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A B S T R A C T   

One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number 
of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated 
species richness, which coincide geographically with increased anthropogenic environmental pressures - the 
world’s so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in 
South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, 
and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast 
Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp 
of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to 
obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity 
within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This 
extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance cri
terion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous 
forms probably has been underestimated. The comparison with results of other anuran groups leads to the 
assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. 
Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive 
morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and 
nearby islands which, together with our temporal framework, suggests that lineage diversification centered on 
the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could 
represent an exceptional case for future studies of geographical structure and diversification in a widespread 
anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace’s Line). 
Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions 
and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition.   

1. Introduction 

Our knowledge regarding species diversity (Larsen et al., 2017; 
Mora et al., 2011; Myers et al., 2000) and underlying evolutionary 

processes (de Queiroz 1998; Mayr 1947) continues to expand in many 
groups of organisms, including “well-studied” terrestrial vertebrates 
(Cozzuol et al., 2013; Geissmann et al., 2011; Nater et al., 2017; 
Welton et al., 2010). Over the past 15 years, an average of 155 species 
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of anurans have been newly described each year (AmphibiaWeb, 
2021). This increase derives particularly from new species discoveries 
from biodiversity hotspots, regions with high species richness and high 
levels of endemism (Orme et al., 2005), coinciding geographically with 
environmental degradation, and extinction risk (Marchese, 2015; Noss 
et al., 2015; Possingham and Wilson 2005). One such global set of 
biodiversity hotspots is the biogeographic region Sundaland, which 
comprises the Thai-Malay Peninsula, Borneo, Sumatra, Java, Bali, and 
smaller islands of the Sunda Shelf (Fig. 1), a tectonically relatively 
stable extension of Southeast Asia’s continental shelf (Hall and Hol
loway, 1998; Myers et al., 2000). The contemporary shorelines of 
Sundaland, however, are geologically recent: Sumatra and Java started 
to rise towards the early Miocene (Gower et al., 2012; Hall, 2012; 
2013; Meijaard and Groves, 2004), and Borneo has been separated 
from the continent for just under five million years (Hall, 2001; 2012; 
2013). At present, the landmasses encompassed by the Sunda Shelf are 
separated by shallow seas with depths of ≤ 200 m (Sathiamurthy and 
Voris, 2006). 

The northern border of Sundaland is marked by the Isthmus of Kra 
(Fig. 1), forming the link to the biodiversity hotspots of mainland 
Southeast Asia and Indochina (Sodhi et al., 2004). The western and 
southern borders of Sundaland are formed by deep water trenches (den 
Tex, 2011), whereas the eastern and north-eastern boundary corre
sponds to Huxley’s modification of the Wallace Line (Huxley,1868; 
Wallace, 1869). This biogeographic boundary separates the islands of 
Wallacea (much of eastern Indonesia) and the Philippine archipelago to 

the northeast from the Asian ecozone including Sundaland (Brown et al., 
2013; den Tex, 2011; Esselstyn et al., 2010; Hall and Holloway, 1998; 
Lohman et al., 2011). The island of Palawan, to the north of Borneo, has 
been viewed traditionally to be a biogeographical extension of Sunda
land (Heaney 1986; Huxley 1868; Everett 1889; Leviton, 1963; Steere 
1894). However, geologically, Palawan is a microcontinental plate that 
rifted from the margin of the Asian mainland, opening up the Western 
Philippine Sea and tectonically transporting Palawan and associated 
landmasses, as well as the Zamboanga Peninsula of Mindanao to their 
current locations (den Tex, 2011; Meijaard and Groves, 2004; Yumul 
et al., 2003; 2004; 2009; Padrones et al., 2017). The current extraordi
narily high terrestrial faunal and floral species richness of Sundaland is 
considered, at least in part, a result of the lengthy, extraordinarily 
complex geological and climatological history of Southeast Asia (Dar
lington, 1957; den Tex, 2011; Esselstyn et al., 2010; Hall, 2002; Hall and 
Holloway, 1998; Heaney, 1986; Lohman et al., 2011; Brown et al., 
2013). In the light of the accelerated habitat loss fuelling today’s 
extinction crisis (Brooks et al., 2002; Pimm et al., 2014), reliable data on 
local genetic and species diversity, their geographical extent of distri
bution, and population abundance census data are essential to provide 
strong arguments for the conservation of biodiversity hotspots (e.g., 
Brooks et al., 2002; Forest et al., 2007; Funk et al., 2012; Mittermeier 
et al., 2011; Myers et al., 2000). 

The rapid improvement of molecular phylogenetic methods, dramat
ically increased affordability of genetic data, and convenience of data 
collection equips taxonomists with effective tools to discover putative 

Fig. 1. Distribution area of Occidozyga in grey (Java and Lesser Sunda Islands not shown) and sampling localities of specimens used in this study. See Appendix for 
further details. 
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diversity and species boundaries (e.g., Barley et al., 2013; Chan et al., 
2017; 2018; 2020; Hotaling et al., 2016; Vieites et al., 2009). Today’s 
broad application of pluralistic, integrative taxonomy, including simul
taneous inclusion of ecological information, behavioral data, phenotypic 
traits, and DNA sequence data, has promoted a burgeoning subdiscipline, 
accelerating identification of putative ‘cryptic’ species (Bickford et al., 
2007; Padial et al., 2010; Stuart et al., 2006), defined as cases in which 
two or more at least superficially morphologically indistinguishable but 
genetically different species have been erroneously identified as a single, 
named/recognized taxon (Funk et al., 2012; Hanken, 1999; Jörger et al., 
2012; Jörger and Schrödl, 2013; Matsui et al., 2016; McLeod, 2010; 
Pfenninger and Schwenk, 2007; Trontelj and Fǐser, 2009; Vieites et al., 
2009; Welton et al., 2013). 

Anurans constitute a large, globally distributed clade, which con
tinues to increase rapidly in number of described species (n = 7,148 as of 
23 October 2019; AmphibiaWeb, 2021; Frost, 2020). New species 
continue to be discovered, particularly from the tropical realm. Since 
1985, the total number of recognized species has risen by over 60% 
(AmphibiaWeb, 2021). For instance, on the island of Borneo alone, 196 
anuran species are known to date, although just eighteen years ago this 
number was only 141 (Frost, 2020; Inger and Voris, 2001). This dra
matic increase in the number of recognized species may, in part, be a 
result of new discoveries from remote, previously inaccessible areas, but 
is also likely the result of application of integrative taxonomic ap
proaches (Brown and Stuart, 2012; AmphibaWeb, 2019). Furthermore, 
improved sampling efforts enabled the identification of cryptic species 
or even species complexes, such as in Ansonia (Hertwig et al., 2014; 
Matsui et al., 2010; Waser et al., 2017), Chalcorana (Inger et al., 2009; 
Stuart et al., 2006), Duttaphrynus (Wogan et al., 2016), Fejervarya 
(Kotaki et al., 2008, 2010), Leptobrachium (Brown et al., 2010; Hamidy 
et al., 2012; Hamidy and Matsui, 2014), Leptobrachella including the 
former genus Leptolalax (Chen et al., 2018; Dehling and Matsui, 2013; 
Eto et al., 2016; Eto and Matsui, 2016; Matsui et al., 2014b, 2014a), 
Limnonectes (Evans et al., 2003; Matsui et al., 2016; Matsui and Nishi
kawa, 2014; McLeod et al., 2012; McLeod, 2010), Meristogenys (as 
Amolops, Matsui, 1986; Shimada et al., 2011), Odorrana (Bain et al., 
2003; Stuart et al., 2006), Philautus (Dehling, 2010; Dehling et al., 
2016), Polypedates (Brown et al., 2010), Pulchrana (Chan et al., 2020), 
Sylvirana (Sheridan and Stuart, 2018), Staurois (Matsui et al., 2007; 
Arifin et al., 2011), and Sumaterana (Arifin et al., 2018). 

