Distributed Multi-agent Meta Learning for Trajectory Design
in Wireless Drone Networks

Ye Hu, Mingzhe Chen, Member, IEEE, Walid Saad, Fellow, IEEE, H. Vincent Poor, Life Fellow, IEEE,
and Shuguang Cui, Fellow, IEEE

Abstract—In this paper, the problem of the trajectory design
for a group of energy-constrained drones operating in dynamic
wireless network environments is studied. In the considered
model, a team of drone base stations (DBSs) is dispatched to
cooperatively serve clusters of ground users that have dynamic
and unpredictable uplink access demands. In this scenario,
the DBSs must cooperatively navigate in the considered area
to maximize coverage of the dynamic requests of the ground
users. This trajectory design problem is posed as an optimiza-
tion framework whose goal is to find optimal trajectories that
maximize the fraction of users served by all DBSs. To find
an optimal solution for this non-convex optimization problem
under unpredictable environments, a value decomposition based
reinforcement learning (VD-RL) solution coupled with a meta-
training mechanism is proposed. This algorithm allows the DBSs
to dynamically learn their trajectories while generalizing their
learning to unseen environments. Analytical results show that,
the proposed VD-RL algorithm is guaranteed to converge to a
local optimal solution of the non-convex optimization problem.
Simulation results show that, even without meta-training, the
proposed VD-RL algorithm can achieve a 53.2% improvement
of the service coverage and a 30.6% improvement in terms of the
convergence speed, compared to baseline multi-agent algorithms.
Meanwhile, the use of meta-training mechanism improves the
convergence speed of the VD-RL algorithm by up to 53.8%
when the DBSs must deal with a previously unseen task.

Index Terms—Drones, network optimization, multi-agent rein-
forcement learning, meta-learning.

I. INTRODUCTION

Aerial wireless communication platforms carried by drones
can provide a cost-effective, flexible approach to boost the

This research was supported by the U.S. National Science Foundation
(NSF) under Grants CNS-1909372, CNS-1836802, and CCF-1908308. It was
also supported in part by the National Key R&D Program of China with
grant No. 2018YFB 1800800, by the Key Area R&D Program of Guangdong
Province with grant No. 2018B030338001, by Shenzhen Outstanding Talents
Training Fund, and by Guangdong Research Project No. 2017ZT07X152.
A preliminary version of this work will be presented at the IEEE Global
Communications Conference [1].

Y. Hu, and W. Saad are with the Wireless@VT, Bradley Department of
Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA,
24061, Emails: yehl7@vt.edu, walids@vt.edu. W. Saad is also with the
Department of Computer Science and Engineering, Kyung Hee University,
South Korea.

M. Chen is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA, 08544, and the Future Network of Intelligence
Institute, Chinese University of Hong Kong, Shenzhen, China, 518172, Email:
mingzhec @princeton.edu.

H. V. Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA, 08544, Emails: poor@princeton.edu.

S. Cui is currently with the Shenzhen Research Institute of Big Data and Fu-
ture Network of Intelligence Institute (FNii), the Chinese University of Hong
Kong, Shenzhen, China, 518172, Email: e-mail: shuguangcui@cuhk.edu.cn.

coverage and capacity of future wireless networks [2]-[4].
However, effectively deploying a group of drone base stations
(DBSs) for providing timely on demand wireless connectivity
to ground users in dynamic wireless environments is still an
important open problem. In particular, designing trajectories
for a group of independent DBSs is challenging particularly
when the DBSs only have limited information on the wireless
requests of the ground users, which are often highly unpre-
dictable and dynamic.

A. Related Works

The existing literature in [5]-[18] studied a number of
problems related to trajectory design for drone-based wire-
less networks. The work in [5] studies the drone trajectory
optimization problem by jointly considering both the drone’s
communication throughput and its energy consumption. The
authors in [6] design the trajectory of a solar-powered DBS
to enhance its wireless communication performance. In [7],
the problem of trajectory design and user association in a
multi-drone communication system is solved with a block
coordinate descent solution. The authors in [8] propose a
dynamic trajectory control algorithm to improve the commu-
nication performance of the DBSs. The authors in [9] optimize
time allocation, reflection coefficient adjustment, and DBS
trajectory in backscatter communication networks. Despite
their promising results, these existing works [5]-[9] do not
consider practical DBS-assisted wireless networks in which
the ground user requests for wireless service follow unpre-
dictable patterns. Indeed, the optimization based solutions in
[5]-[9] are not suitable to design DBS trajectories when the
user requests are unknown and unforeseeable.

Recently, there has been significant interest in realizing
intelligent control of drones in dynamic networking environ-
ments, using machine learning tools for trajectory design [10]-
[18]. In [10], the problem of real-time dynamic maneuver
design at a data collecting DBS is studied and solved us-
ing reinforcement learning (RL). The work in [11] employs
two powerful deep neural networks to intelligently guide an
energy-limited DBS under environmental dynamics. In [12],
the authors develop an RL algorithm that enables a drone
to act as a data-collection relay with the goal of maximize
information freshness. However, the work in [12] is restricted
to the case of a single drone. For intelligently controlling
multi-drone systems, the authors in [13] design interference-
aware paths for a group of cellular-connected drones by using

a multi-agent reinforcement learning (MARL) solution that
relies on a deep echo state network (ESN) architecture. The
work in [14] proposes a deep MARL architecture that directs
drones within a continuous set of locations to accomplish
time-sensitive sensing tasks. Meanwhile, in [15], the authors
develop a MARL framework to allow drones dynamically
manage resources according to their local observations. The
authors in [16] propose an ESN based learning architecture
to predict the users’ mobility patterns and, then, realize an
optimal deployment of a group of DBSs. The works in
[17] and [18] propose distributed multi-agent algorithms that
allow a group of agents to update their individual strategies
considering the team benefits. However, most of the existing
MARL solutions such as those in [13], and [16]-[18] require
DBSs to share their states and actions while searching for the
optimal strategies. These traditional RL solutions have high
complexity, as they solve multi-agent problems by updating
strategies based on the entire set of agents’ actions and
strategies whose dimension increases exponentially with the
number of agents. Meanwhile, the MARL solutions in [14]
and [15] allow the agents to search strategies independently
based on their own actions and states. However, using these
RL solutions, the DBSs cannot optimize the sum utilities of all
DBSs, and thus, cannot maximize the overall coverage of the
ground users, since the DBSs are optimizing their individual
utilities. In addition, traditional RL solutions such as those
used in [13]-[18] cannot efficiently adapt the trajectories of
the DBSs to unseen environments, as they are often overfitted
to their training tasks. This is because the hyper-parameters,
exploration strategies, and initializations of traditional RL
algorithms are manually adjusted for fitting the training tasks.
Once the agent faces an unseen task, manually adjusted RL
algorithms may not converge to the optimal solution and, even
if they do, the convergence speed will be very slow. As a result,
the traditional RL algorithms in [10]-[18] cannot effectively
find optimal DBS trajectories in unseen environments. Finally,
we note that in [1], we studied the problem of trajectory design
for a single DBS operating in a dynamic environment using
meta-learning. However, this prior work relies on a simple
algorithm that cannot be scaled to larger networks.

B. Contributions

The main contribution of this paper is a novel distributed
framework for designing the trajectories of a group of coop-
erative DBSs in unpredictable, dynamic environments. To our
best knowledge, this is the first work that designs trajectories
for a team of DBSs in unpredictable, dynamic environments
using a multi-agent meta reinforcement learning solution. In
brief, our key contributions include:

e We consider a practical drone-aided wireless system in
which a team of DBSs cooperatively navigate in an area,
under strict energy constraints and limited information on
surrounding environments, with the goal of providing up-
link wireless connectivity to ground users. The DBSs can
provide on-demand coverage to the ground users while
adapting their trajectories to those users’ unpredictable

access requests. We formulate this trajectory design prob-
lem as an optimization framework whose structure is
shown to be non-convex. To solve this problem, the
“myopic” DBSs, which have only limited access to the
information of ground users, seek to find trajectories
that maximize the expected portion of served users — a
wireless coverage metric that we use as the team utility
of the group of DBSs.

o To solve the formulated trajectory optimization problem,
we propose a novel, distributed, value decomposition
reinforcement learning (VD-RL) algorithm. This algo-
rithm is shown to reach a local optimal solution of
the studied non-convex problem without requiring the
DBSs to share their actions, states, or strategies. This
makes the proposed VD-RL algorithm much less complex
than traditional distributed MARL algorithms (e.g., those
in [13], and [16]-[18]), as the DBSs can update their
strategies based on their own low-dimensional actions and
states. The proposed VD-RL algorithm allows the DBSs
to independently select strategies that maximize the team
utility by decomposing and attributing this team utility to
each DBS. Thus, with the proposed VD-RL algorithm,
the DBSs can find a local optimal solution, which yields
a much higher team utility, compared to the one that can
be achieved by existing MARL solutions in [14] and [15].

o To improve the convergence speed of VD-RL for unseen
environments, we propose a meta training mechanism that
uses an optimization based solution to meta train the VD-
RL algorithm. In particular, the proposed meta training
mechanism seeks to find proper policy and value function
initializations that estimate all possible user request pat-
terns for the VD-RL algorithm. Using this meta-learning
mechanism, the VD-RL solution can quickly converge
to a team optimal strategy when faced with an unseen
task. The proposed optimization based meta training
mechanism has a lower complexity compared to the
meta training solutions in [19] and [20], because it does
not require additional neural networks for meta-learning.
Using the proposed approach, the DBSs can be meta-
trained independently with their own actions and states.
In particular, the meta-learning approach helps DBSs to
cope with various tasks instead of a single sampled task
as in [21], by using a meta-trained initialization.

