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1. Introduction

1.1. Overview

The results of this paper fall into two categories. First, we prove a series of algebraic

results on formal group laws with group actions. Then, we use these results to con-

struct equivariant refinements of spectra that play a central role in chromatic homotopy
theory.

Algebraic results. We study a family of formal group laws I'j, of height h = 2" m
over a finite field k of characteristic 2 and certain universal deformations F},. Such
formal group laws come equipped with an action of Cyn» and we describe deformation
parameters that allow for an explicit description of the action of Co» on the associated
Lubin—Tate ring. This reproduces an unpublished result of Hill-Hopkins—Ravenel
[19] which presents the Lubin-Tate ring with its structure of a Con-module as the
completion of a periodization of the symmetric algebra on a sum of copies of the
induced sign representation of Con. We also incorporate the action of roots of unity
in k as part of our narrative.

Topological results. With the formal group law I'j, and its universal deformation F}, in
hand, we obtain a Lubin-Tate spectrum FE(k,T's). These are “higher chromatic ana-
logues” of topological K-theory and the group actions we study are higher analogues
of Adams operations. Our approach automatically gives us formulas for the action of
Can on mE(k,T;,). We then upgrade E(k,T';) to an equivariant spectrum receiving
a map from N, gj" BPg, the Hill-Hopkins—Ravenel norm of the Real Brown—Peterson
spectrum BPg. The effect of the map on underlying homotopy groups is clear and
this opens the door for generalizations of [23,25] which use the slice spectral sequence
to study the homotopy fixed points of E(k,I',). These homotopy fixed point spectra
play a central role in the chromatic approach to stable homotopy theory. Next, we
study the chromatic height of truncations of Ngj” BPg. Although we do not make
this precise in this paper, this is data necessary for a study of the height filtration
of a “moduli stack of formal group laws equipped with group actions”.
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In the rest of this introduction, we will describe our motivation for this project (which
comes from homotopy theory) and state our main results.

1.2. Motivation

Topological K-theory is a remarkably useful cohomology theory that has produced
important homotopy-theoretic invariants in topology. Deep facts in topology have been
proved using topological K-theory. Most famously perhaps, Adams used the K-theory
of real projective spaces together with the action of the Adams operations to resolve the
vector fields on spheres problem [2]. Adams and Atiyah also used K-theory to give a
simpler solution to the Hopf invariant one problem [3], first solved by Adams in [1].

Atiyah [6] describes a version of vector bundles motivated by Galois descent for C
over R. The complex conjugation action on complex vector bundles induces a natural
Cs-action on KU. In fact, this corresponds to the action of the Adams operations (£1).
Under this action, the Cy-homotopy fixed points of KU are KO. Furthermore, there
is a homotopy fixed points spectral sequence computing the homotopy groups of KO,
starting from the action of Cy on the homotopy groups of KU. The spectrum KU,
equipped with this Cs-action and considered as a Cs-spectrum, is called Real K-theory
Kg.

The main topic of this paper is to construct generalizations of Kg, namely Lubin—
Tate theories, with explicit actions of higher Adams operations. Our construction of
these theories and actions is inspired by the work of Hill, Hopkins and Ravenel [22] and
makes heavy use of the Real bordism spectrum, which we now introduce.

Conner—Floyd connected complex K-theory to complex cobordism MU* [12], showing
that the Todd genus induces an isomorphism

K*(X) 2 MU*(X) ®yu- Z.

This refines to a map of spectra MU — KU.

Early work on MU due to Milnor [32], Novikov [33-35], and Quillen [36] established
the complex bordism spectrum as a critical tool in modern stable homotopy theory,
with connections to algebraic geometry and number theory through the theory of formal
groups. In this language, the map MU — KU classifies the multiplicative formal group
over Z.

Analogously as in the case of KU, the complex conjugation action on complex man-
ifolds induces a natural Cs-action on MU. This action produces the Real bordism
spectrum MUy of Landweber [28] and Fujii [15], studied extensively by Araki [5] and
by Hu—Kriz [27]. The underlying spectrum of MUy is MU, with the Cs-action given by
complex conjugation.

Complex conjugation acts on KU and MU by coherently commutative (E+,) maps,
making Kg and MUg commutative Cs-spectra. The Conner—Floyd map is compatible



4 A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020

with the complex conjugation action, and it can be refined to a Real orientation, i.e., a
Cs-equivariant ring map

MUr — Kg.

The spectrum MUpg is at the roots of the techniques used in Hill, Hopkins and
Ravenel’s solution to the Kervaire invariant one problem [22]. Since the appearance of
these results, there has been an incredible amount of development in equivariant stable
homotopy theory.

The techniques of Hill-Hopkins—Ravenel are intimately tied to a subfield of homotopy
theory called chromatic homotopy theory. Chromatic homotopy theory is a powerful tool
which studies periodic phenomena in stable homotopy theory by analyzing the algebraic
geometry of smooth one-parameter formal groups. More precisely, the moduli stack of
formal groups has a stratification by height A > 0, which corresponds in the stable
homotopy category to localizations with respect to generalizations of the complex K-
theory spectrum. These are the Lubin—Tate theories E}, also often called the Morava
E-theories.

As the height increases, this stratification carries increasingly more information about
the stable homotopy category, but also becomes harder to understand. Therefore, it is
crucial to study higher structures of these spectra, for example, the associated cohomol-
ogy operations. At all heights h, there is a group of cohomology operations generalizing
the stable Adams operations on p-completed K-theory. This group is called the Morava
stabilizer group Gy,.

In this paper, we focus our attention at the prime p = 2 and study the height of
spectra obtained from the Hill-Hopkins—Ravenel norms of M Ug. Using this, we construct
equivariant Real oriented models of Lubin—Tate spectra Fj, with explicit formulas for the
actions of finite subgroups of Gj on their coefficient rings. This is the input needed to
determine the Es-pages of the corresponding homotopy fixed points spectral sequences,
which in turn compute the homotopy groups of higher real K-theory spectra. These
are periodic spectra that generalize the real K-theory spectrum KO. The connection
between our Lubin—Tate theories and M Upg also provides information about differentials
in the homotopy fixed points spectral sequences.

Periodic spectra such as the higher real K-theories also play a central role in modern
detection theorems. These are results about families in the stable homotopy groups of
spheres obtained by studying the Hurewicz homomorphisms of these periodic spectra
[37,22,29].

More specifically, let (k,T';) be the pair consisting of a finite field k of characteristic
2 and a fixed height-h formal group law I'j, defined over k. Lubin and Tate [30] showed
that the pair (k,T') admits a universal deformation Fj defined over a complete local
ring with residue field k. This ring is abstractly isomorphic to

R(k,T'p) == W(k)[u1, ..., un_1][u*. (1.1)
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Here, W (k) is the 2-typical Witt vectors of k, |u;| = 0, and |u| = 2.

The Morava stabilizer group G(k,I';) is the group of automorphisms of (k,I';) (Def-
inition 2.13). By the universality of the deformation (R(k,T';,), F},) and naturality, there
is an action of G(k,I'y) on R(k,T').

The group G(k,T'},) always contains a subgroup of order two, corresponding to the
automorphism [—1]r, (z) of T'y. This Cy subgroup is central in G(k,T',). Hewett [18]
showed that if h = 2" !m, then there is a subgroup of the Morava stabilizer group
isomorphic to Cy» that contains this central Cs subgroup. Furthermore, if m is odd,
then this Con-subgroup is a maximal finite 2-subgroup in G(k,I';). See also [11].

The formal group law F}, is classified by a map

MU, —s R(k,T}),

which is Landweber exact ([40, Section 5]). A Lubin-Tate spectrum E(k,I';,) is a com-
plex oriented ring spectrum with m,E(k,T'y,) = R(k,T';,) whose formal group law is F},.
Topologically, the action of G(k,T'y) on m.E(k,T';) can be lifted as well. The Goerss—
Hopkins—Miller theorem [40,16] shows that E(k,T'j,) is a complex orientable E..-ring
spectrum with a continuous action of G(k,T'y,) by maps of E..-ring spectra which re-
fines the action of G(k,T',) on m E(k,T'). By a continuous action here, we mean in the
sense of Devinatz—Hopkins [13,7].

Now, let G be a finite subgroup of G(k,T'). Classically, the homotopy fixed points
spectrum E(k,T',)"¢ is computed by using the homotopy fixed points spectral sequence.
However, at height » > 2 (and p = 2), the spectrum E(k,T';)"¢ is very difficult to
compute: given an arbitrary Lubin-Tate spectrum E(k,T;,), a general formula describing
the action of G on m,E(k,T',) is not known. As a result of this, it is hard to compute
the Es-page of its homotopy fixed points spectral sequence. Even worse, the G-action
on the spectrum E(k,T') is constructed purely from obstruction theory [40,16], so there
is no systematic method to compute differentials in the homotopy fixed points spectral
sequence.

A major motivation for our work, which arises in [25,8], is to construct models of
Lubin—Tate spectra as equivariant spectra with explicit group actions. Our construction
presents 7, E(k, 'y, ) explicitly as an Con-algebra. As a result, our construction renders the
spectra E(k,T',)"“>" accessible to computations via equivariant techniques developed by
Hill, Hopkins, and Ravenel [22].

1.8. Main results

The motivation behind our constructions of Lubin—Tate spectra comes from the equiv-
ariant spectra constructed by Hill, Hopkins, and Ravenel in their solution of the Kervaire
invariant one problem [22]. To give precise statements of our results and to motivate our
proofs, we recall some constructions from [22] and use this as an opportunity to introduce
some of our notations.



[ A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020

A key construction in Hill-Hopkins—Ravenel’s proof of the Kervaire invariant one
problem is the detecting spectrum €2. This spectrum detects all the Kervaire invariant
elements in the sense that if 6; € my+1_5S5° is an element of Kervaire invariant 1, then
the Hurewicz image of 6; under the map 7.5° — m.£ is nonzero (see also [31,20,21]
for surveys on the result).

The detecting spectrum € is constructed using equivariant homotopy theory as the
fixed points of a Cg-spectrum 2@, which in turn is a chromatic-type localization of
MU(©s) .= Ng; MUR. Here, Ngj(—) is the Hill-Hopkins—Ravenel norm functor.

Let BPr be the Real Brown—Peterson spectrum, obtained from the Real bordism
spectrum MUg by the Quillen idempotent (see [27, Theorem 2.33] and [5, Theorem
7.14]). Let F be the universal 2-typical formal group law over 7¢ BPr = m,BP. For Can
the cyclic group of order 2™ with generator v, we can form the spectrum

BP(©=) .= NG BPg,
and we let
R, = n¢BP(C2),

For n > 2, the group Cy» contains a unique subgroup of order 2"~ ! whose generator
we will call 7,,_1 := 2. The maps

np: BP(Can-1) _ x  gp(Can) ~ pp(Con-1) g Bp(Can-1)

on—1

induce ring inclusions
Rpn-1 — R, (12)

which are equivariant with respect to the Cyn—1-action. The formal group law F, which
is originally defined over R, can also be viewed as a formal group law over R,, for each
n > 1 via the ring inclusions Ry < R,,.

In fact, we can use the formal group law F to specify generators for R,, as follows.
For a group G acting on a ring R, we use

fg: R— R

to denote the ring automorphism that specifies the action of g on R. For every n, there
is a canonical strict isomorphism

Yoyt F— Fm

where F7 is the formal group law obtained from F by applying the automorphism
frn of Ry, to the coefficients of F. Since the formal group laws are 2-typical, the strict
isomorphism 1,, admits the form
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Yo (@) =a+ Y Tt (1.3)

i>1

where £ € 7§, BP(®2") for all i > 1.
It follows from [22, Section 5.4] that the elements ¢;
generators for R,,. More precisely, as a Can-algebra,

Can , 4> 1 form a set of Cyn-algebra

R = Lg)|Con - 77", Con - 157", ]

where the notation Cs» - x represents the set

n—1_
Con - 2 := {z, Yz, 722,732,...,72 Lz}
with 2"~! elements whose degrees are all equal to |z].

The Can-action on the generators ticz" is specified by the formulas

j Caon . —1
n W g <2rtt—1
]t 2 — n 7
S (0 ) { _tiCQn j=on-1 1,

CQT of R, as elements of

Using the inclusions (1.2), we may view the generators Cor -
R, for every r < n.

