
Non-uniform DNN Structured Subnets Sampling for
Dynamic Inference

Li Yang, Zhezhi He, Yu Cao and Deliang Fan

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ

{lyang166, zhezhihe, ycao, dfan}@asu.edu

Abstract—With the success of Deep Neural Networks (DNN),
many recent works have been focusing on developing hardware
accelerator for power and resource-limited system via model
compression techniques, such as quantization, pruning, low-rank
approximation and etc. However, almost all existing compressed
DNNs are fixed after deployment, which lacks run-time adaptive
structure to adapt to its dynamic hardware resource allocation,
power budget, throughput requirement, as well as dynamic
workload. As the countermeasure, to construct a novel run-time
dynamic DNN structure, we propose a novel DNN sub-network
sampling method via non-uniform channel selection for subnets
generation. Thus, user can trade off between power, speed,
computing load and accuracy on-the-fly after the deployment,
depending on the dynamic requirements or specifications of the
given system. We verify the proposed model on both CIFAR-
10 and ImageNet dataset using ResNets, which outperforms the
same sub-nets trained individually and other related works. It
shows that, our method can achieve latency trade-off among 13.4,
24.6, 41.3, 62.1(ms) and 30.5, 38.7, 51, 65.4(ms) for GPU with 128
batch-size and CPU respectively on ImageNet using ResNet18.

I. INTRODUCTION

In the last couple of years, the climate of Artificial Intelli-

gence, especially Deep Neural Networks (DNN), has swept

various domains owing to its prominent performance over

traditional methods [1]. However, DNNs grow into more

complex structures consisting of deeper layers, larger model

size, and denser connections. Such ”bulky” models rise chal-

lenge to hardware deployment, especially edge devices (e.g.,

smartphone). To solve this problem, researchers either design

compact models specialized for mobile [2], [3], or accelerate

the existing models by compression [4], including network

quantization [5], low-rank approximation [6], weight non-

structured/structured pruning [7], [8] and etc [9]. However, the

available resource are non-identical for different hardware plat-

forms, which requires different degrees of compression under

similar latency requirement. Even for one specific hardware

platform, it expects the dynamic switching ability in real-world

scenarios. For example, smartphone may become too hot or is

running out of battery, which resulting in different allocated

computing resources to DNN computation and thus different

throughputs, latency, etc. In these cases, DNNs need to be

retrained and reloaded to meet various/dynamic requirements,

which is highly cost, even not realistic. A new challenge is

then raised: How to develop an adaptive DNN model that could
dynamically adjust its computing complexity, model size and
accuracy to meet with dynamic application requirement and
workload on-the-fly, without reloading new models?

Figure 1: Directly sampling without retraining VS our pro-

posed dynamic sampling for four subnets

To address this challenge, in this work, we target to con-

struct a dynamic DNN structure, which consists of many

subnets, through a novel sub-network sampling method via

non-uniform channel selection. It is inspired by the fact that

parametric layers (e.g., convolution or fully-connected layers)

of DNN owns non-identical sensitivity to capacity reduction,

which has been heuristically demonstrated by model pruning

[8], [10], [11] and NAS works [12]–[14]. The proposed

method can be divided into two successive steps: Subnets
generation and fused subnets training. In the first step, multiple

subnets are sampled from a complete model, in terms of differ-

ent model capacities utilizing a proposed clipped-Lasso based

channel sampling method. Then, the identified subnets are

fused as a single ensemble loss function for multiple objective

optimization to construct a dynamic inference network.

Thus, the new dynamic DNN could adjust the involved

convolution channel (i.e. model size, computing load) at run-

time (i.e. at inference stage without retraining) to dynamically

trade off between computing complexity (thus power, speed)

and accuracy as depicted in Fig. 1. Unlike prior works with

uniform structure, our proposed dynamic DNN, i.e. supernet

model, includes multiple subnets, each owns non-uniform

structure to achieve optimal efficiency. We summarize our

main contributions as follows:

• We propose a new dynamic neural network structure

(a supernet consists of a group of subnets), which can

adjust the model size at run-time to dynamically trade

off computing complexity and accuracy.

• To extract the non-uniform and hardware-aware sub-

net structures, we also propose clipped-Lasso structured

pruning method as the guide for subnets generation.

• We test our method on CIFAR-10 and ImageNet dataset

which shows that our method achieves either similar or

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

better accuracy comparing with individual pruned models

and other recent works with the same model size. In

addition, we also prove that our method achieves better

accuracy and latency trade off on both CPU and GPU.

