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Abstract—In this paper, the problem of enhancing the quality
of virtual reality (VR) services is studied for an indoor terahertz
(THz)/visible light communication (VLC) wireless network. In the
studied model, small base stations (SBSs) transmit high-quality
VR images to users over THz bands and light-emitting diodes
(LEDs) provide accurate indoor positioning services for VR users
using VLC. Here, VR users move in real time and their movement
patterns change over time according to their application. Both
THz and VLC links can be blocked by the bodies of VR users. To
control the energy consumption of the studied THz/VLC wireless
VR network, VLC access points (VAPs) must be selectively turned
on so as to ensure accurate and extensive positioning for VR
users. Based on the user positions, each SBS must generate
corresponding VR images and build THz links without body
blockage to transmit the VR content. The problem is formulated
as an optimization problem whose goal is to maximize the sum
successful transmission probability of all VR users by selecting
the appropriate VAPs to be turned on and controlling the user
association with SBSs. To solve this problem, a policy gradient-
based reinforcement learning (RL) algorithm using meta-learning
framework is proposed. The proposed algorithm can effectively
solve the formulated problem and enable the trained policy to
quickly adapt to new user movement patterns. Simulation results
demonstrate that, compared to a baseline trust region policy
optimization algorithm (TRPO), the proposed meta-learning
solution yields a 78% improvement in the convergence speed and
about 16.4% improvement in the sum successful transmission
probabilities of all VR users.

I. INTRODUCTION

Deploying virtual reality (VR) applications over wireless
networks provides new opportunities for VR to offer seamless
user experience [1]. However, the scarce bandwidth of sub-
6 GHz limits the ability of wireless networks to satisfy
the stringent quality-of-service (QoS) requirements of VR
applications in terms of delivering high data rates, low latency,
and high reliability. A promising solution is to integrate VR
services over high frequency terahertz (THz) bands with abun-
dant bandwidth. However, propagation at THz covers short
range and is highly prone to blockage [2]–[4]. In indoor VR
scenarios, although short distances enable high-rate VR image
transmission at THz frequencies, the mobile users’ bodies may
lead to dynamic blockages over the THz links, thus negatively
affecting the immersive VR experience. In addition, to ensure a
seamless interaction between the users and the virtual world, it
is necessary to accurately locate VR users in real time for VR
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image generation and transmission. Therefore, deploying THz-
enabled wireless networks to offer high-reliability VR services
faces many challenges such as user positioning, reduction of
link blockage, user association, and reliability assurance.

Recently, several works such as in [4]–[8] studied a number
of problems related to wireless VR networks. In [5], the
authors studied the use of both edge fog computing and
caching to satisfy the low latency requirement of VR users.
The work in [6] proposed a mobile edge computing-based
VR delivery framework that can cache parts of the field of
views (FOVs) so as to minimize the required transmission
rate. However, the works in [5] and [6] sacrificed the quality
of delivered VR videos (e.g., by reducing the resolution of VR
videos or only displaying the FOV of 360◦ VR images) to meet
the low latency constraints. The authors in [7] investigated
the use of the millimeter wave (mmWave) bands to maximize
the quality of the delivered video chunks in a wireless VR
network. However, the works in [5]–[7] ignored the mobility
of users that can significantly affect VR network performance.
In [8], the authors predict the orientation and locations of
VR users to minimize the occurrence of breaks in presence.
However, most of the existing works such as [5]–[8] did not
analyze the potential of using THz bands to provide immersive
VR services. Moreover, the works in [5]–[8] ignored the need
for accurate user localization in VR so as to enhance the virtual
world experience. In [4], the authors derived the reliability
of a THz-enabled VR system based on probabilistic line-of-
sight (LoS) and non-line-of-sight (NLoS) THz links. However,
the existing works on THz-enabled VR networks such as
[4] did not consider the time-varying user positions that are
used to generate VR images and avoid dynamic blockages
of THz links. Meanwhile, in dense indoor VR scenarios, THz
bands require the very narrow pencil beamforming. Therefore,
although the work in [9] showed that THz has the potential
for indoor positioning, it can only passively adjust the beam
direction or user association after the user moves, which can
detach the users from their virtual world. Visible light com-
munication (VLC) based on light-emitting diodes (LEDs) can
provide an alternative and more accurate positioning service
[9]. To this end, a THz/VLC-enabled wireless VR network
is needed in order to provide reliable positioning services to
VR users as well as generate and transmit corresponding VR
content based on the users’ positions.