Within the Fork-tongued and Fanged Frogs of the family Dicro
glossidae, the genera Occidozyga (Kuhl and van Hasselt, 1822) and 
Ingerana (Dubois, 1987) are allocated to the taxon Occidozyginae (Fei, 
Ye, and Huang, 1990) AmphibiaWeb, 2021; Frost, 2020), whereas the 
remaining genera of the dicroglossid frogs are amalgamated as Dicro
glossinae (Anderson, 1871)(Chen et al., 2017; Frost et al., 2006; Pyron 
and Wiens, 2011; Chan and Brown, 2018). Although common, wide
spread, and recognized for a long time, the Puddle frogs of the genus 
Occidozyga constitute a prime example of a group of frogs for which 
knowledge of species diversity, phylogeny, and biogeography is 
conspicuously under-developed. These facts, plus their pattern of a 
wide geographical distribution from South and Southeast Asia to the 
western Pacific, render them an excellent candidate for a comprehen
sive, well-sampled phylogenetic and biogeographic study. 

Species of Occidozyga are locally abundant in permanent or inter
mittent water bodies, including puddles and ephemeral ponds, lakes, 
rivers, swamps, marshes, ditches, or even seasonally flooded agricul
tural land, such as rice fields or irrigation systems (Inger et al., 2017). 
In comparison to other genera of the family Dicroglossidae, their 
tadpoles have a suite of derived characters, that constitute larval 
synapomorphies for Occidozyga, suggesting adaptations to an exclu
sively macro-carnivorous diet (Haas et al., 2014). The eleven currently 
recognized Occidozyga species are distributed throughout South and 
Southeast Asia, ranging from eastern India, Bangladesh and southern 
China to the Philippines and the Lesser Sunda Islands of Indonesia 
(Frost, 2020). The distribution of this genus overlaps at least partially 

with five biodiversity hotspots: Indo-Burma, South-Central China, 
Sundaland, the Philippines, and Wallacea. Currently no species-level 
phylogenetic analysis of Occidozyga is available. Therefore, species 
delimitation remains incomplete and the distributions of these taxa are 
poorly understood. For example, O. lima (Gravenhorst, 1829) was 
formerly assumed to be a single, wide-spread species occurring from 
southern China to Java Island. However, the first study of population 
divergence revealed three unconfirmed candidate species, distin
guished by ≥ 5% genetic divergence in 16S ribosomal DNA sequences 
(Chan, 2013). The widespread species, O. laevis (Günther, 1858), was 
originally described from the Philippines, yet as currently defined, its 
known range ostensibly also includes Borneo, southern Thailand, and 
Peninsular Malaysia (Diesmos et al., 2015; Frost, 2020; Jaafar et al., 
2012; 2009; Khonsue and Thirakhupt, 2001). Occidozyga laevis is often 
confused with O. sumatrana (Peters, 1877; originally described from 
Sumatra), yielding uncertainty regarding the species affiliation of 
many geographic populations from Sundaland, southern China and 
western India (Iskandar & Colijn, 2000; Frost, 2020). Occidozyga 
martensiii (Peters, 1867) is distributed throughout Thailand, southern 
China, Vietnam, Laos, Myanmar, and north-western Malaysia, whereas 
O. magnapustulosa (Taylor and Elbel, 1958) is known only from its type 
locality in Thailand (Poyarkov et al., 2020). The remaining species 
seem to be endemic to one or a few islands of Sundaland and adjacent 
areas. Occidozyga baluensis (Boulenger, 1896), was originally described 
from Gunung Kinabalu on Borneo, but is known today to occur 
throughout Borneo (Inger et al., 2017; Sheridan et al., 2012). The three 
species O. celebensis (Smith, 1927), O. semipalmata (Smith, 1927) and 
O. tompotika (Iskandar, Arifin, and Rachmanasah, 2011) are endemic 
to Sulawesi, whereas O. floresiana (Mertens, 1927) is known only from 
Flores, and O. diminutiva (Taylor, 1922) is restricted to some southern 
islands of the Philippines. 

Available data on ecology and intraspecific morphological variation 
for most species of Occidozyga are limited. Taxonomic uncertainty ren
ders ecological research and statistical characterizations of morpholog
ical variability potentially ambiguous. The Bornean species, for example, 
can be categorized into two size classes based on the snout-vent length 
(SVL) of the females: O. baluensis is a medium-sized frog with SVL < 35 
mm (Boulenger, 1896; Malkmus and Brühl, 2002), whereas some of the 
populations identified as O. laevis are relatively large, with SVL up to 48 
mm (Inger et al., 2017). Moreover, O. baluensis possesses a cream- 
coloured ventral surface, with a contrasting pattern of numerous dark 
spots. This species prefers seepage areas in forests where adults and 
tadpoles are found in thin films of water (Haas et al., 2014; Inger et al., 
2017). The remaining O. laevis or O. sumatrana populations from Borneo 
show a uniform coloration of the venter and throat, and are found in 
puddles, swamps, slow moving streams or at edges of forest ponds (Inger 
et al., 2017; pers. obs.). 

In this study, we analyse the phylogenetic relationships within Occi
dozyga using mitochondrial (mtDNA) and nuclear sequence (nuDNA) 
data, derived from comprehensive geographical sampling, with a primary 
focus on Sundaland. Based on the resulting phylogenetic hypothesis, 
we evaluate whether current taxonomy reflects genetic diversity. We 
examine temporal and geographical distribution patterns of Occidozyga 
species using a time-calibrated phylogenetic hypothesis, in an attempt to 
identify the influence(s) of archipelagic radiations and dispersal events in 
the evolution of Puddle Frogs. Our results contribute to a better under
standing of the underlying evolutionary and biogeographic processes that 
gave rise to the extraordinarily high anuran species richness in Southeast 
Asia. Finally, we anticipate that this work will soon be followed by 
genomic characterizations of gene flow, validation (or refutation) of 
species boundaries proposed here, and a starting point for subsequent 
studies of ecology, biogeography, and conservation of these enigmatic and 
overlooked amphibians. 
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2. Material and methods 

2.1. Sampling and markers 

Our taxonomic sampling consists of 151 samples from Sundaland, 
the Philippines and continental Southeast Asia of Occidozyga (Fig. 1, 
Appendix), except for those from Sulawesi, the Lesser Sunda islands, and 
from the Sulu Archipelago (O. tompotika Iskandar, Arifin, and Rachma
nasah, 2011; O. celebensis Smith, 1927; O. semipalmata Smith, 1927; 
O. floresiana Mertens, 1927; O. diminutiva Taylor, 1922). Tissue samples 
were taken from adult specimen femoral muscles or liver, or from 
tadpole tail musculature; tissues were preserved in in RNALater buffer 
solution (Ambion/Applied Biosystems) or 90% pure ethanol. For out
group taxa, we included nine species of Limnonectes (Fitzinger, 1843), 
two Fejervarya (Bolkay, 1915) and one Ingerana (Dubois, 1981), based 
on previously published hypotheses of the phylogenetic relationships of 
dicroglossid frogs (Brown et al., 2015; Jetz and Pyron, 2018; Matsui 
et al., 2016; Pyron and Wiens, 2011; Wiens et al., 2009). 