The underlying spectra of MU(C2") and BP(“2") are smash products of 2"~ !-copies
of MU and BP respectively. As result of [22, Proposition 11.28], Can-equivariant maps
from the underlying homotopy of MU (“2") (resp. BP(®2")) t0 a graded Cyn-equivariant
commutative ring R are in bijection with formal group laws (resp. 2-typical formal group

laws) F' over R that are equipped with strict isomorphisms

(i+1)

Pt Frn s FuV 0 g<i<onl o

with ¢73§+1 = (7;)*77[1% such that the composition of all the 1/17#1 ’s is the formal inversion
on F.

Associated to the universal deformation (E(k,T's)., Fj) and the action of the gener-
ator v, € Cyn, there is a Cyn-equivariant map

w¢BP(C) — B(E,T)..

As is customary, let v; € my2:_1)BP be the Araki generators, so that

x) = vaixzi

i>0
Recall that a 2-typical formal group law H over a Zg)-algebra S is classified by a map

BP, = Z(Q)[Ul,vg, .. ] — S.
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It is said to have height h if there is a unit A € S such that
2lg(z)=X- " higher order terms  mod (2,v1,...,0p_1).

The main result of this paper arises from an observation of Hill-Hopkins—Ravenel [22]
that the formal group law F over 7¢ BP(®s) should be of height h = 4 after inverting
some carefully chosen element D [22, Section 11.2]. More generally, for

h=2""tm,

where m > 1 is any natural number, then there is an element D so that F has height h
over wa_lBP((C”‘)). In practice, choosing an appropriate element D to invert appears
to become tedious when m in h = 2" !m is large. This is not hard when n = 2 and
m =1 [23, (9.3)], but already becomes tricky when n = 2 and m = 2 [25, Theorem 1.1].

Studying the height of a formal group law over R is done by studying the image of the
elements v; in R. One reason that this is difficult in our case is that the image of the v;’s in
7¢BP(C2") ig given by intricate formulas in terms of the generators ticz". For example,
when n = 2, 7¢BP(C2") = BP,BP and giving formulas for the v;’s is equivalent to
giving formulas for the conjugation on the Hopf algebroid. This is essentially the task of
giving an analogue of Milnor’s formula in A, = (HFs).HF5 which relates the generators
& with their conjugates, but in the case of BP instead of HF3. One contribution of
this paper and a key result is to give these formulas in terms of explicit, clean recursive
relations.

Theorem 1.1. For everyn > 2 and k > 1,

k-1
Cyn-— n n n [ Can\27
T S At Y Aty (1207 (mod I) (1.4)
j=1
where I, = (2,v1,...,Vk-1).

Section 3 is dedicated to the proof of this result, which involves a detailed analysis of
the relationship between the v; and the tiCQT generators. An important result contained
in this section is Proposition 3.7, which states that the ideals I, C R,, are preserved by
the action of Con.

With this in hand, we are ready to study the chromatic filtration arising from
BP(C2") Tn analogy with the truncation BP(h) of the Brown-Peterson spectrum BP,
one can form equivariant quotients

BPC2) () .= BP(C2") /(Con - L1, Con - 2y - - ).

The quotient here is done by using the method of twisted monoid rings [22, Section 2.4].
Let
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Rn <m> = W:BP((Czn ) <m> = Z(Q) [Ogn . tlc2n ge ey CQn . tnc,fn}.
The left unit induces a map
BP, — R,(m)

and so R, (m) carries a formal group law which we will continue to denote by F.

Our paper studies the height of the spectra BP{(2") (m) and proves that they are of
height h = 2"~ 'm. The first step of our analysis is completely algebraic and consists of
studying the image of the v; generators in R, (m).

Theorem 1.2. There is an element D € R, (m) such that

o vy divides D in Ry (m),

o (2,v1,v2,...,vp) 4s a reqular sequence in D™'R,,(m),

e v. €1, forr>h,

« D'Ru(m)/In = Fy[(tS )2 with v, = t& /"D gnd

o the formal group law F has height exactly h over D™'R,,(m)/I},.

The results of Theorem 1.2, discussed in Propositions 7.1 and 7.3 below, are actually
proved by passing to a completion of an extension of R, (m). For k a finite field of
characteristic 2, we let W (k) be the ring of Witt vectors on k. Let

R(k,m) == W(k)[Can - 152" ..., Con - 152", Con - u][Can - u™ ]},

m—1

where [t72"| = 2(28 —1) for 1 <i < m —1 and |u| = 2. The ideal m is given by

?

m= (Can - th" yeor, Con - tgffl, Caon - (U — Ypu)).
Note that the ring R(k,m) is an unramified extension of a completion of the ring
R (m)[Can - (t52") 1. The action of Cyn on R(k,m) is dictated by the notation.
The advantage of working in R(k,m) is that it is a complete local ring whose Krull
dimension is easily determined. The following, which is Proposition 4.5 below, is the
most technical argument of the paper and is the main goal of Section 4.

Theorem 1.3. In R(k,m), the ideal I, = (2,v1,...,vp—1) s equal to the mazimal ideal
m= (CQn . thn yeeey CQn . tC2n an . (’LL — ’ynu))

m—1

Using a Krull dimension argument, this result implies that (2,v1,vs,...) forms a
regular sequence in R(k,m). We let

Fh = p*]:



10 A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020

where p: R(k,m) — R(k,m)/I;, = K := k[uT!] is the quotient map. The following
corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. The pair (R(k,m),F) is a universal deformation of (K,T'},).

In other words, R(k,m) is the Lubin-Tate ring of a universal deformation of the formal
group law I'j, of height h.

Once Theorem 1.3 and Corollary 1.4 have been established, we begin to upgrade our
results to homotopy theory via the Landweber Exact Functor Theorem. This gives rise
to a complex orientable cohomology theory

X s R(k,m) @pp, BP.(X)

represented by a spectrum whose homotopy groups are R(k, m). We call the representing
spectrum E(k,T'y,), as it is a form of the Lubin—Tate spectrum.

Before stating this as one of our results, we introduce more details with respect to the
natural group actions at hand. Let

g=2" -1

and k™ [q] C £ be the subgroup of g-torsion elements. This is the subgroup of elements
¢ € k* so that (7 =1. We let

Gal := Gal(k/F2)
and
C(k,m) := Gal x k*[q]

where the action of Gal on k*[q] is the natural action of the Galois group. Let G(k, m)
denote the group

G(k,m) := Can x (Gal x k*[q]).

We note that G(k, m) depends on n also, but we think of n as being fixed while allowing
m and k to vary.

There is an obvious action of G(k,m) on R(k,m) defined as follows: The action of
Cyn on R(k,m) is the W (k)-linear action determined by

Ty p<conl 1
1.5
—x r=2on"1_1 (1.5)

for # = t92" (1 <i<m—1) and # = u. The group Gal(k/F,) acts on R(k,m) via its

%

action on the coefficients W (k). The group k*[g] acts on R(k,m) by
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fe(u) = ¢, (1.6)

and
fe(t5=") = 15> (1.7)

for every ¢ € k*[g] and 1 <4 < m — 1. All together, these three actions combine to give
an action of G(k,m) on R(k,m).

We can now state our next main result, which is also one of the main motivations for
our work, and is proved in Section 5.1.

Theorem 1.5. There exists a height-h formal group law 'y, defined over Fo such that for
any finite field k of characteristic 2, there is a Lubin—Tate theory E(k,T},), functorial in
k, such that

m E(k,Th) = R(k, m). (1.8)

Furthermore, there is a subgroup G(k,m) inside the Morava stabilizer group G(k,Tp) so
that the isomorphism (1.8) is equivariant for the action of G(k,m) where the action of
G(k,m) on R(k,m) is described in (1.5), (1.6), and (1.7).

Remark 1.6. The ring 7. E(k, ') = R(k,m) is usually described in a way that em-
phasizes the structure of moE(k,I'y) = R(k,m)o as in Equation (1.1) above (where
R(k,Tp) 2 m.E(k,T1)), that is, as a power series ring over W (k) on h — 1 deformation
parameters uq,...,u,—1. In order to give a more familiar description of m, E(k,I'},), in
Proposition 5.2, we give a description of R(k,m) which displays the structure of R(k,m)q.
We show that there are elements

Con - 7 = {Ti, YnTiy - - - a’Y?.,n_lflTi} C R(k,m)o

for 1 <i<m—1 and

n—1

Con - Ty = {Tm,%Tm, cee a’7721 B _2Tm} - 7TOEj(ka Fh)
such that
R(k,m) = W (k)[Can - T1,...,Con - Tim_1, Con - T [u™?].

Note that there are h — 1 power series generators in this description of R(k, m) and once
we realize R(k,m)o as the Lubin-Tate ring for the universal deformation of a formal
group law of height h, these will be deformation parameters. We also describe the action
of G(k, m) explicitly in terms of these generators in Proposition 5.2.
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Once Theorem 1.5 has been established, given that its construction was motivated by
the spectra BP(C2") (m) which are equivariant spectra, it is natural to seek to refine
E(k,T}) to an equivariant spectrum. As discussed earlier, by the Goerss—Hopkins—Miller
theorem [40,16], E(k,T;) is a complex orientable E..-ring spectrum with a continuous
action of G(k,I',) by maps of E-ring spectra which refines the action of G(k,I';) on
T E(k,T'y) =2 R(k,m). In other words, for any G C G(k,T'},), we may view E(k,I';) as
a commutative ring object in naive G-spectra.

The functor

X — F(EG4, X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us to view
E(k,T},) as a genuine G-equivariant spectrum. The commutative ring spectrum structure
on E(k,T') gives an action of a trivial E-operad on the spectrum F(EG,, E(k,T'y)).
Work of Blumberg—Hill [9] shows that this is sufficient to ensure that F(EG4, E(k,T'1))
is actually a genuine equivariant commutative ring spectrum, and hence it has norm
maps.

The spectrum E(k,T';) has an action of G(k, m) by maps of E.-ring spectra that
refines the G(k, m)-action on m,E(k,T'y) described in Theorem 1.5 (or rather, in Equa-
tions (1.5), (1.6), and (1.7)). By passing to the cofree localization F(ECon ., E(k,T'})),
we may view E(k,T',) as a commutative Con-spectrum.

Recent work of Hahn—Shi [17] establishes the first known connection between the
obstruction-theoretic actions on Lubin—Tate theories and the geometry of complex con-
jugation. More specifically, there is a Real orientation for any of the E(k,T';): there is a
Cs-equivariant homotopy commutative ring map

MUg — i%, E(k,Th).

Using the norm-forget adjunction, for any finite G C G(k,T'y,) that contains the central
C5-subgroup, there is a G-equivariant homotopy commutative ring map

MU — NE it E(k,Ty) — E(k,T4).

For our explicit forms of E(k,T'},), we have the following theorem, which is proved at
the beginning of Section 5.2.

Theorem 1.7. There is a Caon-equivariant homotopy commutative Ting map
MU©) s B(k,T,).
This map factors through a homotopy commutative ring map

¢: BP(C) 5 E(k,T))
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such that w¢¢ is the map R, — m.E(k,T'y) determined by

2 1<i<m-—1,

Can 1
t72" = R u?" T i=m

A )

0 1> m.

The Cyn-equivariant spectra MU(C2") and BP(C2") are accessible to computations,
and the existence of equivariant orientations renders computations that rely on the slice
spectral sequence tractable. Using differentials in the slice spectral sequence of MUg
and the Real orientation MUr — E(k,T'},), Hahn and Shi [17, Theorem 1.2] computed
E(k,T,)"2 valid for arbitrarily large heights h. Computations of [22, Section 9], [23],
[25], and [8] show that there are systematic ways of obtaining differentials in the slice
spectral sequences of MU(C27)  BP(C2r) and their localizations using techniques in
equivariant homotopy theory.

We prove the following theorem in Section 6:

Cyn
*PCy
representation, that becomes invertible under the map WSQ"MU((C?" ) — W%"E(k, ')
such that there are factorizations

Theorem 1.8. There is an element D € 7. 2" MUC2n) phere PCyn 15 the real regular

MU(Cm) — B(k.T)) BpP(Cr) 5 B(E,Ty)
| |
D=1 MU (Can) D-1BP(Ca)

of the Con-equivariant orientations through D~*MU(C2") and D=1BP(C2r) | Fyrther-
more, the spectra D~'MUC2") gnd D=1BP(C2) qre cofree and satisfy the Hill-
Hopkins—Ravenel periodicity theorem [22, Theorem 9.19].

