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Abstract
Wasserstein Barycenter is a principled approach
to represent the weighted mean of a given set
of probability distributions, utilizing the geome-
try induced by optimal transport. In this work,
we present a novel scalable algorithm to approxi-
mate the Wasserstein Barycenters aiming at high-
dimensional applications in machine learning.
Our proposed algorithm is based on the Kan-
torovich dual formulation of the Wasserstein-2
distance as well as a recent neural network ar-
chitecture, input convex neural network, that is
known to parametrize convex functions. The dis-
tinguishing features of our method are: i) it only
requires samples from the marginal distributions;
ii) unlike the existing approaches, it represents
the Barycenter with a generative model and can
thus generate infinite samples from the barycenter
without querying the marginal distributions; iii)
it works similar to Generative Adversarial Model
in one marginal case. We demonstrate the effi-
cacy of our algorithm by comparing it with the
state-of-art methods in multiple experiments. 1

1. Introduction
The Wasserstein barycenter is concerned with the (weighted)
average of multiple given probability distributions. It is
based on the natural geometry over the space of distribu-
tions induced by optimal transport (Villani, 2003) theory and
serves as a counterpart of arithmetic mean/average for data
of distribution-type. Compared to other methods, Wasser-
stein barycenter provides a principled approach to average
probability distributions, fully utilizing the underlying geo-
metric structure of the data (Agueh & Carlier, 2011). During
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the past few years, it has found applications in several ma-
chine learning problems. For instance, in sensor fusion,
Wasserstein barycenter is used to merge/average datasets
collected from multiple sensors to generate a single col-
lective result (Elvander et al., 2018). The advantage of
Wasserstein barycenter is its ability to preserves the modal-
ity of the different datasets, a highly desirable property in
practice (Jiang et al., 2012). Wasserstein Barycenter has
also been observed to be effective in removing batch effects
of the sensor measurements (Yang & Tabak, 2019). It has
also found application in large scale Bayesian inference
for averaging the results from Markov chain Monte Carlo
(MCMC) Bayesian inference carried out over subsets of
the observations (Srivastava et al., 2015; Staib et al., 2017;
Srivastava et al., 2018). It has also been useful in image
processing for texture mixing (Rabin et al., 2011) and shape
interpolation (Solomon et al., 2015).

The bottleneck of utilizing Wasserstein barycenter in ma-
chine learning applications remains to be computational.
Indeed, when the data is discrete, namely, the given prob-
ability distributions are over discrete space (e.g., grid), the
Wasserstein barycenter problem can be solved using lin-
ear programming (Anderes et al., 2016). This has been
greatly accelerated by introducing an entropy term (Cuturi
& Doucet, 2014, Algorithm 1) (Solomon et al., 2015) as in
Sinkhorn algorithm (Cuturi, 2013). However, these meth-
ods are not suitable for many machine learning applications
involving distributions over continuous space. First of all,
it requires discretization of the distribution to implement
these methods and thus doesn’t scale to high dimensional
settings. Secondly, in some applications such as MCMC
Bayesian inference (Andrieu et al., 2003; Srivastava et al.,
2018) the explicit formulas of the distributions are not acces-
sible, which precludes these discretization-based algorithms.
When the support atoms are free to move, there are algo-
rithms that interchangeably optimize the support weights
and locations (Cuturi & Doucet, 2014, Algorithm 2) (Luise
et al., 2019; Altschuler & Boix-Adsera, 2021) which can
also be formulated in stochastic optimization framework
(Claici et al., 2018). But these free-support methods be-
come computationally highly expensive when the number
of support points is large.
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https://github.com/sbyebss/Scalable-Wasserstein-Barycenter


Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks

Contribution: We propose a computationally efficient and
scalable algorithm for estimating the Wasserstein barycen-
ter of probability distributions over continuous spaces. Our
method is based on a Kantorovich-type dual characterization
of the Wasserstein barycenter, which involves optimization
over convex functions, and the recently introduced input con-
vex neural networks (ICNN) (Amos et al., 2017; Chen et al.,
2018b), that provides powerful representation of convex
functions. Remarkably, in our framework, the (weighted)
barycenter is represented by a generator network (Goodfel-
low et al., 2014; Arjovsky et al., 2017), that allows charac-
terization of continuous distributions and fast and unlimited
sampling from barycenter. We prove the consistency of our
formulation in Proposition 1, and demonstrate its perfor-
mance and its scaling properties in truly high-dimensional
setting through extensive evaluations over various bench-
mark experiments including synthetic and real data-set and
provide comparisons with several state-of-art algorithms:
Korotin et al. (2021b), Li et al. (2020), Cuturi & Doucet
(2014). Our experiments reveal significant improvement in
estimating the barycenter in high-dimensional setting com-
pared to most existing algorithms. We also showcase the the
ability of our method to perform as a generative adversarial
network (GAN) in the one marginal case and propose a
heuristic extension to learn barycenter of arbitrary weights
through a single training process.

Related work: Our proposed algorithm is closely related
to continuous Wasserstein barycenter proposed by Li et al.
(2020) and Korotin et al. (2021b). Similar to our approach,
both of them are based on dual formulation of the Wasser-
stein barycenter problem and representing the potential func-
tions with neural networks. However, the approach in Li
et al. (2020) does not restrict the potential functions to be
convex. Instead, an entropic or l2 regularization term is
added to ensure that the optimal potential functions are ap-
proximately convex. The addition of the regularization term
introduces undesirable bias error which becomes severe in
high-dimensional problems as shown in Figure 5-6 and also
reported in (Korotin et al., 2021b, Table1-4) (Li et al., 2020,
Section 5). The approach in Korotin et al. (2021b) restricts
the potentials to be convex using ICNN, however, it includes
a cycle regularizer term to ensure the potential functions
are dual conjugate. Their formulation also involves a con-
gruence regularizer to guarantee that the optimal potential
functions are consistent with the true barycenter. The con-
gruence regularizer requires selection of a priory probability
distribution that is bounded below by the true barycenter,
which is a non-trivial task. Moreover, the addition of the reg-
ularization terms distorts the nice optimization landscape of
the original problem. The problem may become non-convex
even for the simple setting of restriction to quadratic func-
tions (see Sec. G in supplementary material). In contrast,
our formulation does not involve additional regularization

terms and retains the optimization landscape of the original
problem. Moreover, a distinct feature of our algorithm is
representing the barycenter using a generative model which
allows a low-dimensional representation of the barycenter
and access to infinitely many samples, while both of these
methods represent the barycenter using the Monge maps
from the marginals, and limits the number of samples to the
number available from marginal distributions.

Earlier stochastic Wasserstein barycenter method (Claici
et al., 2018) also aims at calculating barycenters for con-
tinuous distributions using samples. However, they adopt
a semi-discrete approach that models the barycenter with a
finite set of points. That is, even though the marginals are
continuous, the barycenter is discrete. Several other sample-
based algorithms (Staib et al., 2017; Kuang & Tabak, 2019;
Mi et al., 2020) are also of semi-discrete-type. Most other
Wasserstein barycenter algorithms are for discrete distri-
butions and require discretization if applied to continuous
distributions. An incomplete list includes (Cuturi & Doucet,
2014; Benamou et al., 2015; Solomon et al., 2015).

The subject of this work is also related to the vast amount
of literature on estimating the optimal transport map and
Wasserstein distance (see (Peyré et al., 2019) for a complete
list). Closely related to this paper are the recent works
that aim to extend the optimal transport map estimation to
large-scale machine learning settings (Genevay et al., 2016;
Seguy et al., 2017; Liu et al., 2018; Chen et al., 2018a;
Leygonie et al., 2019; Xie et al., 2019). In particular, our
algorithm is inspired by the recent advances in estimation
of optimal transport map and Wasserstein-2 distance using
ICNNs (Taghvaei & Jalali, 2019; Makkuva et al., 2020;
Korotin et al., 2021a).