The main contribution of this work is a novel framework
that jointly uses VLC and THz to service VR users. In
particular, we study a dynamic THz/VLC-enabled VR network
that can accurately locate VR users in real time using VLC and
build THz links to transmit high-quality VR images based on
the users’ positions. In the studied network, only a subset of
the VLC access points (VAPs) can be turned on to locate VR
users to control the energy consumption of the studied wireless
VR network. Based on the obtained user positions, each small
base station (SBS) must determine the user association to
generate corresponding VR images and build THz links to
avoid blockages caused by the user bodies. The problem is
formulated as a reliability maximization problem that jointly
considers the VAP selection, user association with THz SBSs,
and time varying user movement patterns. The reliability of
VR networks is defined as the sum successful transmission
probabilities of all VR users. To solve this problem, a meta-
policy gradient (MPG) algorithm is proposed to find the
optimal policy for VAP selection and user association. Com-
pared to traditional reinforcement learning (RL) algorithms
[10] trained for fixed environment in which each user has
a fixed movement pattern, the proposed algorithm enables
the trained policy to quickly adapt to new user movement
patterns. Simulation results show that, compared to a baseline
trust region policy optimization algorithm (TRPO), the pro-
posed meta-learning solution yields a 78% improvement in
the convergence speed and about 16.4% improvement in the
sum successful transmission probability. To the best of our
knowledge, this paper is the first to study the joint use of
THz and VLC for reliability maximization while considering
dynamic VR user movement patterns.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an indoor wireless network that consists of a set
B of B SBSs and a set V of V VAPs. All the VAPs and SBSs
are managed by a central controller. The SBSs are evenly
distributed in an indoor area A to serve a set U of U VR
users over THz frequencies, as shown in Fig. 1. In the studied
model, accurate locations of users are required for SBSs to
build LoS THz links and generate the VR images requested
by users. Each VAP provides accurate indoor positioning and
tracking services for VR users using VLC. Here, we consider
dual-mode user equipment (UE) that are able to access both
THz and VLC bands. In the studied multi-user VR network,
at each time slot t, each SBS can only serve one user with a
narrow beam while each VAP can locate all the users that
are not blocked in its FOV. To control the system energy
consumption, the central controller selects a group of VAPs
at the beginning of each time slot to locate VR users [11].
Here, not all users can be accurately located due to the user
body blockage over the VLC links. Based on the obtained user
positions, the central controller determines the SBSs associated
with the successfully located users, and then SBSs transmit
the corresponding VR images to the users using THz band.
In our model, each time period n consists of T time slots. A
successful transmission implies that a request of a VR user is

Fig. 1: A THz/VLC-enabled wireless VR network.

successfully completed within a time period.
A. User Blockage Model

In the studied model, the LoS links (VLC or THz links)
between user j and a transmitter (a VAP or an SBS) can be
blocked by other VR users’ bodies [4]. For a given a user j
located at vnj,t = (xnj,t, y

n
j,t, z

n
j,t) at time slot t in time period n

and a transmitter k located at (xk, yk, Z), we define a binary
variable bnkj,t that represents whether a blockage exist between
user j and transmitter k, as follows:

bnkj,t=

{
0,

qnkj,t

‖qnkj,t‖
=

qnkm,t

‖qnkm,t‖
and

∥∥∥qnkj,t∥∥∥>∥∥∥qnkm,t∥∥∥,∀m 6=j∈U ,
1, otherwise,

(1)
where qnkj,t=(xk−xnj,t, yk−ynj,t, Z−znj,t),

qnkj,t

‖qnkj,t‖
=

qnkm,t

‖qnkm,t‖
indicates that transmitter k, user j, and user m are on a straight
line, and