2.2. Laboratory protocols 

Genomic and mitochondrial DNA was extracted using Wizard SV 
Genomic DNA Purification System (Promega AG, Switzerland) in 
accordance with the manufacturer’s protocol. In case of crystallization 
of the buffer, we performed an additional washing step with nuclease- 
free water to remove excessive salt before extraction. Sequence data 
were generated from the mitochondrial 12S rRNA, tRNA-Val and 16S 
rRNA gene regions and three nuclear genes (brain-derived neurotrophic 
factor (BDNF), neurotrophin 3 (NTF3), proopiomelanocortin (POMC)), 
using forward and reverse primers (Tab. S1) for both PCR and cycle 
sequencing. For PCR reactions, we used 25 µl PCR reaction volumes 
containing 2 µl DNA, 12.5 µl GoTaq Hot Start Green Master Mix 
(Promega), 2 µl of each primer (10 µM), (for reaction with 16SC and 
16SD primers 1 µl (20 µM)) and 6.5 µl ddH₂O (for reaction with 16SC and 
16SD primers 8.5 µl ddH₂O). Cycling conditions for the three primer 
pairs to amplify the 12S, tRNA-Val and 16S rRNA gene regions were: 
denaturation at 94 ◦C for 2:00 min; 35 cycles at 95 ◦C for 0:30 min, 
48.2 ◦C for 0:30 min and 72 ◦C for 1:00 min; then one final extension 
cycle at 72 ◦C for 5:00 min. Cycling conditions for BDNF were: dena
turation at 94 ◦C for 2:00 min, 39 cycles at 94 ◦C for 0:20 min, 57 ◦C for 
0:45 min, and 72 ◦C for 2:00 min, followed by one final extension at 
72 ◦C for 5:00 min. For NTF3 we used: denaturation at 94 ◦C for 3:00 
min, 40 cycles at 95 ◦C for 0:30 min, 52.4 ◦C for 0:30 min, and 72 ◦C for 
1:00 min., followed by one final extension at 72 ◦C for 7:00 min. Finally, 
for POMC, we followed: denaturation at 94 ◦C for 1:00 min, 35 cycles at 
95 ◦C for 0:30 min, 56 ◦C for 0:30 min, and 60 ◦C for 1:12 min, followed 
by one final extension at 72 ◦C for 5:00 min. PCR products from the PCR 
with the primer pair 16SC and 16SD were cleaned with the Wizard® SV 
Gel and PCR Clean-Up System (Promega) and no clean-up was required 
for the remaining markers. Sequencing was performed by LGC Genomics 
GmbH (Berlin, Germany). 

2.3. Phylogenetic analyses 

Sequences were checked for ambiguities, assembled, and aligned 
using Geneious Pro 10.2.6 (Kearse et al., 2012) (Biomatters Ltd., 2018) 
and the implemented MAFFT-plugin (Katoh and Standley, 2013). Our 
different markers were checked separately for contamination and lab
oratory errors. Uncorrected genetic p-distances were calculated in 
MEGA (Kumar et al., 2018). Finally, we concatenated our data and 
compiled three data partitions for subsequent phylogenetic analyses: 
mitochondrial (mtDNA = mitochondrial, consisting of concatenated 
sequences of 12S, tRNA-Val and 16S rRNA genes), nuclear (nuDNA =
nuclear, consisting of concatenated BDNF, NTF3, POMC sequences), and 
combined (mtDNA + nuDNA = mitochondrial + nuclear, including all 
five gene regions). 

The best-fit sequence substitution model of sequence evolution and 
partitioning scheme for each marker was determined with Partition
Finder 2.1.1 (Lanfear et al., 2016), based on the small sample-size cor
rected Akaike Information Criterion (AICc) and the ‘models = GTR, GTR 
+ I, GTR + I + G’ for RAxML and ‘models = all’ for Bayesian setting with 
linked branch lengths. The Best-fit substitution models obtained for each 
gene are listed in Tab. S2a for ML and Tab. S2b for BI. 

Maximum Likelihood (ML) analysis was performed in RAxML-NG 
(Kozlov et al., 2018) using a partitioned model, and implementing 
models selected in PartitionFinder. Branch lengths were linked (Duch
êne et al., 2020) and 100 bootstrap replicates were run. RAxML-NG was 
then set to search for the best-scoring tree after performing boot
strapping. Bayesian inference (BI) was performed in MrBayes 3.2.6 
(Ronquist et al., 2012). Four independent runs of Metropolis-coupled 
Markov chain Monte Carlo analyses were conducted, with each con
sisting of three heated and one cold chain. Analyses were run for 20 
million generations with a sampling frequency of 100. Trace files were 
checked with Tracer v.1.7.1 (Rambaut et al., 2018) to assess conver
gence, and we conservatively discarded the first 25% of samples as burn- 
in (20,000,000 trees). Clades with a BI support ≥ 0.95 and ≥ 70% in ML 
bootstrap values were considered robustly supported (Hillis and Bull, 
1993; Ronquist et al., 2012). Modest support was assessed ≥ 0.75 in BI 
and ≥ 60% in ML bootstraps value. 

2.4. Divergence-time estimation 

The ages of the divergences among lineages of Occidozyga were esti
mated using BEAST 2.5 (Bouckaert et al., 2019) and BEAUti 2.5 (Bouck
aert et al., 2019). Our time-calibrated analysis was performed using the 
mitochondrial sequence data only, to avoid over-parameterisation and 
because no internal Dicroglossidae fossil calibrations are available, and 
divergence-time estimates from available literature for the split between 
Dicroglossinae and Occidozyginae differ significantly, ranging from 96.8 
Ma to 59.9 Ma (Roelants et al., 2007; Wiens et al., 2009; Zhang et al., 
2013). Thus, for our BEAST2 analysis, we used a range of mitochondrial 
divergence rates, (0.35–0.955% substitutions/my; Macey et al., 1998; 
2001; Sanguila et al., 2011; Tan and Wake, 1995; Wang et al., 2008) as a 
crude general scalar. The standard deviation was set to be lower than one, 
which means that the standard deviation in branch rates was smaller than 
the mean rate. All analyses were conducted with a Yule model prior 
(uniform birth rate by default fixed to 1), a relaxed clock with log normal 
distribution with a rate for the clock of 0.0065, with a lower boundary of 
0.0035 and an upper boundary of 0.00955. Ucldmean was set to 
lognormal, M = 0.01, S = 0.9. ucldstdev was set to exponential and 
defined to lie between 0 and 1. MCMC was set to 60 million generations 
and sampled every 1000 generations. We ran three separate runs, and log 
files of BEAST2 were checked for ESS values ≥ 200 in TRACER 1.7.1 
(Rambaut et al., 2018). We then combined results in Log Combiner and 
visualized the tree in Figtree v1.4.2 (Rambaut, 2012). 

2.5. Biogeographic analyses 

The biogeographic range evolution history was reconstructed by 
testing six different models (DEC, DEC + J, DIVA, DIVA + J, BayArea, 
BayArea + J) and comparing them in a common maximum likelihood 
framework to find the best statistical fit using AIC in the R package 
BioGeoBEARS 0.2.1 (Matzke, 2013a; Matzke, 2014). The models allow 
to test alternative biogeographic hypotheses, such as dispersal, vicari
ance, and extinction. Five areas were defined that are covered by our 
ingroup sample: mainland Asia, the Philippines, Palawan, Borneo, and 
Sumatra. This coding scheme is a simplification of the complex paleo
geographic history of Southeast Asia, because Borneo and the Thai- 
Malay Peninsula constituted the connected landmass of northern Sun
daland until recently. The islands of Borneo and Sumatra were coded as 
separate areas (even though they are both part of Sundaland) to identify 
potential dispersal events between these islands and the other areas. 
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Maximum areas per species were set to two. Six models were compared: 
Dispersal-Extinction-Cladogenesis (DEC), Dispersal-Vicariance Analysis 
(DIVA), and BayArea, and each of these in combination with a param
eter for long-distance dispersal “J”: DEC + J, DIVA + J, BayArea + J 
(Matzke, 2014; 2013b). 