2. Background
2.1. Optimal transport and Wasserstein distance

Given two probability distributions ν, µ over Euclidean
space Rn with finite second moments, the optimal trans-
port (Villani, 2003) (OT) problem with quadratic unit cost
seeks an optimal joint distribution of ν, µ that minimizes
the total transport cost. More specifically, it is formulated
as W 2

2 (ν, µ) := minπ∈Π(ν,µ)

∫
Rn×Rn ‖x − y‖2dπ(x, y),

where Π(ν, µ) denotes the set of all joint distributions of
ν and µ. The square-root of the minimum transport cost
defines the celebrated Wasserstein-2 distance W2, which is
known to enjoy many nice geometrical properties compared
to other distances for distributions (Ambrosio et al., 2008).

The Kantorovich dual of the OT problem reads

1

2
W 2

2 (ν, µ) = sup
(φ,ψ)∈Φ

Eν [φ(X)] + Eµ[ψ(Y )], (1)

where Φ := {(φ, ψ) ∈ L1(ν) × L1(µ) ; φ(x) + ψ(y) ≤
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1
2‖x − y‖2, ∀x, y}. Let f(x) = ‖x‖2/2 − φ(x), then (1)
can be rewritten as

1

2
W 2

2 (ν, µ)=Cν,µ− inf
f∈CVX

{Eν [f(X)]+Eµ[f∗(Y )]} (2)

where CVX stands for the set of convex functions, Cν,µ :=
(1/2){Eν [‖X‖2] + Eµ[‖Y ‖2]}, and the f∗ is the convex
conjugate (Rockafellar, 1970) function of f . The formu-
lation (2) is known as the semi-dual formulation of OT.
The CVX condition restricts the search space for f which
becomes handy for design of optimization algorithms.

Remark 1 When both of the marginal distributions have
densities, Brenier’ Theorem gives that ∇f∗ is the optimal
transport map from µ to ν (Villani, 2003) and ∇f is the
optimal map from ν to µ.

2.2. Wasserstein Barycenter

Wasserstein barycenter is OT-based average of probability
distributions. Given a set of probability distributions µi, i =
1, 2, . . . , N and a weight vector a ∈ RN (ai ≥ 0, i =
1, 2, . . . , N and

∑N
i=1 ai = 1), the associated Wasserstein

barycenter is defined as the minimizer of

min
ν

N∑
i=1

aiW
2
2 (ν, µi) . (3)

The barycenter problem (3) can be reformulated as a linear
programming (Agueh & Carlier, 2011). However, the lin-
ear programming-base algorithms don’t scale well for high
dimensional problems. A special case that can be solved
efficiently is when the marginal distributions {µi} are Gaus-
sian. Denote the mean and covariance of µi as mi and Σi
respectively, then their Wasserstein barycenter is a Gaussian
distribution with mean being m =

∑N
i=1 aimi and covari-

ance Σ being the unique solution to the fixed-point equation
Σ =

∑N
i=1 ai(Σ

1/2ΣiΣ
1/2)1/2. In Álvarez-Esteban et al.

(2016), a simple however efficient algorithm was proposed
to solve for Σ.

2.3. Input Convex Neural Network

Input Convex Neural Network (ICNN) is a type of deep
neural networks architecture that characterize convex func-
tions (Amos et al., 2017). A fully ICNN (FICNN) leads to a
function that is convex with respect to all inputs.

x σ0 σ1 σ2 σL−2 σL−1

A0

A1 A2 AL−2 AL−1

W1 W2 W3 · · ·

· · ·

WL−2 WL−1
f(x, θ)

Figure 1: Fully input convex neural network (FICNN)

The FICNN architecture is shown in Fig. 1. It is a L-
layer feedforward neural network propagating following,

for l = 0, 1, . . . , L− 1

zl+1 = σl (Wlzl +Alx+ bl) , (4)

where {Wl} , {Al} are weight matrices (with the conven-
tion that W0 = 0), {bl} are the bias terms, and σl denotes
the entry-wise activation function at the layer l. Denote the
total set of parameters by θ = ({Wl} , {Al} , {bl}), then
this network defines a map from input x to f(x; θ) = zL.
This map f(x; θ) is convex in x provided 1) W1:L−1 are
non-negative; 2) σ0:L−1 are convex; 3) σ1:L−1 are non-
decreasing (Makkuva et al., 2020). We remark that FICNN
has the ability to approximate any convex function over
a compact domain with a desired accuracy (Chen et al.,
2018b), which makes FICNN an ideal candidate for model-
ing convex functions.

3. Methods and algorithms
We study the Wasserstein barycenter problem (3) for a given
set of marginal distributions {µi; i = 1, . . . , N}. We con-
sider the setting where the analytic forms of the marginals
are not available. Instead, we only have access to indepen-
dent samples from them. It can be either the cases where a
fix set of samples is provided as in supervised learning, or
the cases where one can keep sampling from the marginals
like in the MCMC Bayesian (Srivastava et al., 2018). Our
goal is to recover the true continuous Barycenter ν.

3.1. Deriving the dual problem over convex functions

For a fixed ν, the objective function of (3) is simply a
(scaled) summation of the Wasserstein cost between ν and
µi. Thus, we utilize the semi-dual formulation (2) of OT
to evaluate the objective function of (3). However, convex
conjugate function f∗ is not available explicitly in most of
applications, thus we characterize it as

f∗(y) = sup
g∈CVX

〈y,∇g(y)〉 − f(∇g(y)) (5)

with the maximum being achieved at g = f∗, the semi-dual
formulation (2) can be rewritten as

1

2
W 2

2 (ν, µ) = sup
f∈CVX

inf
g∈CVX

Vν,µ(f, g) + Cν,µ, (6)

where Vν,µ(f, g) is a functional of f and g defined as

Vν,µ(f,g)=−Eν [f(X)]−Eµ[〈Y,∇g(Y )〉−f(∇g(Y))]. (7)

This formulation (6) has been utilized in conjugation with
FICNN to solve OT problem in (Makkuva et al., 2020) and
proved to be advantageous.

Plugging (6) into the Wasserstein barycenter problem (3),
we obtain the following reformulation

min
ν

N∑
i=1

ai

{
sup

fi∈CVX
inf

gi∈CVX
Vν,µi

(fi, gi) + Cν,µi

}
. (8)
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Note that we have used different functions (fi, gi) to es-
timate W 2

2 (ν, µi). The first minimization is over all the
possible probability distributions to search for the Wasser-
stein barycenter. This min-max-min formulation enjoys the
following property, whose proof is in the supplementary
material.

Proposition 1 When all the marginal distributions µi are
absolutely continuous with respect to the Lebesgue mea-
sure, the unique Wasserstein barycenter ν? of them solves
(8). Moreover, the corresponding optimal f?i is the optimal
potential in (2) associated with marginals ν? and µi.

Remark 2 Obtaining convergence rate for first-order opti-
mization algorithms solving (8) is challenging even in the
ideal setting that the optimization is carried out in the space
of probability distributions. The difficulty arises because of
the optimization over ν. While the inner optimization over
fi and gi are concave and convex respectively, the optimiza-
tion over ν is not convex. Precisely, it is not geodesically
convex on the space of probability distributions equipped
with Wasserstein-2 metric (Ambrosio et al., 2008). However,
it is possible to obtain guarantees in a restricted setting by
establishing a Polyak- Lojasiewicz type inequality. In par-
ticular, assuming all µi are Gaussian with positive-definite
covariance matrices, the gradient-descent algorithm admits
a linear convergence rate (Chewi et al., 2020).