When G = Cg and h = 4, the Hill-Hopkins—Ravenel detecting spectrum € is defined
as the Cg-fixed points of Qg := DE%{RMU((CS)), where

Dun = (NG5 (NGEr§ ) NELF2) € el MU

is defined in [22, Section 9]. Our proof of Theorem 1.8 implies that D is divisible by
Dyur, and there is a factorization

MU(C) s E(k,Ty)

i ) /7

Qo

of the Cs-equivariant orientation of E(k,T'4) through Q.
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We finally return to our analysis of the chromatic filtration arising from BP(C2"),

We have already discussed some algebraic properties of this filtration in Theorem 1.2.
In Section 7 we also study the chromatic localizations of BP(C2"). We let K(r) be
any form of Morava K-theory at height r. The Bousfield localization functor Ly, is
independent of this choice. Among other results on localizations, we prove the following
result in Theorem 7.5.

Theorem 1.9. The K(r)-localization of the spectrum i BP{E) (m) is non-zero for 0 <
r < h and trivial when r > h.

1.4. Summary of the contents

We now turn to a summary of the contents of this paper. Sections 2, 3 and 4 contain
our algebraic results and Sections 5, 6 and 7 focus on the topological results.

Section 2 provides the necessary background for Lubin—Tate deformation theory and
sets up a framework for studying formal group laws with actions of finite groups. We
then use this framework to study formal group laws equipped with a Cyn-action that is
compatible with certain cyclic groups of orders coprime to 2 and the associated Galois
groups. In Section 3, we study the deformation parameters tkCT prove recursive formu-
las relating the tgr—generators for various values of r. The key result of this section is
Theorem 1.1, which expresses tg"’"_l in terms of tic"’" for every n > 2 and k > 1. These
formulas will be essential for proving our main theorems. In Section 4, we prove that the
maximal ideal of m of R(k, m) is equal to I} and introduce the formal group law I',.

In Section 5, we construct the spectrum F(k,I';,). We then refine it to an equivariant
spectrum and study some properties of that equivariant theory in Section 6. In particular,
we introduce the periodicity generator D € m, BP(%2") In Section 7, we examine the
Bousfield localizations of BP(C2")(m) and of D~'*BP(®")(m) with respect to the
Morava K-theories K ().

1.5. Acknowledgments

Special cases of these equivariant Real oriented Lubin—Tate theories at small heights
have already appeared in [22,23,25,8], if not explicitly, certainly in spirit. These papers
have both inspired and influenced various aspects of this project. The authors would
like to thank Mark Behrens, Irina Bobkova, Paul Goerss, Mike Hopkins, Hana Jia Kong,
Peter May, Lennart Meier, Haynes Miller, Doug Ravenel, Vesna Stojanoska, Guozhen
Wang, and Zhouli Xu for helpful comments and conversations.

2. Formal group laws with group actions

The goal of this section is to set up a framework for formal group laws with a G-action.
We then use this framework to study formal group laws equipped with a Con-action that
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is compatible with the actions of certain cyclic groups of orders coprime to 2 and the
associated Galois groups.

2.1. Formal group laws with Con-action

In this subsection, we carry out a discussion similar to that of [22, Section 11.3]. By
an even periodic graded ring R, we mean a graded commutative Z,)-algebra R such that

(1) Rog+1 =0 for all k € Z; and
(2) there exists a unit in Rs.

Note that condition (2) implies that Rop & Ry for all k € Z.

Consider the category Ml;;ger, whose objects are triples (R, u, F'), where

(1) R is an even periodic graded ring;

(2) u € Ry is a unit; and
(3) F is a homogenous formal group law of degree —2 over R. That is,

F(z,y) € (R[z,y])-2
where the formal variables x and y both have degree —2 in R[z,y].
Morphisms in M2 are pairs
(f,4): (Ryu, F) — (S, w,G),
where f: R — S is a graded ring homomorphism and
v: G — f*F
is a strict isomorphism of formal group laws. Note that there is no condition on the
morphism relating v and w. N
Consider also the category M., whose objects are triples (R, u, F'), where
(1) R is an even periodic graded ring;

(2) uw € Rz a unit; and
(3) F is a formal group law of degree 0 over Ry. That is,

F(z,y) € Ro[z, 9],

with Z, 7 of degree 0 in Ro[Z, 7]



16 A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020

Morphisms in this category are pairs
(£.4): (R,u, F) — (S,w,G)
with f: R — S a homomorphism of graded rings and
1‘5 G —> f*ﬁ

an isomorphism of formal group laws, not necessarily strict, such that

There is an isomorphism of categories

U MY T MR e, (2.1)

given by

U(R,u, F(%,7)) = (R, u""F(uz, uy)),
U(f,9(T)) = (f, (@' (0)w) P (wz)),

and

O(R,u, Fz,y)) = (R, uF (u'T,u™'7)),
O(f,v(2)) = (f, f(w)p(w™'7)).

Notation 2.1. For (R,u, F) € M}}’ger, we let
F(Z,7) == uF (u™'Z,u"'g).
Next, we turn to group actions on formal group laws.
Definition 2.2. An action of a group G on a formal group law F' over R is a functor
BG —» b
such that (R, u, F)) is the image of the unique object in BG.
Remark 2.3. By the equivalence (2.1), an action on a homogenous formal group law in

h . . o
MpES corresponds to an action on the associated non-homogenous object in M}, and
vice versa.
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Definition 2.4. For an even periodic graded ring R, let ¢: R — R be the ring isomor-
phism which is multiplication by (—1)" on Ra,. We call ¢ the involution.

For (R,u, F) € MFger,
¢*F = —F(—z,—y).
Furthermore, there is an automorphism
(¢,e(x)): (Ryu, F) — (R, u, F)
in M}}’ger, where ¢(z) = —[—1]p(z). Since ¢* = id, this determines a functor

(R,u,F)

BCy —22 MR

where the unique object in the category BCs is mapped to (R, u, F') and the non-identity

,per

morphism is mapped to (¢, ¢(z)). In other words, every object of /\/lh comes with a

natural Cy-action.

Definition 2.5. The action of Cy on (R,u, F) € Mh 2% where the generator of Cy acts
by (¢, c(x)) is called the conjugation action.

Recall that R, = 7¢BP(®>") and we are letting F denote the image of the universal
2-typical formal group law under the left unit. Let

RE = R, [Con - uF],
where Con - u C (RE®),.

Proposition 2.6. Let R be an even periodic graded ring with an action of Caon that restricts
to the involution action on Cy. A Con-equivariant graded ring homomorphism

fiRET — R

determines a 2-typical formal group law (R, f(u), f*F) € /\/lh*’e]r This formal group law
s equipped with a Con-action by maps of 2-typical formal group laws that extends the
Cy-conjugation action.

This follows from [22, Proposition 11.28], adapted to the 2-typical, periodic case. In
this section, we abbreviate v = ~,, for the generator of Con. Let

(fr oy (@) (R u, F) — (RET, u, F)

(where 9 is as in (1.3)) be the action induced by ~, so that
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Yy 1 F— F' = f3F

is the strict isomorphism. We will sometimes abuse notation and write v = f,. Note that
F has coefficients in BP, = R; C R,, and 1., has coefficients in R,,.

2.2. Compatible action by roots of unity

Let k be a finite field of characteristic 2 and W (k) the ring of Witt vectors over k.
For a Z,)-algebra R, let

R(k) := W(k) ®z, R.
Note that there is a unique group homomorphism
T: k* — R(k){,

which defines the Teichmiiller lifts. This allows us to embed k* in R(k).
There is an action of k% on (RY (k),u, F) € MET given as follows. Here,

R?er(k) = W(k)[’l)l, V2, .. .][uil].
Let ¢ € k*. Then
for RY (k) — RY™ (k)
is the W (k)-linear map that is determined by

felu) = ¢ Hu, (2.2)
fe(vi) = v

Since F is defined over R, fz‘]-" = F. Let
’(ﬁg: F — fzf]: =F

be the strict isomorphism given by the identity t¢(z) = x. Then the pair (f¢,¢)
is an automorphism of (RY*"(k),u,F) and this defines an action of k* on the object
(R (k),u, F) of MEer.

As an immediate consequence, we have:

Proposition 2.7. Let R be an even periodic graded ring with an action of a subgroup
C C k*. A C-equivariant ring homomorphism f: R} (k) — R determines a 2-typical



A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020 19

formal group law (R, f(u), f*F) with a C-action by maps of 2-typical formal group
laws.

Remark 2.8. Under the functor &: MBPE _y MPSL | the morphism (f, e () maps to
(f¢: ¥¢) where ¥¢(T) = (7'

Finally, we want to extend this to an action of (RP®"(k), u, F) in a way that commutes
with the Con-action defined in the last subsection. Here, note that

RE (k) = W (k)[Can - t§2" Con - 52", .. ][Can - u™1]. (2.3)
We will define an action of
Con x kX
on (RP*(k),u, F). First, extend the Cqn-action on RE" to RE* (k) linearly with respect

to W (k). Since elements of Ca» and k* commute in the product, our definition of the
action f¢ must satisfy

fe(fy (@) = f1(fc (@) (2.4)

for all ¢ € k. We let f¢ be as in (2.2) on Ry (k) C RE" (k). Also, let
Fe(t5®m) =t

for all ¢ > 1. Then, the identity (2.4) determines the action of Con x k* on all of RP* (k).
Note in particular that the k*-action fixes R,, C RP" (k).

Since the inclusion Ry (k) — RE(k) is a k*-equivariant map, (R (k),u,F)
inherits a k*-action from (RY(k),u, F) by Proposition 2.7.

Proposition 2.9. The formulas above give an action of Con X k* on the object
(RE (k) u, F) of MEE™.

Proof. It remains to verify that (f¢,v¢) and (f,,%~) commute, i.e., that the morphism

(fo, ¥ (@) (fys ¥y () = (fefys Sy (Y (2))),
which is the composite

P FEby
Fe pr g,

is equal to the morphism
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(fw%(w))(fmbc(w)) = (fvf{a f:¢<(¢v(x)))»

which is the composite

¥ * f:;wc * Lk
F fxF T

5

By construction, f¢fy = ffc. Since 1, is defined over R, [y = 1by. Also, fihe = ¢

since ¢ (x) = x. Finally, ¥, (¢¢(z)) = ¢ (¥4 (x)) since ¢¢(z) = x is the identity for
composition of power series. O

2.3. Action of the Galois group

The Galois group Gal = Gal(k/F3) acts on W (k), and this gives an action of Gal on
RPer(k) by acting on the coefficients. Let o € Gal be the Frobenius. The action of o on
RPer(k) is a ring isomorphism which we denote by f,. Note that

RES () = Zy @g,,) RET = RE(Fy).

Since F is defined over R, f5F = F. So, letting 1, (x) = x, we get an action of Gal on
(R (k), u, F) via the morphism

(fosthg): F — 0" F.

The group Gal acts on k£ via its action on k. This extends the actions of Gal and k* to
an action of Galx k™ on (RE®"(k), u, F). Both the Gal-action and the k*-action commute

with the Con-action, so we get an action of
G(k) := Can x C(k,m)

on (R2*(k),u, F), where C(k,m) = Gal x k*.
We now have the following result, which combines all of these actions:

Proposition 2.10. Let R be an even periodic graded ring with an action of G(k) which
restricts to the involution on Ca. A G(k)-equivariant ring homomorphism

fi R (k) — R

determines a formal group law (R, f(u), f*F) over R with an action of G(k) by maps of
2-typical formal group laws that extends the Ca-conjugation action.

In the next sections, we will be considering quotients of the ring R,,, and the action
of G(k) does not descend to these quotients. However, the action of certain subgroups
of G(k) does.
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C k* be the ¢-torsion, that is, the subgroup of

Let m > 1 and ¢ =2™ — 1. Let k*[q] C
(k,m) C G(k) be the subgroup

elements ¢ € k* so that (2 = 1. Let G
G(k,m) = Cyn x (Gal X k*[q]). (2.5)
Now, let

RO (k) (m) = W ()[Con - 172", Con - 152" ][Con - wF]/(Con - (152" —u®" 1)),
(2.6)

Proposition 2.11. The ring R2"(k)(m) is the quotient of RE® (k) by an invariant ideal,
and thus inherits an action of G(k,m) via the quotient map.

