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Abstract

Recently, a new paradigm of the adversarial attack on

the quantized neural network weights has attracted great

attention, namely, the Bit-Flip based adversarial weight at-

tack, aka. Bit-Flip Attack (BFA). BFA has shown extraor-

dinary attacking ability, where the adversary can malfunc-

tion a quantized Deep Neural Network (DNN) as a random

guess, through malicious bit-flips on a small set of vulnera-

ble weight bits (e.g., 13 out of 93 millions bits of 8-bit quan-

tized ResNet-18). However, there are no effective defensive

methods to enhance the fault-tolerance capability of DNN

against such BFA. In this work, we conduct comprehensive

investigations on BFA and propose to leverage binarization-

aware training and its relaxation – piece-wise clustering as

simple and effective countermeasures to BFA. The experi-

ments show that, for BFA to achieve the identical predic-

tion accuracy degradation (e.g., below 11% on CIFAR-10),

it requires 19.3× and 480.1× more effective malicious bit-

flips on ResNet-20 and VGG-11 respectively, compared to

defend-free counterparts.

1. Introduction

As the Deep Neural Networks (DNNs) achieve human-

surpassing performance in multiple computer vision related

tasks, its applications in the real-world scenarios are grow-

ing rapidly. In such a scenario, the fault-tolerance capability

of the neural network is of great research interest for devel-

oping reliable neural networks against weak random fault

and even strong malicious attacks. A significant amount

of research effort has focused on DNNs being fooled by

human-imperceptible input noise, aka. adversarial example.

However, another vulnerable dimension of DNN is model

parameters, which has been barely investigated.

Owing to the enormous model size (hundreds of MBs for

state-of-the-art DNNs [9, 24]), modern DNN accelerators

(e.g., GPU) normally need to store the model parameters in

main memory, namely, Dynamic Random-Access-Memory
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∙

BatchNorm
Bias and etc.

Weight

Sensitive

Low Volume

Insensitive

High Volume

∙

DRAM
RHA

Core
On

Chip

Off
Chip

DNN

(a) Concept illustration of quantized DNN under BFA.
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Figure 1: The fault injection on the identified vulnerable

weight bits can be physically conducted by Row-Hammer

Attack (RHA) [19]. Meanwhile, the DNN under defense

has higher resistance against the malicious bit-flips.

(DRAM). Recent research advances have brought up the

vulnerability issue of data stored in DRAM, where Row-

Hammer Attack (RHA) [19] has been shown to maliciously

flip the memory bits in DRAM without being granted any

data write privileges, as depicted in Fig. 1. Unfortunately,

DNNs stored in DRAM with floating-point representation

can be easily hacked to fully malfunction, through single

bit-flip (e.g. in an exponential bit of any weight) through

RHA [8]. Thanks to the DNN weight quantization tech-

nique, DNN is more compact since the weights are repre-

sented in a fixed-point format with constrained representa-

tion. Such a representation has been proven to significantly

enhance the immunity of quantized DNN to such malicious

bit-flips in [8]. However, a newly proposed Bit-Flip Attack

(BFA) [17] whose progressive bit searching algorithm can
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successfully identify and flip an extremely small number

of vulnerable weight bits (e.g., 13 out of 93 millions bits

of ResNet-18 on ImageNet) to degrade a large scale 8-bit

quantized DNN inference accuracy to as low as a random

guess (i.e., from 69.8% to 0.1%). Up to now, there is still

a lack of effective defensive approaches against such BFA,

and so we propose a BFA countermeasure based on utilizing

weight binarization and its relaxation – piece-wise cluster-

ing. The contributions in this work can be summarized as:

• A comprehensive investigation of bit-flip based ad-

versarial weight attack (i.e., BFA) is conducted, and

several insightful observations are obtained for under-

standing parameter vulnerability to these attacks.

• Weight binarization and its piece-wise clustering re-

laxation method are proposed as the effective defen-

sive techniques against BFA.