3.2. Solving the barycenter problem

Consider the Wasserstein barycenter problem for a fixed
weight vector a. Following (Makkuva et al., 2020) we use
FICNN architecture to represent convex functions fi and
gi. We now use a generator h to model the distribution ν,
by transforming samples from a simple distribution η (e.g.,
Gaussian, uniform) to a complicated distribution, thereby
we recover a continuous Barycenter distribution. Thus, us-
ing this network parametrization and discarding constant
terms, we arrive at the following optimization problem

min
h

sup
fi∈FICNN

inf
gi∈FICNN

1

2
Eη[‖h(Z)‖2]+

N∑
i=1

aiVη,µi
(fi, gi),

(9)
where Vη,µi(f, g) is defined as

−Eη[fi(h(Z))]− Eµi [〈Y i,∇gi(Y i)〉 − fi(∇gi(Y i))].

We propose Neural Wasserstein Barycenter (NWB) algo-
rithm (Algorithm 1) to solve this three-loop min-max-min
problem by alternatively updating h, fi and gi using stochas-
tic optimization algorithms. This pipeline is illustrated by
the block diagram (Figure 2). We remark that the objective
function in (9) can be estimated using samples from µi, η.
Thus, we just need access to the samples generated by the
marginal distributions µi instead of their analytic form to

Figure 2: Block diagram for our neural Wasserstein barycen-
ter (NWB) algorithm

compute their Wasserstein barycenter. In practice, we found
it more effective to replace the convexity constraints for gi
with a convexity penalty, that is, the negative values of the
weight matrices Wl in FICNN (4).

Denoting the parameters of h, fi, gi by θh, θfi , θgi respec-
tively and the batch size by M , we arrive at the batch esti-
mation of the objective

N∑
i=1

ai [J(θfi , θgi , θh) +R (θgi)] +
1

2M

M∑
j=1

||h(Zj)||2,

(10)
where J (θfi , θgi , θh) represents

1

M

M∑
j=1

fi
(
∇gi

(
Y ij
))
−
〈
Y ij ,∇gi

(
Y ij
)〉
− fi (h(Zj)) ,

R (θgi) = λ
∑
Wl∈θgi

‖max (−Wl, 0)‖2F , Y ij represents

the jth sample generated by µi, {Zj} are samples from
η, and λ > 0 is a hyper-parameter weighing the intensity of
regularization.

Algorithm 1 can be extended to obtain the barycenters for
all weights in one shot. This extension is included in Sec. B
of the supplementary material.

Remark 3 It is tempting to combine the two minimization
steps over h and gi into one and reduce (9) into a min-
max saddle point problem. The resulting algorithm only
alternates between fi updates and h, gi updates instead of
the three-way alternating in Algorithm 1. However, in our
implementations, we observed that this strategy is unstable.

Computation complexity For our algorithm, as well as
the algorithms recently proposed in (Korotin et al., 2021b;
Li et al., 2020), the computational complexity per iteration
scales with O(NMp) where N is the number of marginals,
M is the batch-size, and p is the size of the network (the
size of network scales almost linearly with dimension d).
This should be compared with O(NMK) for Claici et al.
(2018) where K is the size of the support for barycenter,
and O(NnK) for Cuturi & Doucet (2014) where n is the
number of samples of the marginals. Although the size of
the network is large, our approach is favored for large scale
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Algorithm 1 Neural Wasserstein Barycenter (NWB)

Input: Marginal dist. µ1:N , Generator dist. η, Batch size
M
for k3 = 1, . . . ,K3 do

Sample batch {Zj}Mj=1 ∼ η
Sample batch

{
Y ij
}M
j=1
∼ µi for all i = 1, · · · , N

for k2 = 1, . . . ,K2 do
for k1 = 1, . . . ,K1 do

Update all θgi to decrease (10)
end for
Update all θfi to increase (10)
Clip: Wl = max(Wl, 0) for all θfi

end for
Update θh to decrease (10)

end for

problems where the number of samples n and the dimension
d are large (the number of atoms required to approximate a
density scales exponentially with dimension).

3.3. Recovering the barycenter

Once Algorithm 1 converges, there are two distinct ap-
proaches to recover the Wasserstein barycenter: one through
h and one through gi.

Generative model h]η: In our problem formulation (9), the
barycenter center is modeled by h(Z) where Z is sampled
from a simple distribution η. That is, the barycenter ν is
the pushforward of η through the map h, denoted by h]η.
Once the optimal h is obtained, we can easily sample from
the barycenter by sampling Zj from η and apply the map
h(Zj).

Pushforward map ∇gi]µi: An alternative method to re-
cover the barycenter is based on the fact, once Algorithm
1 converges, the pair (fi, gi) solves the OT problem (6) be-
tween the barycenter ν and the marginal µi. As mentioned
in Remark 1,∇f∗ is the optimal map from marginal distribu-
tion to the barycenter. Moreover, the optimal gi is achieved
at g = f∗. Hence, the pushforward of µi through map
∇gi is the barycenter. Thus, to sample from the barycenter,
we can sample Y ij from a marginal and then apply map
∇gi(Y ij ). Note that this approach cannot generate more
samples than those are already available in the marginals.

3.4. Barycenter serving as GAN

In case where there is only one marginal distribution, that
is, N = 1 in (9), Algorithm 1 can be viewed as a type of
generative adversarial network (GAN). More specifically,
when N = 1, the barycener ν coincides with the marginal
distribution µ1. Given samples {Y j1 } from the marginal
µ1, Algorithm 1 produces a generative model h(Z) whose

distribution matches the marginal µ1. Note that one can
easily sample using h(Z) and get samples that do not exist
in the training data {Y j1 }.
In fact, when N = 1, Algorithm 1 works very much like
a Wasserstein Generative Adversarial Network (WGAN)
which leverages the Wasserstein distance to distinguish
fake and real samples in GAN. The original WGAN (Ar-
jovsky et al., 2017) is based on the dual formulation for
the Wasserstein-1 distance W1. A heuristic weight clip-
ping (Arjovsky et al., 2017) technique is used to enforce
the Lipschitz condition on the potential function in the dual
formulation. The WGAN was later improved in WGAN-
GP (Gulrajani et al., 2017) via adding a gradient penalty
term to promote the Lipschitz condition. From this point of
view, Algorithm 1 provides an alternative way to train the
generative model with Wasserstein-2 metric (c.f. Leygonie
et al. (2019); Korotin et al. (2021a); Salimans et al. (2018);
Genevay et al. (2018)).

4. Experiments
In Section 4.1, we present numerical experiments on 2D/3D
datasets which serve as proof of concept and qualitatively il-
lustrate the performance of our approach. In Section 4.2, we
numerically study the effects of dimensionality and demon-
strate the scalability of our algorithms to high-dimensional
problems. In Section 4.3 and 4.4, we apply our algorithm
in tasks such as Bayesian inference with large scale dataset
and color transfer. In Section 4.5, we illustrate the ability
of our algorithm to serve as a generative model. The imple-
mentation details and further experiments are included in
the supplementary materials.

For comparison, we choose the following state of the art
algorithms: (i) fast free-support Wasserstein barycenter
(CDWB) (Cuturi & Doucet, 2014, Section 4.4); (ii) continu-
ous Wasserstein barycenter without minimax optimization
(CWB) (Korotin et al., 2021b); (iii) continuous regularized
Wasserstein barycenter (CRWB) (Li et al., 2020). CWB
and CRWB involve optimization over N pairs of poten-
tials {fi, gi} as in NWB, and recover barycenter through
∇gi]µi. The implementations of these algorithms are based
on published code associated with the papers.