Proof. The ideal (Caon ~t§12£1, Con ~t22_~’f2, ...) is invariant by definition. We also have that
R =16
and
felut) = ¢t = u
since ( is a gth root of unity. It follows that the ideal
(Con (1527 =" 1)) = (1527 —ut A 7> MG 92 )
is invariant. O

Proposition 2.12. Let R be an even periodic graded ring with an action of G(k,m) which
restricts to the involution on Cy. A G(k,m)-equivariant ring homomorphism

[ R (R)(m) — R

gives rise to a formal group law (R, f(u), f*F) over R with an action of G(k,m) by maps
of 2-typical formal group laws that extends the Cy-conjugation action.

2.4. Lubin—Tate theories and the Morava stabilizer group

Consider the subcategory M}}’ger’c of M’}’ger whose objects are triples (R, u, F') with R
a complete local ring. Morphisms in this subcategory are pairs (f, %) where f: R — S'is
a continuous morphism, so that the image under f of the maximal ideal of R is contained
in the maximal ideal of S.

Let Mpg be as in [22, Section 11]. Its objects are non-graded formal group laws
over non-graded rings. Morphisms in Mpg are pairs (f,9) : (R, F) — (5, G) where
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¥: G — f*F is any non-graded isomorphism. Let M$% be the subcategory of Mpq,
where we restrict as above to complete local rings and continuous homomorphisms.

Let K = k[u*!] be an even periodic graded ring with the property that k is a finite
field of characteristic 2 and u has degree 2. Then Gal(k/F3) acts on K via its action on
k. Let I'j, be a homogenous formal group law of height h = 2"~ 'm defined over K. Then
(K,a,Ty) € MEET,

Definition 2.13. The (big) Morava stabilizer group G(k,T's) is the group of automor-
phisms of (K,@,T;) € M%2. Let S(k, ') be the subgroup whose elements are those
the pairs of the form (id, ).

Remark 2.14. Suppose that I'j, is defined over K% = Fy[u®!]. Then there is a split
exact sequence

1 —— S(k,Ty) —— G(k,T) — Gal(k/Fg) —— 1.

Remark 2.15. Using the equivalence ® of (2.1), G(k,T') is the group of automorphisms
of
(K,a,Th) € MBS,

where fh is as in Notation 2.1. This, in turn, is isomorphic to the group of automorphisms
of the pair (k,T'y) € Mpg. So, G(k,T';,) as defined above is just the usual (big) Morava
stabilizer group.

Remark 2.16. Note that any automorphism of K is continuous so G(k,T;,) is also the

group of automorphisms of (K, u,T'}) € ./\/li}’ger’c.

Let R(k,m) be an even periodic complete local ring with maximal ideal m and u €
R(k,m)s a choice of unit. Let p: R(k,m) — R(k,m)/m be the quotient map and

t: K = R(k,m)/m

be an isomorphism such that t(u) = p(u). Let F}, be a 2-typical homogenous formal
group law over R. Suppose further that

L*Fh = p*Fh

and that (R(k,m)o, Fj) is a universal deformation of (k,I';) in the sense of Lubin and
Tate [30]. The Lubin-Tate theorem implies that there are isomorphisms

G (k,Tn) 2 Autas o (R(k,m)o, Fi)) = Aut pgnperc (R(E,m),u, F)). (27)
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Remark 2.17. Note that the data (R(k,m),u, F},) together with ¢ is not unique. How-
ever, it is unique up to unique x-isomorphism. That is, for ¢ = 1,2, given two choices
(R(k, m)i, Ui, Fh,i) with

Lt K = R(k,m);/m;
and p;: R(k,m); — R(k,m);/m;, there exists a unique isomorphism
(f,0): (R(k,m)1, ur, Fri) — (R(k,m)2, uz, Fi2)
with the following properties.

e f is continuous, and so induces an isomorphism f on residue fields.

* f Ol =2

o p5Y: p5Fp o — p5f*Fp 1 is the identity on ¢3I'y. This makes sense since both
psFp 2 =15, and

P5f Fny = ['piFua = [T = 15T,
3. Equivariant deformation parameters and recursion formulas

Recall from Section 1 that

Ry = weBP(O2") = 7,5\ [Con - 72", Con - 57", .. ]
for all n > 1. Under the inclusion map R, — R, we can view the generators Cyr - tkCQT'
of R, as elements of R,, for every 1 < r < n.
The goal of this section is to prove Theorem 1.1, which gives a recursive formula
relating the tkcz"—generators for various values of r. This formula will be essential for
proving Theorem 1.5. Recall that the ideals I, C R,, are defined as

Ik = (2,1)1, . ,’kal),

where the elements v; € T, BP = Ry C R,, are the Araki generators, so the coefficients
of the 2-series of the formal group law F.
As stated in Theorem 1.1, we prove that for every n > 2 and k > 1,

k—1
St Yt (2 (mod Iy).
=1

In this section, we will also prove the equality

= t(kJQ (mod I)
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for all k > 1. Once we have established this, Equation (1.4) will give a formula for the
Con

vg-generators in terms of the t;*" -generators forallm > 1.

3.1. The logarithms of F and F2d

To prove Theorem 1.1, we begin by studying the relationship between the logarithms
of the formal group laws F and F7. Since R,, is 2-torsion free, the formal group law F
admits a logarithm over R,, ® Q. This is an isomorphism

logr: F N Fadd,

where F244(z y) = x +y is the additive formal group law. Define ¢; € R,, ® Q to be the
coefficients of the logarithm of F:

logz(z) = Z &xzi )

i>0

and the elements v; € R,, to be the coefficients of the 2-series of F:

27 () = > Fvia?.

i>0

These are the Araki generators, [4]. We provide the proof for the following standard
result which will be crucial below. See also [38, A2.2].

Proposition 3.1. For every k > 1,

k—1

20, =220, + 3 0¥ (3.1)

j=1

Furthermore, there exists xy € R, so that
O, =272,
and x, # 0 modulo 2. That is, the denominator of £y in R, ® Q is exactly 2.
Proof. Since logz is a homomorphism of formal group laws,
log 5 (12]7(2)) = [2] praa (log-(x)) = 2log £(2).

This implies that

ZQ@kxTC zlog]_- Z]—"Uixy' _ Z fjv?jx?ﬂ,

k>0 i>0 1,7>0
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For k > 1, comparing the coeflicients of 22" on both sides of the equation above produces
the equality

k
20y, = 22k€k + Zék_jvjzk_J
j=1
. k—1 s
=92 ly + ka,jv?- ! + Vg
j=1

This proves the first claim.
To prove that the denominator of ¢, in R,, ® Q is exactly 2¥, we use induction on k.
For the base case, when k = 1, the equation above gives the equality

For the induction step, suppose that for all 1 < i < k — 1, we have ¢; = 27 %2; where
2; € Ry, and z; # 0 (mod 2). Then solving for ¢ in the formula above gives

k
]. _ i k—j
b= 5o | D2y 0]
i=1

1 ; k—j
_ o—k -1 2877
=2 > 2w

k - k—j k—1
Let x5, = T T ijl 27 1:z:k_jfu2- ). Then, zj, € R, and zj, = Tp_10? modulo

2, which, by the induction hypothesis, is non-zero. This proves the second claim. O
3.2. The R,,-modules Ly, and the ideals I},

Definition 3.2. Let L; be the R,-submodule of R, ® Q generated by the elements
{2,01,...,0_1}. More specifically, a generic element of L has the form

ro-2+ry by +ro-bo+ - +rp_1-lr_q,

where r; € R, forall 0 <i <k —1.

More generally, for 1 <r <mand 0 <j <2" —1, let WZLk be the R, -submodule of
R, ® Q generated by the elements {2,7%¢1,...,vil;_1}. A generic element of 7/ Ly has
the form

ro-2+ 1 -7%1 + .o T '%Jn[k—l,

where r; € R,, forall 0 <i <k — 1.
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We will first deduce an analogue of Theorem 1.1, but modulo 7, _1 L rather than Ij.
We will also establish that R,, N~ Ly = Iy, for all n, k, and 1 < r < n, thus the relevance
of the modules ~,.L. The first step for this is the following proposition.

Proposition 3.3. For every k > 1,

LyNR, = Ik.

Proof. We prove the claim by using induction on k. The base case when k = 1 is clear:
an element in L is of the form rg - 2, where rg € R,,. Therefore,

Li=LiNR,=(2)=1.
Now, suppose that Ly_1 N R,, = I_1. Let
x=r9-2+r by + o Frp_g- Lot rp_1-lp
be an element in Ly NR,,. By Proposition 3.1, the denominator of ¢; is exactly 2¢ for all

0 <i<k—1. Since z € R, we must have that r,_; = 2r}_, for some r},_; € R,,. We
can rewrite x as

r=ro- 2471 b+ +rh—g Lo+ 2y Loy

=ro- 2411l e leeo+ 1 - (20-1).

Now, note that rg-2+7r1 - €1 + -+ 7k_o - lg_o is in Li_1. Furthermore, Equation (3.1)
implies that

2&@,1 = Vk—1 (mod kal)-
Therefore,
T =71 g vp_1=40E L_1.

Since the left hand side is in R,,, so is the right hand side. By the induction hypothesis,
L1 NR, = I;_1. Therefore

T — Vp—1Tr—1 € Ip—1

and so x € Iy. This proves that Ly N'R, C I;. The other inclusion is an immediate
consequence of Proposition 3.1. O
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3.8. Comparison of generators

Next, we establish a formula which relates the tkczn -generators and the ¢j-generators.
To do this, note that the logarithm log 7+, : F7* — Fadd g given by

log 7 () = Z(vn&)in.

i>0

Furthermore, there is a commutative diagram

d)"{n
F Foe (3.2)
10& /g}")’n
fadd

From this, we deduce the following key formulas which will be used throughout this
section.

Proposition 3.4. For everyn > 1,

k—1
gk: - 'Ynzkr - Z 7774 Czn) ) (33)

7=0

k—1 .

Yl — Yn—10r = Z 'Yn—lej ('Yntkci;)zja (3'4)
=0

k—1

by — Yn—1lx = Z (’Ynfj (tkcf}y + Yl () ) . (3.5)
=0

Proof. The commutativity of the diagram (3.2) implies

Z&in = logx(z)

i>0

= Ingw (’(/)'Yn (CL‘))

Yn n i
= log]-’Yn E 7 tz’C2 z?
>0

— Z 10gF'yn (ticzn in)

>0

o an 27 2L+J
= E Tnl; z

4,720
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Comparing the coefficients for 22"

gk = Z 'Yn C2n

i+j=k

Z 'Yn tCQn

gives the equation

k—1
= 'Yngk + Z 'Yn tczn) ’
7=0

This proves the first equation. Applying v, to the first equation and using the fact that
72 = v,_1 proves the second equation. Adding the first two equations together proves
the third equation. O

We can now relate the elements tkcz to the coefficients vy of the 2-series of F.
Proposition 3.5. For all k > 1, in R,,, we have the equality

tkc2 = (mod Iy).

Proof. Letting n = 1 in Equation (3.3) gives the equation

k—1
t2 =20 — Y L(ty2 )7
j=1

2’“—1)

Multiplying this equation by the unit (1 — 2 yields the formula

A“

—1

k__ > — 2 J
(122l = (2 - 22)g — (1 -2 ) Y452 ,)?
1

<.
I

From Proposition 3.1, we also have the formula

= (2-22" ek—Zek o = (227 ek—ka N

Subtracting these two formulas and rearranging terms gives

k—1 k—1
_ _ .
10—y = —(1— 22" )Y G2 )T+ e 27 T
j=1 j=1

The right hand side is in L. Since tkcz — vy is also in R,,,
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tkc2 —vp €L NR, = I
by Proposition 3.3. It follows that tgz = (mod I). O

In the following results, we establish the relationship between the R,-submodules
YrLi of R, ® Q and the ideals I, = (2,v1,...,05—1) of Ry.

Proposition 3.6. For alln,k > 1,

Uy — Yl € Ry + L.