∥∥∥qnkj,t∥∥∥ >
∥∥∥qnkm,t∥∥∥ implies that user m is located

between transmitter k and user j. Hence, when a user m
satisfies both

qnkj,t

‖qnkj,t‖
=

qnkm,t

‖qnkm,t‖
and

∥∥∥qnkj,t∥∥∥ >
∥∥∥qnkm,t∥∥∥, the

transmission link between transmitter k and user j will be
blocked, as shown in Fig. 1. In (1), bnkj,t = 1 implies that the
link between transmitter k and user j is LoS at time slot t in
period n; otherwise, we have bnkj,t = 0. Here, we assume that
the positions of the VR users remain unchanged during each
time slot t.

B. VLC Indoor Positioning
We assume that the three-dimensional (3D) location vnj,t =

(xnj,t, y
n
j,t, z

n
j,t) of each user j is determined by three VAPs

from three different orientations [9], where xnj,t and ynj,t are
coordinates of user j in the room and znj,t is the height
of user j. VAPs are selectively turned on to provide stable
and acceptable brightness as well as accurate user positioning
services simultaneously. At each time slot t in time period n,
a set Lnt = {l1, l2, l3} of three VAPs is turned on to broadcast
their location information to users. When each user j receives
the location information of VAP lk, k = 1, 2, and 3, it can
calculate the incidence angle ψnlkj,t [12]. Note that, user j can
receive the location information sent by VAP lk at time slot
t only when the following conditions are satisfied: a) VAP lk
is in the FOV of user j, as shown in Fig. 1, and b) the VLC
link between VAP lk and user j is LoS (i.e. bnlkj,t = 1). Then,



the set of VAPs available for providing positioning service for
user j can be given as

Lnj,t=
{
lk

∣∣∣06ψnlkj,t6Ψ 1
2
, bnlkj,t = 1, lk∈Lnt

}
, (2)

where Ψ 1
2

is the receiver FOV semi-angle.
Based on three different incidence angles and the corre-

sponding VAP locations, each user j can calculate its own
location vnj,t at time slot t in period n using a triangulation
algorithm [12]. Then, the positioning state of user j at time
slot t in period n will be

pnj,t(Lnt ) =

{
1, |Lnj,t| = 3,
0, |Lnj,t| < 3,

(3)

where |Lnj,t| represents the number of VAPs that can serve user
j. Once user j is successfully located at time slot t in period n
(i.e. pnj,t(Lnt ) = 1), the VAPs transmit the position of user j to
the central controller over VLC links. Based on the obtained
user positions, the central controller can determines the user-
SBS association and, then, the SBSs can cooperatively serve
the associated users over THz. Here, we ignore the delay of
the VAPs transmitting user positions to the central controller
due to the small data size.
C. Transmission Model

Due to the extremely narrow pencil beamforming (narrower
than mmWave) for THz [2], we assume that each user can only
associate with one SBS and each SBS can only serve one user
at each time slot. In time period n, let unij,t ∈ {0, 1} be the
index of the link between SBS i and user j at time slot t,
i.e., unij,t = 1 implies that user j is associated with SBS i;
otherwise, we have unij,t = 0. Then, we have

0 6
B∑
i=1

unij,t 6 1,∀j ∈ U , 0 6
U∑
j=1

unij,t 6 1,∀i ∈ B. (4)

At time slot t in period n, given an SBS i ∈ B located
at (xi, yi, Z) and its associated user j ∈ U located at
(xnj,t, y

n
j,t, z

n
j,t), the path loss of the THz link between SBS

i and user j can be given by [4]

gnij,t =

{ (
c

4πfrnij,t

)2
δ(rnij,t), b

n
ij,t = 1,

0, bnij,t = 0,
(5)

where c is the speed of light, f is the operating frequency,
rnij,t =

√
(xi − xnj,t)2 + (yi − ynj,t)2 + (Z − znj,t)2 is the dis-

tance between SBS i and user j, and δ(rnij,t) ≈ e(−K(f)rnij,t)

represents the transmittance of the medium following the
Beer-Lambert law with K(f) being the overall absorption
coefficient of the medium at THz frequency f [3]. The total
noise power at each UE j that generates by thermal agitation
of electrons and molecular absorption can be given by [3]