To evaluate the performance of these algorithms, we use the
Bures-Wasserstein UVP (Korotin et al., 2021b, Section 5)

BW2
2–UVP (ν, ν̃)

def
= 100

BW2
2 (ν, ν̃)

1
2 Var(ν̃)

%, (11)

where BW2
2 (ν, ν̃) equals

1

2
‖mν−mν̃‖2 +

[
1

2
TrΣν +

1

2
TrΣν̃ − Tr

(
Σ

1
2
ν Σν̃Σ

1
2
ν

) 1
2

]
.

Here ν is the estimated barycenter, ν̃ is the exact barycenter,
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(a) marginal µ1 (b) NWB (ours) (c) WGAN (d) WGAN-GP (e) W2GN

Figure 3: performance of our algorithm as GAN in single marginal case (N = 1): learning Gaussian mixture

and mν ,Σν are the mean and the convariance of the distri-
bution ν. For barycenter given by pushforward∇gi]µi, we
report the weighted average of BW2

2–UVP scores from N

marginal distributions:
∑N
i=1 aiBW2

2–UVP (∇gi]µi, ν̃).

Hyper-parameter choice We choose a neural network
architecture of 3 ∼ 4 hidden layers of size 1 ∼ 2 times
of input dimension in high dim cases and size 16 ∼ 32 in
2D/3D cases, with PReLU activation function. We observed
that the performance is not sensitive to number of hidden
layers, but sensitive to the choice of activation function
(ReLU and leaky ReLU do not perform as well as PReLU).

Training time: The training time for our method is almost
once to twice longer than of CRWB and CWB due to the
inner optimization cycles. The time consumption for CDWB
is shorter for small number of samples, as it does not involve
training neural networks.

4.1. Learning the Wasserstein Barycenter in 2D and 3D

The qualitative performance of our algorithm in three bench-
mark examples is depicted in Figure 4. Each example is
represented in a row. The first column contains the marginal
distributions, and the second and third column contains the
learned barycenter through h]η and∇gi]µi respectively. It
is observed that both representations learn the barycenter
qualitatively well, however, representation through∇gi]µi
inherits the geometrical properties of the marginal distri-
butions, highlighted with sharp boundaries in the first and
second row and pixelated image in the third row. For com-
parison with CRWB, see Li et al. (2020, Figure 1).

4.2. Scalability with the dimension

Gaussian: We study the performance of our proposed algo-
rithm in learning the barycenter of three Gaussian marginal
distributions as dimension grows. The Gaussian marginal
distributions have zero mean and a random non-diagonal
covariance matrix whose conditional number is less than 10.
The exact barycenter of Gaussian distributions is available
to serve as the baseline in evaluating the Bures-Wasserstein
UVP error criteria (11). The results are displayed in Figure 5.
It is observed that the estimation error of NWB and CWB

marginals (a) h]η (b) ∇g1]µ1 (c) ∇g2]µ2

Figure 4: Qualitative results of our algorithm (NWB) in 2D
and 3D settings. The first column contains the marginals,
and the second and third columns contain the barycenter
generated through h]η and∇gi]µi respectively. From top to
bottom, the marginal distributions are uniformly supported
on a ring and a square; two blocks; and white areas in digit
images.

exhibit a slow rate of growth with respect to the dimension
compared with CDWB and CRWB. The NWB and CWB
algorithms are quite comparable in performance, but still
different with respect to the optimization landscape. The
optimization landscape of CWB is sensitive to the choice of
regularization parameters (see Appendix G). We conjecture
that the observed error curve of CWB in Figure 5, is due to
the effect of regularization terms in distorting the optimiza-
tion landscape which becomes more severe as dimension
grows. Note that the error curve for CRWB contains ir-
regularities and high variance that are probably due to the
regularization term.

MNIST: To further investigate the performance of our al-
gorithm in high dimension setting with real dataset, we use
the MNIST data set. We consider the task of learning the
barycenter of two marginal distributions. The first marginal
µ1 is an empirical distribution of digit 0 samples and the
second marginal µ2 is of digit 1. Each image has 28 × 28
pixels, yielding a 784-dimensional problem. The result of
learning the barycenter is depicted in Figure 6. Both our
algorithm NWB and CWB give reasonable results, with
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Figure 5: Numerical result for scalability of the error with
dimension for estimating barycenter of Gaussian distribu-
tions. The error criteria is (11). We generate 104 samples
from barycenter for NWB, CWB, CRWB algorithms and
1500 samples for CDWB (the maximum number it can gen-
erate). The plot on the left includes the results for all four
methods and the plot on the right highlights the detailed
difference between CWB and NWB.

slightly sharper boundaries in NWB, whereas CRWB does
not perform well in this high dimension setting. Note that
the images in panel (a) are genuinely new samples generated
using the trained generator, while the images in other panels
are pushforward of marginal samples.

In order to demonstrate the inner-workings of our algo-
rithm and its ability to learn the structure of barycenter, we
implement the following experiment. We generate fresh
samples from the barycenter using the generator h(Z),
where Z ∼ N (0, I), and push-forward it through the maps
∇f1(h(Z)) and∇f2(h(Z)). It is expected that through this
procedure, we would recover the digits 0 and 1, because
∇fi represent the optimal transport map from Barycenter
to the marginal µi (see Remark 1). The experimental re-
sult confirms our expectation as shown in Figure 7. This
implies that our proposed framework can serve as a gener-
ative model, not only for barycenter distribution, but also
for the marginal distributions, by taking a random Gaussian
random variable as input and output samples from marginal
distributions.

4.3. Subset posterior aggregation

MCMC Bayesian inference is often carried out on splitted
datasets in big data setting. However, the subset posterior
distributions need to be merged into a single posterior to
reflect the entire dataset property. This subset posterior
aggregation scheme has been shown as an advantageous
substitute to the full posterior (Srivastava et al., 2015) (Sri-
vastava et al., 2018). The barycenter of subset posteriors
is proved to converge to the full data posterior (Srivastava
et al., 2018). Similar to (Li et al., 2020), we consider the
Poisson regression for predicting the hourly number of bike
hires with predictors such as the season and the weather

(a) NWB h]η (b) NWB ∇gi]µi

(c) CRWB (d) CWB

Figure 6: Learning the barycenter of MNIST 0 and 1 digits
(784-dimensional problem)

(a) backward to ’0’ (b) backward to ’1’

Figure 7: Generating digit 0 and 1 from random input Z ∼
N (0, I) using our architecture with the map∇fi(h(Z)).

conditions2. We consider the posterior on the 8-dimensional
coefficients for the Poisson regression model. We randomly
split the data into 5 equal-size subsets and simultaneously
use the stochastic approximation trick (Minsker et al., 2014)
to promise the subset posterior samples do not vary consis-
tently from the full posterior in covariance. We obtain 105

samples from each subset posterior using the PyMC3 library
(Salvatier et al., 2016).

We use the full posterior samples as the ground truth and
report the Bures-Wasserstein UVP to compare the estimated
barycenter and the ground truth. The results are shown in
Table 1. All methods approach the true barycenter well
(UVP < 1%) and the performance of NWB is better than or
on par with existing algorithms.