Proof. We will fix n and abbreviate notations by writing R = R, v =, and t; = tcw

We will prove the claim by using induction on k. The base case when k£ = 1 is immediate
because by Equation (3.3),

b —vl =1t €R.
Now, suppose that we have proven that

by —~vl; € R+ L;
for all 1 <4 <k — 1. Equation (3.3) shows that

k—1

&r%k—ZW 43

<.
o

B
=

(v4; — £;)t3. J+Z£t

I
=)

J

By our induction hypothesis, every term in the first sum is an element in R + Li. The
second sum is also in R + Lj. Therefore,

by — Y, € R+ L. O
This completes the inductive step.
Proposition 3.7. For alln,k > 1,
U — YnUk € Ii.

In other words, the ideals I, C R,, are invariant under the Con-action.
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Proof. We will again fix a specific n and write R = R,,, v = 7, and t; = t?"’". First
note that by Proposition 3.1 and Equation (3.3),

— Y1 = —2(61 — ’Ygl) = —2t; € I;.

So the claim holds when k = 1.

Assume that the claim holds for vy, ..., vx_1. We will show that vy — yvi € Li. The
fact that vy — yvr € R will imply that it is actually in Ly N'R, which is equal to I} by
Proposition 3.3.

We use Proposition 3.1 to make the following computation:

k—1 k—1
v — v = | (2— 22 Wy — Zéjvij_j -1 (2- 2k)'y£k - Z’yéj’yv,zj_j
; pt
=(2- 22 (b — vl) — Z’yﬁfyvk —; (mod Ly)
. k—1 ,
=(2-2%)(lx —vl) + Z(éj — vfj)vv,i_j (mod Ly).
j=1

By Proposition 3.6, for all 1 < j <k, {; —v¢; = r; modulo L; C Lj, for some r; € R.
Using the inductive hypothesis that

yu; =v;  (mod I; C Ly),

the expression above can be further reduced modulo Lj to show that

k—1
K, g
v — vk = (222 ) + E rjv,%fj (mod Lg).
i=1

Since the right-hand side is in I C Ly, this shows that vy — v € Li. It follows that
vp—yvp € LN R=1,. O

Corollary 3.8. For everyn,k>1and1 <r <n,
YL "Ry = 1.
Proof. Proposition 3.3 and Proposition 3.7 imply that

YL "Ry =7l =1y =L NRy. O
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Proposition 3.9. For every n > 2,

tkCQ"_1 Z’yn 2 tCW (mod ~y,—1Lg)

Proof. Equation (3.3), with n replaced by n — 1, states that
k—1

Ly — Yn— 1€k—27n 16 tkzn 1)
7=0

= tkcz"f1 (mod ~,,—1 Ly).
In the following steps, we use the relations in Proposition 3.4 repeatedly:

0271— 1
tk

Ui — Yn—1ly  (mod v,—1Ly)

S
[

Il
=]

J
C’zn + ,Yntczn + Z ('}’n tCzn 27 + "Ynflgj (,Yntkciv;)y) (mod ’Yn—lLk)
k—1 ,
n n n\2J
= tkcz + ’VntkC2 + Z ’Yngj(tkcij)z (mOd ’Vn—lLk)
j=1
"ty Y (Yl — o1ly)(t25)? (mod y,_1Ly)

k—1 /j—1 v
= tkCZH +’yntkC2n + Z (Z ’Yn—lgr(’YntJCEZ)2 ) (tgi;)w (mod ’Yn—lLk:)

j=1 \r=0

(by Equation (3.4))

C’gn +’YntCQTI + Z’Yﬂ Czn t027l . (mOd ’ynilLk). 5

Proof of Theorem 1.1. By Proposition 3.9,

k—1

Con— n n n n\27

2 = [ ot Dt (8,27 | € 1L
=1

31

(Vnﬁ (tgz';)2 + Yn—14; (ynt CQ") ) (mod ~y,—1Lx) (by Equation (3.5))

However, all terms are in R,. Therefore, this difference is in v,_1Lx N R, = Iy by

Corollary 3.8. The result follows. O
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4. Deformations with group actions

In this section, we construct a formal group law I'j, of height h = 2" !m, together
with a universal deformation Fj, of I'j,. The formal group law I'j, comes with an obvious
action of

G(k,m) = Can x (Gal x k*[q])
and we study its universal deformation together with its action of G(k, m).
4.1. The formal group law T'p,

Let h = 2"~ !'m. Consider the functor from the category of finite fields of characteristic
2 to the category of complete local rings which takes k to the ring

R(k,m) = W (k)[Can - t52" ..., Con - 152", Con - u)[Con - u~ 1]},

m17

where

= (Con 172", Con - t52" |, Can - (u — ypu1)).
Here, |tf2"| =2(2 —1) for 1 <i <m —1 and |u| = 2. Note further that, for a graded
ring A with graded ideal I, by A} we mean the graded ring whose sth homogenous
component is (A7) = lim, Ag/IEAs for Iy = AN 1.
There is an action of the group G(k,m) on the ring R(k,m). To describe this action,
note that there is an action of Can on R(k,m) by W (k)-linear maps, determined by

for 2 =t9*" 1 <i<m—1, and 2 = u. The Galois group Gal = Gal(k/F5) also acts on
R(k,m) via its action on the coeflicients W (k). Lastly, the group k*[g| for ¢ = 2™ — 1
acts on R(k,m) by

fe(w) = ¢l
fotm) =t

for every ¢ € k*[q] and 1 <4 < m — 1. All together, these three actions combine to give
an action of the group G(k, m) on R(k, m). The ring R(k,m) and this action of G(k, m)
were already discussed in Section 1.3.
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Remark 4.1. Note that 2 € m as

gn—1_1 it |
Tn (uifynu)_r}/n u+u
2n—1_9
. r on—1_1
- Tn (’LL - fynu) + 27n u
r=0
n—1 . .
and 42" ~lu is a unit.

From Remark 4.1, it is clear that R(k,m) is a complete local ring with maximal
ideal m. The action of G(k,m) is continuous in the topology on R(k,m) defined by the
maximal ideal m.

Let RP"(k)(m) be as in (2.6). There is a G(k, m)-equivariant ring homomorphism

f: Rn — R(k,m), (4.1)
determined by sending

2 1<i<m—1,

C m_ .
ti 2" U2 1 i=m,

0 1> m.

Note in particular that the map f factors through RP*"(k)(m). Let F), = f*F, where F,
as before, is the image of the universal formal group law under the inclusion Ry — R,,.
Let

p: R(k,m) — R(k,m)/m =: K

1] and @ = p(u). Define

be the projection, where K = k[
Fh = p*Fh. (42)

By Proposition 2.12, (R(k,m),u, F}) and (K, u,T';,) are formal group laws with G(k, m)-
actions that extend the Cy-conjugation action.

4.2. Universal deformation of Ty,

For ¢ > 1 and 1 <r < n, we will also denote v; and ticzr for their images in R(k,m)
under the map f. Let I, C R(k,m) be the ideal

Ih = (2,1)1, .. .,Uh_l).

For 1 <r <mn, let Ic,. denote the ideal
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IC’zr = (27 02" : t102T7 teey CZ" : tC2T CQT ! (tgc:?ivm - ’Y’r’tcy ))

2n="m—1’ 2n="m

More explicitly, we have

C C C
oy = (2,482, 452, 2102 )
IC4 = (27 04 : tlc47 ey C14 : tg}zl—Zm_17 C14 : (tQCf—zm - VQtQCw‘LL—Zm))

Con— Con— Con— Con—
ICanl = (2,Cqn 12 17...70271,—1 't2%7f,02n—1 . (tzﬁl ! — Yn—1tgn 1))
Iy, = (2,C9n 92" L Can 152", Can - (152" — 7t 2))

By Proposition 3.5, we have the equality
Ic, = I.

In the next results, we prove that m = I¢,,, = I¢,. It is clear from Theorem 1.1 that we
have the following chain of inclusions:

Ic, Clg, C---Clg,,.
Proposition 4.2. The ideals m and Ic,, are equal in R(k,m).

om

Proof. Since t$2" = 42" ! we have the equality

trcr'LQ" _ ’Vnt%n :u27”—1 _ (,ynu)Qm—l
om_g
=(u—ynu) - Y u(yauw)® 2
=0

=(u — Y, u) - unit.
Since 2 € m by Remark 4.1, this proves the claim. O

Proposition 4.3. For 1 < i < n, the images of the elements Cy: «t;’f‘iim €R; CR, are

invertible in R(k,m) and the images of the elements Cyi .tkczi for 2""'m < k < h =
2" =Ly are zero modulo Ij,.

Proof. We will use downward induction on i. The base case, when ¢ = n, is immediate
because the elements Cyn - t£2" are invertible in R(k,m) and the elements Con 'tkCQ" are
identically zero for k > m.

Now, suppose we have proven the claim for ¢, where 1 < i < n. More specifically,
C .
-t 2¢

griy, are invertible in

suppose we have proven that the images of the elements Cy:
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R(k,m) and the images of the elements Cy; ~t%i are zero modulo Iy, for 2"~ 'm < k < h.
Theorem 1.1 and the fact that 27~ ¢—Dm < h implies that

2'r7.7(i71)m_1
02171 _ Czi CQi C2i C2i 2J
t2n—(i—1)m = tgn—(i—l)m + 'Yitgn—(q‘,_mm + Z ’)/itj (t2n—(17—1)m7j) (mod Ih)
Jj=1
C,; C,; 2271—7’,7n
= ,Ylt2n2 im (tQE*im) (mod Ih)

This is because every other term in the first line of the equation has a factor in the set

Cyi - tkczi 2"~%m < k < h, which is zero modulo I, by the induction hypothesis.
. i Cyi
Since ~;t . (tontiy)

2n—im,
and

92" im

~is invertible in R(k,m) by the induction hypothesis

I, =1Ic, CIc,, =m,

the element tzn i 1, is invertible in R(k,m).
Now, for all k such that 2"~ (~Dm < k < h, we have

k—

Chi Clyi Cyi Cyi (,Coi \27

B2 = it Y it 2 (6,2)% (mod T,).
i=1

Again, using the fact that the elements Coy; 'tkCQi are zero modulo I, for 2" 'm < k < h,
every term in this sum vanishes modulo Ij,. This completes the induction step. O

By letting ¢ = 1 in Proposition 4.3 and using Proposition 3.5, we obtain the following
corollary.

Corollary 4.4. The element vy, is invertible in R(k,m).
Proposition 4.5. The ideals m and I}, are equal in R(k,m).

Proof. By Proposition 3.5 and Proposition 4.2, it suffices to prove that Ic, = Ic,,. We
will prove that Ic, = I¢,,. for all 1 < r < n by using induction on r. The base case,
when r = 1, is trivial.

Let 1 < r < n and suppose we have shown that

Ic, =Ic

or—1"

For simplicity of notations, let k := 2"""m. Consider the ideals

Cor—1 C r—1 r—1
IC2T71 = (Q,Czr—l . t12 goe .7027‘71 . 2k 1 702r 1 ( 2]3 - Yr— 1t - )),

IC2T = (2, 027‘ . t?2r7 ceey 021‘ 527"1’ 027‘ . ( CZT — ’Yrtkczr)).
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For 1 <i <k —1, define J; to be the ideal
Ji=1Ic, , +(2,Cor 7 ,...,Cor - 7))

=Ig, + (2,Cor 1527 Cor - t57)).

Note that the equality holds because of our inductive hypothesis. Also, by Proposi-
tion 3.7, the ideal J; is y,-invariant and

Jiv1=J; + (027‘ -t-cgr).

?

We will use downward induction on 7 to show that the elements

Caor Caor
{CQT't-2 ,...,CQr'tkil

K2

are in the ideal J; for all 1 < i < k — 1. In particular, at 4 = 1, this will imply that the
elements

Cor Cor
{027' ’t12 ,...,CQ'I' .tkil

are in the ideal J; = I, |, = Ic,.
The base case, when ¢ = k — 1, is proven as follows. By Theorem 1.1, we have the

formulas
c k—2 ‘
r— r r r r J
B2 ST+t + Z%%Cz (tkcfl,j)z (mod I¢,)
j=1
=62+t (mod J-y)
and
Cor— T ry2k—1 I3 r k
to2 ) =t (15T 4yt S (192027 (mod Ioy).
Cyr1

Since t,. 27 € Jr_1, the first equation implies that
tgfrl = %tfﬂ (mod Jk—_1).