• Additional adversarial attack defense methods (e.g.,

adversarial training, pruning) and conventional model

regularization methods are examined as well.

2. Background and Related Works

2.1. Bit­Flip based Adversarial Weight Attack

The bit-flip based adversarial weight attack, aka. Bit-

Flip Attack (BFA) [17], is an adversarial attack variant

which performs weight fault injection through flipping the

bits. For the machine-imperceptible purpose, the BFA only

flips the most vulnerable weight bits which are identified by

Progressive Bit Search (PBS) algorithm with iterative inter-

and intra-layer search.

Given a nq-bit quantized DNN parameterized by bits

(i.e., quantized weights in binary), define tensor {Bl}
L
l=1

,

where l ∈ {1, 2, ..., L} is the layer index. The intra-

layer search that identifies the bit with highest gradient

(argmaxBl
|∇Bl

L|) as vulnerable bit candidate, where L
is the inference loss. Then, the inter-layer searching com-

pares the bit candidates selected by the intra-layer search

through directly checking the loss increment. Thus, the bit

searching in iteration i can be formulated as an optimization

process [17]:

max
{B̂

i

l
}

L
(

f
(
x; {B̂

i

l}
L
l=1

)
, t̃
)

s.t. t̃ = f(x; {Bl}
L

l=1);

L∑

l=1

D(B̂
i

l,Bl) ∈ {0, 1, ..., Nb}

(1)

where x and t denotes the selected input mini-batch and

ground-truth labels. B̂
i

l is the quantized bit tensor of l-th

layer perturbed by BFA in i-th iteration. f(x; {B}Ll=1
) com-

pute the outputs of DNN parameterized by {Bl}
L
l=1

. t̃ is

the output of clean model as the soft-label, which replaces

the ground-truth t to perform the attack. L(·, ·) computes

the loss. The attack efficiency is measured by the Ham-

ming distance (i.e., effective bit-flips) between prior- and

post-attack model parameters {B̂
i

l}
L
l=1

and {Bl}
L
l=1

given

by
∑

D(B̂
i

l,Bl). In general, the optimization goal of BFA

is to cause the DNN to malfunction with least number of

bit-flips (i.e., min
∑

D(B̂
i

l,Bl)).

Table 1: Threat model of Bit-Flip Attack (BFA).

Access Required ✓ Access NOT Required ✗

Model topology &

parameters

Hyper-parameters and other

training configurations.

A mini-batch of sample data Complete train/test datasets.

It is noteworthy that the quantized weight in fixed-point

format is magnitude constrained (i.e., max(B) = 2nq−1) in

comparison to the floating-point counterpart, which is not

only more biologically plausible but also practically nec-

essary for the acceleration of modern AI applications. To

clarify, we use the same threat model as in prior work [17],

which is listed in Table 1.

2.2. Defense against Adversarial Example

As the BFA is an adversarial attack variant, the popu-

lar techniques used to defend adversarial example [5] are

investigated to seek potential BFA defense method.

Adversarial Training. Adversarial training [5, 15] is

by-far the most successful adversarial example defense

method, that optimizes the DNN parameters θ w.r.t both the

clean input x and their adversary examples x̂ as:

min
θ

L(f(x;θ), t) + α · L(f(x̂;θ), t̃) (2)

where α is the hyper-parameter to balance the accuracy of

the trained model on clean natural data and adversarial ex-

amples. t̃ is the soft-label as in Eq. (1). Such adversarial

training is also normally considered as a strong regulariza-

tion technique.

Increasing model capacity. Prior works [15, 7] have ex-

perimentally confirmed the resistance improvement against

the adversarial attack by increasing the model capacity.

It is interpreted as that the robust classifiers would re-

quire a more complicated decision boundary [15], which

is expected to benefit the defense against malicious weight

change as well. Further in-depth analysis of model capacity

and BFA resistance is discussed in Section 6.