Nn
j,t = N0 +

∑
l∈B

P

(
c

4πfrnlj,t

)2(
1− δ(rnlj,t)

)
, (6)

where P is the transmit power of each SBS, N0 = KBTe
represents the Johnson-Nyquist noise generated by thermal ag-
itation of electrons in conductors with KB and Te being Boltz-
mann constant and the temperature in Kelvin, respectively,

and
∑
l∈B

P
(

c
4πfrnlj,t

)2(
1− δ(rnlj,t)

)
is the sum of molecular

absorption noise caused by the transmit power of any SBS
l ∈ B. Here, we assume that each user will not be interfered
by other SBSs due to the narrow beam. The data rate of VR
image transmission from SBS i to its associated user j at time
slot t in period n can be given as

Cnij,t(u
n
ij,t) = unij,tW log2

(
1 +

Pgnij,t
Nn
j,t

)
, (7)

where W is the bandwidth of the THz band.
Given the data size S of the VR image requested by user j

at time slot t in period n, the transmission delay will be

dnj,t(u
n
j,t) =

S
B∑
i=1

Cnij,t(u
n
ij,t)

, (8)

where unj,t = [un1j,t, u
n
2j,t, · · · , unBj,t]. Note that the data size

S of a VR image only depends on the image resolution which
remains unchanged during service. Since the user position will
change at next time slot, the VR image requested by user j
can be successfully transmitted only when the transmission
delay is within the time duration ∆t of a time slot t. Then, in
time period n, the transmission state of user j at time slot t
can be given as

hnj,t(u
n
j,t) =

{
1, dnj,t(u

n
j,t) 6 ∆t,

0, otherwise.
(9)

From (9), we can see that, whether the requested VR image
of user j is successfully transmitted at time slot t depends on
the user’s locations, user association, and blockages between
SBS i and user j.

D. Reliability Model
At each time slot t, a successfully served user j must satisfy

two conditions: a) user j is successfully positioned and b)
the VR image requested by user j is transmitted within ∆t.
In order to enable a seamless and immersive wireless VR
experience, we assume that the waiting delay is limited to a
time period that consist of T time slot. This means that each
user should be successfully served at least once in a time
period. Therefore, in time period n, the service state of user
j until time slot t based on the selected Lnt and unj,t will be

wnj,t(Lnt ,unj,t)=
(
pnj,t(Lnt)hnj,t(unj,t)

)
∨wnj,t−1(Lnt−1,unj,t−1),

(10)
where t = 2, 3, · · · , T and ∨ represents the logical “or”
operation. The newly served users at time slot t will be

Ont = {j|wnj,t(Lnt,unj,t) = 1, wnj,t−1(Lnt−1,unj,t−1) = 0}, (11)

Then, the number of successful served users in each time
period n can be given by

Rn(Ln:T ,unj,:T ) =
T∑
t=1

|Ont |, (12)

where Ln:T = {Ln1 , · · · ,LnT } and unj,:T = {unj,1, · · · ,unj,T }.



E. Problem Formulation
Given the defined system model, our goal is to effectively

select the subset of optimal VAPs to provide accurate posi-
tioning services and, then, determine the user-SBS association
based on the obtained user positions so as to maximize the
reliability of the studied VR network. Then, the reliability
maximization problem is formulated as follows:

max
Ln

t ,u
n
j,t

N∑
n=1

Rn(Ln:T ,unj,:T )

N
, (13)

s.t. |Lnt | = 3, (13a)

0 6
B∑
i=1

unij,t 6 1, ∀j ∈ U , (13b)