Substituting this into the second equation and using the fact that tQC,ji’ll € Ig, from

Proposition 4.3 yields the relation
r ry2k—1 ” ok
(€2 (19T 4yt G (627)* =0 (mod Jy-y)

— tkczrl ((tkc2r)2k'71 n ’yrtgbr (tkcirl)Qk_l) =0 (HlOd Jk;—l).

By Proposition 4.3, the element (L‘gz’r)ﬁf1 is a unit in R(k,m). Since
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et S (1) 1 e m,

the sum
(tkcw )2k71 + ’yrtkCQ"' (tkci"‘l)ﬁ—l
is a unit in R(k,m). Therefore,
7, =0 (mod Jy_1).

By Proposition 3.7, the ideal Ji_1 is v,-invariant. It follows from this that all the elements
Cor ~tgirl are in Ji_1. This proves the base case of the induction.

Suppose we have proven the claim for i+1 < k—1. To prove the claim for 4, it suffices
to show that the elements Cor - " are in the ideal J;. Once we have established this,
it will follow from the induction hypothesis that all the elements in

{027‘ * tC2T, ey 027‘ M tkCiTl

K2

are also in the ideal J;. Indeed, the induction hypothesis implies that the elements
{Cor 22, Cor 157

are in the ideal Jiy1 and Jiq = J; + (Car - t977).

K2

By Theorem 1.1, we have

ticz"'*1 =197 44,197 + f’yrtjcy (tlcfj)zj (mod I¢,)
j=1
= tiC” + ’yrticzr (mod J;).
Since ticgr_l € J;, this implies that
t92" = 4,927 (mod J;). (4.3)

By Theorem 1.1 again, we have

k+i—1

Cor—1 __ ,Cor Cor Cor (,Cor 27

bl T S 4 ety 2+ E Yot (tei;)”  (mod Ie,)
=1

T ks g T T l+1 T ks k
=yl () et DY ()Y (mod ),
where the second equality uses Proposition 4.3. Since the induction hypothesis implies

that tgf[l € Ic,, this gives
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2i+1

0 = 7t &2 (182)2 4yt Sy (1822 oyt S ()2 (mod i) (4.4)

Substituting Equation (4.3) into Equation (4.4), we obtain the equality
T ™ i ks ks L+1 T T k
0= 172" (1) + et (177)Y 4+t (t527)% (mod J;)
= (& (t%”)y + (%) .2 (mod J;)  (by induction hypothesis)
=& ((tkc’”)y + 52 :r) (mod J;)
_ thr .
=1¢./2" -unit (mod J;).
Here,

T\ — ™ i i+l T s k
v = (197)72 (3t (1007 4t (7)) (mod ).

This makes sense because each of the elements in Cyr - tzc_f;, vory Cor - tgﬁrl is divisible
by ticzr modulo J;. Indeed, tff = %tf” modulo J; as shown above and the elements
Coyr - tic_ﬁ;, cony Cor - tkcirl are in J;41 by the induction hypothesis. So,

Jig1 = Ji 4 (Cor 92"y = (t527)  (mod J;).
The last equality holds because tka is a unit in m,E, and t?zr -z € m. This implies
that tiCQT = 0 (mod J;). Since the ideal J; is ,-invariant by Proposition 3.7, all of the
elements Cyr - ticy' are in J;. This finishes the induction step.
When ¢ = 1, the elements

Car Cor
{Cor 152 Cor 15"

are all in J; = I¢,. Applying Theorem 1.1 produces the relation

k-1

Cyr— . . v Cor 29

62 =0T oyt 4 E 'y,,tjc"’ (tkcij)2J (mod I¢,).
Jj=1

Therefore,
0= tkczr + ’yntkcw (mod I¢,),

and the elements Cor - (tg” f%tgzr) are in I, . It follows that I¢,,. = I¢,. This completes
the induction step. 0O

Theorem 4.6. The formal group law (K, u,T'y) of Equation (4.2) has height h. Further-
more, the formal group law (R(k,m),u, F},) is a universal deformation of (K,u,T'y) and
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G(k,m) C G(k,Ty),
where G(k, m) is defined as in (2.5).

Proof. The ring R(k,m) has Krull dimension h. In particular, the regular sequence of
elements

{Con - t52" ... Con - 152", Con - (4 — )}
in R(k,m) forms a generating set for m. Since I}, = m by Proposition 4.5 and I, is
generated by the h elements {2, vy, ...,vp_1}, these elements also form a regular sequence

in R(k,m) that generates the maximal ideal m.
By Corollary 4.4, the element vy, is a unit in R(k, m). This shows that

Ph = p*Fh

is a formal group law of height h over the residue field R(k,m)/m = K. We conjugate
Fj, and T, by u to obtain formal group laws Fy) and T') over R(k,m)o, the homogenous
elements of degree zero, and k respectively. Let mg = R(k,m)o Nm and u; = v;ut=2" in

R(k,m)o. The map
W (k)[u, ..., un—1] — R(k,m)g

is an isomorphism, as can be verified by filtering both sides by the maximal ideal
(2,u1,...,up—1) = mg. Because of its relationship to v;, the element w; is by defini-
tion the coefficients of 2 in the 2-series of F? modulo (2,uy,...,u;—1). It follows that
(R(k,m)o, FY) satisfies all the conditions of [30, Proposition 1.1], and so is a universal
deformation for (k,I'9).

Finally, since the action of G(k,m) on R(k,m) is faithful and via continuous ring
isomorphisms, G(k,m) C G(k,T') by (2.7). O

This concludes the algebra needed to establish Theorem 1.5.
5. An equivariant Lubin—Tate spectrum

In this section, we turn to study the Lubin—Tate spectrum E(k,T',) and prove The-
orems 1.5 and 1.7. The universal deformation Fj, of I'j, studied in the previous section
defines a Lubin-Tate spectrum E(k,T',). By the Goerss—Hopkins—Miller theorem, the
action of G(k,m) on I'y, gives rise to an action of G(k,m) on our Lubin-Tate theory
E(k,T},) by maps of Eo-ring spectra. We then promote our spectrum E(k,I';) to a
Con-spectrum and show that as a Con-spectrum, E(k, ') has an equivariant orientation
in the sense that there is a Cyn-equivariant map
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MU= s E(k,Ty,)
that classifies F}, on underlying homotopy groups.
We will also prove that the homotopy fixed point spectrum E(k, T',)"¢*™) of E(k,T'},)

by a subgroup C(k,m) C G(k,I',) of order coprime to 2 also admits a Can-equivariant
orientation.

5.1. The classical Lubin-Tate spectrum

To obtain E(k,I',), we simply apply the Landweber exact functor theorem and the
Goerss—Hopkins—Miller theorem. Combined, these give the following result.

Theorem 5.1. There is a complex orientable Eo-ring spectrum E(k,Tj) such that
7 E(k,T'y) = R(k,m). The spectrum E(k,Tp) has a continuous action of G(k,I'y) by
maps of Exo-ring spectra which refines the action of G(k,T'y) on R(k,m).

This finishes the proof of Theorem 1.5. We will now give a description of m, E(k,T'},)
which emphasizes the structure of 7y, as mentioned in Remark 1.6.

Proposition 5.2. There are elements
Con 7o = {TismTis - »72 ~'7} C R(k,m)o
for1<i<m-—1 and
Con T = {Tms YnTms - - - ,72%1727',”} C R(k,m)o
(note that there is no generator “’yﬁn_l’le ”) such that
R(k,m) Z W (k)[Can - T1,...,Con - Tyu_1, Can - T ]| [uF].
The Can-action on R(k,m) is determined by the formula
Fra () =9
forz=7 (1<i<m)andr <2" ! —2. Furthermore

(1) fO?” 1<i<m, f"/n (772;71717—1') = Ti,

(2)

2n—l_2
i~ T™m) =1+ — .
fn O ) (1= 7m) (L —77m) . (L2 2)
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(1 =Tm)u

(3) For1<r<2nt—1
Srr(u) = (1 =~"""m) (1 =" %7)

= —u.

and f zn-1(u)
The group Gal(k/Fs2) acts on R(k,m) via its action on the coefficients W (k), and the

action of ¢ € k*[q] fizes T, and is determined by
fC (u) = Cilua

felr) = ¢* '

A (" u'=2"). Then

for1<i<m-—1.
Proof. Let y=7,.For1 <i<mand 0 <r <27 ! -1, let v
1 Y1 0<r<2rl
YY) = .
T r=2 .

=l 92 let Y (1) = 7" (1 — u=tyu). Clearly, for 0 < r < 271 — 2,

For 0 <r <
Y(y"17m) = 4" Tm. Furthermore,
n—1_ u
Y07 ) = 1 e
Since
1 _7u
I
for 0 < r < 27! — 2, we conclude that
ot _g 1
Tm) =1+
m) (1 _Tm)...(l_,ygn—l_QTm)a

vy
which proves the claim in the statement of the theorem. The action of C(k,m) is clear

from the definition of the 7;s. O
Theorem 5.1 implies that F(k,T}) has an action of G(k,m) by maps of E..-ring

spectra. Before promoting F(k,I';,) to an equivariant spectrum, we prove the following

splitting result.

Theorem 5.3. Let
C(k,m) = Gal x k*[q] C G(k,m).
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There is a G(k, m)-equivariant map
E(k,Ty,) — E(k,T),)h¢km)
which splits the natural map E(k,Tp)"C®Em) — B(k,T}).

Proof. In this proof, let E = E(k,T'}), G = G(k,T'y) and S = S(k,T'). Note that the
group k*[q] is cyclic. Let £ be its order and ¢ be a generator so that (¢ = 1. Define

1
q-
Letting [¢?] act on E via the action of k¥*[q], we obtain a map
E - E.
Let 5_1E be the telescope of €. Note that since any element of Gal permutes the set
{C’ o 0, e commutes with the action of Gal. Similarly, € commutes with the action of
Con and k*[q]. Therefore, G(k,m) acts on e ' E and the map
E—¢c'E
is G(k, m)-equivariant. Furthermore, the composite
El s p R

is a G(k, m)-equivariant map which is an isomorphism on homotopy groups. This can be
verified by using the collapse of the homotopy fixed points spectral sequence for EhF"ldl

Therefore, the composite is a G(k, m)-equivariant equivalence.
Now, note that

EhCkm) o (phk*(a]yhGal
By [10, Lemma 1.37], there is a Gal-equivariant equivalence
Galy A EMCHm) —y phi™lal
This is shown by first proving that the composite
EhS p phCUm) _y phk™lal A phk*la __, phi*ld) (5.1)

obtained by the natural maps followed by multiplication is a weak equivalence, and then
appealing to the Gal-equivariant equivalence
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Gal, AE'® — EMS

proved in [10, Lemma 1.36]. However, note that the latter map is a G(k, m)-equivalence
if we equip both spectra with trivial Can x k*[g]-actions. Furthermore, (5.1) is also a
G (k,m)-equivariant map. Therefore, the equivalence

Gal, A EMCUm) ~ plk*ld]

is G(k,m)-equivariant. It follows that E"C(*m™) splits off equivariantly from Ehk"lal
hence from E. O

5.2. E(k,T}h) as an equivariant spectrum

We will now upgrade E(k,T',) to a commutative Con-spectrum. By Theorem 5.1, we
may view E(k,T';) as a commutative ring object in naive Can-spectra. The functor

X — F(ECyn, X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us to view
E(k,T},) as a genuine Con-equivariant spectrum.

The commutative ring spectrum structure on E(k,T's) gives rise to an action of a
trivial Ex-operad on F(ECan,, E(k,T'y)). Work of Blumberg-Hill [9] shows that this is
sufficient to ensure that F(ECan , E(k,I'})) is a genuine equivariant commutative ring
spectrum (see also [24, Section 2.2]). Therefore, by passing to the cofree localizations,
we may view E(k,T'},) and E(k,T,)"5™) as commutative Cyn-spectra.

Proof of Theorem 1.7. The Real orientation theorem of [17] implies that the complex
orientation

MU =i;MUr — i:E(k,T})
refines to a Real orientation
MUg — ig,E(k,T'y).
The 2-typical nature of our formal group laws implies that these maps factor through
BP =;BPr and BPg respectively.
Applying the norm functor to the maps
MUr — BPr — izsz(k‘, Fh)

and post-composing with the counit map of the norm-restriction adjunction gives maps

MU©=) — pp(©a) s NEvit, B(k,Th) — E(k,T))
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of Cyn-ring spectra. Consider the composite
¢ BP(Cr) — NEit, E(k,Ty) — E(k,Th).