2.6. Sequence divergence 
The software package MEGA (Kumar et al., 2018) was used to 

calculate the uncorrected pairwise divergences of 914 bp fragments of 
the 16S rRNA gene. Uncorrected p-distance values are not appropriate as 
the sole criterion for species delimitation, but are widely accepted as 
indicators of potential species boundaries and hidden species diversity 
in anurans (Fouquet et al., 2007; Matsui et al., 2016; McLeod, 2010; 
Vences et al., 2005b; 2005a; Vieites et al., 2009). In this study, lineages 
or clades with a genetic divergence in the 16S rRNA gene of > 5% were 
regarded as potentially distinct evolutionary lineages in the sense of 
Operational Taxonomic Units (OTUs) for possible future consideration/ 
validation. OTUs supported by a consensus of supported clades that 
appeared in both mtDNA and nuDNA tree estimates are regarded as 
unconfirmed candidate species (UCS) (Jörger and Schrödl, 2013; Matsui 
et al., 2016; Vences et al., 2005b; 2005a; Vieites et al., 2009). 

2.7. Species delimitation 
Two different approaches of species delimitation were applied in 

order to compare the independently obtained results (Carstens et al., 
2013). The general mixed Yule coalescent method (GMYC, Pons et al., 
2006) uses maximum-likelihood statistics to find the transition points 
between inter- and intra-species branching rates. In this study we used a 
Bayesian implementation of the evolutionary model-based method, 
bGMYC (Reid and Carstens, 2012). The bGMYC approach outperforms 
existing GMYC implementations by accomodating different uncertainties 
in the model, e.g. the quality of the ultra-metric tree has less influence on 
the outcome (Esselstyn et al., 2012; Reid and Carstens, 2012; Talavera 
et al., 2013; Zhang et al., 2013). The input trees were generated by 
BEAST2 using the mtDNA partition. The outgroup was reduced to one 
terminal taxon. 60 million trees were sampled at a frequency of 300,000 
and a burnin of 25% using LogCombiner to get a final subsample of 150 
trees (bgmyc.multiphylo, mcmc = 50000, burnin = 15000, thinning =
500). The behaviour of the MCMC was checked visually according to the 
authors’ recommendation (Reid and Carstens, 2012). The second species- 
delimitation approach applied was Poisson tree processes (PTP, Zhang 
et al., 2013). PTP does not require an ultra-metric tree but calculates the 
speciation rate based on the number of substitutions. In general, the 
method assumes higher substitution rates between species than within 
species. The mcmc-based mPTP was used, because the algorithm con
siders variable levels of intraspecific genetic diversity caused by a sam
pling bias or differences in the evolutionary history and is at least five 
times faster compared to the classic PTP method (Kapli et al., 2017). The 
RAxML tree based on the mtDNA partition with only one terminal taxon 
as outgroup was used as input (mcmc = 100 mio, mcmc_sample = 1 mio, 
mcmc_burnin = 5 mio). 

3. Results 

3.1. Partitions and substitution models 

Our combined dataset was composed of 2066 bp of 12S–tRNA- 
Val–16S rRNA mtDNA, 1680 bp nuDNA (including 654 bp of BDNF, 588 
bp of NTF3 and 438 bp of POMC), and 3746 bp (mtDNA + nuDNA), 
respectively. PartitionFinder proposed the partition schemes and sub
stitution models for the ML analyses (Tab. S2a) and BI (Tab. S2b). 

3.2. Phylogenetic analyses and sequence divergence 
Phylogenetic trees obtained with ML and BI analyses of the three 

data partitions (mtDNA + nuDNA, mtDNA, nuDNA) are congruent apart 

from the lower resolution of nuDNA trees (Figs. 2 and 3). Occidozyginae 
is the sister clade to the subfamily Dicroglossinae (Limnonectes and 
Fejervarya). The monophyly of Occidozyga as currently recognized/ 
defined was not supported, because the species Limnonectes rhacodus 
clustered with robust support within Occidozyga (Figs. 2 and 3). Within 
the remainder of the genus Occidozyga, unexpectedly high numbers of 
divergent evolutionary lineages were detected. Altogether, 29 divergent 
lineages were distinguished by sequence divergence of > 5% in our 16S 
rRNA gene tree and, further, by robust bootstrap support in analyses of 
this partition and the combined mtDNA + nuDNA dataset (Fig. 2, and 
Fig. 4). Even the nuDNA, when analyzed alone, recovered a majority of 
these same evolutionary lineages with moderate support (Fig. 3). As 
expected, branches in our nuDNA topology were considerably shorter, 
consistent with slower substitution rates of nuclear genes, and yielding 
generally lower resolution in comparison to the separate analyses of 
mtDNA and total evidence data set mtDNA + nuDNA (Fig. 2 and Fig. 3). 
The 29 evolutionary lineages (L1 to L29, see Fig. 2 and Fig. 4) were 
distributed across five, well-supported major clades, which we name: 
the baluensis group, the laevis group, the sumatrana group, the rhacoda 
group, and the lima group (Fig. 2 and Fig. 4). The baluensis group rep
resented the sister clade to the remaining major clades, but relationships 
among these major clades were not robustly supported, particularly for 
the position of the rhacoda group. 

The baluensis group exclusively comprises samples from Sabah and 
northern and central Sarawak (Fig. 2 and Fig. 4), allocated to four 
mitochondrial lineages (L1 to L4). L1 (Gunung Mulu NP) and L2 
(Poring Hot Springs) are sister groups. L3 is distributed in central 
Sarawak (Bintulu, Pelagus), whereas L4 is widely distributed in west
ern and eastern Sabah (Sipitang, Danum Valley CA, Tawau Hills Park) 
and northern Sarawak (Payeh Maga NP). The westernmost record of 
the widespread lineage L4 is only 170 km southeast of Poring Hot 
Springs, so that the distribution of L4 projects between the ranges of L2 
and L1. Among these groups only L1, L2 and L3 are supported by nu
clear data (Fig. 3). 

The laevis group includes 11 distinct lineages (L5 to L15): L5 from 
Palawan, three from Borneo (L6 from Gunung Mulu NP and Sipitang, L7 
from Danum Valley CA, L8 from Tawau Hills Park), and seven from the 
Philippines (L9 to L15) (Fig. 2 and Fig. 4). The lineages from the Phil
ippine archipelago (L9 to L15), with the exception of L5 from Palawan, 
form a robustly supported clade, which is the sister group to L8 from 
Tawau Hills Park in eastern Sabah. Only L14 is not supported by nuclear 
data (Fig. 3). 

The sumatrana group consists of three lineages from Sumatra and 
three from Borneo (L16 to L21), but Sumatra lineages do not form a 
clade, because L18 is more closely related to a clade from central and 
western Sarawak (consisting of L19 from Binyo-Penyilam 40 km east of 
Bintulu, L20 from Bintulu, L21 from Kubah NP) (Fig. 2 and Fig. 4). Only 
L21 is not supported by nuclear data (Fig. 3). 

The rhacoda group consists of three lineages from Sarawak (L22 to 
L24) (Fig. 2 and Fig. 4). L22 includes the samples from Kubah NP and 
Gunung Penrissen assigned to Limnonectes rhacodus based on the pres
ence of its diagnostic morphological characters (Inger et al 1996). The 
sister clade of L22 consists of the remaining two lineages L23 (a single 
specimen from the vicinity of the Batang Ai NP in central Sarawak), and 
L24 from northern and central Sarawak (Payeh Maga NP, Pulong Tau 
NP, Usun Apau NP). 