0 6
U∑
j=1

unij,t 6 1, ∀i ∈ B, (13c)

unij,t ∈ {0, 1},∀i ∈ B,∀j ∈ U , (13d)

where (13a) captures the fact that only three VAPs are selected
at each time slot to provide positioning service. (13b), (13c),
and (13d) indicate that each user can only associate with
one SBS and each SBS can only serve one user at each
time slot. From (13), we can see that the reliability depends
on the selected VAPs and the user association with SBSs.
Meanwhile, the VAP selection and the user association depend
on the positions of VR users. However, the users’ positions
continuously change as time elapses. Therefore, real-time user
positions are needed by the SBSs so as to generate corre-
sponding VR images and build THz links without blockages.
Moreover, due to the time-varying nature of VR applications,
the user movement pattern varies over different time periods.
Here, we define a position transition matrix Mn as the user
movement pattern durning time period n, in which each
element Mn

vn
j,t,v

n
j,t+1

= P (vnj,t+1|vnj,t) is the probability of
the user moving from vnj,t to vnj,t+1. Note that the studied
THz/VLC-enabled VR network has no knowledge of user
movement patterns and hence, the central controller must find
and adapt to the time-varying movement pattern so as to
control the VAPs and SBSs in advance. Hence, it is necessary
to introduce a learning algorithm to sensitively adapt to new
user movement patterns so as to proactively determine the VAP
selection and the user association [13].

III. META-LEARNING FOR VAP SELECTION AND USER
ASSOCIATION

Next, we introduce a policy gradient-based RL algorithm
using meta-learning framework [14], called meta policy gra-
dient (MPG), that can effectively solve problem (13). Tra-
ditional policy gradient algorithms can only determine the
VAP selection and user association in a fixed environment
(i.e., the fixed user movement patterns). Meta-learning is a
novel learning approach that can integrate the prior reliability-
enhancing experience with information collected from the new
user movement patterns, thus training a fast-adaptive model.
Therefore, the proposed MPG can obtain the VAP selection
and user association policies that can be quickly updated to

adapt to new user movement patterns using only a few further
training steps. Next, we first introduce the components of the
MPG algorithm. Then, we explain the entire procedure of
using our MPG algorithm to select VAPs and determine the
user association with SBSs.

A. Components of MPG Algorithm
An MPG algorithm consists of six components: a) agent, b)

actions, c) states, d) policy, e) reward, and f) tasks, which are
specified as follows
• Agent: Our agent is a central controller that can obtain

the user positions and simultaneously control the VAPs
and the SBSs.

• Actions: The action of the agent at each time slot t
in period n is a vector ant = [Lnt ,un1,t,un2,t, · · · ,unU,t]
that jointly considers the VAP selection and the user
association. The action space A is the set of all optional
actions.

• States: The state at time slot t in time period n is defined
as snt = [vnt ,w

n
t ,Ont ] that consists of: 1) the user position

vnt = [vn1,t, · · · ,vnU,t], where vnj,t depends on vnj,t−1 and
the movement pattern Mn in time period n, which is
unknown to the central controller; 2) the service state
vector wn

t = [wn1,t, · · · , wnU,t] that implies each user
whether has been successfully served until time slot t;
3) the set of newly served users Ont at time slot t. The
state space S is the set of all optional states.

• Policy: The policy is the probability of the agent choosing
each action at a given state. The MPG algorithm uses
a deep neural network parameterized by θ to map the
input state to the output policy. Then, the policy can be
expressed as πθ(snt−1,a

n
t ) = P (ant |snt−1). Based on the

policy πθ, an execution process in a time period n can
be defined as a trajectory τn = {sn0 ,an1 , · · · , snT−1,anT }.

