribution comparison. The HDI of each distribution is the horizontal line drawn at the bottom:
a) Since the two HDIs do not intersect, we say that the point estimate of blue distribution is statistically significantly less than its
comparing index (green distribution). Their indices distance is calculated as the difference of the two point estimates, as marked by
do.0s; b) Since the two HDIs intersect, we say that the point estimate of blue distribution is not statistically significantly different from
its comparing index (green distribution).

Table 1. Basic statistics of four types of neighborhoods regarding count, percentage of the population, and percentage of twitter

outflows.

B- W-

H- M- Total

Neighborhood Counts 28 18
770,809 (28%)
156,085 (63%)

Population Size (%)
Twitter Outflow Size (%)

694,770 (26%)
17,262 (7%)

16 15 77
557,613 (21%) 691,420 (25%) 2,714,612 (100%)
20,069 (8%) 54,499 (22%) 247,915 (100%)

Table 2. The row standardized percentage of flow size between
four types of neighborhoods.

To Total outflow
From B- W- H- M- size

B- 59% 14% 13% 14% 17,262 (100%)
W- 2% 83% 4% 11% 156,085 (100%)
H- 10% 36% 29% 25% 20,069 (100%)
M- 4% 33% 9% 54% 54,499 (100%)

M-neighborhoods. Second, the percentage of outflow is
asymmetric across different types of neighborhoods. For
example, 14% of total outflow from B-neighborhood goes
to W-neighborhoods, but conversely, only 2% of total
outflow from W-neighborhood is destined for
B-neighborhoods. Similarly, there is a significant asymme-
try in the proportion of outflows between H- and
W-neighborhoods (36% vs. 4%). It is clear that
W-neighborhoods are the most popular destinations in
Chicago city. The asymmetry pattern is consistent with
Q. Wang et al’s finding (2018).

Figure 3 shows the average outflow size of four
neighborhood types on a typical weekday and weekend.
Figure 4 shows their average travel distance. We find
that more flows came from the W-neighborhoods than
from the other three types of neighborhoods at any time

during a typical weekday or weekend (Figure 3(a,b)). In
contrast, the distance traveled from the W- neighbor-
hoods are significantly shorter than that of the other
three types of neighborhoods (Figure 4(a,b)). This
observation is similar to Huang & Wong’s finding
(Huang & Wong, 2016), which claimed Twitter users
of poor communities in D.C. had larger activity spaces
than the other wealthier groups. The longer travel dis-
tances of the disadvantaged groups are mainly caused by
the spatial mismatch of their work location and resi-
dence location (Easley, 2018). Since the general activity
space represented by Twitter data includes work loca-
tions, we observed the effects of long work commutes
for residents in the B-neighborhoods.

Although the average outflow size and travel distance
on weekdays have similar trends with that on weekends,
we also see some differences. For example, weekday
outflow curves show two flow peaks (at 14:00, 19:00 in
Figure 3(a)) while weekends show only one (at 14:00 in
Figure 3(b)). Besides, the weekend maximum peak flow
is 44% (i.e. (2.08k-1.16k)/2.08k) less than the weekday
peak flow. This discrepancy of weekday and weekend
travel patterns is also reflected in taxi and phone call



2.2K

2K
1.8K
1.6K
1.4K
1.2K

Outflow size

0.8K
0.6K
0.4K

02K N L 4 iENE NS mmETs
= e g :
012345678 9101112131415161718192021222324
Time(Hour)

a)

-

—

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 9

2.2K — B
2K = I/
1.8K =H:
M-
1.6K
@
H 14K
S e 116k
E K e =
3 v =
O 08K / :
0.6K 1
0.4K \ !
1
0.2K T s 5 o P e
0K e - — Ll | e p——
01234567 89101112131415161718192021222324
Time(Hour)
b)

Figure 3. Average Outflow Size on Weekday and Weekend by Origin Neighborhood’s Type: a) average outflow size on a typical

weekday; b) average outflow size on a typical weekend.

10

I
@ \ A A /
w . FN - — ]
£ { N 7 E /f
\ V] X S —
=] T=F 7
= / v
>
S 4 / N
o " \
=] - =S
E ——
¢ 2
<
0
01234567 89101112131415161718192021222324
Time(Hour)
a

e,
@
o
=
m
g 61/
o
4
g a
@ /1
& —_— o
o
¢ 2
x
0
01234567 89101112131415161718192021222324
Time(Hour)
b)

Figure 4. Average Travel Distance in Weekday and Weekend by Origin Neighborhood'’s Type: a) average travel distance on a typical

weekday; b) average travel distance on a typical weekend.

records datasets (Calabrese et al., 2011; Zhu et al., 2017).
For demonstration purposes in the Chicago case study, we
only use the weekday flow data to estimate the interactions
between neighborhoods when calculating the FSxPy.