3. DNN under BFA 101

To first understand, then to defend and harness the bit-

flip based adversarial weight attack, we conducted some

preliminary investigations, along with several important ob-

servations as described below.
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(a) ResNet-20 [6] with 8-bit weight. Bit-flips NBF for BFA (mean±std):11.2± 1.9, total number of bits of weights: 2 millions.
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(b) VGG-11 [20] with 8-bit weight. Bit-flips NBF for BFA (mean±std):56.6± 35.2, total number of bits of weights: 78 millions.

Figure 2: Weight shift caused by BFA for (a) ResNet-20 [6] and (b) VGG-11 [20] on CIFAR-10 dataset. For both archi-

tectures, 5 trials are executed with different random seeds. Each colored dot depicts the weight shift (x-axis: prior-attack

weight, y-axis: post-attack weight) w.r.t one iteration of BFA. The color bar indicates the corresponding accuracy (%) on the

CIFAR-10 test data. The vertical distance between dot and the diagonal dashed line (i.e., y = x) represents the weight shift

magnitude. Moreover, results reported in this figure use 8-bit post-training weight quantization [17].

Observation 1 BFA is prone to flip bits of close-to-zero

weights, and cause large weight shift.

As depicted in Fig. 2, the progressive bit search proposed

in BFA [17] is prone to identify vulnerable bit in the weight

whose absolute value has a small magnitude (i.e., |w| → 0)

then modify it to be a large value (explained in the cap-

tion of Fig. 2). Since the BFA performs the attack on

the quantized weight encoded in two’s complement, the

possible weight magnitude shift is discretized as 2i, i ∈
{0, 1, ..., nq}. Moreover, Fig. 2 also shows the model with

larger capacity possesses higher resistance against BFA

(i.e., require more bit-flips for same accuracy degradation).

Observation 2 BFA is prone to flip the weight bits in the

front-end layers of the target neural network.

Fig. 3 shows the histogram of bit-flips across different mod-

ules1 of DNN under BFA. All the trials show that most of

the bits found by BFA are mostly in the front-end, along

the forward propagation path. Such an observation can be

explained as the error introduced by the bit-flips in the front-

end can be easily accumulated and amplified during the for-

ward propagation, which is similar to the linear explanation

of adversarial example discussed in [5].

1module index includes all modules within DNN, where small to large

index denotes the location from front to rear along the inference path.
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Figure 3: Normalized histogram and Kernel Density Es-

timation (KDE) of #bit-flips versus module index in (top)

ResNet-20 and (bottom) VGG-11 on CIFAR-10.

Observation 3 BFA forces almost all the inputs to be clas-

sified into one particular output group.

Fig. 4 depicts the top-1 categorization output of DNN

on CIFAR-10 test data, at different BFA iterations. The

CIFAR-10 test subset includes 1000 samples on 10 output

categories (i.e., total 10k samples). The BFA-free clean
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Figure 4: The evolution of ResNet-20 output classification

histogram across 10 categories under BFA, on 10k test sam-

ples of CIFAR-10. The attack sample size is 128.

model, at iteration 0, has almost evenly distributed top-

1 classification output predictions in each output category.

It is intriguing to notice that, with the evolution of BFA,

it forces almost all inputs to be classified into one output

group. We also find that the dominant output group highly

depends on the given attack sample data.

4. Defense against BFA

To enhance the resistance of DNN against BFA, we

propose and investigate two defense techniques, i.e.,

Binarization-aware training and its relaxation – piece-wise

weight clustering, inspired by the observations in Section 3.