2http://archive.ics.uci.edu/ml/datasets/
Bike+Sharing+Dataset

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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Table 1: Comparison of UVP for recovered barycenters in
our subset posterior aggregation task

METRIC NWB h]η CDWB CWB CRWB

BW2
2–UVP,% 0.06 0.26 0.07 1.67

4.4. Color palette averaging

Color transfer is a method to change the appearance of a
source image according to the color pattern of a target image
(Reinhard et al., 2001). Given several images, we can solve
for Wasserstein barycenter to aggregate color palettes of
images to achieve color transfer among them. Given an
RGB image I, its color palette is the empirical distribution
µ(I) =

∑K
k=1

1
K δpk where {pk} represents the pixels ∈

[0, 1]3 and δpk is the Dirac distribution concentrated on pk.
In our example, each image contains 1980 × 1024 pixels,
so the number of samples for each marginal distribution is
more than 2 million. 3.

In Figure 8, the upper panel shows the original images
{I1, I2, I3}, and the bottom panel shows pixel-wise “push-
forward” images. Figure 9 shows the RGB cloud to visualize
the color palettes of images. In Figure 8, the appearance
of the pushforward images are different from the source
images thanks to the color averaging: the leaves in the first
picture become greener and darker, the sunbeams in the
second picture become more red, and the sky in the last
picture receives an orange color toning.

Source images {Ii}

Pushforward images

Figure 8: Qualitative results by pixel-wise pushforward of
the source images

4.5. Serving as a Generative Adversarial Model in the
one marginal setting

We study the performance of our proposed algorithm in the
case of one marginal distribution, where it behaves as a
generative adversarial network using the W2 metric. For
comparison, we use WGAN (Arjovsky et al., 2017) and
WGAN-GP (Gulrajani et al., 2017), which are based on
W1 metic, and W2GN (Korotin et al., 2021a), which is
based on W2 metric. Note that our goal is not to provide a

3The pictures are downloaded from https://
wallpaperaccess.com/

(a) source images: {µ(Ii)}

(b) ∇g1]µ(I1) (c) ∇g2]µ(I2) (d) ∇g3]µ(I3) (e) h]η

Figure 9: Color palettes of source images and barycenter

competitive GAN algorithm, but to demonstrate the ability
of our algorithm in performing as GAN.

We first consider an example of learning a Gaussian mixture
model with 10 components shown in Figure 3. It can be
seen that NWB avoids mode collapse. We then investigate
the performance of our algorithm NWB in learning MNIST
digits dataset (784 dim, 60000 sample size). From Figure
10, it is observed that our algorithm could output all the
digits from 0 to 9 without mode collapse and the quality
is on par with WGAN and WGAN-GP. W2GN seeks an
optimal transport map from 784 dim standard Gaussian to
MNIST; the generated digits are of poor quality. Note that in
Korotin et al. (2021a) W2GN was tested on MNIST dataset
but the optimal transport is addressed in the feature/latent
space (see Section 5.2, Section C.7 in Korotin et al. (2021a)),
which is of much lower dimension than the pixel space (784
dim).

5. Conclusion
During the last decade, many algorithms have been proposed
for Wasserstein Barycenter estimation. A majority of these
algorithms are designed for discrete setting (either discretiza-
tion of space or discretization of distribution from samples).
There are several algorithms that are designed for semi-
discrete setting, in the sense that even though the marginal
distributions are continuous, the barycenter computed from
the algorithms is supported on finite points. More recently,
two algorithms (Korotin et al., 2021b; Li et al., 2020) have
been proposed to approximate the barycenter by learning
the optimal transport maps from the marginal distributions
to the barycenter using samples from the marginal distribu-
tions. Compared to all these existing Wasserstein Barycenter
estimation algorithm, the NWB algorithm we develop is the
only algorithm that gives a continuous representation of the
barycenter through a generative model and is capable of
generating infinitely many samples from the barycenter.

https://wallpaperaccess.com/
https://wallpaperaccess.com/
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(a) NWB h]η (b) WGAN

(c) WGAN-GP (d) W2GN

Figure 10: Performance of our algorithm as GAN in single
marginal case: learning the MNIST digit dataset
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A. Proof of Proposition 1
Proof. For fixed ν that is absolutely continuous with respect to the Lebesgue measure, and fi, i = 1, . . . , N , the solution to
the inner-loop minimization problems over gi are clearly g?i = f∗i , i = 1, . . . , N . The problem (8) then becomes

min
ν

N∑
i=1

ai

{
sup

fi∈CVX
{−Eν [fi(X)]− Eµi [f

∗
i (Y )]}+ Cν,µi

}
.

In view of (2), it boils down to

min
ν

N∑
i=1

aiW
2
2 (ν, µi) ,

which is exactly the Wasserstein barycenter problem (3). Since all the marginal distributions µi are absolutely continuous
with respect to the Lebesgue measure, their barycenter exists and is unique. This completes the proof. �

B. Neural Wasserstein Barycenter-F
We consider a more challenging Wasserstein barycenter problem with free weights. More specifically, given
a set of marginal distribution µi, i = 1, . . . , N , we aim to compute their Wasserstein barycenter for all the
possible weights. Of course, we can utilize Algorithm 1 to solve fixed weight Wasserstein barycenter prob-
lem (9) for different weight a separately. However, this will be extremely expensive if the number of weights
is large. It turns out that Algorithm 1 can be adapted to obtain the barycenters for all weights in one shot.

Figure 11: Partially ICNN structure

To this end, we include the weight a as an input to
all the neural networks fi, gi and h, rendering maps
h(z, a; θh), fi(x, a; θfi), gi(y, a; θgi). For each fixed weight a,
the networks fi, gi and h with this a as an input solves the
Barycenter problem with this weight. Apparently, fi, gi are only
required to be convex with respect to samples, not the weight a.
Therefore, we use PICNN (Amos et al., 2017, Section 3.2) instead
of FICNN for as network architectures. PICNN is an extension of
FICNN that is capable of modeling functions that are convex with
respect to parts of the variable.The architecture of PICNN is depicted
in Figure 11. It is a L-layer architecture with inputs (x, y). Under some proper assumptions on the weights (the feed-forward
weights {W (z)

l } for z are non-negative) and activation functions of the network, the map (x, y) → f(x, y; θ) := zL is
convex over x. We refer the reader to (Amos et al., 2017) for more details. The problem then becomes

min
h

sup
fi∈PICNN

inf
gi∈PICNN

EU{−Eη[fi(h(Z, a), a)]− Eµi
[〈Y,∇gi(Y, a)〉 − fi(∇gi(Y, a), a)] +

1

2
Eη[‖h(Z, a)‖2]} (12)

where U is a probability distribution on the probability simplex, from which the weight a is sampled. In our experiment, we
used uniform distribution, but it can be any distribution that is simple to sample from, e.g., Dirichlet distribution. Effectively,
the objective function in (12) amounts to the total Wasserstein cost over all the possible weights. Our formulation makes it
ideal to implement stochastic gradient descent/ascent algorithm and solve the problem jointly in one training. As in the fixed
weights setting, the (partial) convexity constraints of {gi} can be replaced by a penalty term. For batch implementation, in
each batch, we randomly choose one a ∈ U and M samples {Y ij } from µj and {Zj} from η. The unbiased batch estimation
of the objective in (12) reads

N∑
i=1

ai{J(θfi , θgi , θh) +R (θgi)}+
1

2M

M∑
j=1

||h(Zj , a)||2, (13)

where

J=
1

M

M∑
j=1

[fi
(
∇gi

(
Y ij , a

)
, a
)
−
〈
Y ij ,∇gi

(
Y ij , a

)〉
−fi (h(Zj , a), a)],
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and R (θgi)=λ
∑
W

(z)
l ∈θgi

∥∥∥max
(
−W (z)

l , 0
)∥∥∥2

F
. By alternatively updating h, fi, gi we establish Neural Wasserstein

Barycenter-F (NWB-F) (Algorithm 2).