By construction, 7¢¢ is the map f: R,, — R(k,m) defined in (4.1), which is the same
map as in the statement of Theorem 1.7. 0O

In fact, we can obtain a refinement of Theorem 1.7. There is a similar Ca»-equivariant
map from MU(C") to the fixed point spectrum E(k,T)"*™)  where C(k,m) C
G(k,Ty,) is the subgroup defined in Theorem 5.3. Suppose k*[g] has « elements, where
1 <a<2™—1=q.It follows from the description of the G(k, m)-action on 7. E(k,T';)
(Theorem 1.5) that

(T*E(k7 F))C(k’m) = ZQ[CQn . tfgn 5. an . an . Ua][CQm . (uo‘)flm/,

ml’

where

m' = (Cyn - t52" ... Cgn - t52" | Con - (u® — 7u®)).

m17

271 = 40 and

If @« = ¢, then u® =u

(M E(k, ) ) = 7,5 [Con - 152" ..., Con - 152", Con - 12" ][Cpm - (£52™) 1A,

ml’

where

m' = (Con - 192" .. Con - 152", Com - (12" — 4, tS2M)).

m17

Furthermore, the homotopy fixed points spectral sequence
Ey' = H*(C(k,m), 7 E(k,T})) = m_oE(k,T,)¢km)

has the property that E2> 0* — (. This follows from the fact that the action of Gal on
E(k,T) is free, and that the order of k*[q] is odd. Therefore, the homotopy fixed points
spectral sequence collapses and we have the following result.

Proposition 5.4. There is an isomorphism

W*E(k’, Fh)hC(k,m) = ZQ[CQn . t1C'2n7 ey an an . ua}[sz . (’U,a)_l];\l/,

m17

where

= (Con - t92" .. Con - t92" | Can - (u® — 7u®)).

ml’

If oo =gq, thenu® =u?" ! = tCan
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On the underlying homotopy groups, the map
m¢E(k,T1,) — wCE(k, T}, )hC%m)

is not a ring map, but it is a Cyn-equivariant map that sends t?zn — ticzn for 1 <i <
m — 1, and u® — u®.

For simplicity, for our next theorem we will choose our field k so that k*[q] has
(2™ — 1)-elements.
Theorem 5.5. There is a Con-equivariant homotopy commutative ring map

MU©Can) E(k,Fh)hC(k*m).

This map factors through a homotopy commutative ring map

¢ : BP(C2) Bk, T, )hCkm)

such that the map w1 is the map R, — w¢E(k,T',)"C*™) determined by

tczn {tic2" 1 S ’L S m,

' 0 i>m.
Proof. Consider the splitting map
E(k,Ty) — E(k, ;)%™

in Theorem 5.1. Although this map is not a ring map, it is still a Can-equivariant map
and hence induces a map

Cy- HFPSS(E(k,T)) — Cy- HFPSS(E(k, T, )¢ km))y (5.2)

of Cy-equivariant homotopy fixed points spectral sequences (HFPSS).
On the other hand, we also have the map

E(k,Tp)C®m) s B(k,T},),
which is a map of commutative Can-spectra. This map induces a map
Cy- HFPSS(E(k, ;)¢ Fm)y 5 Cy- HFPSS(E(K, T)). (5.3)
The composition map of spectral sequences

Cy- HFPSS(E(k, T)hC k™)) s Co- HFPSS(E(E,T'1))
— Cy- HFPSS(E(k, T,)"Ckm)y
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is the identity map.
By Theorem 1.5, and [24, Theorem 4.7], the Es-page of the RO(Cs)-graded Cs-

homotopy fixed points spectral sequence for E(k,T') is
W (k)[Can - 152", ..., Con - 152"

m—1

Can - 7:6] [Czn . ﬂ_l]l/% ® Z[Uiﬂ ad]/(2a0)'

By Proposition 5.4, the Es-page of the RO(Cs)-graded Ca-homotopy fixed points spectral

sequence for E(k,T)Ckm) is

Zg[Con - 1527 ... Cgn - 152", Con - 1*][Cm - (a®) V)20 ® L[, as]/ (200 ).

m—1

The map (5.3) induces an injection on the Fs-page. Hahn—Shi [17, Theorem 1.2] have
completely computed all the differentials in Co- HFPSS(E(k,T')). By naturality of the
maps (5.2) and (5.3), we deduce that the map

Cy- HFPSS(E(k, T,)"C*m)y — Co- HFPSS(E(k,T'1))
also induces injections on the set of differentials on each page. More specifically,
for any nonzero differential d,.(z) = y in Co- HFPSS(E(k,T)"¢*™)) its image in

Cy-HFPSS(E(k,T'y,)) is also the nonzero differential d,(z) = y.
As a consequence, we deduce that

T 1 (B(k, Tp)" ) = 0

for all k € Z (this is because ﬂ%z_l(E(k‘, T'n)) =0forall k € Z). By [24, Lemma 3.3], the

hO(

spectrum ig,, E(k,T's) k:m) is Real orientable, and we obtain a homotopy commutative

ring map
MUR — if, E(k, T')"C%km)
that factors through BPg.
Since E(k, I‘h)hc(k’m) is a Con-equivariant commutative ring, applying the norm func-

Con

tor Ng2* (—) to
MUg — BPg — if, E(k,Ty)"¢km)

and using the norm-forget adjunction produces the homotopy commutative ring maps

MU(Cn) — Bp(Can) Yy B Ty )hCUm),

The map =gty is determined by the Can-action on the formal group law over
¢ E(k,T,)"¢*™) defined via the map
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BP, — w¢E(k,T)hC¢km),
By construction, it is the map we claimed in the statement of the theorem. 0O
6. Equivariant orientation and localization

In this section, we prove Theorem 1.8. Throughout this section we will denote the
group Cy» by G and the Lubin-Tate theory E(k,T}) by Ej. We let pg be the real
regular representation of G and we abbreviate ps = pc,. We need to specify an element
De 7rf*;3 M U(C2n) 50 that there are the desired factorizations as stated in the theorem
and the following three properties hold:

(1) The spectra D~*MU(E) D=1BP(E) are cofree.

(2) The Hill-Hopkins-Ravenel periodicity theorem [22, Theorem 9.19] holds for
D='MUE) and D1 BP9,

(3) In 7¢D~*BPE)(m), I, = I, where

Ioy = (2,672, 152, 2652 ) = (2,01, .., Van—tpy_1)
Io=(2,G-t¢,...,G-tC |G- (t& —~,t9))

are the ideals defined in the proof of Proposition 4.5.

Before specifying the element D so that properties (1)—(3) hold, we will first explain
how to obtain the factorizations in Theorem 1.8 once we have chosen an arbitrary element
D € 7§ MU that becomes invertible in 7§ Ej,.

Given a homotopy commutative spectrum R, the spectrum D~ 'R is defined to be the
homotopy colimit of the sequence

R-—L2+5VAR L5 5 AR L.
The Cyn-equivariant orientation
MU — B,
is a map of homotopy commutative ring spectra, and there is a commutative diagram

MU@G) Ly gV A MG Ly g2V A ppy(G) 2 .

! I |

E, —L2 S VAE, —L2 5 2VAE, —2 ...

Passing to the colimit and using the fact that D~'E}, ~ Ej;, produces the factorization
map
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D 'MU@) — R,

This proves the first diagram. The proof for factorization through D~*BP(S) is exactly
the same.

Remark 6.1. As we will see, the element D € 7rf; ~MU () also becomes invertible in

WEEZC(k’m) under the map

G MU — 7§ Byt

It follows from Theorem 1.8 and the discussion above that there are factorizations

MU@ —, ghetem BP(G) EOtm)
| =
D—lMU((GS) D—pr((G)/)

for the G-equivariant orientations of EZC(k’m) through D~*MU(®) and D1 BP(S),

We will now specify the element D € WiMU((G)) so that Theorem 1.8 holds. By [22,
Section 5] and [17, Theorem 6.7], the spectra ig,, MU (%) iz, BP() i*CQBP((G)) (m) and
i¢, En are strongly even, which means in particular that the restriction maps

from the (xp2)-graded Cy-equivariant homotopy groups to the non-equivariant homo-
topy groups are isomorphisms. Therefore, we have complete knowledge of the homotopy
groups of W%2MU((G)), 7rfp22 BP(G), 7rf;)22 BP(E) (m), and 72 E},. They are

*p2

72 MU = z]G-7¢,.G ¢, ],
7¢ BP(9) = 7,(G-1¥,G-15,.. ],

*p2

702 BP(O (m) = Z5)[G 17, G - 15,...,G - 15],
782 B, = 7,|G-#¢,...,G-15 |, G-a][G-u Y]

AN
*Pg m—1» m

where

= (Cyn - 192" ... Con 192", Cn - (1 — Y0 10))
t

m—1> -
= (CQn . Ean IR CQn . EC2” CQn . (t_m — Tn m))

m—1

The following proposition gives a criterion to identify elements in 7rfi) MU (G) that

becomes invertible under the induced map
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G G G
ﬂ-*pGMU(( ) — ﬂ—*pGEh
of G-equivariant homotopy groups. The same result holds for BP(%) as well.
Proposition 6.2. If the element x € 7rfp22 MUC) pecomes invertible under the map
e} G c
702 MUY — 70 B,

of Ca-equivariant homotopy groups, then the element Ng2 () € 7€ MU also be-

*pG
comes invertible under the map

26 MU@ _y7C p,

of G-equivariant homotopy groups.

Proof. Let the image of  under the map
7% MU — =82 B,

be y. We will prove that the image of Ngz (z) under the map
26 MU©@ y7C p,

is N& (y), which is invertible.

We will denote the slice spectral sequence and the homotopy fixed points spectral
sequence by SliceSS(—) and HFPSS(—), respectively. Consider the maps

Cy-SliceSS(MU (D)) — C,- HFPSS(MU ()Y —s Cy- HFPSS(Ey,)

of RO(Cy)-graded spectral sequences. The element z is represented by a class on the
Fs-page of Cy-SliceSS(MU(S)), which, by an abuse of notation, will also be denoted
by z. On the F>-page, the maps of spectral sequences above send

z— 2’ —y,

where 2’ and y are classes on the Ey-page of Co- HFPSS(MU()) and the E,-page of
Cy- HFPSS(FE},), respectively. Since x is a permanent cycle, ' and y are also permanent
cycles. The element y survives to become the element which, again, we also call y €
7'('%2 E}, in homotopy.

Now, consider the maps

G- SliceSS(MU)) — G-HFPSS(MU (%)) — G-HFPSS(E),)
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of RO(G)-graded spectral sequences. On the Fs-page, the class Ng,z (z) is first mapped
to Ng2 ('), and then mapped to Ng2 (y). This is because the second map on the Fs-page
is completely determined by the G-equivariant map

r¢MUE) — 7eBy,.

The classes N& (z), NS (¢'), and N& (y) are permanent cycles, and they all survive to
the Eoo-page. It follows that as elements in the G-equivariant homotopy groups 7, G( ),

NE, (z) — NG, (y)
under the map
G G G
78 MU — 78 B, O

We will now specify the element D € 7§MU() so that properties (1)-(3) hold.
Our method is as follows: first, we will identify elements x € F%QBP((G)) that become
invertible under the map

72 BP(9) —; 7% .
By Proposition 6.2, the elements N& (z) € 7% _BP(%) (formed by considering x as
elements in 7TC2 MU under the map 7T*szzBP((G)) — 7T*Cp22M U(S)) will also become
invertible in 7& . E'n under the map
78 BPE) — 78 By

PG

We will define

D =[] N§, ()

to be the product of the elements N& (z).

Proposition 6.3. The images of the elements th’ im € W*C;QBP((G)) for 1 <i < n are

invertible in 71'*p2 Ey.
Proof. This is an immediate consequence of Proposition 4.3. O

Proof of Theorem 1.8. Proposition 6.3 shows that we can include the product

Hch 2" im NCz( on—1 ) NCz( on—2 ) Ngz(t_rcr;zn) (61)
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into D. By the arguments in [22, Section 9] and [22, Section 10], inverting these el-
ements will produce periodicity and homotopy fixed points theorems for the spectra
D MU D=1BP(E) | and their quotients. Therefore properties (1) and (2) hold.