Simulation results show that proposed VD-RL algorithm
can improve the service coverage and convergence speed by
up to 53.2% and 30.6%, compared to traditional multi-agent
algorithms. The results also show that using the proposed meta
training mechanism, our VD-RL algorithm can find optimal
trajectories in an unseen environment with a 53.8% faster
convergence speed, and a 5.6% better coverage, compared to
the VD-RL algorithm without meta-learning.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section
II. In Section III, the proposed algorithm is developed and
discussed. In Section IV, simulation results are presented.

—" Drone trajectory Active user

Do be

X¢ Drone base station
Service area

Inactive user

Fig. 1. Topology of our considered network. In this model, the DBSs travel
across the clusters in SLF, hover over each cluster with SCF, and keep serving
their associated users within each cluster.

Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a geographical area within which a set &/ of U
randomly deployed terrestrial users request uplink data service.
A set N of N fixed-wing DBSs are dispatched to satisfy the
uplink access requests of those ground users, as shown in Fig.
1. In the considered area, an user that requests data service is
called an active user, otherwise, it will be an inactive user.
We assume the users to be separated into different groups,
each of which is called a cluster. Note that, a “cluster” is
defined as an area that falls within the service coverage of
only one DBS. We also assume that, at any given time, each
cluster will be served by a single DBS. The set of such
clusters is denoted as C. The DBSs will travel across the
clusters in a steady straight-and-level flight (SLF), and hover
over each cluster with a steady circular flight (SCF), at a
constant speed V, [5]. Each DBS n € N flies at its own
constant altitude ! H,, to avoid collision with other DBSs. All
the DBSs must return to their original location O within a
time period 7" for battery charging. Moreover, all DBSs are
assumed to have the same battery capacity. The trajectory
that records DBS n’s movement within the time period 7T
is represented by a vector £, = [£,,1,6n,2, - - ,§n7K]T, with
&ne € CU{O} being the k-th cluster that DBS n serves,
or the initial location O that DBS n returns to after serving
the users, and K being the maximum number of locations
each DBS can fly across under its energy constraints. In other
words, each DBS n flies across no more than K different
locations, each of which is called one step on the trajectory of
DBS n, the set of such steps is denoted as K. For example,
&, = [£n1,0,...,0], with &, 1 € C, implies that DBS n
serves cluster &, 1 and then flies back to the initial location O,
while €, = [£,,1,&n.2, - -, n k-1, O], with &, , € C, implies
that DBS n serves clusters &, 1,&n,2,...,&n k-1, and then
flies back to the initial location O.

A. Communication Performance Analysis

In our network, the users adopt an orthogonal frequency
division multiple access (OFDMA) technique and transmit

'Here, the differences in the altitudes between the DBSs are assumed
to be considerably small when compared to the DBSs’ dedicated altitudes
Hy,. Thus, the altitude differences only have limited impact on the DBSs’
communication performance, including data rates, as well as service coverage.

data over a set of uplink resource blocks (RBs) [22]. Each
dispatched DBS will arbitrarily allocate one RB to each one
of its associated users within a cluster. We assume that each
DBS can keep serving its associated users within a d,.-meter
radius over each cluster as shown in Fig. 1. The area within
this range is called a service area. Also, user u is assumed to
request a total of b,, data (in bits) at time epoch t,,. The DBSs
must satisfy these requests within their battery capacities.
Let b = [by,...,by] and t = [ty,...,ty] be, respectively,
the vector of quantity and occurrence of the users’ access
request in the network. The quantity b, and active time ¢,
are assumed to be independent random variables that follow
unknown distributions. Hereinafter, we denote z = [b,¢] as
one realization of the users’ access request within duration 7.
In this model, the deployed DBSs are myopic, that is, they
only know the access quantities and active time of the users
that they are currently serving. The path loss (in dB) of the
line-of-sight (LoS) and non-line-of-sight (NLoS) air-to-ground
communication links between DBS 7 to user u are given by
the popular air-to-ground model in [23]

hES = 201log <47chdu,n) + 0%

- :

u,n

hN-S = 201og (47”65“> + s, (1)
where f. is the carrier frequency of the communication link
between DBS n and user u, d,, ,, is the distance between user
u and DBS 7, and ¢ is the speed of light. ¢} and ¢},5 are,
respectively, the additional path losses at the LoS and NLoS
air-to-ground links between DBS n to user u. The value of
g{;os and g}f};{’s follow Gaussian distributions with different
parameters (MLo& 5505) and (HLos, 5308), respectively. Note
that the path loss values between DBS n and user w are
considered to be stable with DBS n’s movement, as the
distance between DBS n and user u will only experience small
changes when DBS n flies within the service area. The signal-
to-noise ratio (SNR) at the LoS and NLoS links between DBS

n and user u, will thus be

LoS _ P
wn = M
NyB10%
o P
O @
NyB10 %0

where P represents the transmit power of user u, which is as-
sumed to be equal for all users. IV is the noise power spectral
density, and B is the RB bandwidth (equal for all RBs). In
order to avoid LoS interference to ground links and because
the number of DBSs in real systems will be small, we assume
that each DBS will use its own dedicated frequency band. The
data rate at the link between DBS 7 and user v will then be
Cun = /BLOSB log (1 + ,YLOS) +ﬂNLOSB log (1 + ,yNLOS)’ where

u,n u,mn u,mn) u,n
o8 = [1+ gexp (2220, . + ©¢)] " is the probability
of having a LoS link between DBS 7 and user w, ,85}7{’5 =

1— %S is the probability of having a NLoS link between DBS
n and user u. Here, ¢ and ¢ are constant values that depend

on the studied communication environments, while 0,, ,, is the
elevation angle between DBS n and user .

B. Utility Function Model

In the studied scenario, the goal of the dispatched DBSs is
to cover all access requests from ground users. In such a case,
the utility of each DBS is defined as the successful service rate,
which captures the fraction of users being served by a given
DBS in a given time period. Note that, when DBS n arrives at a
cluster, it will only serve the user requests that were not served
by the DBSs that arrived at this cluster before DBS n. For the
special case in which multiple DBSs arrive at a cluster at the
same time, only one DBS will serve the entire cluster, and the
remaining DBSs will directly proceed toward other clusters.
Note that once a DBS finds out (with their limited situational
awareness) that another DBS is hovering on the service area of
a cluster, it knows that this cluster is being served, and it will
leave this cluster. Thus, the successful service rate achieved at
DBS n by serving cluster &, j is given by

Zueu]l{ueun kT =7 <t <T—7p 1}
2ueu Lo<t, <1}

fink (§) = N)

where € = [£,,&,,...,&y] is the matrix of trajectories of the
DBSs, U, i, is the set of active users in cluster &, ;. Tk iS
the time duration that DBS n is allowed to keep flying with
its remaining energy level, after successfully serving cluster
fnwkz. Note that, hereinafter, the time duration 7, j is called
the available service time of DBS n atstep k. In (3), 1, =1
when z is true, otherwise, 1,1, = 0. Here, Zueb{ o<, <1y
is the number of active users within the studied time duration,
and Zueu Yeveu, , 7—7: <t <T—7,,} 1s the number of active
users served by DBS n in cluster &, . 7, min Tn! k'

is the available service time of the last DBS thzelt arrived
at cluster &, before DBS n. T' — 77 < t, < T — Ty
represents that user u requests data before DBS n’s arrival,
and have not served by any other DBSs, as shown in Fig.
2. Here, N,, = {n/|n' e N\, & ke = Enkes Tor ket = T
is the set of DBSs that arrive at cluster £, before DBS n,
where &,/ 1 = &, 5 implies that cluster &, 5 is also the k'-
th cluster served by DBS n'. Moreover, DBS n’s available
service time upon its arrival at cluster &, , on trajectory &,
is given by 7, = T — Zk ld”“vi”““ —Zk 1D;““{, with
dn,i,x+1 being the distance between cluster &, .. and &, jo41.
Here, d"’ﬁf“ is the time needed by DBS n to travel in an SLF
from cluster &, , to cluster &, ,.41. Dn .. 1s the time needed
by DBS n for hovering while serving the users in cluster Enies
and this hovering time is given by

, if max D, , — 2&,
wEU: 4)

0, otherw1se,

_ 2dy
vV

>The utility at a given DBS is determined by the trajectories of all DBSs
since the number of user requests in the course of this DBS n’s hovering
over a target cluster is determined by the number of active users served by
the DBSs previously arrived at this cluster.