Finally, the lima group includes all samples from the south-east Asian 
mainland available in this study (L25 to L29), which have been pre
liminarily identified as O. lima, or O. martensii (Fig. 2 and Fig. 4). L25 
and L26 represent two evolutionary lineages regarded here as O. lima. 
The remaining three lineages (L27 to L29 from Thailand, Cambodia and 
Laos) cluster together and are referred to O. martensii. Only L26 is sup
ported by nuclear data (Fig. 3). 
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Fig. 2. Total evidence tree of combined data set (mtDNA+nuDNA) with ML support values on the left and BI probabilities on the right. Black circles indicate robustly 
supported nodes (ML ≥70%, BI ≥0.95). Unsupported nodes (<50) are collapsed. Genetic diversity is analysed using three different methods, first by a >5% p- 
distance for the 16S rRNA gene indicated by alternating yellow and green background coloration, furthermore by bGMYC and mPTP (both with a threshold of 0.95). 
Evolutionary lineages L1-L29 regarded here as unconfirmed candidate species are identified based on the >5% distance criterion. The following lineages correspond 
to the nominal species Limnonectes rhacodus = Occidozyga rhacoda (L22), O. baluensis (L2), O. laevis (one of the lineages L9-L15), O. lima (L25+L26) and O. martensii 
(L27-L29). Terminal taxa are labelled with field numbers. For collection and genbank accession numbers see Appendix. Unit of the scale is substitution/site. 
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3.3. Distribution 

All lineages that cluster together in each of our five major clades are 
allopatrically distributed within the clade (Fig. 4). In most sampled lo
calities, two lineages from different major clades are found sympatri
cally. Lineages of the baluensis (L1) and laevis groups (L7), for example, 
occur together in Gunung Mulu NP, Danum Valley CA (L4, L6), Tawau 
Hills Park (L4, L8), and Sipitang (L4, L7). Lineages of the baluensis (L3) 

and sumatrana (L19, L20) groups likewise occur sympatrically in the 
Bintulu area, lineages of the baluensis (L4) and rhacoda (L24) groups co- 
occur in Payeh Maga NP, and finally, lineages of the sumatrana (L21) and 
rhacoda (L22) groups occur sympatrically in Kubah NP. 

In all localities the co-occurring species of Occidozyga have clearly 
different habitat preferences and are not syntopically distributed. In the 
Payeh Maga NP, L24 was found in a muddy, slow moving stream 
running along an old logging road at 1000 m asl, while the vouchers of 

Fig. 3. Maximum-likelihood and Bayesian tree of both the nuclear data (nuDNA, on the left) and the mitochondrial data (mtDNA, on the right). Unsupported nodes 
(<50% bootstrap support) are collapsed. Support values on nodes are ML support left or above, BI probabilities right or below. Lineages are written out in the center 
of the figure only if they show at least moderate support (>50 ML, > 0.70 BI), which means lineages 4, 21, 22, 24, 25, 27, 28 and 29 are not supported in the nuclear 
trees. Unit of the scale is substitution/site. 
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L4 were collected in a seepage area in the montane forest at 1100 m asl. 
In the Tawau Hills Park, L4 occurred in slow moving parts of a clear
water mountain stream at 1000 m asl, while L8 was in a marshy area at 
about 350 m asl. In the Danum Valley CA, both lineages occurred in 
lowland areas but in different microhabitats. The vouchers of L4 were 
collected in slow-running clear-water streams and adjacent seepage 
areas, while L7 was found in a shallow pond with muddy banks. 

3.4. Biogeography 

In our reconstruction of historical biogeography (BioGeoBears; 
Matzke, 2013a) all six models were evaluated using the Akaike infor
mation criterion including accounting for the sample size (AICc; Burn
ham et al., 2011). Akaike weights were used to find the relative 
likelihood of the six models. The DEC + J model (Dispersal-Extinction 
Cladogenesis including a founder event (Ree, 2005; Ree and Smith, 
2008)) was determined to be best-fitting due to the lowest AICc and 
highest AICc_wt (Tab. S3). The second-best model is DIVALIKE (a like
lihood version of Dispersal-Vicariance Analysis (Ronquist, 1997)) 
without a founder event. DIVALIKE includes widespread vicariance. 
DEC on the other hand only includes vicariance in narrow ranges as well 
as in regional subsets of larger areas (see Matzke, 2013b for detailed 
model descriptions). Taking into account the palaeogeographic history 
of Sundaland a scenario without founder events seems less likely. The 
model does not reveal whether a founder event occurred via a land 
bridge or overseas dispersal. We use our temporal reconstructions and 
geological data to evaluate these alternative interpretations. The results 
of the biogeographic analyses (Fig. 5) for the deeper nodes are biased 
because most chosen outgroup taxa were from Borneo. We focus dis
cussion of the outcomes of the ancestral area reconstruction on selected, 
more recent dispersal events from the defined area using the DEC + J 
model. 

3.5. Divergence-time estimation 

The resulting topology obtained with BEAST2 (Fig. 6) was essentially 
congruent with the RAxML and Bayesian trees. Only weakly supported 
nodes within the O. baluensis group and the phylogenetic relationships of 
the O. rhacoda group differed, because the O. rhacoda and lima groups 
were sister clades in the time calibrated tree (Fig. 6, Fig. S2). The esti
mated age of the genus Occidozyga was 31 million years (confidence 

interval 19,5 to 51 my). The major clades corresponding to the five 
species groups separated from one another 25 to 14 Ma, while the 
evolutionary lineages within these groups split up between 12 and 4 Ma 
(Fig. 6, Fig. S3). 

3.6. Species delimitation 

The number of entities preliminarily distinguished by bGMYC was 51 
with a threshold of 0.5 (50% of all trees separate the tips) and 40 with a 
threshold of 0.95 (95% of all trees separate the tips). The results of 
bGMYC divide some evolutionary lineages defined by the 5% p-distance 
criterion further (Fig. 2, Fig. S1). The number of entities identified in the 
mPTP analysis was 27 with a threshold of 0.5 and 24 with a threshold of 
0.95. The mPTP analysis with a threshold of 0.95 does not separate L9 to 
L15 from the Philippines belonging to the laevis-group and L27 and L28 
belonging to the lima-group (Fig. 2). 

4. Discussion 

4.1. Phylogeny and diversity 
Understanding evolutionary processes that shaped the temporal and 

spatial distribution patterns of the current diversity requires credible 
identification and delimitation of the basal units of evolution (species) 
via a statistical, phylogenetic framework (Fujita et al., 2012; Funk et al., 
2012; Hillis, 2019; Leaché et al., 2014; Luo et al., 2018; Rannala, 2015). 
However, the task of detecting the real species richness and its proper 
representation in taxonomy has been challenged by the increasingly 
frequent discovery of different levels of genetic differentiation and 
morphologically cryptic evolutionary lineages in many groups of or
ganisms (Bickford et al., 2007; Chan et al., 2017; Funk et al., 2012; 
Singhal et al., 2018). This study on the widespread anuran genus 
Occidozyga, reveals a striking case of hidden genetic diversity in am
phibians from Sundaland and the Philippines and demonstrates how 
current taxonomy probably does not reflect the degree of genetic 
divergence within this group. Using a well-established approach for 
delimitation of species boundaries in Southeast Asian amphibians 
based on sequencing of mitochondrial and/or nuclear marker genes 
(Chan et al., 2014a,b; Chan and Grismer, 2010; Matsui et al., 2016), we 
found a continuum of genetic structure ranging from probably recently 
differentiated populations to highly divergent evolutionary lineages 
(Fig. 6). These findings correspond to the concept, that the continuous 

Fig. 4. Distribution of evolutionary lineages (>5% p-distance) of the four major groups of Occidozyga occurring on Sundaland and the Philippines. Phylogenetic 
relationships are illustrated using the simplified total evidence tree (see Fig. 2). Nodes within lineages and unsupported nodes are collapsed. Nodes marked by filled 
circles are robustly supported in ML and BI analyses. Unit of the scale is substitution/site. Symbols denote numbered lineages as shown at the tips of the tree. Circled 
numbers on the maps correspond to localities listed at right. 
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and complex process of speciation begins with populations becoming 
spatially isolated, which results in genetically diverged populations 
without reproductive isolation and ends with reproductive isolation 
between the evolved species, and that any current investigation can 
only be a snapshot of this process (Chan et al., 2017; 2020; Hendry 
et al., 2009). 