4.1. Binarization­aware training

binarization-aware training is originally proposed as an

extreme low bit-width model compression technique, which

converts the weights from 32-bit floating-point to {-1,+1}
binary format encoded by 1-bit [18]. Here, the binarization-

aware training is leveraged as a defense technique against

BFA, which can be mathematically described as:

Forward : wb
l,i = E(|Wfp

l |) · sgn(wfp

l,i)

Backward :
∂L

∂wb
l,i

=
∂L

∂w
fp

l,i

(3)

where sgn() is the sign function. wb
l,i denotes the binarized

weight from its floating-point counterpart w
fp

l,i. In general,

weight binarization intrinsically achieves two goals: 1) re-

ducing the bit-width to 1, and 2) clustering the weights to

±E(|Wfp

l |) as in Eq. (3). The Straight Through Estimator

(STE) [2] is adopted to address the non-differential prob-

lem for the sign function as prior works [10]. Nevertheless,

different from STE in [10], the gradient clipping constraint

is omitted from the backward path, thanks to the presence

of weight scaling coefficient E(|Wfp

l |).
Our interpretation of the BFA resistance enhancement

through binarization-aware training comes in twofold: 1)

(a) Vanilla training Wl=1. (b) Binarization W
fp

l=1
.

(c) Binarization W
b
l=1. (d) Piecewise Clustering Wl=1.

Figure 5: The evolution of weight distribution of ResNet-

20 (first layer, l = 1), under various training configurations.

x-axis: weight magnitude, y-axis: training epoch.

As discussed in observation-1, BFA is prone to attack

the close-to-zero weights and cause the large weight shift.

The weight binarization eliminates close-to-zero weights

by forcing all the weights to ±E(|Wfp

l |), where the weight

distribution of sampled layer is illustrated in Fig. 5c. 2)

Binarization-aware training intrinsically acts as training the

DNN with bit-flip noise injected. As described in Eq. (3),

the floating-point weight base {W
fp

l } are binarized on-the-

fly during training. Recalling the optimization using SGD,

the weight change ∆wfp can be expressed as:

∆wfp = η · ∇wfpL(f(x, {W
fp}); t) (4)

where η is the learning rate. Due to the presence of Eq. (3),

even small weight update on wfp (i.e., wfp − ∆wfp) may

directly change the corresponding binarized weight wb from

-1 to +1 or the opposite as a bit-flip, when the following

condition is meet:

sgn(wfp −∆wfp) 6= sgn(wfp) (5)

Therefore, the binarization-aware training involves massive

bit-flips on the binarized weight W fp, which mimics inject-

ing the bit-flips noise on the weights during training. Fig. 6

depicts the average number of bit-flips caused by the weight

update when training a binarized ResNet-20, each iteration

may cause around 300 bit-flips on the binarized weights

even when the learning rate is 0.001.

4.2. Clustering as relaxation of binarization

Since weight binarization normally suffers from sig-

nificant prediction accuracy degradation due to aggressive

model capacity reduction, we propose a relaxation to the

weight binarization, called Piece-wise Clustering (PC), to

emit the fixed single bit-width constraint while retaining
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Figure 6: Average #Bit-flips (y-axis) per weight update it-

eration of binarization-aware training vs. epochs (x-axis),

with ResNet-20 on CIFAR10.

similar functionality of clustering, which we believe play

an important role in defending BFA. The piece-wise clus-

tering introduces an additional weight penalty to the infer-

ence loss L (e.g., cross-entropy), and the optimization can

be formulated as:

min
{Wl}L

l=1

Ex L(f(x, {Wl}
L
l=1), t)+

λ ·
L∑

l=1

(||W+

l − E(W+

l )||2 + ||W−
l − E(W−

l )||2)

︸ ︷︷ ︸

piece-wise clustering penalty term

(6)

where λ is the clustering coefficient to tune the strength of

the weight clustering penalty term. W
+

l and W
−
l denote

the positive and negative weight subset of l-th layer weight

tensor. The DNN model optimized as Eq. (6) leads to a

bi-modal weight distribution as depicted in Fig. 5d. The

piece-wise clustering proposed above can also be viewed as

a variant of group Lasso, where the group is defined as the

positive and negative weight subsets in each layer.