/

VT- T—rop L

Fig. 2. Snapshot of one user access request. DBSs only connect with active
users that have not been served by other DBSs.

I

o Time

where D, ,, = Cb
being served by DBS n. max D,y is the time that DBS n

uEZ/l,L K
used to serve all the users in cluster &, . D;“l o
DBS n consumes for SCF hovering, while VT is the time
DBS n consumes its SLF travel within the service area. We
define U, . = {ulu € Uy, T — 7 <ty <T — 7y } as the

set of active users that can be served by DBS n in cluster &, .

is the time

C. Problem Formulation

In our system model, a group of energy-constrained and
myopic DBSs fly independently to cover all the access requests
from ground users. The successful service rate achieved by the
DBSs is defined as a team utility, and is given by

K
= > ik (€). (5)

k=1neN

The goal of the DBSs is to find optimal trajectories that max-
imize the expected team utility. Next, we first define expected
team utility and then we introduce the optimization problem.
Let 7y, (£ &0k, Tnk) be the strategy of DBS n, defined as the
probability that DBS n moves toward cluster £ € CU{O}, after
successfully serving cluster &, ; with available service time
Tnk» and let @ = [m, (§|£n!k’7—n7k)]n€/\/,k}€l€ be the vector
of strategies of all DBSs. Then the expected team utility is
defined as

=> G

gee

N K
H H (& &n ks Tk) s (6)

where £ is the set of all possible trajectories of the DBSs. As
such, the trajectory design problem can be formulated as

mgxé (m), (N

K
S. t'Z£€5 l;[1:[(f |§n,k77—n,k) =1,

deCU{O}ﬂ—n(|§n’k7Tn’;€)=1,Vn EN,&E(S‘, kE/C,
(7b)

0< 7, (€lénk,Tnr) <L,VneN, €& kek,
(70

(72)

Here, (7a) means that the DBSs must choose trajectories from
£. (7b) indicates that, within the considered time duration,
each DBS n must choose to serve one cluster in C or return
to the origin. The optimal solution of problem (7) guarantees
a maximum expected team utility at the DBSs, and it is called
a team optimal strategy. Here, we note that the use of tradi-
tional optimization algorithms, such as branch and bound or
nonlinear programming, is not suitable to solve (7), as problem
(7) is non-convex, and the successful service rate p, j (£)
achieved at each DBS is unpredictable with the values of b
and t following unknown distributions. Moreover, traditional
machine learning algorithms such as Q learning, policy gradi-
ent, and echo state networks (ESN) [24]-[26] that have been
previously used to solve complex optimization problem are
also not suitable to solve the problem (7). This is because those
algorithms must be manually adjusted to solve their training
tasks, and they cannot find optimal strategies for the DBSs
in unseen environments. To solve the non-convex problem
(7) formulated in dynamic, unpredictable environments, we
propose a distributed meta-trained VD-RL algorithm that finds
team optimal strategies by meta training a distributed VD-
RL solution equipped with a primary estimation on unseen
environments. The distributed VD-RL algorithm updates the
DBSs’ strategies and estimation on the strategy outcomes at
each individual DBS, based on only this DBS’s actions and
states. The meta training procedure finds an initialization of
the policy and value functions for the VD-RL solution. This
initialization is close to all optimal policy and value functions
at all possible environments and, hence, it enables the VD-RL
solution quickly converge in the dynamic environments and
reduces the VD-RL solution’s cost on time, energy, and the
drone hardware. The proposed meta-trained VD-RL algorithm
is introduced in the next section.

III. PROPOSED VALUE DECOMPOSITION-REINFORCEMENT
LEARNING ALGORITHM WITH META TRAINING

We now introduce a distributed meta-trained VD-RL al-
gorithm, that merges the concept of value decomposition
network [27], model agnostic meta-learning [28], with the
policy gradient (PG) framework. The traditional PG algorithm
can find the optimal trajectory for a single DBS. However,
PG cannot find a team optimal strategy for a group of DBSs,
as it will direct all the DBSs to one trajectory. In order to
design trajectories for multiple DBSs, an algorithm that can
reach a team optimal strategy for the DBSs must be proposed.
Moreover, to prepare the DBSs for unseen environments,
the proposed algorithm must not be overfitted to its training
tasks, and it should converge to a team optimal strategy when
the team utility function in (5) changes. To address these
challenges, we propose a meta-trained VD-RL that coordinates
a group of DBSs in various environments. Next, we first
introduce the proposed VD-RL algorithm which solves the
non-convex problem (7). Then, we explain how to use meta-
learning approaches to meta train this VD-RL algorithm in
order to allow it to cope with various environments.

A. Value Decomposition based Reinforcement Learning Algo-
rithm

Next, we first introduce the components of the VD-RL
algorithm. Then, we explain how the VD-RL algorithm can
decompose problem (7) to problems that can be solved at
each individual DBS. Finally, we introduce the procedure of
using the proposed VD-RL algorithm to solve the non-convex
problem in (7).

1) Value decomposition based reinforcement learning com-
ponents: The proposed VD-RL algorithm consists of seven
components

o Agents: The agents in VD-RL are the DBSs in set .

e States: Each agent has a state that consists of both its
location, represented by the cluster it currently serves
ie. &k, and its energy level, which is captured by the
time 7, that this DBS still has in order to return to
the origin. Thus, the state of DBS n at step k is given
by spk = [§nk, Tnk]- The set of states at all DBSs is
S= {So7 Si,..., SK}, with Sy = [Sl,k, S ks e e SN,k]
being the matrix of the DBSs’ states at step k.

e Actions: The action of each agent is the cluster that it
seeks to serve, or the origin location that it will return to
after serving several clusters. The action chosen by DBS
n at step k is given by a,, , € CU{O}, while the vector of
all DBSs’ actions at step k is @, = a1k, G2,k - - -, AN K-

o Strategy: The strategy of each DBS is defined as the
probability of choosing a given action a, € C U {O}
at a given state s, , and is denoted by 7, (an. i [Snk)-
7 = [Tn (@nk [Snk)], enr rex 18 the vector of strategies
of all DBSs.

o Policy function: We define a policy function g, , thatis
a deep neural network parametrized by 8, , and is used
to generate the strategy of DBS n. This policy function
9, ., (Ank |Snk) takes DBS n’s state as an input and
outputs a strategy for DBS n at this state.

e Reward: The reward of each DBS measures the benefit
of a selected action. In particular, aiming at maximizing
coverage in the considered area, the reward of each DBS
is defined as the successful service rate achieved by all the
DBSs, which is given by 7 (ax [S) = >, cn Hnk (§)-
Here, different from traditional RL algorithms in which
each agent only maximizes its own achievable utility,
our proposed VD-RL algorithm enables each DBS to
maximize the utility of all DBSs, which is also called
the team stage reward >.

3Note that, DBS n’s successful service rate fin,k defined in (3), depends on
DBS n’s current action a, ., state s,, i, and the actions taken by other DBSs
before DBS n’s arrival at cluster &, r. As the DBSs operate asynchronously
in the wireless environment as shown in Fig. 3, one DBS may reach step
k' # k on its trajectory at the time DBS n arrives at its step k. In other
words, at time epoch T — 7y, 1, the DBSs will reach different steps of their
trajectories. The set of DBSs’ states at time epoch T' — 7, j is denoted
as BT*M, - In this case, the team stage reward resulting from action ay

should be 7 <¢1k ‘UHENBT—Tﬂ,)k) Hereinafter, we denote it as r (ag |.S')
for simplicity. It is worthy noting that, within the proposed VD-RL algorithm,
the DBSs only record the number of served active users at each step on their
trajectories.

Y DBS2)

Ls‘("‘ az,1 g2 ~ """ ¥> Vit
'

Trs}lqi/sz‘l v S22 1823 S2.K
' . T glit1)

! a
o— * o Time
0 L'—m7, T —Ta3 T

Fig. 3. [Illustration of one iteration of the VD-RL algorithm defined in
Algorithm 1.

o Value function: We define a value function V (Sj) that
is a deep neural network used to estimate the DBSs’
achievable future rewards at every state S. In particular,
within the proposed VD-RL algorithm, the goal of the
DBSs is to find a team optimal strategy that maximizes
the expected team utility in (5). To this end, the DBSs
must consider the current and also future rewards that
can be achieved at every state. Thus, at every state Sy,
the Dl}%{Ss seeks to maximize a discounted future reward

> Y 4k "ty (a,.|S), which is estimated by value

neN k=k
function V (S},), with v being the discounted factor®.