Our statistical species delimitation analyses uncovered a signifi
cantly higher number of distinct evolutionary lineages (OTUs, UCS) than 
currently recognized as valid species (Fig. 2, Fig. 3 and Fig. 4). The 
number of identified entities, however, depends on the species delimi
tation algorithm and the selected parameters ranging from 51 (bGMYC, 
threshold of 0.5) to 24 (mPTP, threshold of 0.95; Fig. 2, Fig. S1). In part, 

Fig. 5. Time calibrated tree using BioGeoBEARS with biogeographical reconstruction. Input-tree derived from BEAST2. Five areas were determined: Borneo (green), 
the Philippines (yellow), Palawan (purple), Sumatra (red) and the continent (blue). Grey partitions in the circles indicate the level of uncertainty at the respective 
node. Six models were tested: Dispersal-Extinction-Cladogenesis (DEC), DIVA (Dispersal-Vicariance Analysis), BayArea, and each of these in combination with a 
parameter for long-distance dispersal “J”. The best-fit model was “DEC+J”. According to the biogeographic history of Sundaland, Occidozyga originated in Borneo, 
followed by single colonizations of the Southeast Asian continent (ancestor of the lima group), Sumatra (ancestor of the sumatrana group, followed by return to 
Borneo by a common ancestor to lineages L19-L21), Palawan (lineage L5 of the laevis group), and Philippines (ancestor of lineages L9-L15 of the laevis group). 
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Fig. 6. Time calibrated tree using BEAST2 based on the mtDNA partition (2066bp). A mitochondrial divergence rate was used (0.35–0.955% substitutions/my, see 
paragraph 2.4) for calibration. Blue bars indicate confidence intervals of 95%. For node support and precise confidence intervals see supplementary material (Fig. S2 
and Fig. S3). 
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these incongruent results can be explained by scattered geographic 
sampling from some areas and the fact that some lineages were repre
sented by only a single specimen. In the following, we consider the 29 
evolutionary lineages (OTUs) delineated by the operational criterion of 
> 5% uncorrected p-distance for the 16S rRNA gene, which has been 
widely-employed in amphibian systematics for putative species identi
fication (Fouquet et al., 2007; Matsui et al., 2016; McLeod, 2010; Ron 
et al., 2006; Vences et al., 2005b; 2005a; Vieites et al., 2009). The results 
obtained with the mPTP species delimitation algorithm essentially agree 
with the boundaries defined by the 5% criterion, because only L9 to L15 
from the Philippines and L27 and L28 belonging to the lima-group are 
not separated by mPTP (Fig. 2). Genetic isolation of lineages combined 
with geographic and paleogeographic information remains an important 
criterion for species status, and genetic divergence is evidence of at least 
temporarily interrupted gene flow in the past (Baker and Bradley, 2006). 

Some portion of the evolutionary lineages retrieved in the analyses 
and distributed across all major clades of Occidozyga may represent cases 
of cryptic species—genetically divergent but morphologically indistin
guishable species—suggesting that genetic divergence has not been 
accompanied by obvious phenotypic divergence. The frequently infer
red phenomenon of phenotypically cryptic species diversity, resulting in 
a disparity between genetic diversity and taxonomic units, has been 
implicated in many metazoan taxa including amphibians (Austin, 1995; 
Bickford et al., 2007; Busack et al., 1985; Isaacson and Perry, 1977; 
Lavoue et al., 2011; Pfenninger and Schwenk, 2007; Sheridan and Stu
art, 2018; Trontelj and Fiser, 2009). The existence of morphologically 
similar species could be explained by a strong selection on behavioural 
or physiological characters as the basis for adaptation. Species that rely 
on non-visual cues for mate choice, may, for example, develop new mate 
recognition signals of various modalities (e.g., behavioural, acoustic, or 
pheromonal) but may not necessarily undergo morphological diver
gence during speciation (Bickford et al., 2007; Narins, 1983; Barley et al. 
2013). 

A recent study showed, however, that gene flow and introgression 
among allopatrically diverged lineages after secondary contact can lead 
to an overestimation of cryptic species diversity. Hybrid populations 
were highly divergent from neighboring populations, but genetically 
unexpectedly similar to allopatric populations. The observed cryptic 
diversity might, therefore, also arise from highly admixed and struc
tured metapopulation lineages (Chan et al., 2020, 2021). Because we 
consider these phenomena likely in co-distributed lineages situated on 
the same landscape (Sundaland), we emphasize that we consider our 
result of the unexpectedly high genetic diversity in Occidozyga only as a 
first step towards a deep investigation of the evolutionary processes that 
led to this pattern, and as a starting point for subsequent phylogenomic 
and taxonomic studies. Further integrative studies with a larger sample 
and additional lines of evidence including bioaccoustic, ecological, and 
genomic data are thus required to distinguish between genetic structure 
associated with intraspecific geographic variation from processes of 
speciation (Sukumaran and Knowles, 2017). 

4.2. Taxonomic identity 

The nominal species Occidozyga baluensis, O. laevis, O. lima, O. mar
tensii and O. sumatrana are each a member of one of the major clades that 
comprise multiple distinct evolutionary lineages (Fig. 2). This study was 
not conceived as a comprehensive taxonomic revision of Occidozyga, in 
part because it is based solely on analyses of molecular data. The un
expectedly high number of distinct evolutionary lineages, the brief na
ture of many original descriptions, and the imprecise information about 
the type localities in many of the original descriptions all constitute 
challenges for future taxonomic work. In particular, it will be difficult to 
assign lineages identified herein to available nominal taxa; we give 
tentative suggestions below. 

Within the O. baluensis group, L2 most probably represents the 
nominal taxon Occidozyga baluensis (Fig. 2). The corresponding samples 

were collected from Poring Hot Springs at the foothills of the Gunung 
Kinabalu massif, the type locality of this species (Boulenger, 1896). The 
absence of a supporting signal in the nuDNA data (Fig. 3) — except for 
L3 —, the relatively short branch length (Fig. 2) and the age estimates 
indicate that the lineages of the O. baluensis group diverged 12–4 million 
years ago (Fig. 6). The taxon O. laevis probably corresponds to one of the 
lineages L5 and L9 to L15 from the Philippine archipelago. The reliable 
match to a specific lineage, however, remains equivocal, because the 
type locality was merely provided as ‘Philippines’ (Frost, 2018; Günther, 
1858). The assignment of the nominal taxon O. sumatrana to one of the 
lineages (L16 to L18) is uncertain, due to the unspecific type locality 
‘Sumatra’ in the original description of this taxon (Frost, 2020; Peters, 
1877). The O. lima group L27, comprising all samples from the south- 
east Asian mainland, could be conspecific with O. martensii, because 
these samples were collected in central Thailand, relatively close to 
Bangkok. The type locality of O. martensii was mentioned as ‘Bangkok 
(Siam)’ (Frost, 2020; Peters, 1867). The identity of O. lima, however, 
remains unclear because this taxon was described from ‘Java’, Indonesia 
(Frost, 2020; Gravenhorst, 1829). In all these cases, morphological 
comparisons of newly collected and genetically barcoded vouchers with 
the respective type materials of these taxa are needed as first steps to
ward a taxonomic revision of this genus. Furthermore, a revision should 
provide careful re-descriptions of these species and should specify 
clarified, or newly-defined type localities as references, which may then 
allow formal description of new species of Occidozyga. 