Algorithm 2 Neural Wasserstein Barycenter-F

Input Marginal dist. µ1:N , Generator dist. η, Batch size M , weight dist. U
for k3 = 1, . . . ,K3 do

Sample a ∼ U
Sample batch {Zj}Mj=1 ∼ η
Sample batch

{
Y ij
}M
j=1
∼ µi

for k2 = 1, . . . ,K2 do
for k1 = 1, . . . ,K1 do

Update all θgi to decrease (13)
end for
Update all θfi to increase (13)
Clip: W (z)

l = max(W
(z)
l , 0) for all θfi

end for
Update θh to decrease (13)

end for

The block diagram for Neural Wasserstein Barycenter-F (Algorithm 2) is shown in Figure 12.

Figure 12: Block diagram for Neural Wasserstein Barycenter-F Algorithm

B.1. Supportive experiments for NWB-F

In this part, we evaluate the performance of NWB-F which is an algorithm to calculate the Wasserstein barycen-
ter of a given set of marginals for all weights in one shot. Departing from NWB, the networks fi and gi are
of PICNN structure. We carry out 3 sets of experiments when the marginal distributions are Gaussian, Gaus-
sian mixtures and sharp distributions. In these experiments, NWB-F converges after 15000 outer cycle iterations.

(a) Ours NWB-F (b) Ground truth

Figure 13: Barycenter with different weights using NWB-F.

Gaussian marginal We present the experimental re-
sult of implementing NWB-F (Algorithm 2) to com-
pute the Wasserstein barycenter for all combinations
of weights with a single training. The result for the
case of Gaussian marginal distributions, and 12 combi-
nation of weight values, is depicted in Figure 13. For
comparison, we have included the exact barycenter. It
is qualitatively observed that our approach is able to
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Marginal 1 weight [0.2,0.8] weight [0.4,0.6]

Marginal 2 weight [0.6,0.4] weight [0.8,0.2]

Figure 14: Barycenter with different weights using NWB-F. For each subfigure, the plot on the left is obtained using
Solomon et al. (2015) and the plot on the right is obtained using NWB-F.

compute the Wasserstein barycenter for the selected weight combinations in comparison to exact barycenter. The three
marginals are

µ1=N(

[
0
0

]
,

[
0.5 0
0 2

]
), µ2=N(

[
0
0

]
,

[
2 1
1 1

]
), µ3 = N(

[
0
0

]
,

[
2 −1
−1 1

]
).

To quantitatively verify the performance of NWB-F, we compare the barycenters to ground truth with several different
weight in terms of KL-divergence. The resulting error is respectively 0.0235 for a = [0.5, 0.25, 0.25], 0.0153 for a =
[0.25, 0.5, 0.25], and 0.0114 for a = [0.25, 0.25, 0.5]. The error of results using NWB-F is consistently small among
different weight combinations.

The networks fi and gi each has 3 layers and the generative network h has 4 layers. All networks have 12 neurons for each
hidden layer. Learning rate is 0.001. The inner loop iteration numbers are K1 = 6 and K2 = 4. The batch size is M = 100.

Gaussian mixture marginal We apply NWB-F to obtain the Wasserstein barycenter for all weights in one shot. The first
marginal is a uniform combination of the Gaussian distributions

N(

[
4
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The second marginal is a uniform combination of the Gaussian distributions
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The experiment results are depicted in Figure 14 in comparison with Convolutional Wasserstein Barycenter (Solomon et al.,
2015). We remark that this is not a fair comparison since NWB-F obtained all the barycenters with different weights in
one shot while Solomon et al. (2015) has to be run separately for each weight. Nevertheless, NWB-F generates reasonable
results.

The networks fi and gi each has 5 layers and the generative network h has 6 layers. All networks have 12 neurons for each
hidden layer. Batch normalization is used in h. Learning rate is 0.001. The inner loop iteration numbers are K1 = 10 and
K2 = 6. The batch size is M = 100.

Sharp line marginal Given two marginals supported on two lines, we apply NWB-F to obtain the Wasserstein barycenter
for all weights in one shot. Note that these Wasserstein barycenters in fact constitute the Wasserstein geodesic between the
two distributions. The networks fi and gi each has 4 layers and the generative network h has 4 layers. All networks have 12
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neurons for each hidden layer. Batch normalization is used in h. Learning rate is 0.001. The inner loop iteration numbers
are K1 = 6 and K2 = 4. The batch size is M = 100. The experiment results are depicted in Figure 15 in comparison with
ground truth results.

(a) Ours NWB-F

(b) Ground truth

Figure 15: Barycenter with different weights using NWB-F. For each subfigure, the two plots at both ends are given marginal
distributions supported on two line segments.

C. Experiment details for NWB and more supportive experiments
In this section, we provide the experiment details as well as more supportive experimental results of NWB. Some common
experiment setup for NWB is:
1) All fi and gi networks use CELU activation function while the h network uses PReLU (He et al., 2015) activation
function.
2) The weight λ = 0.1 for the regularizer R (θgi) = λ

∑
Wl∈θgi

‖max (−Wl, 0)‖2F .
3) All optimizers are Adam.
4) All h used in this article are vanilla feedforward networks.
5) All input Gaussian distribution η has zero mean an identity covariance.
6) The inner loop iteration numbers are K1 = 6 and K2 = 4.
7) The batch size is M = 100 unless further specified.
8) NWB converges after 15000 outer cycle iterations unless further specified.

We also note that the value of the evalutation metric BW2
2–UVP is sensitive to the number of samples. To be consistent, we

draw 10000 samples from each method to calculate BW2
2–UVP.

C.1. Learning the Gaussian mixture Wasserstein Barycenter

In Figure 16, we further test NWB with 3 marginals of Gaussian mixtures. The first marginal is a uniform combination of 4
Gaussian components
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The second marginal is a uniform combination of 3 Gaussian components
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The third marginal is a uniform combination of 3 Gaussian components
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For NWB, all the networks have 10 neurons for each hidden layer. The networks fi and gi each has 4 layers and the
generative network h has 6 layers. The initial learning rate is 0.001 and the learning rate drops 90 percent every 20 epochs.
For Solomon et al. (2015), the regularization intensity is set to 0.004.

We draw 1000 samples for each scatter plot. It can be seen that NWB can better capture the different modes of the
distributions.

C.2. Learning barycenters with sharp marginal distributions

We illustrate the performance of NWB in learning the Wasserstein barycenter when the marginal distributions are sharp. The
common setup is all networks have 6 neurons for each hidden layer and the input Gaussian η dimension is 1.

Line marginals We follow the examples reported in Claici et al. (2018, Figure 4), where the marginal distributions are
uniform distributions on 10 random two-dimensional lines as shown in Figure 17. It is observed that our algorithm is able to
learn the sharp barycenter. The network fi and gi each has 4 layers and h has 4 layers. h network is linear. Learning rate is
0.0001. The inner loop iteration numbers are K1 = 6 and K2 = 4.

Ellipse marginals We also tested NWB on another example (Claici et al., 2018, Figure 6) to learn the barycenter of 10
uniform marginals supported on ellipses and obtained excellent results. The network fi and gi each has 5 layers and h has 4
layers. The initial learning rate is 0.001 and the learning rate drops 90 percent every 15 epochs. The inner loop iteration
numbers are K1 = 10 and K2 = 6.

C.3. Learning the 2D and 3D Wasserstein Barycenter

This is for the results in Figure 4.