In VD-RL, the DBSs interact with the unknown wireless
environment by selecting actions in C U {O} based on the
strategy generated by policy function g, , . In particular, the
DBSs select actions step by step and receive the team stage
rewards as feedback. An experience defined in vector e, =
[Sn1,an1,7(@1|S), ..., 8n K, 0n Kk, (ar |S)] is collected
by each DBS n € A. The DBSs then update the value function
with their collected experiences and update their strategies to
maximize future rewards estimated by V (S}). In particular,
the DBSs will update their estimation on future rewards after
they return to the origin. At the origin, each DBS n only
needs to know the number of active users served by all the
DBSs from their last experience to update its estimation on
future rewards, it does not have to know the actions taken by
other DBSs. However, value function V (S},) still depends on
the states of all DBSs. Hence, each DBS may not be able to
train its value function individually. Therefore, we introduce a
value decomposition method using which each DBS can train
its value function based on its local states.

2) Value decomposition: The VD-RL algorithm needs to
find a value function accurately estimate future rewards, and,
thus, seeks to minimize the temporal difference (TD) error

4The discounting factor ~y determines the scale of these steps. In particular,
a discount factor close to 1 provides a long-term goal that accumulates rewards
far into the future, while a discount factor close to O provides a short-sighted
goal with which the DBSs only focus on immediate rewards. In fact, a proper
scaling/discounting of future rewards can help a learning algorithm converge
faster to the optimal solutions. If one uses the exact future rewards, the DBSs
will only focus on their long-term goal and, thus, they would directly head
to the cluster with most active users without stopping at other clusters. This
would lead to a lower overall successful service rate (which can be seen, for
example, in the numerical results in our conference paper [1]).

metric that is defined as follows [29]:
Alay, Si) = Nr(ap|S) + 7V (Sk+1) =V (Sk) (8

where TD error A (ag, Sy) is called the feam advantage of
the DBSs at state S with action ay. The team advantage
measures the difference between the DBSs’ future reward
estimated by Nr (ay, |S)+7V (Sk+1). and the one estimated
by V (Sk). In essence, the team advantage keeps improving
the value function V (S§)’s estimation accuracy using new
sampled experiences. Moreover, the team advantage also re-
veals how actions in a;, are better than other action selections
by showing the difference between the future reward reached
by actions in aj, and the estimated future reward V (S}).
However, to enable the DBSs to update their value functions
individually, one must divide the value of function V (S})
among all DBSs. The value allocated to each DBS must
reinforce team beneficial actions, and weaken all other actions
at each DBS. Our VD-RL algorithm implements this value de-
composition across the DBSs. In particular, the proposed VD-
RL algorithm decomposes value V' (S) under the assumption
that this value is the sum of the values attributed to each DBS

V(S =Y Vo..(suk))
neN

where ng (8n,k) 1is the individual value function
parametrized by 6., at DBS n. Thus, the team advantage
A (ay, Sk) be expressed as

A(ak,Sk) =

Nr(ar|S)+7 Y Vo, (Snki1) = Y Voo (Snk)-
neN neN
(10)
Based on the assumption (9), the DBSs can update their policy
and value functions independently.

3) Value decomposition based reinforcement learning so-
lution: When searching for the team optimal strategy that
solves problem (7), the VD-RL algorithm needs to find optimal
value functions that accurately estimate future rewards at every
state, as well as the optimal policy functions that can always
yield the actions leading to the highest future rewards at each
DBS. In particular, the update of the individual value function
f/@c,n (8n k) of each DBS n is given by

K

0cn = 00n — o'V > A (ar. Si)
k=1

K

=00, 'V

ol
k=1

2
- Ve, (S"‘k))

(NT (ar]S)+v > ‘7951137 (8n,k+1)
neN o

K
=00, +2a0" > A(ax, Sk) Vo) Vori) (sn.1),
P n c,mn
where 6"

c,n
aﬁ” is the value function parameter update step size, at the

is the value function parameter of DBS n and

Algorithm 1 VD-RL algorithm for trajectory design at one
realization of user access request.
Input: User locations, time constraints.

Init: Initialize value functions ‘79& 17)z , and policy functions 7 9(’1 121, for n €
1: for VD-RL training epoch ¢ =1 : I do

The DBSs carry out an experience by generating a sequence of actions
that are randomly selected based on current policy functions.

N

Calculate advantage A based on (8).
for Each DBS n=1: N do

Update individual value function with (III-A3).
Calculate individual advantages A, (an,k, sn,k).

Update policy function with (11).
end for
end for

D A

i-th VD-RL training iteration >

After precisely estimating the future team stage rewards
using V' (Sk), and attributing the value to each one of
the DBS, the policy function of each DBS can be up-
dated. Let A, (Gnky Sni) = r(ag|S) + 7V9 (Sn.kt+1) —
f/gw (8n,k) be the individual advantage at BS n at state
Sp, with action a,, ; € ai. Hence, we have A (ay,Sy) =
D omeN A, (@n ks Sn,i)- Based on the the policy gradient the-
orem [26], the update on DBS n’s policy function parameters
is given by
0(i+1) —

a,n
K
; , -
0((1)n +al® E Ap (an ks, Snk) Vi logmya (ke |Snk) s
k=1

Y

where 9(1) is the policy function parameter at DBS n and

afl) is the policy function parameter update step size, at the
i-th VD-RL training iteration.

The proposed VD-RL solution is summarized in Algorithm
1. At the beginning of the algorithm, each DBS serves its users
with a randomly initialized value function V, o) and policy
function () - The successful service rates that the DBSs
achieved with the selected policy functions are calculated
and recorded by the DBSs upon their return to the origin.
The DBSs update their value and policy function parameters
based on (III-A3) and (11), using the recorded successful
service rates. Then, the DBSs serve the users with the updated
policy functions. Note that the proposed VD-RL algorithm
deploys a mini-batch training mechanism. In particular, using
the proposed algorithm, the DBS updates its policy over a
whole experience in order to reduce the variance caused by
the action sampling, as well as the need to store a big dataset.

SNote that, here, N7 (ay |S) + VD omenN Vgc_ﬁ (Sn,k+1) acts as the
supervised terms (targets) in the training procedure of the value functions,
and, thus, do not take derivations. Also, the limited situational awareness
only allows the DBSs to define their individual value functions based on
their local states (otherwise, significant coordination and overhead would be
needed which is impractical for a drone network). The proposed mathematical
induction and mini-batch training procedure allows the DBSs update their
individual value functions based on their local states.

Thus, while flying over the target area, the DBSs will, step by
step, select clusters to serve by sampling actions from their
policy functions. Upon their return to the origin, the DBSs
will exchange their achieved rewards, and update their policy
and value functions by accumulating these rewards. Also, for
a given DBS, carrying out an experience means that this DBS
will serve one realization of user requests, and then, record its
actions, states, and achieved rewards from this service. The
recorded actions, states, and rewards constitute the experience
of a given DBS.

4) Convergence and complexity analysis: Next, we show
that the proposed VD-RL algorithm is guaranteed to converge
to a local team optimal strategy.

Proposition 1. The proposed distributed VD-RL algorithm is
guaranteed to converge to a local optimal solution of problem
(7), if the following conditions are satisfied:

1) Value function ng (8n,%) converges to a local minimum

with VBC,,nAZ (ar,Sk) = 0, and advantage function
9 Il 764, (anklsnk)
2) max e < oo, for any ele-

an,kec,sn,kes 89i69;

ments 0; and ¢; in the policy function parameter vector

aa:[oalaea%“' OaN])
3) limy e @l =0, Sy al = o0, lim; o, @ = 0 and
Zfol oz,(l) = 00.
Proof. See Appendix A. O

From Proposition 1, we can see that the proposed VD-RL
algorithm is guaranteed to converge to a local optimal solution
of problem (7), by decomposing value V (S}) to each DBSs.