5.2. Comparison result of global exposure index

According to Section 4.2, we know that the major
difference between the global exposure indices of
FSxPy, BSxPy, DDSxPy is their ways of constructing
the spatial weight matrix. Therefore, we can focus on
the parameters of construction methods when com-
paring FSxPy to BSxPy or FSxPy to DDSxPy. As an
example, we calculated only the exposure index of
black to white racial/ethical groups. We first compare
black-white FSxPy to BSxPy in Figure 5. From
Figure 5(a-f), the x-axis and y-axis represent the

time parameter ¢t of FSxPy and the parameter of
w(i,i) of BSxPy, respectively. The z-axis represents
their indices distance (dyos) with FSxPy as the refer-
ence index. We also added the 2-D heat map of the
difference surface in Appendix Figure Al. For illus-
tration purposes, we assume that if one unit has the
bottom level in the hierarchical flow structure, it has
no interactions with other units. So, we set 8 equal to

1.0 and only change « in FSxPy. Increasing « from
0.0 to 1.0 is the process of weakening the influence
of flow data in the weights. Figure 5(a-f) show how
the gradually increasing « affects the indices distance
between black-white FSxPy and BSxPy. We use gra-
dient colors from red to blue to represent the high
(positive) to low (negative) values of indices distance.
We also use the same color to plot contours of
indices distance on top of each 3-D figure. But we
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use a black line to indicate dyos equal to 0.0, and it
means the FSxPy index has the same segregation
results as BSxPy.

From Figure 5(a-e), we see a clear temporal pattern
along the x-axis (time t). For any given w(i, i) of BSxPy
(x-axis), the indices distance, dyos, reaches the lowest
value at 4:00 and maximum value at some point between
12:00, 20:00. This finding echoes with the outflow pattern
in Figure 3(a). Besides, for any given time t (y-axis),
a greater indices distance appears when w(i, i) increases
of BSxPy. From Figure 5(a—f) contour plots, we find that
the area of red contour lines (i.e. dys5>0) is shrinking
until it disappears when a = f§ = 1.0 in Figure 5(f).

Similarly, we compared black-white FSxPy and
DDSxPy (Figure 6(a-f) and Appendix Figure A2 for
2-D heat map). In DDSxPy, we use the Gaussian kernel
with the bandwidth parameter to model the distance
decay interactions. We let the y-axis represents the band-
width in Figure 6(a—f); the x- and z-axis have the same
meanings as in Figure 5. When bandwidth increases, the
Gaussian kernel will become flattened, which corre-
sponds to a smaller w(i, i) in BSxPy. Thus, the bandwidth
of DDSxPy and w(i, i) of BSxPy have an inverse effect on
dy.95. For example, two surfaces in Figures 5(a and 6(a))
are oriented in different directions. Except for the orien-
tation, the dp 95 3-D surface in Figure 6 exhibits the same
V-shaped pattern in the time dimension as in Figure 5.
Besides, we could identify the points where three indices
have no differences by following the black contours lines.

To better examine the effect of the variation of para-
meter «, we draw the contours of dj 95 = Ofor each of the
six 3-D plots in Figures 5 and 6 in one plot (see Figure 7(a,
b)). We can see that a singularity is formed at 4:00 when
the results of FSxPy are always less than or equal to BSxPy
and DDSxPy, regardless of what ato be chosen. It corre-
sponds to the flow data of Figure 3(a), in which the flow
reaches its minimum at 4:00. Population returns to its
place of residence at that time, the exchange between
areal units reaches its minimum. Accordingly, residential
segregation will dominate when the interaction weights of
FSxPy reach a minimum value. However, the weight
construction method of using boundary length (BSxPy)
or the distance decay function (DDSxPy) ignores these
decreasing interactions at 4:00, resulting in a biased
(higher positive bias) exposure result.

5.3. Comparison result of local exposure index

We employed Equation (6) to compare the local version
of black-white FSxPy and BSxPy. Two maps were cre-
ated to show the indices distance heterogeneity at the
local scale at the time 4:00 (2:00-6:00) and 12:00 (10:00-

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 1

2:00) (Figure 8). The colors of green to red represents
the difference between FSxPy and BSxPy from low to
high, and different infill styles describe the neighbor-
hood types.

In Figure 8, we find that the spatial clustering of the
negative indices distance regions (green clusters in
Figure 8(a)) or positive indices distance regions (red clus-
ters in Figure 8(b)) are almost identical to the distribution
of B-neighborhoods. It means that black-white FSxPy
results of B-neighborhoods are significantly less than
the corresponding BSxPy results at 4:00 (Figure 8(a))
and significantly larger than BSxPy at 12:00 (Figure 8
(b)). In contrast, the indices distance between black-
white FSxPy and BSxPy was not statistically significant
for ~ almost all =~ W-neighborhoods, = meaning
W-neighborhoods are barely affected by the flow pat-
terns. This seems to contradict the fact that the outflow
from W-neighborhoods is significantly larger than that of
B-neighborhoods (Figure 3(a)) if we assume that more
flow leads to more impact on segregation computation.
However, considering that users from B-neighborhoods
are more likely to travel to W-neighborhoods and the
reverse does not stand (Table 2), it is not surprising that
adding flow patterns have more effect on
B-neighborhoods than W-neighborhoods.