The network fi and gi each has 4 layers and h has 5 layers. In h network, there is a batch normalization layer before each
hidden layer. All networks have 16 neurons for each hidden layer. the input Gaussian η dimension is equal to the marginal
distribution dimension.

Circle-square example Learning rate is 0.001.

Block example Learning rate is 0.001.

Digit 3 example f and g learning rate is 0.0001, and h is 0.001. Learning rate drops 90 percent every outer cycle 12000
iterations. Our algorithm converges after 25000 outer cycle iterations.

C.4. Scalability with the dimension

Gaussian The results are displayed in Figure 5.

The network fi and gi each has 4 layers and h has 5 layers. In h network, there is a batch normalization layer before
each hidden layer. All networks have max(10, 2D) neurons for each hidden layer, where D is the dimension of marginal
distributions. The input Gaussian η dimension is equal to the marginal distribution dimension. Learning rate is 0.001.

MNIST 0 and 1 The results are displayed in Figure 6 and Figure 7.

The network fi and gi each has 5 layers and h has 5 layers. In h network, we use batch normalization and dropout
(probability 0.2 to be zeroed) operation before each hidden layer. All networks have 1024 neurons for each hidden layer.
The input Gaussian η dimension is 16. Learning rate is initially 0.0001 for network fi and gi; 0.001 for h, and drops 90
percent every 1500 outer cycle iterations. Our algorithm converges after 7500 outer cycle iterations.

MNIST 0-4 and 5-9 To further evaluate our algorithm as a generative model for marginal distributions, we tested our
algorithm on a upgraded task based on MNIST 0 and 1 experiment above. The results are shown in Figure 18. The first
marginal µ1 is an empirical distribution consisting of digit 0,1,2,3,4 samples and the second marginal µ2 is for digit 5,6,7,8,9.
We generate fresh samples from the barycenter using the generator h(Z), where Z ∼ N (0, I). We push-forward the
samples h(Z) through the maps ∇f1(h(Z)) and ∇f2(h(Z)) to generate new samples from the marginal distributions. It’s
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expected that the panel (c) contains of only digits 0-4, and panel (d) only digits 5-9 and the results are consistent with the
expectation.

The network fi and gi each has 5 layers and h has 5 layers. In h network, we use batch normalization before each hidden
layer. All networks have 1024 neurons for each hidden layer. The input Gaussian η dimension is 8. Learning rate is initially
0.0001 for network fi and gi; 0.001 for h, and drops 90 percent every 25000 outer cycle iterations. The number of outer
cycle iterations is set to be 100, 000.

MNIST and USPS We tested our algorithm NWB on different datasets: MNIST and USPS. The results are displayed
in Figure 19. We resize the MNIST samples to be 16× 16 to be consistent with the USPS dataset. The dimension of this
problem is thus 256. MNIST shows slimmer and smaller fonts compared to USPS digits. The barycenter fuses the two
dataset styles, whereas∇gi](µi) exhibits tidier results. Figure 19 (e)-(f) show that our algorithm is able to generate new
samples from both marginals (MNIST and USPS) with random Gaussian input using the same approach as in the previous
example.

The network fi and gi each has 5 layers and h has 6 layers. In h network, we use batch normalization before each hidden
layer. All networks have 512 neurons for each hidden layer. The input Gaussian η dimension is 128. Learning rate is initially
0.0001 and drops 90 percent every 6000 outer cycle iterations. The number of outer cycle iterations is set to be 75000.

C.5. Subset posterior aggregation

The results are displayed in Table 1. We preprocess the training data as follows (Korotin et al., 2021b): i) apply the stochastic
approximation trick to each µi (Minsker et al., 2014); ii) remove the mean of each marginal by shifting Ỹi = Yi −m(µi),
where m(µi) is the mean of distribution µi (Álvarez-Esteban et al., 2016); iii) scale each marginal distributions to be in a
proper magnitude. Note that scaling won’t affect BW2

2–UVP value. We use the same data preprocessing methods for other
barycenter methods. The network fi and gi each has 5 layers and h has 5 layers. In h network, there is a batch normalization
layer before each hidden layer. All networks have 10 neurons for each hidden layer. The input Gaussian η dimension is 8.
Learning rate is 0.01. Our algorithm converges after 8000 outer cycle iterations.

C.6. Color palette averaging

The results are displayed in Figure 8 and Figure 9. The batch size is M = 1200. The network fi and gi each has 4 layers
and h has 5 layers. In h network, there is a batch normalization layer before each hidden layer. fi and gi networks have 16
neurons for each hidden layer, and h has 32 neurons for each hidden layer. The input Gaussian η dimension is 3. Learning
rate is 0.001. Our algorithm converges after 100000 outer cycle iterations.

C.7. Serving as a Generative Adversarial Model in the one marginal setting

WGAN and WGAN-GP results are generated using Pytorch-GAN library (Linder-Norén, 2018). W2GN results are generated
using Korotin (2020) and adopt DenseICNN architecture proposed in the paper. We refer the reader to the Korotin et al.
(2021a, Section B.2, Section C.1) for DenseICNN and pretrain details. The number of total training samples for both two
experiments is 60000.

Gaussian mixture The results are displayed in Figure 3.

For NWB, the networks fi and gi each has 5 layers and the generative network h has 6 layers. All networks have 10 neurons
for each hidden layer. The initial learning rate is 0.001. The batch size is M = 60.

For WGAN and WGAN-GP, they all use fully-connected linear layers and ReLU activation function. All discriminators and
generators have 4 layers and 512 neurons for each hidden layer. Learning rate is 0.0001. The batch size is 256. The number
of total iteration is 50000.

For W2GN, all netorks use DenseICNN [3; 128, 128, 64] architecture. Here 3 is the rank of each input-quadratic skip-
connection’s Hessian matrix. Each following number represents the size of a hidden dense layer in the sequential part of the
network. The batch size is 1024. Learning rate is initially 0.001 and drops 90 percent every 25000 iterations. The number of
total iteration is 50000.
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MNIST The results are displayed in Figure 10. We normalize MNIST pixel values to be in range [−1, 1] before training.

For NWB, the network fi and gi each has 5 layers and h has 6 layers. In h network, there is a batch normalization layer
before each hidden layer. All networks have 1024 neurons for each hidden layer. The input Gaussian η dimension is 64.
Learning rate is initially 0.0001 and drops 90 percent every 100 epochs. The total epoch is set to be 500 epochs.

For WGAN and WGAN-GP, to be fair, they all use the same batch size, batch-normalization and fully-connected linear
layers as NWB. The activation function is LeakyReLU. From input layer to output layer, the generator neuron for each layer
is [100, 128, 256, 512, 1024, 784]; and the discriminator is [784, 512, 256, 1]. The final layer for the generator is also tanh.
Learning rate is initially 0.0001 and drops 90 percent every 300 epochs. The total epoch is set to be 1500 epochs.

For W2GN, all networks use DenseICNN [2; 2048, 2048, 2048] architecture. The batch size is also 100. Learning rate is
initially 0.0001 and drops 90 percent every 300 epochs. The total epoch is set to be 1500 epochs.

D. Experiment details for CDWB (Cuturi & Doucet, 2014, Section 4.4)
We use POT library (Flamary & Courty, 2017) and adopt Earth Movers distance solver (Bonneel et al., 2011) when solving
OT programming in the inner loop.