With regards to the complexity of the proposed VD-RL
algorithm, one can see that only the successful service rate
and estimated future reward, i.e. individual value, reached by
each DBS at each step on their trajectories will be shared
and transmitted among the DBSs. Thus, the VD-RL algorithm
reduces the dimensionality of the problem by updating the
policy and value functions at each DBS based only on this
DBS’s actions and states. Note that, the studied multi-agent
problem is much more complex than a single agent problem,
as the exponential growth on the action and state spaces
in multi-agent problem causes a curse of dimensionality®.
Nonetheless, our approach allows to reduce this multi-agent
dimensionality to that of a single-agent problem. In essence,
the complexity of the VD-RL solution is O (v (n. + ny) C),
where v is the iteration when the proposed VD-RL algorithm
converged, while n. and n, are the number of elements in
0., and 0, ,. C is the time complexity of calculating the
gradient of each element in 0. ,, and 6, ,. This complexity is
considerably low since, as already mentioned, it is similar to
that of a single agent policy gradient algorithm.

SCurse of dimensionality means that the neural networks’ estimation error
increases when they deal with high dimensional data [30]

In summary, using the VD-RL algorithm, the DBSs update
their own policy and value functions locally and can finally
reach a local optimal solution of problem (7). However, when
the environment changes, the local optimal strategy reached
by the VD-RL algorithm will no longer be the strategy that
maximizes the expected coverage. In this case, the whole
procedure in Algorithm 1 must be performed again to solve
problem (7). As the studied wireless environment is highly
dynamic, the VD-RL algorithm in Algorithm 1 must be re-
peatedly performed to search a team optimal strategy in every
environment. This increases the complexity of finding a VD-
RL solution to a time complexity O (v (n. + n,) CX), when
the user access requests change X times. In order to reduce
this time complexity, we use the framework of meta-learning
[28]. In particular, we propose a meta training procedure
that can supplement the proposed algorithm by finding an
initialization of the policy and value functions for the VD-RL
solution. The meta-trained initialization are close to optimal
policy and value functions at all possible environments which
enables the VD-RL algorithm to quickly converge in dynamic
environments.

B. Meta Training Procedure

Next, we introduce our meta-learning approach that meta
trains a VD-RL solution using model agnostic meta-learning
(MAML) [28]. The proposed meta training method seeks
a VD-RL solution capable of quickly reaching team opti-
mal strategies in various environments. This meta training
procedure prepares the VD-RL solution with a set of well
established initial policy and value functions with suitable
estimation on a distribution of user request realizations, i.e.
p (Z). These initial policy and value functions are close to the
optimal ones that provide team optimal strategies to each of
the user request realizations in Z. During the meta training
procedure, a realization z; is first sampled from p (Z). Then,
the DBSs collect experiences e,, ; using their initial policy
functions 7 o) > with the consideration that ground users are
requesting access based on z; ;- The policy and value functions
at the DBSs are updated using Algorithm 1, based on the
collected experiences e,, ;. The updated policy and value func-
tions at DBS n within z; are denoted as V9/ e , and e
respectively. The updated pohcy and value functions are then
tested on new experiences e/, n,; With actions sampled using
e, at current realization z;. The feedback from such tests
at DBS n will be the values of loss functions that measure the
distance from the updated policy and value functions to the
optimal policy and value functions that produce team optimal
strategies. These are given by

S-S

k=1

’ -~ e/) 2
) -, ()

Len (o,

c,m,j

Ve (s

Algorithm 2 Meta training procedure for the trajectory design
problem.

Input: A distribution of user requests p (£), user locations, time constraints.
Init: Initialize value functions \79(1) , and policy functions 7 o) > for n €
c,n a,n

N.

1: for Meta training epoch ¢ = 1: I do

2 for Environment sampling epoch j =1 : J do

3: Sample an user request realization z; ~ Z.

4 Carry out an experience by generating a sequence of actions that
are randomly selected based on current policy functions, i.e. 7 o) >
forn € N. oo

5: Calculate advantage A based on (8).
for Each DBS n=1: N do

7: Update individual value functions

Hilzw 05121 + a.V ol), Z A? (a,(f”’j),sl(:n’j)),

and policy functions

() _gi (en.g) glen.s)
eang 9”'2”+a ZA (o nk]
k=1
en,j en . j
Vegil)n 10g7r91(j)n (ay(h,C i) .ST(LJ€ J)> .
8: Carry out an experience by generating a sequence of actions
that are randomly selected based on updated policy functions,
ie. (i)
ea n,j
9: Calculate loss i,;,n (\79(,)/ .,zj) and [ia,n (6(Y zj)
with (12) and (13). o ?
10: end for
11: end for
12: for Each DBS n =1: N do _)
13: Update initial value parameters 9&3{1) 98% —
'BV(-)(” ZJ 1Lcn (V) ,zj), and policy parameters
c,mn,j
1
i) = 000 = BV) Ty Lo (ﬂ G ,zj).
14: end for K
15: end for
16: return Optimal initial value functions Vg* , and initial policy functions
Tox ,formn e N.

where a,(C ws) and S, (er.) are, respectively, the k-th action and
state of DBS n w1th1n experience e/, _j- By minimizing the loss
functions in (12) and (13), the proposed meta training method
updates the policy and value function parameters toward the
parameters of optimal policy and value functions in various
user access request realizations sampled from p (Z). More
concretely, the objective of the meta training procedure is

mln Z ZLcn(Vg/ ,Zj),

Np(Z) n=1
(14

Zj) —+ -Z/a,n (71'9;1”’,]'

One step of VD-RL update at
first meta training epoch

-

One step of VD-RL update at
second meta training epoch

>
One step of meta initialization
update using updated policies

= e(u

‘ Meta training epoch 2

Fig. 4. Tllustration of the proposed meta-training method at DBS n with
J = 3. Here, 3 different user requests are drawn from p (Z) at each training

episode. Ve(l)/ and 1y are the updated policy and value functions in
c,n, . a,n,l
the first sampled environment,

where 0, =
of value

/ f—
ec,n,j -

is the wupdated value
n, based on experience

[0c1,0c2,...,0cn] is the vector
function parameters at all DBSs.
Ocn — Olchcm 25:1142 (a](cew,j)ﬂsl(;n‘j))
of DBS
Oan +
(en,j)

n,k

function parameters
0,.,.. =
(en.j)

€n,j-

a i A a(en’J) s(e"’j)) Vo, ., 1
a n nk k Oa,n 108 T04 n

is ﬁ]—el updated policy function parameter of DBS n, based
on experience e,, ;. Here, we can see that the optimization
variables in (14) are initial policy and value function
parameters 6. and 6,. That is, the meta-learning approach
seeks to find the optimal initial function parameters of the
VD-RL algorithm so as to minimize the estimation errors
captured in (12) and (13), for different environments that can
be sampled from p (Z). This parameter initialization, i.e. the
meta-trained policy and value functions, will make it easier
for the VD-RL solution to find the team optimal strategies in
unseen environments.

To solve problem (14), a standard stochastic gradient de-
scent method is applied. Fig. 4 shows one iteration for solving
problem (14). For this example, at each meta training iteration,
the meta training method performs one step stochastic gradient
descent on (14) over the initial policy and value function
parameters 6., and 6, , based on sampled experiences in
J different environments. The full procedure of using meta
training method with VD-RL is summarized in Algorithm
2. 7 In this meta training procedure, the DBSs collect their
experiences from serving J different user requests drawn from
p (£), with initial value functions 1% 0 and policy functions

o) - After serving one sampled user request j, the DBSs
execute one step VD-RL update and get new value functions

"Note that, as the meta training procedure seeks to learn a user request
distribution p (£) in Algorithm 2, all the user requests are sampled from the
same distribution p (Z).

Veu)/

c,n,

value functions are evaluated by the loss functions defined in
(12) and (13), based on experiences collected with strategy
. The meta training procedure in Algorithm 2 seeks

and policy functions 7 o) - The updated policy and

To)
to ﬁﬁ&ing a set of initial policy and value functions that are
close to the optimal policy and value functions at every user
request realization. Equipped with this initialization, the VD-
RL can now find a local optimal solution of problem (7) in
unseen environment using a small number of update steps
in Algorithm 1. Thus, the meta-training method minimizes
the losses that are collected from the sampled user request
realizations, by updating the value and policy parameters, i.e.
061%, 0((11“, in the opposite direction of the gradient of the
losses. After one step of this update, the value and policy
parameters, i.e. 02221, 051221, will be closer to the optimal policy
and value functions in the sampled environment. Subsequently,
the DBSs will start serving user requests with value functions
V9<2), and policy functions To2), - Then, the DBSs collect
their experience from serving different user requests, based on
which they can keep updating the pollcy and value functions,
as shown in Fig. 4, until convergence®. Using our proposed
meta training procedure, the DBSs finally find a VD-RL
solution with optimal initializations of the policy and value
functions, i.e. Vg+ , and mg+ . The complexity of the meta
training procedure is O (2vm (nc + nq) CJ), with v, being
the number of iterations that the meta training method needs
for convergence. This complexity is considerably low, as
the proposed meta training mechanism does not needs any
additional neural networks in the training procedure. Also,
since the DBSs can collect experiences on serving ground
user’ daily requests, the proposed meta training procedure’s
complexity will not introduce additional costs in terms of time,
energy, or DBS hardware.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a scenario with five DBSs
serving U = 300 mobile users. The main simulation parame-
ters are listed in Table I. In particular, we assume the quantity
of each user request follows uniform distribution over the
interval [20, 600] Mbits, the occurrence of each user request
follows Gaussian distribution with a standard deviation 1, and
a mean ranges from 0 to 40 minutes. At every independent
run of the Monte Carlo experiment studied in this section,
we repeatedly deploy the users at some random locations that
are uniformly distributed in every cluster, and sample a user
access request realization from the assumed distribution. The
value and policy functions at each DBSs are formulated by
feed forward neural networks. The results of the proposed
VD-RL algorithm are compared with the independent actor
critic algorithm (IAC) [17] and the monotonic value function

83Here, we need to point out that, a machine learning model reaches
convergence when its training loss falls within an error range around the
final value. Thus, we consider that the meta training model has converged
when additional training will not improve the model, at which point the meta
training procedure is completed.