II. RELATED WORK

A. Neural Network Structured Pruning

DNN pruning is a popular compression technique, which en-

forces partial of weights be zero for both model size reduction

and computation simplification [7]. According to the shape of

sparsity pattern, it can be divided into two categories: non-

structured [7] and structured pruning [8], [10], [15]. Structured

pruning leads to sparsity patterns with highly regular shapes,

which is much more hardware-friendly. Various sparsity pat-

tern (e.g., channel/kernel/customized-group) are explored in

different works [8], [10], [15]. In [10], the unimportant filters

are directly pruned based on its L1-norm. Liu et al. [15]

introduce L1 regularization on the scaling coefficient of batch

normalization layers as a penalty term, where the channels

with small scaling coefficient are removed. In contrast to the

aforementioned two works, the structured pruning methods in

[8] use the identical technique - Group Lasso.

Group Lasso is initially introduced in [16], then Wen et
al. [8] apply it as an additional term in the loss function

when training DNN with back-propagation for learning the

structured sparse weight pattern, which can be formalized as:

L̂ = L(f(x; {Wl}Ll=1), t) + λ
L∑

l=1

Gl∑
i=1

Intra-group L2-norm︷ ︸︸ ︷
P(Wl,i)

︸ ︷︷ ︸
Inter-group L1-norm

(1)

where f(x; {Wl}Ll=1) computes the outputs of DNN param-

eterized by {Wl}Ll=1 w.r.t the input x. L(·, ·) is the objec-

tive function of DNN (e.g., cross-entropy loss). P(Wl,i) =
||Wl,i||2 calculates the Euclidean norm of the indexed weight

group Wl,i. The second term in the R.H.S of Eq. (1) is the

L1-norm of {P(Wl,i)} (aka. Group Lasso [16]), which acts as

the group-wise weight penalty for improving the group-wise

sparsity during the optimization. Gl is the number of groups

in l-th layer, and λ is the hyper-parameter to be tuned based

on the dataset. In this work, we focus on channel-wise pruning

where the Gl represents the number of output channels.

B. Dynamic neural networks

Dynamic neural network is a certain model that can generate

various subnets with different structures. [17] presents a feed-

forward DNN that allows selective execution with controller

modules. [18] uses a gating network to selectively skip convo-

lutional blocks based on the activations of the previous layer.

[19] incorporates multi classifiers as early-exits into a single

DNN and inter-connects them with dense connectivity. [20]

proposes Slimmable Neural Network (S-NN) which can train

a single DNN to support multiple channel width in each layer.

Further, the authors extend the S-NN to Universally Slimmable

Networks (US-NN) which can execute arbitrary channel width

in [21]. However, the pruning ratio of channel width is fixed

for all layers in S-NN and US-NN, which means they only

support subnets with uniform structures.

III. DYNAMIC DEEP NEURAL NETWORK

In this work, we aim to propose a framework to create

a run-time dynamic DNN, whose subnets of varying model

sizes can operate independently to meet various hardware

specifications. As the overview of the proposed framework

illustrated in Fig. 2, the entire optimization flow can be gener-

ally divided into two successive steps: 1) Subnets generation,
where multiple subnets are sampled from a complete model,

in terms of different model capacities utilizing our clipped-

LASSO based channel sampling method; 2) Fused subnets
training, where the subnets identified in the first step are

fused as a single ensemble loss function for multiple objective

optimization. Thus, each subnet can operate independently

with the capability of balancing inference latency w.r.t the

prediction accuracy on-the-fly.

To formally define the design objective, the entire workflow

depicted in Fig. 2 can be mathematically expressed as:

training for dynamic inference︷ ︸︸ ︷
min

{Wl}L
l=1

N∑
i=1

Li

(
f(x; {Wl · Ml,i}Ll=1), t

)

s.t. {Ml,i}Ll=1 = argmin L̃(f(x; {Wl · Ml,i}), t, λi, ai)︸ ︷︷ ︸
subnets generation/sampling

(2)

where N is the total number of subnets, and i ∈ {1, ..., N} is

the index of subnets. Assume the l-th layer is a convolution

layer whose weight tensor Wl is in shape of R
p×q×kh×kw,

Ml,i ∈ {0, 1}p×q×1×1 denotes the weight sampling mask of

subnet-i in l-th layer. It is noteworthy that all the subnets

are partially sharing the weight w.r.t the full model (i.e.,

Ml,i · Ml,j �= 0, ∀i, j ∈ {1, ..., N}). λi and ai are the hyper-

parameter used to control the model size while performing

subnet sampling. Li is just the normal cross-entropy loss for

subnet-i, while L̃ is subnet sampling loss will be discussed

in Eq. (3). Each step will be elaborated in the following

subsections.