4.3. Taxonomic amendments concerning Limnonectes rhacodus 

Within the O. rhacoda group, L22 is considered here as the nominal 
taxon Limnonectes rhacodus (Fig. 2). This species was originally 
described as Rana rhacoda by Inger et al., 1996, who stressed its un
certain generic placement. Later, this species was assigned to the 
closely related genus Limnonectes (Fitzinger, 1843), due to phenotypic 
similarity with members of that genus (Hoffmann, 2000). Although 
tissue samples from the type locality of L. rhacodus in Kalimantan were 
not available for this study, material collected from the Kubah NP (ZMH 
A11641) and Gunung Penrissen (ZMH A11483) in western Sarawak, 
close to the Indonesian border, was identified as L. rhacodus, based on 
external morphological characters in adult specimens. The unique 
combination of characters described by Inger et al., 1996 and lacking 
thereof in most members of this genus (i.e., snout vent length < 24 mm, 
tips of toes swollen, tympanum partially obscured by skin, dorsolateral 
fold interrupted, inverted V-shaped fold between shoulders absent, 
dorsal skin with numerous transverse wrinkles) allows for reliable 
identification of L. rhacodus. Pui et al. (2013) came to the same con
clusions and stressed the similarities between L. rhacoda and species of 
Occidozyga in terms of external morphology, particularly skin structure, 
body proportions, and colour patterns. Furthermore, the genetically 
assigned tadpoles of L22 of L. rhacodus and Occidozyga (see Haas et al. 
2014) share highly derived unique larval features (unpubl. data), 
reinforcing their unambiguous identification as members of Occidozyga. 
In conclusion, we transfer Limnonectes rhacodus (Rana rhacoda Inger 
et al., 1996), to the genus Occidozyga; the name Occidozyga rhacoda, 
comb. nov. is proposed here. Accordingly, the revised distributional 
range of O. rhacoda now covers central Kalimantan, West Kalimantan 
and western Sarawak (Pui et al., 2013). 

4.4. Spatio-temporal patterns of diversification 

The spatio-temporal pattern of the diversification of Occidozyga was 
reconstructed on the basis of the timeline obtained from a relaxed 
molecular clock approach calibrated by mitochondrial substitution 
rates (Fig. 6) and of the available paleogeographic reconstructions of 
Sundaland and adjacent biogeographic regions irrespective of whether 
or not these evolutionary lineages are considered taxonomic units 
(Fig. 5). From the Eocene to Early Miocene, northern Sundaland was 
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one continuous, emergent but relatively low landmass, and was con
nected with mainland south-east Asia (Hall, 1998, 2012, 2013; Mei
jaard, 2004; Wilson and Moss, 1999). At the southern margin of 
Sundaland were volcanic arcs, whose volcanoes formed isolated islands 
(Hall, 2013). At the beginning of the Miocene or even at the end of the 
Oligocene, collision between Sundaland and Australia and, later, be
tween Sundaland and the continental margin of South China led to 
mountain building of the central ranges of Borneo (Hall, 2012; Mei
jaard, 2004; Wilson and Moss, 1999). 

In general, the evolution of species-rich clades in Southeast Asian 
anurans has been reported as the result of adaptive (genus Kaloula; 
Blackburn et al., 2013) or non-adaptive radiations (genus Limnonectes; 
Setiadi et al., 2011; review: Brown et al. 2013). Because our knowledge 
of the ecological and morphological differentiation of Occidozyga species 
is currently limited (see Introduction), which also applies for the rate of 
lineage proliferation, we cannot distinguish between alternative hy
potheses as to whether the ancestors of the five major clades evolved as a 
result of adaptive or non-adaptive radiations (Brown et al. 2013; Git
tenberger, 1991; Grant, 1986; Losos, 2004; Losos and Ricklefs, 2009; 
Pincheira-Donoso et al., 2015; 2013; Reaney et al., 2018; Rundell and 
Price, 2009; Schluter, 2000). 

Most lineage proliferations within the major clades probably 
occurred by non-adaptive diversification caused by allopatric diver
gence in areas isolated by biogeographic boundaries with minimal or 
no ecological diversification, and niche conservatism without pro
nounced phenotypic changes (Debandi et al., 2012; Evans et al., 2003; 
Gittenberger, 1991; Kozak and Wiens, 2006; Reaney et al., 2018; 
Rundell and Price, 2009; Schluter, 2000). The complex geological and 
climatic history of southeast Asia presumably provided ample oppor
tunity for the spatial separation of species into new lineages by vicar
iance or isolation following dispersal events (Brown et al., 2013, 2016). 
Sumatra, Java and the Lesser Sunda Islands result from volcanic ac
tivity of the Sunda Arc starting from about 45 Ma, when Australia began 
to move northwards relatively rapidly (Barber and Crow, 2005; Hall, 
2009). The Barisan Mountains on the western side of Sumatra began to 
elevate from the end of the Oligocene, or later at the beginning of the 
Miocene (Barber et al., 2005; Hall, 2009). In the early Miocene, at about 
20 Ma, Sumatra was separated from the remaining landmasses of 
Sundaland by the strait of Malacca, formed by a significant marine 
incursion onto the Sunda Shelf (Hall, 2013; 2012). This scenario cor
responds with the dating of about 18 Ma for the separation of the 
Occidozyga sumatrana clade from the last common ancestor of the 
O. laevis group, followed by in situ diversification on Sumatra. The 
extent of emergent land of Sumatra at this time is controversial: either 
proto-Sumatra was a larger land mass (Hall, 2012; 2009; 1996; Hall and 
Holloway, 1998) or a chain of islands (Hall, 2012; Hall and Holloway, 
1998; Meijaard and Groves, 2004). Subsequently, a geological struc
ture, the Lampung High, provided a connection between the southern 
part of Sumatra and the landmasses of northern Sundaland during the 
early Late Miocene (Hall, 2013; Hall and Holloway, 1998; Meijaard and 
Groves, 2004). At this time, at about 11 Ma, lineages of the O. suma
trana clade may have used this land bridge as a dispersal corridor back 
to Borneo. The descendants of these migrants are distributed today in 
western and central Sarawak in northwestern Borneo (L19 to L21). 

In the middle and late Miocene, a volcanic arc between Sabah and 
the Sulu islands could have permitted a connection between northern 
Borneo and the Philippines (Hall, 2013). The intermittently emergent 
volcanic islands of this arc could have served as stepping stones for the 
colonization of the Philippine archipelago by the common ancestor of 
the Philippine clade, as short overseas dispersals would suffice to cross 
narrow channels and successfully disperse across Huxley’s modification 
of Wallace’s line (Huxley, 1868; Brown and Guttman, 2002; Brown 
et al., 2013, Brown, 2016). The origin of the sister group L8 of the 
Philippine clade, Tawau Hills Park in southeast Sabah, and the dating of 
the split between L8 and the common ancestor of the Philippine clade at 
about 12 Ma are consistent with this paleogeographic scenario. In the 

Pleistocene, the Philippine islands were less fragmented than today, and 
formed composite Pleistocene aggregate island complexes (PAICs; 
Brown et al., 2002; Brown and Diesmos, 2009) that were isolated from 
one another by deep-water channels (Evans et al., 2003; Heaney, 1985; 
1986). A rapid in situ radiation of Occidozyga lineages in the Philippines 
presumably could have begun soon after a single colonization event 
from Borneo—as suggested by numerous short branches among the 
Philippine lineages L9 to L15. This rapid diversification could have been 
triggered by dispersal among, and subsequent speciation within, PAICs 
(Chan et al., 2021). 