Now, we will include elements into D so that property (3) holds. We will describe an
iterative algorithm to accomplish this. In the proof of Proposition 4.5, we used induction
on n to show that I, = I¢,, in m.E},. For each step of the induction process, we defined
intermediate ideals J; C 7¢ BP(%)(m) and used downward induction on i to show that
certain elements are in the images of ideals J; in m, Ep,.

In the argument of the downward induction, we identified certain elements in
7¢BP() (m) that become invertible in m, Ej. For instance, the elements

r k—1 r I k_
()2 oyt () !
and
(1) + 15w

are such elements (see the proof of Proposition 4.5). Our algorithm is as follows: ev-
erytime we identify such an element t € 7¢BP(%) (m), include N&, (f) into the product
defining D, where t € 7r*Cp22BP((G)) (m) is the (unique) Ch-equivariant lift of ¢. For the
two elements mentioned above, we will include

1O\ 21 7Cor (7Cor \2F —
Ngz((th )2 + 7ty ? (tki1)2 1)
and

NE((E )" + 1 )
into the product. Including all such elements to the product defining D will guarantee
that the proof for I, = I¢ will carry through in m¢D-1BP(&) (m) as well. This proves
property (3). O

7. The height of BP(C27) (m)

In this section, we continue to let G = Cy» and h = 2" !m. We now turn to analyze
the height of the formal group law over BP(%)(m). We start by making a few remarks
that will render this analysis easier. By Proposition 3.5, we have

t% =v;  (mod Iy)

in BP,. In the equivalence above, the generators vy are the Araki generators. The gen-
erators “v” are only well defined modulo I}, and any choice of these generators will give
the same chromatic story. So, instead of using classical choices of generators for B P,
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such as the Araki or Hazewinkel generators, we can use generators tkc2 in our analysis of
the heights of various BP-modules. For instance, since the Bousfield class of E(h) is the
same as that of vngP [39, Theorem 7.3.2], which is the same as that of (thcz)’lBP, we
have

LpX = L(tSZ)lePX
for any spectrum X.
For this reason, from now on, we redefine
_ 40>
v =t € BP,. (7.1)
As usual, we let I, = (2,v1,...,v,_1). As an immediate consequence of our work in the

previous sections, we have the following result. Note that in the introduction, we called
Ry (m) := 7% BP(E) (m).

Proposition 7.1. In 7¢D~'BP(E)(m), I}, = I and 7¢D~*BPE) (m) is a regular local
ring with mazimal ideal Iy, generated by the regular sequence (2,v1,...,vn—1). Further-
more, vy, maps to tf’n mn

7D *BPUE) (m) /T), = Fy[tE1],

where B = (2" — 1)/(2™ — 1). In particular, modulo I, the formal group law over
76D~ BP(E) (m) has height exactly h.

Proof. In the proof of Theorem 1.8, we show that I, = Ig. Now, as in the proof of
Theorem 4.6, we get that (2,v1,...,v5—1) is a regular sequence by analyzing the Krull
dimension of 7¢D~'BP(E) (m). Finally, vj, (which is t5?2) is a factor in i*D (see Equa-
tion (6.1)). Therefore, vy, is a unit and so maps to a unit in 7¢D~'BPE) (m)/I),. The
identification of 7¢ D~'BP(%) (m) /I, is straightforward by using the fact that Ig = Ij,.
It follows by degree reasons that v;, maps to t2,. O

Note that, as we have mentioned in the proof above, the element v is invertible in
Tt D' BP(%) because it is a factor in 3¢ D. Therefore i* D~* BP(%) is a v, ! BP-module
and so is E(h)-local.

Lemma 7.2. For all 0 < k <n —1 and r > 2*m, under the composite map

ﬂ-:BP((Czn—k)) N 71-:Bp(((bn)) N 71-:Bp(((bn)) (m),

on—k

the images of tTC and its conjugates by Con—i are contained in the ideal I, =

(2,1}1,.. '7UT—1)'
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Proof. We will use induction on k. The base case when k = 0 is immediate because for
r > m, under the map

7T:Bp((Czn ) 7T:Bp((Czn ) (m),

t&2" and its conjugates by Can are all sent to 0.
Now, suppose the claim is true for k. By Theorem 1.1, we have the following equality
in 7¢ BP(¢>") (m) modulo I,:

r—1
Con—k— Con— Con— Con—k\27 Con—k
12 k—1 =52 k+’y’ﬂ7kt’l‘2 k+Z(t 2n k)2J’Yn7ktj2 ko

r—j
j=1

For r > 2Ft1m, every summand on the right hand side contains some tfw_k or its
conjugate with i > r/2 > 2¥m. By the induction hypothesis, these elements are all in
the ideal I; C I,.. It follows that tf”ik*l = 0 modulo I, for r > 2¥*1m. The same proof
applies to its conjugates. This finishes the induction. O

Proposition 7.3. Let h = 2"~ 'm. Under the composite map
7,BP — 1¢BP(@) s 7e BP(&) (1),
the images of the v; generators satisfy v, € (2,v1,...,vp) for r > h.
Proof. Set kK = n — 1 in Lemma 7.2. The result of the lemma implies that for all » > h,

v, = t¢% is contained in the ideal I, = (2,v1,...,v,_1). In other words, I,y = I,.
Applying the lemma iteratively shows that

Ir+1 :Ir = :Ih+1 = (2,@1,...,vh).
It follows that v, € (2,v1,...,vp), as desired. O

Proposition 7.4.

(1) For 0 <r <h,

A
™ Lic(ryi: D7 BPU ) 2= (v m.it D7 BP) (m)
I’V‘

and Ly(yit D7 BP(E) (m) o .
(2) Forr > h, L(myizD™'BP() (m) ~ x.

Proof. In [26, Section 4], the authors produce a cofinal sequence J (i) = (Jo, J1,- -, Jr—1)
of positive integers and generalized Moore spectra
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My = S’O/(vgo7 . mz’:f)
with maps M 11y — M) so that, for any spectrum X,
Ly X =~ holim;M j;y A L. X.
This gives a lim'-sequence

0 — lim'my 1 (M5 ALy X) — m L)X — limmy (M) AL X) — 0.
K (2

We apply this to X = i* D~!BP(E) (m). First, we show that L,X = v 'X. Note
that v !X is F(r)-local because L,BP = v !BP, and v !X is a v, ! BP-module. For
any FE(r)-local spectrum Y and a map X — Y, we get a map v, 'BP — Y from the
composition map BP — X — Y. This implies that the map X — Y factors through
the map X — v,7 1 X. It follows from the universal property of L, X that L, X ~ v '1X.

We can obtain M ;) A L, X by a series of cofiber sequences

SIloel 80/ (wf0, L oY AL X s SO (o YA Ly X
— S/, .. wlF) AL X.

We start with the case when r < h. Since the sequence (vg,v1,...,v,_1) is regular in
7. L. X, so is the sequence (v)’,v]',..., v/ 7). It follows that we get a series of exact
sequences
Jo Jk—1 vk Jo Jk—1
0 — m L, X/ (0], ...,v0 ) = T Ly X/ (0], ..., 007
— T L, X/ (0}, ..., vlF) — 0,

which lead to an isomorphism
Te(Myey AL X) 2 (1L X) /(00 .. 007,

The maps in the inverse system lim; . (M) A L. X) are then obviously surjective and
SO limilﬂ*+1(M 7)) N LX) = 0. The exact sequence above gives an isomorphism

TeLmX = lim 7, (M) A L X) 2 (v T X))

To show that this is not 0, note that since (2,v1,...,v,.) is a regular sequence,
vy T X/IF — 7, X/IF is injective. Therefore, m, X/I* (which is clearly non-zero) in-
jects into v, ', X/I*. Tt follows that limy 7. X/I* injects into limy, v 7. X/I¥, and so
the latter is nontrivial. This proves (1).

For (2), note that v, is in D by definition. In the series of cofiber sequences forming

My AN L X, the first map below induces an equivalence:
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sinlerl SO/ (i, 'Ufzh TINL X “‘_> SO/ (- ”ih )AL X
— 59/ (vl ,...,vh "YALX.

This implies that SO/(U0 ey U{L") A Ly X = 0 and therefore M ;) A L. X = 0. It follows
that every term in the tower {M ;) A L X} is contractible and Ly X ~*. O

Theorem 7.5.

(1) For 0 <r < h, LyyizBP() (m) % x.
(2) Forr > h, L(itBP(9) (m) ~ x.

Proof. For (1), note that the maps
S — Ly (mizBP D (m) — Lic(yiz D' BP( (m)

are ring maps. Since LK(T)iZD_lBP((G)) (m) # x by Proposition 7.4, it follows that
Lic(ryig BP() (m) 2 =.

For (2), let X = ifBP(®)(m). We will show that L, X A M ;) ~  for the generalized
Moore spectra

My =S/ (0, ..., v ).

This will imply every term in the tower {L,X A M ;) } is contractible and Ly ()X ~ .
Note that

Lo X A My = Lo X Ay MUJ (030, .. 0l 7).

» Yr—1

There is a Kiinneth spectral sequence [14, Theorem IV .4.1]
E)t = Tor]lﬁ]t* (e X, m. MU/ (02, ... ., viT_’f)) = M (X Ao MU/ (@0, ... ,Uf’"_’f)) .

We have graded the spectral sequence cohomologically. As such, it is a lower half-plane
spectral sequence. Note that

MU/, .. 0l ) = MU,/ (6°,.. vlm )
and the Fs-page is a module over

MU. - ; -

Tory " (m. X, MU. J@F, . v ) = (X)) (W, v ).
Since v, € (vg,...,v,_1) by Proposition 7.3, v € (v{°,..., v} ") for ¢ = Y210 ji.
This implies that v? is zero on the Es-page. Any element in the homotopy groups of
X App MUJ (0%, ... 027" is represented by some element of filtration s < 0 on the

» Yr—1
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E-page of the Kiinneth spectral sequence. Since v{ is zero on the Fs-page, this element
must be annihilated by vg(SH) in homotopy. Therefore, every element in the homotopy
groups of X Ay MU/ (v}’ ..., vl ') is killed by some finite power of v,.. It follows that

T (Lp X Ay MU/, 00" ) = o5 (X Apry MU/, ... 077)) =0. O
Proposition 7.6. Let ¢ = 2™ — 1. If F, C k then the natural map i:BP((G)) —
i E(k,Tp)"C®m) of Theorem 5.5 factors through an equivalence

L (i; D' BP (m)) = it E(k, Tj,)"C k),

Proof. Let Ej, = E(k,I'y,). The complex orientation BP — i E}, is a map of Aeo-
algebras and therefore so is the map i* BP(®) — *E,. It follows that i*FE}, is a
i* BP(%)-module. Constructing i* BP(%) (m) as the quotient

n—1 n—1

iZBP((G))/<tm+177tm+1u' "7’72 _ltm+17tm+2»7tm+27-~7’)’2 _1tm+27" )

via a series of cofiber sequences and noting that vt maps to zero for k > m + 1, we get
a factorization

Z:Bp((G))

Z':Bp((G)) (m)

5k
ZeEh

Composing the dotted arrow with the splitting of Theorem 5.3 gives a map
it BP(O) () — i ppotm)
Since D is mapped to a unit in 7¢Fj,, this dotted arrow factors as a map
i* D BP() (m) — iz gt

We apply the functor Ly ;) (—) to this map. Since the target is already K'(h)-local, we
obtain a map

It suffices to prove that ¢ induces an isomorphism on homotopy groups.
In Proposition 7.4, we proved that

T Lic(ny (12 D BP( (m)) = (22D~ BP() (m))} .
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Proposition 7.1 implies that I;, = I in 7¢D~'BP(%), By Proposition 5.4, we have an
isomorphism

T E(k, Tp)hChm) = 7,[G 18, ... G151, G ty][Com - (tm) L,

Here, we have used the fact that m’ = Ig if t,, is a unit and that F, C k (so that
a = 2™ —1 in our application of Proposition 5.4). Furthermore, by design, ¢ maps ¢; and
its conjugates in 7¢ D~ BP() (m) to the same named generators in 7¢F(k, T, )¢ Fm),
Therefore, ¢ induces an isomorphism on homotopy groups. O
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