A. Subnets generation

As the initial step, subnets generation is critical to ensure the

obtained dynamic DNN can perform well with its each subnet.

We discussed in Section II-A that Group Lasso technique is

widely used to perform channel-wise DNN structured pruning

in [8]. In this work, we propose to utilize an optimized Group

Lasso to sample the subnet in a channel-wise fashion, targeting

to achieve hardware-friendly structured pruned subnet group,

instead of uniform structures.

Our optimization is mainly to address the issue that a

model aggressively pruned by Group Lasso normally counters

obvious accuracy degradation, which is a big issue in our

subnet generation since the generated subnet group needs to

contain different model sizes with various degrees of pruning.

As described in Eq. (1), Group Lasso is a weight penalty

Initial Model

Sub-nets
Generator

Sub-net 1
Fused sub-

nets training

Dynamic Model

Sub-net N

Full-net

Real-time
Dynamic

Non-uniform

Channel index

la
ye

r i
nd

ex

Figure 2: Overview of proposed framework. The subnets generator samples many subnets (1 to N) from the initial model with

different model capacities. Note that, those sampled subnets are partially sharing the weights as indicated by the overlapped

channel index. Then, through the followed specially designed training/optimization step, the initial model can act as a dynamic
model, while each subnet can perform inference independently at different power, speed, accuracy.

Intra-Group
− < ?

No
Yes

ℒ ℒForward
Forward and backward

Weight
Tensor

WPC

Inter-Group
−

Figure 3: The overview of weight penalty clipping with self-

adapting threshold.

term which consistently act on all the weights. Based on our

preliminary experiments, the L-1 norm of weights of compact

model (i.e., with less number of channels) are prone to be

greater than redundant counterpart (i.e., with more number

of channels). Our hypothesis is that the accuracy degradation

caused by Group Lasso is partially attributed by the consistent

weight penalty on those non-zero/non-sparse weight which are

prone to be in larger magnitudes. Therefore, we propose a

clipped Group Lasso with adaptive Weight Penalty Clipping

(WPC) as the countermeasure for the conditional non-ideal

weight penalty.

To incorporate the weight penalty clipping term, the loss

function with conventional Group Lasso term in Eq. (1) can

be reformatted as:

L̃ = L(f(x; {Wl}Ll=1), t) + λ

L∑
l=1

Cl∑
i=1

min
(||Wl,i||2; δl

)
︸ ︷︷ ︸
Weight Penalty Clipping

s.t. δl = a · 1

Cl

Cl∑
i=1

||Wl,i||2

(3)

where δl denotes the layer-wise clipping threshold, which

is utilized to mitigate the intra-group L2-norm penalty on

large weights, and a is scaling coefficient. Note that, once

the intra-group L2-norm penalty of Wl,i is clipped, the inter-

group L1-norm penalty is clipped as well. In each training

iteration, the updated weights are used to the loss function as

shown in Fig. 3. Then after intra-group L2-norm calculation,

by comparing with a threshold δl, WPC will decide whether

the corresponding ||Wl,i||2 will be used on loss function and

go backward. Considering two cases:

• When ||Wl,i||2 ≥ δl, it indicates that weights in Wl,i are

relatively large (i.e., important) which are not supposed

to be pruned by the Group Lasso term in. Then, the

weight penalty clipping is performed which replaces the

weight penalty of ||Wl,i||2 in L̂ with δl. Hereby, we have

to highlight that δl is treated as a constant, where its

calculation is removed from the backward computation

graph.

• When ||Wl,i||2 < δl, we keep the weight penalty of

||Wl,i||2 in its original value, thus the Group Lasso term

can continuously affect Wl,i and prune the weights in

group-wise fashion.

As illustrated above, the main difference with conventional

Group Lasso is that our method only add weight penalty to

those “unimportant weights” (smaller magnitude) and skip the

important weight by utilizing WPC.