• Reward: The benefit of choosing action ant at state snt−1
is r(snt−1,a

n
t ) = |Ont (ant )|. Therefore, the reward of

a trajectory during a time period n will be R(τn) =
T∑
t=1

r(snt−1,a
n
t ). The expected reward function of the

policy πθ durning a time period n can be given as

J̄n(θ) =
∑

τn∈Dn

R(τn)Pθ(τn), (14)

where Dn is the set of sampled trajectories in time period

n and Pθ(τn) = P (sn0 )
T∏
t=1
πθ(snt−1,a

n
t )P (snt |snt−1,ant )

with P (snt |snt−1,ant ) depending on the movement pat-
ter Mn. The total reward function of all time periods

R̄(θ) =
N∑
n=1

J̄n(θ) is the objective function that the agent

aims to optimize.
• Tasks : We use task T n to refer to the reliability

maximization problem max
Ln

t ,u
n
j,t

Rn(Ln:T ,unj,:T ) in each

time period n. A task is thus defined as T n =
{Mn,Dn, J̄n(θ)}. Here, the policy πθ is shared by all
tasks. However, the expected reward J̄n(θ) for each task
is affected by the user movement pattern Mn that is



Algorithm 1 MPG algorithm for VAP selection and user
association.
1: Input: The set of VAPs V , the set of SBSs B, the user positions vn0 , and

the transition matrix Mn.
2: Initialize: Parameters θ is initially generated randomly, Ωn

0 = 0, wn
0 =

[0, · · · , 0], task learning rate α, meta-learning rate β, and the number of
iterations E.

3: for i = 1→ E do
4: for all each task T n do
5: Collect K trajectories Dn = {τn

1 , · · · , τn
k , · · · , τ

n
K} using πθ .

6: Compute ∇θ J̄
n(θ) using Dn based on (15).

7: Compute parameters θ̃n of the adapted policy based on (16).
8: Collect K′ trajectories D′n = {τ ′n1 , · · · , τ ′

n
K′} using πθ̃n .

9: end for
10: Compute total reward R(θ) using each D′n based on (17).
11: Update the parameters of the policy based on (18).
12: end for

unknown to the agent. Therefore, the agent must find the
optimal policy that can quickly adapt to each task.

B. MPG for Optimization of Reliability
Next, we introduce the entire procedure of training the

proposed MPG algorithm. Our purpose from training MPG
is to find the optimal policy that maximizes the reliability
of the THz/VLC-enabled wireless VR network over different
time periods. The MPG algorithm enables the trained policy
to quickly adapt to the time-varying user movements. The
intuition behind the proposed MPG is that some parameters
of MPG are task-sensitive while some parameters are broadly
applicable to all tasks. Therefore, the training process of MPG
has two steps: 1) task learning step and 2) meta-learning step.
The task learning step enables the MPG to execute the policy
gradient on task-sensitive parameters so as to make rapid
progress on each new task. The meta-learning step aims to
find the broadly applicable parameters that can improve the
performance of all tasks. Specifically, the two steps can be
given as follows:

1) Task learning step: For each task T n, the agent first
collects K trajectories given a policy πθ. The set of
collected trajectories is Dn = {τn1 , · · · , τnk , · · · , τnK}
and the expected reward is J̄n(θ). The policy gradient
for each task T n based on (14) is

∇θJ̄n(θ) =
K∑
k=1

R(τnk )Pθ(τnk )∇ logPθ(τnk ),

≈ 1

K

K∑
k=1

R(τnk )∇ logPθ(τnk ),

=
1

K

K∑
k=1

T∑
t=1

R(τnk )∇ logπθ(snt−1,a
n
t ).

(15)
To improve the expected reward of each task T n, the
policy πθ is updated using standard gradient ascent
method

θ̃n = θ + α∇θJ̄n(θ), (16)
where α is the learning rate which is assumed to be equal
for all tasks. Finally, the agent collects K ′ trajectories
for each task T n using the corresponding updated policy
πθ̃n . Each trajectory set D′n = {τ ′n1 , · · · , τ ′

n
K′} is used

TABLE I: System parameters

Parameters Value Parameters Value
c 3× 108m/s f 1THz
P 1W S 20Mbit

KBTe −174dBm/Hz T 15
K 50 K′ 10
α 0.1 β 0.01

to optimize the broadly applicable parameters in the next
meta-learning step to improve the all task performance.