TABLE I
SIMULATION PARAMETERS [23]

Parameter Value Parameter Value
P, 20 dBm Vs 30 m/s
No -170 dBm/Hz B 1 MHz
HLoS 1.6 OLoS 8.41
HNLoS » 23 ONLoS 33.78
o5 —DBS 1]
’ -««DBS 2

051

o o
w ~
T T

Successful service rate

I
)
T

0.1

0 I I I I I I I
0 5 10 15 20 25 30 35 40

Time (minutes)
Fig. 5. Successful service rate achieved at each DBS over time, i.e. the time
DBSs consume on flying over the simulated area.

factorisation algorithm, called Q mix [18]. The IAC algorithm
updates one policy function and one value function for all
of the agents. It allows each DBS updates their policies
relying only on their local actions and states, but toward the
DBSs’ maximal individual benefits. The comparison between
the proposed algorithm and the IAC algorithm shows the
gains one can get from the value decomposition scheme.
The Q mix algorithm uses the same value and policy update
procedure as our proposed VD-RL algorithm, but estimates
the summation in (9) using a neural network. The results of
the proposed meta-trained VD-RL are further compared to
the results from the pre-trained VD-RL algorithm [31], the
original VD-RL algorithm, as well as oracle results. Within
the pre-trained VD-RL algorithm, the VD-RL algorithm starts
from the optimal policy and value functions at former tasks.
Here, the pre-trained VD-RL algorithm trains a VD-RL within
exactly the same environments sampled at our meta training
procedure. For the original VD-RL algorithm, the DBSs start
with randomly initialized policy and value functions. The
oracle results present the DBSs’ performance with optimal
strategies in the considered environment. All statistical results
are averaged over a large number of independent runs.

Fig. 5 shows how successful service rates increase with
time, in a network with two DBSs. From Fig. 5, we can see
that the successful service rate achieved by each DBS increases
when the DBS arrives at a new cluster &, . Fig. 5 also shows
that the two DBSs spend different amount of time on flying
across clusters and serving clusters. In other words, the DBSs
operate asynchronously in the considered area. In particular,

2.4

E;
©
>
08
04 -
0 v —Value V]
=+ Value at DBS 1 Vp,_,
- Value at DBS 2 Vj,,
04 . . . | \
0 300 600 900 1200 1500 1800
Iteration
(@)
s b i
5 e, ."*""'."-.".""’*""". :*.....* *...:-..*_‘....*,_ﬂ,..
Y - ‘
:‘.':,u“:
© 0.8 R .‘ 4
c 'Y
© s, e PURTIIY SRIY STPR SRR Sen
§ 9 P
Bosl wi |
e e,
8 g
>
o4t]
o02r -#% Final utility G |
-4 Utility of DBS 1
Utility of DBS 2
0 300 600 900 1200 1500 1800

Iteration

(b)
Fig. 6. The value decomposition learned by the proposed VD-RL algorithm.
(a) Estimated future rewards decomposed to each DBS, and (b) utility achieved
by each DBS, at each iteration of VD-RL.

when DBS 2 starts to serve its second cluster, DBS 1 is still
serving its first cluster.

Fig. 6 shows how the decomposition of the value function
V (Sk) is learned using the proposed VD-RL algorithm.
Here, the value of function V' (Sy) is the estimation of the
discounted future reward at the initial state Sy. In Fig. 6,
the value of function V' (Sy), as well as the individual values
of functions Vj_ , (So) and ‘7.902 (Sp) follow the same trend
of as the team utility of all DBSs. This implies that the
individual value functions also estimate the team utility. With
such values, the DBSs can independently find the strategies
that maximize the team utility without sharing information
such as actions and states. In particular, at the convergence
of the VD-RL algorithm, DBS 2 sacrifices its own utility for
team optimality. From Fig. 6, we can also observe that, with
the VD-RL algorithm, the individual value at DBS 1 keeps

08 _/_/_/_F —

— Value V'
=+ Value at DBS 1 Vp,,
- Value at DBS 2 Vj,,

0.6 - b

Value

o=0—0 -0 o *=0-0 o
—o0—0 - &
o—0—0 - &
o—0—0 - ¢

0.4 b

0.2 I I I I

(a)

0.8

o
>

Successful service rate
I
=
T

02

Iteration
(b)

Fig. 7. Value decomposition within 5 VD-RL iteration. (a) Estimated future
rewards decomposed to each DBS, (b) utility achieved by each DBS, at each
iteration of VD-RL.

increasing, yet the successful service rate at DBS 2 increases
at first and then decreases while reaching convergence. The
sum of individual values at two DBSs always equals to the
value of V (S}), which follows the trend of the team utility.
This is due to the fact that, in the proposed VD-RL algorithm,
each DBS is rewarded with the utility achieved by all the
DBSs, i.e. team utility. Thus, the DBSs are training their own
policies toward a maximal team utility instead of their own
utilities. In this case, DBS 2 will be prone to choose policies
that yield a lower individual utility but a higher team utility.
In other words, the VD-RL algorithm learns to decompose
the value function into two individual values, each of which
can direct each DBS to independently finds its strategy that
maximizes the team utility, instead of its individual utility.
Fig. 7 shows the value decomposition within 5 VD-RL
training iterations. In this figure, we can see that the value
of V (Sp) increases at the first step within each VD-RL
training iteration. This is because, function V (Sy) estimates
the cumulative future team reward that the DBSs can get

LN ey

0.8

i

Convergence

0.6

Successful service rate

—Proposed
“en |AC
Q mix

600 1200 1800 2400 3000
Episode

Fig. 8. Convergence of all considered multi-agent RL algorithms. This figure

clearly shows that the proposed algorithm converges at faster speed compared

to IAC and Q mix.

at the initial state. Thus, the DBSs update value function
V' (Sp) using the rewards that they achieved from serving the
ground users at the last training iteration, once they return to
the origin. Fig. 7 also shows that the decomposed individual
value ‘N/gcy2 (So) at DBS 2 is much larger than the individual
value Vgcyl (So) at DBS 1. This is because DBS 2 selects
the actions that are beneficial for the team utility. A large
individual value f/gc,2 (S¢) reinforces such actions to maintain
a high team utility. However, DBS 1 does not select actions
that improve the team utility. Hence, the individual value
ng (So) attributed to DBS 1 is small, which keeps DBS
1’s strategy unchanged. DBS 1 will, thus, act “greedily” by
selecting all possible actions with its current strategy, until it
finds the optimal one.

In Fig. 8, we show the convergence of the proposed VD-RL
algorithm. In this figure, we can see that the proposed VD-
RL algorithm requires approximately 1, 300 iterations to reach
convergence, which improves the convergence speed by up to
30.6% compared to the Q mix algorithm. This stems from the
fact that the neural network used to estimate the summation in
(9) remarkably increases the complexity of Q mix. Meanwhile,
Fig. 8 also shows that the proposed VD-RL algorithm yields
a 53.2% higher final utility than IAC. This is because the VD-
RL algorithm can find a team optimal strategy to maximize
the team reward. The IAC algorithm, however, find a strategy
that maximize the DBSs’ individual utilities. From Fig. 8, we
also observe that the proposed VD-RL algorithm has a similar
convergence speed to the IAC algorithm. This stems from the
fact that, in the VD-RL and IAC algorithm, each DBS updates
the policy and value functions using its own experience, and,
thus, the proposed VD-RL algorithm and the IAC algorithm
all have low time complexities that are comparable to a single
agent RL algorithm.