6. Discussion

It is promising to introduce the population mobility
network, hierarchical structure, and temporal informa-
tion into the conventional segregation indices. This
paper provides a general framework to support
a timely and dynamic response to segregation changes.
The proposed population-flow-based method has
unique advantages over interaction estimation methods
based on topology, geometry properties, or distance
decay functions. It can better reflect the impacts of
population movements on the degree of segregation in
both the temporal and spatial dimensions. First, the
V-shaped curve along the time dimension demonstrates
the dynamic nature of the temporal dimension in the
case study. It is consistent with our expectation of
population movement over time. Second, the spatial
clustering patterns in Figure 8 clearly show the hetero-
geneity of impacts of population flow in the spatial
dimension, and this local variation is closely related to
the type of the neighborhood and their flow patterns.
Besides, the choice of parameters significantly influ-
enced segregation results. For example, with a fixed S,
in the process of increasing « from 0.0 to 1.0, we observe
a progressively shallower V-shaped curve along the time
dimension. And by controlling the bandwidth in the
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distance decay method or the w(i,i) in the topology-
based method would boost or weaken the difference
between FSxPy and the other two conventional segrega-
tion indices.

In the case study, we also found that the black-white
ESxPy results of B-neighborhoods change significantly
over time. But we need to interpret this change behavior
with caution. We note that at 12:00, the FSxPy of

B-neighborhoods is significantly elevated on average,
which clearly implies that the black-white exposure is
improved. If we conclude that the B-neighborhoods are
becoming less segregated at 12:00, we may overlook the
other side of the inequality. By combining the flow patterns
shown in Section 5.1, we can see that reduction in segrega-
tion comes at the cost of distance and time for
B-neighborhoods users, who must travel a longer distance
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to get to other neighborhoods (as shown in Figure 4).
Therefore, we cannot rely on one dimension of the index
alone but need to integrate other dimensions to study the
underlying segregation or inequality mechanism.

We demonstrated how to include the population
mobility patterns into segregation indices and how the
flow-based segregation indices differ from conventional
indices. We also conducted a systematic comparison
study and provided a baseline for the future segregation
study with flow data. But there are still some limitations,
and future work needs to be done. First, we did not
determine the « and f for the Chicago area because of
the absence of proper data. As mentioned in section 4.2,
« and f3 represent the proportion of the population of
their own unit in the population mixing process for the
most and least active neighborhoods at all observed
times, respectively. In the future, we plan to use the
residence and workplace surveys from the U.S. census
bureau to estimate « and . But when determining the
value of « and S for one study, we also need to consider
the spatial scale (level) of the study area. For example, if
our study units change from a neighborhood level to
a county level, the impact of population flow on the
demographic composition of each unit tends to
decrease. Therefore, a reasonable « at the county level
should be larger than « at the neighborhood level.

Second, we use only Twitter data to demonstrate
the proposed method in Chicago city. Twitter data has
limitations. Biases in the data (e.g. the underrepresen-
tation of older populations) and the failure to associ-
ate users with socioeconomic attributes (e.g. we do
not know the Twitter user’s racial/ethnic information)
significantly limit its effectiveness and applications.
One of the pressing issues is how to mitigate the
representative bias of Twitter data. In the future, we
want to conduct more studies on the representative-
ness of Twitter data and verify our method’s extend-
ibility using other flow datasets, such as taxi data and
phone call records. On the other hand, to get
a complete picture of the improvements in integration
in Chicago with the integration of mobility data, we
need to calculate the exposure index proposed in this
paper in more cities to establish a comparative
benchmark.

Finally, while we use the mobility data and its structure to
enrich the exposure index, we do not extend its inherent
concept. According to Massey and Denton (1988)’s defini-
tion, the exposure index only depicts the potential contact
probability, not the actual contact and engagement of two
groups. With the introduction of flow data, we still cannot
distinguish whether there is a real interaction between the
users. Clearly, there is room for future research in this direc-
tion. When measuring segregation, we need to look beyond

single segregation indices to describe the two groups’ segrega-
tion in a broader context. In the future, we want to find the
association between the population flow and the actual
engagement of groups.

7. Conclusion

In summary, we proposed a method to add population
mobility patterns to conventional segregation indices to
portray the dynamics of segregation over time and
space. From the systematic comparison of indices, we
demonstrated that neighborhood flow networks, hier-
archical structure information, time information, and
the choice of parameters are all crucial factors to the
segregation estimation. The segregation index calcula-
tion is a valuable reference to identify segregated popu-
lations and areas, but understanding its mechanism
needs a multi-dimensional approach. This study facil-
itates the broader use of flow data in segregation
research. It provides a powerful tool for urban planners
to gain a more comprehensive understanding of the
dimension of segregation dynamics.
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