In virtue of training target DNN with the loss function

proposed in Eq. (3), we are able to get highly compact/sparse

network with minimal accuracy degradation in comparison

to full-model baseline. Note that, since our main interest is

only the architecture of subnet instead of the exact weight

value, the subnet sampling is performed via directly counting

the number of non-sparse output channels of each layer

({ml,i}Ll=1, ml,i ∈ {1, 2, ..., q}, where q is the number of

output channels of l-th layer in given full-model), following

the data-flow within the forward propagation path. Then, the

subnet sampling can be equivalently viewed as the weight

mask generation: Ml,i = 1w �=0 (4)

Through choosing the different λi, we are able to obtain a

set subnets in various model size with non-uniform selected

channels (Fig. 6 and Fig. 7).

B. Fused subnets training

For achieving the goal that each sampled subnet can inde-

pendently perform the inference task, we propose to leverage

the fused subnet training which is a multi-objective training

method (Eq. (2)). As the training procedure depicted in Fig. 4,

in each iteration, every subnet will go forward and backward

one time to calculate loss and gradients. Then the gradients

will be accumulated to update the weight by using a given

optimizer (e.g., SGD). Although the training cost is increased

compared with the conventional single model training sce-

nario, it still less engineer-cost than those subnets that are

trained independently. Moreover, user can trade off between

power, speed, computing load and accuracy on-the-fly after

deployment through executing a proper subnet, depending on

the requirements or specifications of the given system by

using such dynamic model. In addition, inspired by [20], we

utilize additional batch-norm layers for each subnet to mitigate

accuracy loss. The detailed algorithm is listed in Algorithm 1.

Input

Dynamic Model

Sub-net 1

Forward and
Backward

+ Loss

Sub-net N

Forward

Figure 4: The overview of fused subnets training.

Algorithm 1 Fused subnets training method

Require: Given a target DNN, its subnets are sampled by

proposed Clipped-Lasso.

1: for i ← 1, niters do
2: for subnet i in dynamic model do
3: Compute loss: Li

(
f(x; {Wl · Ml,i}Ll=1), t

)
4: Compute and accumulate gradients

5: end for
6: update weights

7: end for

IV. EXPERIMENTSA. Experiment Setup

1) Dataset and training configurations: In this work, we

take the classic image classification task as an example to

examine the performance of our proposed technique. Two

datasets are used in this work, which are CIFAR-10 [22] and

ImageNet [23]. For CIFAR-10, we adopt the ResNet-20 [24].

We train the network using momentum SGD optimizer, where

the initial learning rate is 0.1, which is scaled by 0.1 at epoch

80, 120, 160 respectively. The data argumentation is identical

to the configuration adopted in [24]. Except the full net size,

we sample three different subnets, where the λ is 0.01, and

the scaling coefficient a are 0.3, 0.75, 1.5 respectively. For

ImageNet experiments, we use the ResNet-18 [24] architecture

and identical data augmentation used in [24]. We train the

network using SGD optimizer, where the initial learning rate

is 0.1, which is scaled by 0.1 at epoch 30, 60, 90 respectively.

To sample three subnets, the values of λ are all 0.01 and the

scaling coefficient a are 0.25, 0.5, 1.5 respectively.

2) Structure modification for non-uniform subnet sampling:
Different from other single-pass network structures, e.g.,

AlexNet or VGG, ResNet utilizes short-cut connections to

jump over some layers. In this case, the number of input and

output channels of each block needs to be consistent. Thus

it is hard to sample the convolutional layers non-uniformly.

To solve this problem, we replace the identity function in the

short-cut connection with a 1 × 1 convolution layer. Fig. 5

shows an example that the 1× 1 convolution layer is helpful

to set the different number of input and output channels.

64x64x3x3

64x64x3x3

+

64-d

64-d

32x32x3x3

32x32x3x3

+

32-d

32-d

Prune 50%

64x64x3x3

64x64x3x3

+

64-d

64-d

64x64x1x1

Prune 50%

26x42x3x3

26x30x3x3

+

42-d

26-d

26x42x1x1

(a) Conventional basic block (b) Our basic block
Figure 5: Basic block modification for non-uniform sampling.