Fig. 9 shows a snapshot of the trajectories resulting from
the proposed meta-trained VD-RL, and the pre-trained VD-

15 : : 15 15
*Oracle trajectory design at DBS 1 \ \—Meta trained VD-RL trajectory design at DBS 1 \ \ pre-trained VD-RL trajectory design at DBS 1 \
X— - * - -k N e e U L
N N N T,
N S, R D N N2 D e
Ewo t \A’\ }\ * " o e
< N s N < <
> Ve >
£ N ¥ S ,L ; £
s "4 5 5
3 V2 2 3
o5l 7 [st
7/
/7
7/
7/
7/
7/
° s 0 s % s o s s 0 s
Position in x (km) Position in x (km) Position in x (km)
(@) (b) (©
15 15 s " n -
\-0 Oracle trajectory design at DBS 2\ — Meta trained VD-RL trajectory design at DBS 2 \ \ pre-trained VD-RL trajectory design at DBS 2 \
=10 =10 =10
& £ g
> > >
£ 'Y ¢ £ . £
5 . L 5 N g 5
k7 1N g ! 2 AN - ! 3
o - o [N - ' o
€, + N -) <5 [N ~ i Tt
Moo I i N, i
I »] | ; < !
r - N, 1
e I) i vl el
- /,V - 7 "
=" 7= i .
o o 0
0 5 10 15 0 5 10 15 o 5 10 15
Position in x (km) Position in x (km) Position in x (km)
6)) (e) (H

Fig. 9. Snapshots of oracle trajectories (shown in (a) (d)), the trajectories designed by meta-trained

(shown in (b) (e)), and pre-trained (shown in (c) (f))

VD-RL, with (a)-(c) being trajectory designs at DBS 1, (d)-(e) being the ones at DBS 2.

RL algorithm in an environment that was not experienced
during the meta training procedure. Here, the trajectories in
Figs. 9(b), 9(c), 9(e), and 9(f) are selected, respectively, at the
100-th iteration of both considered algorithms. In this figure,
we can see that, when faced with an unseen environment, the
meta-trained VD-RL scheme can effectively find the optimal
trajectories for the DBSs within a considerably small number
of iterations. However, the trajectories resulting from the pre-
trained VD-RL are still far from the optimal trajectories.
Fig. 9 also shows that the proposed meta-training method
can adapt the DBSs in unseen environments much faster
than the pre-trained VD-RL algorithm. This is because the
meta-training method can find a policy and value function
parameter initialization that is close to optimal policy and
value functions at all possible user requests in p (Z£). By using
this meta-learning-based initialization, the meta-trained VD-
RL can reach the optimal policy, value functions and find a
team optimal strategy in an unseen environment within p (£),
using a small number of iterations.

In Fig. 10, we show the convergence of the meta-trained
VD-RL. From this figure, we can see that, with initial value
functions ‘79: _and policy functions g+ provided by the
meta training procedure in Algorithm 2, the meta-trained VD-
RL converges at approximately the 700-th iteration, which
is 36.4%, and 53.8% faster than the pre-trained VD-RL
algorithm and the original VD-RL algorithm. Fig. 10 also
shows that the meta-trained VD-RL achieves a successful
service rate that is equal to the one reached by the original

Convergence

"l,"‘-" rm"'q," " -.-r._l AP.-:r 71 ke
1

Successful service rate

e U TR T
o b
P .! H

L]
—Meta-trained VD-RL
Pre-trained VD-RL
=== VD-RL
=-|AC
1200 1800 2400 3000

Episode
Fig. 10. Convergence of the meta-trained VD-RL, compared to pre-trained
VD-RL, VD-RL and IAC. This figure clearly shows that the proposed meta
training mechanism significantly improves the convergence speed of VD-RL.

VD-RL algorithm. The successful service rate achieved by
the meta-training method is 9.2% and 53.2% higher than the
one achieved by, respectively the pre-trained VD-RL algorithm
and the IAC algorithm. This gain stems from the fact that the
meta-training method trains a set of policy and value functions
with proper estimation on various user access requests. By
starting the VD-RL policy updating procedure from such

4.8 n

IN
a

w

N
:

~,
N

-
)
T
\
A

Convergence iteration (103)
N
\\
\

==Meta-trained VD-RL

9 Pre-trained VD-RL
VD-RL

= |[AC

Q mix

7 8 9 10
Number of DBSs

Fig. 11. Convergence of the meta-trained VD-RL algorithm as the number of
DBSs varies. From this figure, we observe that the meta trained initialization
has effectively reduce the complexity of the VD-RL algorithm.

initialization, the DBSs can find a team optimal strategy within
a small number of policy update steps. The pre-trained VD-
RL, however, converges to a much lower successful service
rate, since it could make the DBSs to start their policy updating
procedure from the initializations that are far from the optimal
policy and value functions.

Fig. 11 shows the convergence of the proposed meta-
training method as the number of DBSs varies. Fig. 11 shows
that, as the number of DBSs increases, the number of iterations
needed for convergence increases because of the associated
growth in the size of the action and state spaces. From Fig.
11, we observe that, as the number of DBSs increases, the
number of iterations needed for convergence will grow at
a higher speed. This is because the action and state spaces
within the problem increase exponentially with the number
of DBSs. This is consistent with the complexity analysis in
Section III. A. Moreover, the number of iterations that the
Q mix and the proposed VD-RL algorithm need for conver-
gence increases much slower compared to the traditional IAC
algorithm. This is because the value decomposition scheme
reduces the dimensionality of the action and state spaces in
the considered problem. In particular, the value decomposition
scheme enables each DBS to update its strategy using its own
actions and states, thus simplifying the considered problem.
However, the neural networks deployed for value decomposi-
tion within the Q mix algorithm introduces extra complexity at
the DBSs, especially in simpler system as shown in Fig. 11.
The convergence speed of the meta-trained VD-RL scheme
decreases relatively slower compared to the original VD-RL
algorithm, since the initializations of the policy and value
function parameters in the meta-trained VD-RL algorithm
have optimized performance across diverse user access request
realizations. Moreover, the pre-trained VD-RL algorithm only
slightly improves the VD-RL algorithm’s convergence speed,

0.8r /. il
©
B (%
o gt
(&) -
E ‘___‘__ —
@ -
206 Ptel |
> s
@ R
@ e
8 %
o
a7

041,/ hOracle 1

£ = Meta-trained VD-RL
4 Pre-trained VD-RL
VD-RL
=+ |IAC
0.2 L L L L L L L L

1 2 3 4 5 6 7 8 9 10
Number of DBSs

(a)

0.81 i
2
o
[0) X ('Y
(&] L Y
S 0.6 \
& \,
2 N
A 0.4+ \‘
3 \
Q .
S \,
2 'y
N S
*Oracle AN
02 |—Meta-trained VD-RL ~
¥ Pre-trained VD-RL) T
VD-RL el o
=+ |AC

7 8 9 10 11 12 13 14 15
Number of clusters

(b)

Fig. 12. Successful service rate as (a) the number of DBSs varies, (b) the
number of clusters varies.

as the initialization of pre-trained VD-RL algorithm could be
far from the optimal policy and value functions in unseen
environments.

Fig. 12 shows how the successful service rate achieved by
the DBSs varies with the number of DBSs and the number
of clusters. From Fig. 12, we can see that the successful
service rate provided by the DBSs increases with the number
of deployed DBSs, but it decreases with the number of active
clusters. This is because a larger number of DBSs can lead to a
better coverage to the ground users. Fig. 12 also shows that the
successful service rate increases more slowly when the number
of deployed DBSs increases, or when the number of clusters is
smaller. This is because the number of covered user requests
increases when there are more DBSs available. Fig. 12 shows
that the successful service rate also decreases more slowly

when the number of clusters in the simulated area is over 11.
This is because the SLF time of the DBSs decreases when
we have more clusters. From Fig. 12, we can also see that
the meta-trained VD-RL algorithm yields a better coverage to
the ground users, in particular, it yields a successful service
rate that is 5.6% higher than the one resulting from the pre-
trained VD-RL algorithm, 9.2% higher than the one resulting
from the VD-RL algorithm, and 53.2% higher than the one
resulting from the IAC algorithm. This is due to the fact that,
by reducing the losses defined in (12) and (13) across various
environments, the proposed meta-training method can find a
set of policy and value functions that are close to the optimal
policy and value functions at all possible user requests in
p (Z). This guarantees a faster convergence to a team optimal
strategy in an unseen environment. Note that, although the
meta-training method only yields small improvements to the
successful service rate, it can converge much faster than the
VD-RL algorithm.