E. Experiment details for CRWB (Li et al., 2020)
We use the code given by Li (2020). We use quadratic regularization, which is empirically more stable than entropic
regularization. We set potential networks as fully connected neural networks. The hidden layer sizes are given by

[max(128, 2D),max(128, 2D),max(128, 2D)],

where D is the marginal distribution dimension. The activation functions are all ReLU. The batch size as 1024. We use
Adam optimizer with fixed learning rate 10−4 for Bayesian inference and MNIST examples and 10−3 for Gaussian examples.
We use Monge map to recover barycenter samples (Li et al., 2020, Equation (13)). The total number of iterations is set to
50000.

F. Experiment details for CWB (Korotin et al., 2021b)
We use the code in https://openreview.net/forum?id=3tFAs5E-Pe. As mentioned in the Korotin et al.
(2021b, Section A), we also pretrain the potential networks as an initialization step. We use Adam optimizer with fixed
learning rate 10−4 for Bayesian inference and MNIST examples and 10−3 for Gaussian examples. Other setups are exactly
the same as the (Korotin et al., 2021b, Section C.4.1).

G. Optimization landscape for class of quadratic functions
In order to understand and compare various optimization formulations to estimate Wasserstein barycenter, it is insightful to
examine them for special cases where analysis is feasible. For this purpose, we study the optimization landscape of our
formulation and (Korotin et al., 2021b) in the special case where the class of functions is restricted to quadratic functions. In
particular, we show that our optimization formulation simplifies to a smooth concave-convex-concave optimization for this
special case, while the formulation of (Korotin et al., 2021b) is non-smooth and non-convex.

We consider the simplest case that the functions are parameterized as follows: h(z) = z + α, fi(x) = 1
2‖x‖2 + βTi x, and

gi(y) = 1
2‖y‖2 + γTi y, where α, βi, γi ∈ Rn are the parameters that serve as optimization variables. Then, in this case, the

optimization problem (9) simplifies to

min
α

max
{βi}Ni=1

min
{γi}Ni=1

N∑
i=1

ai

[
1

2
‖γi‖2 + βTi (γi +mi − α)

]
(14)

where mi = Eµi
[Y i]. The objective function is convex in γi, linear in βi and γi. Inserting the optimal value for γi = −βi

yields

min
α

max
{βi}Ni=1

N∑
i=1

ai

[
−1

2
‖βi‖2 + βTi (mi − α)

]
. (15)

https://openreview.net/forum?id=3tFAs5E-Pe
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This is concave in βi. Inserting the optimal value βi = mi − α yields

min
α

1

2
‖α‖2 − αT

N∑
i=1

aimi +
N∑
i=1

ai‖mi‖2 (16)

which is convex in α with optimal value at α =
∑N
i=1 aimi. This means that the optimal generator h(z) = z +

∑N
i=1 aimi

learns average mean of the marginal distributions. This is the exact Wassserstein barycenter for the case that marginal
distributions are Gaussian distributions with the same covariance.

In contrast, consider the optimization formulation of (Korotin et al., 2021b, Eq. 14) with the following parameterization:
ψ†i (x) = 1

2‖x‖2 + αTi x and ψ̄††i (x) = 1
2‖x‖2 + βTi x. Then, the optimization problem simplifies to

min
{αi}Ni=1,{βi}Ni=1

N∑
i=1

ai

[
−1

2
‖αi‖2 − αTi βi −mT

i βi

]
+ τEP̂

[(
N∑
i=1

aiβ
T
i Y

)
+

]
+ λ

N∑
i=1

ai‖αi + βi‖2 (17)

where P̂ is a distribution that should be chosen such that τP̂ is larger than the barycenter density (with τ > 1). Although the
optimization problem involves single minimization compared to our min-max-min formulation, the optimization objective is
much more complicated. Our first observation is that the optimization problem is not convex in αi if λ < 1

2 (the optimization
algorithm diverges). Inserting the optimal value αi = −βi, the optimization becomes

min
{βi}Ni=1

N∑
i=1

ai

[
1

2
‖βi‖2 −mT

i βi

]
+ τEP̂

[(
N∑
i=1

aiβ
T
i Y

)
+

]
. (18)

This is convex, but non-smooth optimization problem in βi. In order for the expected solution βi = mi −
∑N
i=1 aimi be

optimal for this problem, it must satisfy the first-order optimality condition

ai(βi −mi) + τai∂l(0) = 0

where l(ξ) := EP̂
[
(ξY )+

]
and ∂l(0) denotes an element in sub-differential of l(ξ) at ξ = 0. The function l(ξ) = µ+ξ

for ξ > 0 and l(ξ) = −µ−ξ for ξ < 0, where µ+ = EP̂
[
(Y )+

]
and µ− = EP̂

[
(−Y )+

]
. As a result, the sub-differential

∂l(0) ∈ [−µ−, µ+]. Therefore, summing the first-order optimality condition for i = 1, . . . , N implies

N∑
i=1

aimi ∈ [−τµ−, τµ+].

Although, this condition holds when P̂ is Gaussian centered at the barycenter location
∑N
i=1 aimi (with τ > 1), it

may not hold with other P̂ . For example, if P̂ is N(0, 1), then µ+ = µ− = 1√
2π

, and the condition does not hold if∑N
i=1 aimi >

τ√
2π

.
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(a) Marginal 1 (b) Marginal 2 (c) Marginal 2 (d) Solomon et al. (2015) (e) NWB h]η

(f) NWB ∇g1]µ1 (g) NWB ∇g2]µ2 (h) NWB ∇g3]µ3 (i) CWB ∇g1]µ1 (j) CWB ∇g2]µ2

(k) CWB ∇g3]µ3 (l) CRWB ∇g1]µ1 (m) CRWB ∇g2]µ2 (n) CRWB ∇g3]µ3

(o) NWB h]η (p) NWB ∇g1]µ1 (q) NWB ∇g2]µ2 (r) NWB ∇g3]µ3 (s) CWB ∇g1]µ1

(t) CWB ∇g2]µ2 (u) CWB ∇g3]µ3 (v) CRWB ∇g1]µ1 (w) CRWB ∇g2]µ2 (x) CRWB ∇g3]µ3

Figure 16: Wasserstein barycenter of two Gaussian mixture marginals. Both of scatter plots and the level sets are exhibited.
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(a) NWB h]η (b) NWB ∇gi]µi (c) Claici et al. (2018)

(d) 20 ellipses (e) NWB h]η (f) NWB ∇gi]µi (g) Claici et al. (2018)

Figure 17: (a)-(c):Wasserstein barycenter of 10 distributions supported on random lines; (d)-(g):Wasserstein barycenter
of 10 uniform marginal distributions supported on random ellipses shown in (d). 200 points are sampled from estimated
barycenter. 13 points and 30 points are sampled from line and ellipse barycenter through the Claici et al. (2018) because this
is the maximum number of points allowed for the Claici et al. (2018) to terminate in a reasonable amount of time.

(a) µ1: MNIST 0-4 digit (b) µ2: MNIST 5-9 digit (c) backward to µ1 (d) backward to µ2

Figure 18: MNIST 0-4 and 5-9 barycenter (784-dimensional problem): (a)-(b) Marginal distributions consisting of 0-4
and 5-9 digits; (c)-(d) Generating digit 0-4 and 5-9 from random input Z ∼ N (0, I) using our architecture with the map
∇fi(h(Z)).

(a) µ1: MNIST (b) µ2: USPS (c) NWB h]η (d) NWB ∇gi](µi) (e) backward to µ1 (f) backward to µ2

Figure 19: USPS and MNIST barycenter (256-dimensional problem): (a)-(b) Marginal distributions consisting of MNIST
and USPS digits;(c)-(d) NWB generates barycenter by generator h and pushforward ∇gi; (e)-(f) Generating MNIST and
USPS digits from random input Z ∼ N (0, I) using our architecture with the map∇fi(h(Z)).