B. Results

1) CIFAR-10: The experiments results is listed in Table I.

we sample four subnets with different model sizes, named

as subnet(1-4) respectively. To conduct fair comparison, the

FLOPS (106) and number of parameters (104) of each subnet

for three different methods are shown. As discussed in Sec-

tion III, our proposed framework includes two steps: Subnets
generation and Fused subnets training. First, to show the

efficiency of the weight penalty clipping method in Subnets
generation, we report the results of those four subnets that

are trained individually from scratch. Thus it represents a

one-time sampled network without dynamic inference. Our

proposed clipped-Lasso method is obviously helpful to the

conventional Group Lasso method. Second, we also get better

results in comparison to S-NN [20] (i.e., a prior work of

dynamic DNN) individual results, which samples its subnets in

a naive uniform fashion. The result shows that the non-uniform

structure provides better accuracy than the uniform one with

the similar model size. Third, better accuracy is achieved of

our method compared with S-NN for the dynamic results.

Subnets subnet1 subnet2 subnet3 subnet4
Group

Lasso

Parameters 1.86 5.74 15.02 26.83
FLOPS 2.71 7.91 22.27 43.49

Individual 76.5 85.5 89.1 91.4

S-NN

Parameters 1.69 6.74 15.14 26.83
FLOPS 2.62 10.26 22.91 40.58

Individual 80.1 86.5 89.5 91.3
Dynamic 79 85.4 88.6 89.7

Ours

Parameters 1.22 6.67 14.39 28.19
FLOPS 2.21 9.56 19.75 43.49

Individual 81.3 87 89.3 91.4
Dynamic 80.7 86.3 88.4 89.9

Table I: Inference accuracy (%) comparison of ResNet20 on

CIFAR-10. ’Individual’ indicates that the subnets are trained

independently from scratch. To the contrary, ’Dynamic’ means

network to be trained by our multi subnets training method as

illustrate in Section III-B.

2) ImageNet: Similar to CIFAR-10 experiment, four non-

uniform subnets are sampled. As shown in Table II, with the

smaller number of parameters(106) and FLOPS (108) of each

subnet, our method achieves almost same or better accuracy

in both individual and dynamic networks.
C. Pruned result visualization

Many works have been proposed to conduct pruning by

using different pruning criterion as mentioned in Section II-A.

(a) S-NN (b) Group Lasso (c) Ours
Figure 6: The number of channels of each subnet for ResNet20 on CIFAR-10 dataset that sampled by three different methods.

All the layers are 3× 3 convolutional layers. The y-axis is the corresponding weight channels in each layer.

Subnets subnet1 subnet2 subnet3 subnet4

S-NN

Parameters 0.83 3.05 6.68 11.68
FLOPS 1.35 4.83 10.4 18.14

Individual 49.9 61.1 66.7 69.7
Dynamic 48.7 60.9 66.6 69.4

Ours

Parameters 0.66 2.73 5.14 12.2
FLOPS 0.89 3.97 7.17 19.8

Individual 50.1 62.6 66.9 71.4
Dynamic 48.4 61.8 66.8 69.8

Table II: Inference accuracy (%) of ResNet18 on ImageNet

However, there is no standard learning scheme that is con-

sidered as a clear winner. We illustrate the pruned structures

learned by our method as shown in Fig. 6 and Fig. 7 to provide

some heuristic for pruning and network architecture search

(NAS) exploration, which is summarized as follows:

First, comparing with S-NN uniform subnet structure, we

observe that all the three pruned subnets almost have the same

number of channels in the first layer and gradually increasing

number of channels in the last layers, which implies that a

large enough fist layer is needed , as well as last several

layers, to extract more information towards high accuracy.

Second, significant peeks are generated after a down sampling

operation. Down sampling reduces the feature map size which

needs more channels to carry the same amount of information.

Fig. 6 shows that conv8 and conv14 are the layers where larger

number of channels are sampled after feature map degradation.

A similar phenomenon is also found in the ResNet18 for Ima-

geNet dataset as shown in Fig. 7. Third, comparing with Group

Lasso method, our method is more balanced in each layer

stage. To the contrary, Group Lasso method samples some

extreme narrow layers. It can be considered that too narrow in

some certain layers will hurt the information transformation.
D. Hardware performance

Fig. 8 depicts the results on two hardware platforms: INTEL

Xeon CPU and NVIDIA Titan-Xp GPU. Our method improves

the dynamic trade-off between accuracy and latency by a

significant margin on both CPU and GPU comparing with S-

NN. It reveals that the uniform subnets sampling has limited

impact on efficiency improvement. Our method, involving

non-uniform subnet structures, can efficiently improve the

performance, especially in the relatively small model size. It

S-NN Ours
Figure 7: The number of channels of each subnets for

ResNet18 on ImageNet dataset that sampled by three different

methods. All the layers are 3×3 convolution layers. The y-axis

is the corresponding weight channels in each layer.

is noteworthy that the performance of subnet with full model

size is a little bit worse than S-NN, since our model has larger

parameters as illustrated in Fig. 5.