V. CONCLUSION

In this paper, we have studied the problem of trajectory
design for a group of DBSs in unpredictable, dynamic envi-
ronments. In the considered system, the DBSs cooperatively
fly around the considered environment to provide on demand
uplink communication service to ground users. We have for-
mulated the studied problem in an optimization setting and
have proposed a VD-RL algorithm to solve this problem. The
proposed VD-RL algorithm makes the DBSs independently
update their individual strategies toward the maximal coverage
in the system, by sharing only its utility and value to other
DBSs. To improve the convergence speed of the VD-RL
algorithm in unseen environments, we have also proposed a
meta-training method to optimize the initializations in a VD-
RL solution. Simulation results show that the proposed VD-
RL algorithm with meta training mechanism outperforms the
traditional MARL algorithms.

APPENDIX
A. Proof of Proposition 1
Proof. To prove the convergence of the proposed VD-RL

algorithm, we only need to prove that the proposed VD-RL
algorithm satisfies the following conditions in [26]:
1) Value function V (S}) converges to a local minimum
value of A? (ay,S}), that is
K
2 Z A (ak, Sk) VgCA (ak, Sk) =0.
k=1

15)

2) Policy function parameters are updated as in
9(i+1) _

K
0 +al)> " A(ax, Sk) Ve, logma, (ax |Sk). (16)
k=1

s
3) max 78@59(%%\‘ 5)
an r€CU{O},s8, LES ke
6; and 6; in the policy function parameter vector 8.

< 00, for any elements

4) lim; 00 a(z) =0, 21 1 ag) = o0, lim;_yo 04(1) 0,
and Y7, aa = 00.

Next, we prove that the proposed VD-RL algorithm satisfies

condition 1). When value function Vg, , (s, %) converges to a

local minimum, such that

2A (ak, Sk) Vo, Ve.., (Sni)

= 2A (ay, Sk) Vo, , An (an g, Snp) =0. (17)
with the assumption A(ar,Sr) # 0, we have
Ve, ., A, (an Ky Sn.k) = 0. That 1is, we have
ZZk 1 An (ank, Snk) Ve, ,, An (@n gy Snk) = 0. Thus,

VD-RL algorithm satisfies condition 1).

Next, we can see that the VD-RL’s distributed update on pol-
icy function parameters satisfies condition 2), as each DBS n
updates its policy functlon parameters in the form of 8, ”1)
0%, +aa)2k 1 (ank,snk)vemlogﬂem(ank|8nk)
Thus, the distributed update on policy parameters 6, ,, satisfies
condition 2). Condition 3) can be satisfied by properly setting
neural network of the policy functions in the proposed VD-
RL algorithm (e.g. setting activation function). Meanwhile,
condition 4) can be satisfied by adjusting the step sizes of
the policy and value functions. In consequence, the proposed
algorithm implemented at each DBS n satisfies all conditions
from 1) to 4). In other words, each DBS n is guaranteed to
converge to an optimal strategy 7}, that yields a local maximal
team utility G (7, _,,), with DBSs n’ € A/ \ n following
strategies in 7w_, = [mn], cpn,- In summery, by updating
policies at each DBS in the system, the proposed VD-RL
algorithm solves problem (7) step by step in the form of

...max E G (¢
™1 T™N

max
£ee

Hﬁ (€ 1&10: k) H772 (€ 1&2,00 T2,10)

k=1

. H N (€N K TNE)
k=1
(18)

N K
s. t. ZEE& T 11 mn Elénges i) =1, (18a)
n=1k=1
Pan wecuiorTn (€ 1€k, Tne) =11 eNEeEkek,
(18b)
0 é Tn (£|£n,k77—n,k) S 1,Vn €N7£ € gvk €]Ca
(18c)
As the DBSs’ strategies are independent, the local optimal
strategy at each DBS n constructs a local optimal strategy of
the non-convex problem (7). This completes the proof.
O

REFERENCES

[1] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui,
learning for trajectory design in wireless UAV networks,”
Global Communications Conference (GLOBECOM), Taipei, Taiwan,
Dec. 2020.

“Meta-reinforcement

in in Proc

[2

—

[3

[5]

[6]

[7]

[8

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,”
IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3039—
3071, Fourthquarter 2019.

F. Jiang and A. L. Swindlehurst, “Optimization of UAV heading
for the ground-to-air uplink,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 5, pp. 993—-1005, 2012.

M. Mozaffari, A. Taleb Zadeh Kasgari, W. Saad, M. Bennis, and
M. Debbah, “Beyond 5G with UAVs: Foundations of a 3D wireless
cellular network,” IEEE Transactions on Wireless Communications, vol.
18, no. 1, pp. 357-372, 2019.

Y. Zeng and R. Zhang, “Energy-efficient UAV communication with tra-
jectory optimization,” IEEE Transactions on Wireless Communications,
vol. 16, no. 6, pp. 3747-3760, June 2017.

Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober,
3D-trajectory design and resource allocation for solar-powered UAV

“Optimal

communication systems,” IEEE Transactions on Communications, vol.
67, no. 6, pp. 4281-4298, Feb. 2019.

Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 3, pp. 2109-2121, Jan. 2018.
Z. M. Fadlullah, D. Takaishi, H. Nishiyama, N. Kato, and R. Miura, “A
dynamic trajectory control algorithm for improving the communication
throughput and delay in UAV-aided networks,” IEEE Network, vol. 30,
no. 1, pp. 100-105, Jan. 2016.

M. Hua, A. L. Swindlehurst, C. Li, and L. Yang, “UAV-aided backscatter
networks: Joint UAV trajectory and protocol design,” in in Proc Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA, Dec.
2019.

Y. Huang, X. Mo, J. Xu, and L. Qiu,
for maneuver design in UAV-enabled NOMA system with segmented
channel,” arXiv preprint arXiv:1908.03984, Aug. 2019.

C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao,
UAV control for effective and fair communication coverage: A deep

“Reinforcement learning

“Energy-efficient

reinforcement learning approach,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 2059-2070, Aug. 2018.

A. Ferdowsi, M. A. Abd-Elmagid, W. Saad, and H. S. Dhillon, “Neural
combinatorial deep reinforcement learning for age-optimal joint trajec-
tory and scheduling design in UAV-assisted networks,” IEEE Journal
on Selected Areas on Communications (JSAC), Special Issue on Age of
Information in Real-time Systems and Networks, to appear, 2021.

U. Challita, W. Saad, and C. Bettstetter,
for cellular-connected UAVs: A deep reinforcement learning approach,”

“Interference management

IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp.
2125-2140, Mar 2019.

J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooperative
internet of UAVs: Distributed trajectory design by multi-agent deep
reinforcement learning,” [EEE Transactions on Communications, to
appear, 2020.

J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-
based resource allocation for UAV networks,” IEEE Transactions on
Wireless Communications, vol. 19, no. 2, pp. 729-743, Aug. 2020.

X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-UAV assisted wireless networks: A machine learning
approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp- 7957-7969, May 2019.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

son, “Counterfactual multi-agent policy gradients,”
arXiv:1705.08926, 2017.
T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and

S. Whiteson, “QMIX: Monotonic value function factorisation for deep

arXiv preprint

multi-agent reinforcement learning,” arXiv preprint arXiv:1803.11485,
2018.

R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. J. Ho,
and P. Abbeel,
Information Processing Systems (NIPS), Montreal, Canada, Dec 2018,
pp- 5400-5409.

S. Ritter, J. X Wang, Z. Kurth-Nelson, S. M Jayakumar, C. Blundell,
R. Pascanu, and M. Botvinick, “Been there, done that: Meta-learning
with episodic recall,” arXiv preprint arXiv:1805.09692, 2018.

Z. Xu, H. P van Hasselt, and D. Silver, “Meta-gradient reinforcement

“Evolved policy gradients,” in Advances in Neural

learning,” in Proc. of Advances in Neural Information Processing
Systems (NIPS), Montreal, Canada, Dec. 2018.

D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource
allocation in OFDMA systems with large numbers of base station
IEEE Transactions on Wireless Communications, vol. 11,
no. 9, pp. 3292-3304, Jul 2012.

A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-

antennas,”’

ground path loss for low altitude platforms in urban environments,” in
IEEE Global Communications Conference, Austin, USA, Dec 2014, pp.
2898-2904.

C. J. Watkins and P. Dayan, “Q-learning,”
no. 3-4, pp. 279-292, 1992.

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint

learning and communications framework for federated learning over

Machine learning, vol. 8,

wireless networks,” IEEE Transactions on Wireless Communications,
to appear, 2020.

R. S Sutton, D. A McAllester, S. P Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. of Advances in Neural Information Processing Systems (NIPS),
Denver, USA, Dec. 2000.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z Leibo, K. Tuyls, et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. of International Conference
on Machine Learning (ICML), Sydney, Australia, Aug. 2017.

L. C. Baird III, “Advantage updating,” Tech. Rep., WRIGHT LAB
WRIGHT-PATTERSON AFB OH, 1993.

R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34-37, 1966.

G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, vol.
20, no. 1, pp. 3042, Apr 2012.