2) Meta-learning step: For each trajectory set D′n, the
agent computes the expected rewards J̄n(θ̃n). The total
reward of all tasks is

R(θ) =
N∑
n=1

J̄n(θ̃n) =
N∑
n=1

J̄n(θ + α∇θJ̄n(θ)). (17)

Then, to improve the total reward of all tasks, the policy
πθ will be updated by

θ ← θ + β∇θR(θ), (18)
where β is the learning rate for meta-learning. Here,
note that the meta-learning step is performed over the
parameters θ of the policy instead of the parameters θ̃n

updated in the previous task learning step.
By iteratively running the task learning and the meta-learning
step, the optimal policy for determining the VAP selection and
user association under different user movement patterns can be
obtained [15]. The specific training process of the proposed
MPG algorithm is summarized in Algorithm 1.

In this algorithm, the objective function is the total reward
of all tasks that is consistent with the objective function of
the optimization problem (13). Since the meta-learning step
tends to optimize the broadly applicable parameters for all
tasks, the proposed MPG algorithm enables the trained policy
to quickly adapt to new tasks. This means that, for a new task
with new user movement pattern, using the trained policy as
initialization, the agent can quickly find the optimal policy by
only executing the task learning step with a few trajectories.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, a 5 m × 5 m square room is considered
with D = 5 VAP and B = 6 SBSs evenly distributed at a fixed
hight of Z = 3 m. A number of U = 8 wireless VR users are
initially randomly distributed in the room and move according
to a randomly generated user movement pattern in each time
period. For comparison purposes, we consider the trust region
policy optimization algorithm (TRPO) in [16] as the baseline
scheme. All statistical results are averaged over a large number
of independent runs. Other parameters are listed in Table I.

Fig. 2 shows the sum successful transmission probability of
all users over training process of the proposed MPG algorithm.
MPG model is trained for N = 20 tasks and N = 50
tasks to obtain fast-adaptive policy for VAP selection and
user association, respectively. In Fig. 2, we can see that
the proposed MPG algorithm can effectively converge to the
optimal policy that maximizes the network reliability. This
is due to the fact that the proposed MPG algorithm running
gradient descent over the policy space toward the maximal
reliability. Fig. 2 also shows that the training process of



Fig. 2: The reliability of the THz/VLC VR network over
training process of the proposed MPG algorithm.

Fig. 3: Test adaptability on new tasks.

N = 20 tasks is more stable and converges faster than the
training process of N = 50 tasks. This is because fewer tasks
are more likely to find update gradients that work for most of
the tasks in the meta-learning step.

Fig. 3 shows the adaptability of the proposed MPG algo-
rithm testing for new tasks. In Fig. 3, the line and shadow
are the mean and standard deviation computed over 5 random
generated new tasks. From Fig. 3 we can see that, compared
with random initialization for TRPO, our proposed algorithm
that uses the policy trained on the old tasks as the initialization
can achieve better performance at the beginning of the test
process. Fig. 3 also shows that the proposed algorithm requires
approximately 70 iterations to reach convergence for new
tasks, which is 78% less than the traditional TRPO algorithm
that requires about 320 iterations to reach convergence. This
implies that the policy trained by the proposed MPG algorithm
can record the knowledge that can be used in new tasks, thus
quickly adapting to new tasks. In Fig. 3, we can also see that
the proposed algorithm can yield up to 16.4% improvement
in terms of the reliability compared with the TRPO algorithm.
This is because the alternate iteration of the task learning step
and the meta-learning step can find the broadly applicable
parameters that can improve the performance of all tasks.

V. CONCLUSION
In this paper, we have developed a novel framework for

maximizing reliability of THz/VLC-enabled wireless VR net-
works. To this end, we have formulated an optimization

problem that jointly considers the user mobility, blockages
of both THz and VLC links, VAP selection, and user asso-
ciation. To solve this problem, we have developed a novel
MPG algorithm based on meta-learning framework, which
can effectively find the policy of VAP selection and user
association for maximizing reliability. The proposed MPG
algorithm enables the trained policy to quickly adapt to new
user movement patterns. Simulation results have shown that,
compared with the traditional RL algorithm, the proposed
algorithm can achieve better performance than traditional RL
algorithms.
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