V. DISCUSSION

A. Arbitrary subnets training

We extend multi-subnets to arbitrary subnets training. In-

spired by [21], we set the low bound and high bound (full

model size) for the subnets structures setting to improve the

performance. Different from their uniform structures for all

subnets, we use our clipped Lasso based structured weight

pruning method to create a non-uniform low bound. For the

middle arbitrary subnets, we increase the number of channels

in each layer using the same ratio. We test our method using

ResNet20 on CIFAR10 dataset. The low bound is subnet1 as

shown in Table I. Fig. 9 shows the results with nine different

subnets. We achieve better accuracy at most subnets, especially

in the tight subnets part.

B. Why our clipped-Lasso method is better than Group Lasso?

[25] mentioned there are two requirements should be met

for pruning: (1) the norm deviation of the filters should be

large; (2) the minimum norm of the filters should be small. As

shown in Fig. 10, comparing with conventional Group Lasso,

norm distribution of our method has larger norm deviation,

which means that norm distribution becomes suitable for

gradually pruning during training. Obviously, important and

Figure 8: The trade off between latency and accuracy on Titan

GPU and Xeon CPU, for (top) ResNet-20 on CIFAR-10 and

(bottom) ResNet-18 on ImageNet.

Figure 9: Nine dynamic subnets for ResNet20 trade-off be-

tween accuracy and FLOPS

unimportant weight channels can be clearly distinguished

according to the absolute value of the norm for our method.

VI. CONCLUSION
In this work, we target to construct a dynamic DNN

structure through a novel sub-network sampling method via

non-uniform channel selection. Experiments on CIFAR-10

and ImageNet both validate the effectiveness of the method.

Beyond that, we test the inference latency for each subnet

on Titan GPU and Xeon CPU to show the trade-off between

accuracy and latency.

VII. ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation under Grant No.2005209, No. 1931871 and Semi-
conductor Research Corporation nCORE

REFERENCES

[1] Y. LeCun et al., “Deep learning,” nature, vol. 521, no. 7553, pp. 436–
444, 2015.

Figure 10: Norm based criterion on ResNet20 for CIFAR-10.

(Left) is the conv8 layer and (Right) is the conv15 layer. X-axis

represents the norm value of each channel in a layer. Y-axis

is the number of channels.

[2] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[3] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4510–4520.

[4] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” ICLR, 2015.

[5] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[6] E. L. Denton et al., “Exploiting linear structure within convolutional
networks for efficient evaluation,” in NIPS, 2014, pp. 1269–1277.

[7] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Advances in neural information processing systems, 2015,
pp. 1135–1143.

[8] W. Wen et al., “Learning structured sparsity in deep neural networks,”
in Advances in neural information processing systems, 2016, pp. 2074–
2082.

[9] G. Hinton et al., “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

[10] H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

[11] D. Molchanov et al., “Variational dropout sparsifies deep neural net-
works,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017, pp. 2498–2507.

[12] B. Zoph et al., “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[13] C. Liu et al., “Progressive neural architecture search,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 19–34.

[14] H. Liu et al., “Darts: Differentiable architecture search,” arXiv preprint
arXiv:1806.09055, 2018.

[15] Z. Liu et al., “Learning efficient convolutional networks through network
slimming,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 2736–2744.

[16] M. Yuan et al., “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[17] L. Liu et al., “Dynamic deep neural networks: Optimizing accuracy-
efficiency trade-offs by selective execution,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[18] X. Wang et al., “Skipnet: Learning dynamic routing in convolutional
networks,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 409–424.

[19] G. Huang et al., “Multi-scale dense networks for resource efficient image
classification,” arXiv preprint arXiv:1703.09844, 2017.

[20] J. Yu and othe, “Slimmable neural networks,” arXiv preprint
arXiv:1812.08928, 2018.

[21] J. Yu et al., “Universally slimmable networks and improved training
techniques,” arXiv preprint arXiv:1903.05134, 2019.

[22] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[23] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[24] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[25] Y. He et al., “Filter pruning via geometric median for deep convolutional
neural networks acceleration,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4340–4349.