The island of Palawan is a microcontinental fragment from the South 
China margin, that drifted south as part of the Dangerous Grounds be
tween in the Eocene and Miocene (Hall, 2013; 2012; Hall and Holloway, 
1998; Holloway, 1982; Meijaard and Groves, 2004). This drift, caused 
by the subduction of the proto-Western Philippine sea, continued slowly 
during the Miocene until Palawan came close to the northern tip of 
Borneo at about 9 Ma, similar to its present-day position—but remained 
separated from Borneo by a shallow sea. The colonization from northern 
Borneo to Palawan may therefore have been possible at this time, 
assuming short distances for overseas dispersal. A terrestrial connection 
between Borneo and Palawan by an exposed narrow land bridge would 
have been possible only during the Late Quaternary (Middle Pleisto
cene) with sea-level fluctuations of at least 135 m below present-day 
levels (Heaney, 1986; McGuire and Alcala, 2000; McGuire and Kiew, 
2001; Brown et al. 2013; Robles et al., 2015). 

Additional time-calibrated analyses, based on application of diver
gence dates between Occidozyginae and Limnonectinae as an external 
calibration point obtained from previous studies (96.8 Ma, Zhang et al., 
2013; 74.5 Ma, Wiens et al., 2009; 63.8 Ma, Roelants et al., 2007), 
yielded significantly older estimates for the divergence events within 
Occidozyga between 80 and 35 Mya. A similar bias towards implausibly 
old clade ages was found in phylogenetic analyses of Ansonia, particu
larly by Matsui et al. (2010) and by Sanguila et al. (2011). The authors of 
the latter study argued that artefacts of the external calibration pro
cedure – extreme rate variations in combination with other factors – 
could produce incorrect temporal calibrations (see also Graur and 
Martin, 2004). In comparison to the scenario presented above, the 
resulting alternative scenarios obtained with different calibrations are 
regarded less likely for the following reasons: First, between 49 and 30 
Ma Sundaland was a continuous peninsula of the Asian continent fringed 
by volcanic arcs, and it was only much later in the early Miocene that 
Sumatra became a chain of volcanic islands (Hall, 2013; 2012; Meijaard 
and Groves, 2004). Second, the land bridge (Lampung High), between 
Sumatra and Borneo emerged in the late Miocene and provided a link for 
the dispersal back to Borneo. Sumatra was formed by the volcanic ac
tivity of the Sunda Arc only between 25 and 15 Ma (Hall, 2013; 2012; 
Hall and Holloway, 1998). Third, the most important argument against 
the older estimates of the diversification of Occidozyga is the paleoge
ography of Palawan. The Dangerous Grounds, which later became Pal
awan, rifted from the Asian mainland between the Eocene and Early 
Miocene, and reached its present position close to the northern shore of 
Borneo in the late Miocene (Fig. 9 in Hall, 2013; Yumul et al., 2005, 
2009). This scenario corresponds well with our estimation of the 
divergence time of the Palawan lineage at about 9 Mya from the Bornean 
lineages of the O. laevis group by a short-distance overseas dispersal. It is 
still a matter of debate whether parts of Palawan were land-positive as it 
drifted south, or if Palawan was submerged for portions of its time as it 
drifted east (Hall, 1996; 2002; Meijaard and Groves, 2004). Holloway 
(1982) described a phase of uplift of land in the late Middle Miocene. 
Thus, an overseas dispersal from Sundaland to Palawan between 22 and 
13 Ma is less plausible: not only because a much greater distance be
tween the northern shoreline of Borneo and Palawan would have to have 
been traversed, but also because much of Palawan may even have been 
submerged at that time (Blackburn et al., 2010; Hall, 2013; 2012; Hall 
and Holloway, 1998; Yumul et al., 2005, 2009). In contrast to our re
sults, the spatio-temporal pattern in Barbourula are more consistent with 
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the Palawan Raft hypothesis, according to which ancestors of the pre
sent species were isolated on Palawan, rafted from the Asian mainland 
southwards and colonized Borneo when Palawan reached its present 
position (Blackburn et al., 2010). However, our time-calibrated phy
logeny of Occidozyga does not fit such isolation on Palawan for 40–9 
mya. The Out-of-Palawan scenario described above was also evident for 
Gekko and Sanguirana, which dispersed northward at around the same 
time as demonstrated here for Occidozyga, or earlier, as the oceanic 
islands of the central and northern portions of the archipelago assem
bled into their current configuration, via the Mobile Philippine Belt 
(Brown et al., 2016; Chan and Brown, 2017; Siler et al., 2012). 

4.5. Conclusion 

Our preferred temporal framework based on mitochondrial substi
tution rates of the diversification of Occidozyga described in this study is 
generally consistent with the reconstruction of the paleogeography of 
Southeast Asia. The resulting scenario incorporates a complex spatio- 
temporal pattern of subsequent vicariance and dispersal events start
ing from today’s Borneo caused by plate tectonics, orogeny, and climatic 
oscillations resulting in sea level fluctuations. De Bruyn et al. (2014) 
conducted a meta-analysis of phylogenetic studies in different groups of 
organisms from Southeast Asia and found a statistically higher level of 
diversity in Borneo and Indochina compared to Java and Sumatra. The 
long period of relative tectonic and climatic stability of northern Sun
daland, including Borneo, for instance, was inferred by these authors as 
having paved the way for high levels of in situ diversification (de Bruyn 
et al., 2014). The uplift of mountain ranges, changes in the course of 
drainage systems and oscillating moderate climatic changes, probably 
altered the distribution of vegetation types like forests and savannah, 
separated populations temporarily and triggered subsequent allopatric 
speciation (Cannon et al., 2012; Heaney, 1991; van der Kaars and De 
Deckker, 2002). De Bruyn et al. (2014) argue that these highly diverse 
regions, Borneo and Indochina, have acted as sources of biodiversity for 
the remaining parts of Sundaland and the adjacent regions, which were 
colonized later in the Pliocene and Pleistocene. The evolutionary pattern 
detected in Occidozyga agrees markedly well with such an ‘Out-of-Bor
neo’ source of evolutionary lineages hypothesis, although diversifica
tion began some considerable time before the Pliocene and Pleistocene. 
In this study, we propose a scenario in which Borneo, as the largest part 
of northern Sundaland, was the geographic origin of the highest di
versity of Occidozyga evolutionary lineages. From Borneo, the sur
rounding landmasses of the Sunda Shelf, Palawan, and the remaining 
Philippine archipelago were subsequently colonized by single dispersal 
events. 

5. Acronyms of museum collections 

Natural History Museum Bern (NMBE), Zoological Museum Hamburg 
(ZMH), Institute of Biodiversity and Environmental Conservation Kuching 
(IBEC, UNIMAS), Field Museum of Natural History Chicago (FMNH), 
Natural History Museum Erfurt (NME), Biodiversity Institute and National 
History Museum of Kansas (KU). 
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paradox? Combined molecular species delineations reveal multiple cryptic lineages 
in elusive meiofaunal sea slugs. BMC Evol. Biol. 12, 245. https://doi.org/10.1186/ 
1471-2148-12-245. 
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