5. Experiments

5.1. Experiment Setup

Dataset and Network Architectures In this work, exper-

iments are focused on visual dataset CIFAR-10 [12], which

includes 60k 32 × 32 RGB images evenly sampled from

10 categories, with 50k and 10k samples for training and

test respectively. The data augmentation technique is iden-

tical as reported in [6]. The ResNet-20 [6] and VGG-11

[20] are the two networks studied in the work. We use

the momentum-based stochastic gradient descent optimizer,

with training batch-size and weigh decay as 128 and 3e-4

respectively. The initial learning rate is 0.1 that scaled by

0.1 at 80 and 120 epochs, and the total number of epochs

is 160. Note that, all the experiments are conducted using

Pytorch [16], running on NVIDIA Titan-XP GPUs.
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Figure 7: The BFA-free test accuracy, mean and standard

deviation of NBF for 5-trials under different quantization

bit-width nq ∈ {8, 6, 4, 1} and clustering penalty coeffi-

cient λ ∈ {0, 1e− 4, 5e− 4, 1e− 3, 5e− 3}, with (left col-

umn) ResNet-20 and (right column) VGG-11 on CIFAR-10.

BFA Configuration. To evaluate the effectiveness of the

proposed defense methods, the code from [17] is utilized

with further modification. The number of bit-flips NBF

that degrades the prediction accuracy below 11% is used

as the metric to measure the BFA resistance, for CIFAR-10

dataset. Moreover, since BFA requires a set of data to per-

form the attack, we take 256 sample images from the train-

ing subset as the default BFA configuration and report the

mean±std of NBF with 5 BFA trials. Note that, all the quan-

tized DNN reported hereafter still uses the uniform quan-

tizer as in [17], but with quantization-aware training instead

of post-training quantization.

5.2. Result Evaluation

The experiment results with different quantization bit-

width nq and clustering coefficient λ of piecewise cluster-

ing are summarized in Fig. 7. It reports the BFA-free test

accuracy and number of bit-flips NBF required for BFA to

succeed. Note that, for weight binarization in Fig. 7, we ex-

clude the Piece-wise Clustering (PC) term through setting
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λ = 0, since binarization intrinsically performs the cluster-

ing as discussed in Section 4.1.

Effect of quantization bitwidth and clustering coeffi-

cient. Based on the results reported in Fig. 7, training

the DNN with binarized weights roughly degrade the test

accuracy by ∼ 4% and ∼ 2% in comparison to the 8-bit

quantized counterpart, for ResNet-20 and VGG-11. As dis-

cussed in Section 4.2, our intention of proposing the piece-

wise clustering as the relaxation to weight binarization is

to mitigate such accuracy drop. We do observe that using

piece-wise clustering with proper λ can mitigate the accu-

racy degradation while improving the BFA resistance (i.e.,

requiring more bit-flips NBF for the same accuracy degrada-

tion). For ResNet-20 and VGG-11, the ideal configurations

of λ are 0.001 and 0.0005 respectively, as the model with

larger capacity benefits from relatively smaller λ.

BFA resistance of ResNet-20. The 8-bit quantized

ResNet-20 (baseline) requires only an average of 28 bit-flips

to hamper the functionality of an accurate DNN, while the

weight binarization significantly improves the BFA resis-

tance compared to the baseline. Binarization increases the

average value of NBF to 541.2, which improve the BFA re-

sistance by ∼ 19×. Nevertheless, considering the inevitable

accuracy drop due to the drastic bit-width reduction (32-bit

to 1-bit), as an alternative approach we explore the perfor-

mance of PC on other bit-width configurations as well. With

λ = 1e − 3, the average value of NBF was improved by

2.09×, 2.55× and 1.73× for 8, 6 and 4 bit-width respec-

tively. In conclusion, our proposed piece-wise clustering

improves the resistance to adversarial weight attack for all

the cases of different bit-widths. Still, the binarized network

emerges as the most successful defense against BFA.

BFA resistance of VGG-11. For VGG-11, our observa-

tion follows a similar pattern as described in the previous

section. The baseline VGG-11 (e.g., nq = 8) requires an

average NBF of 16.4. Again, weight binarization improves

the network robustness significantly, yielding an average

NBF of 7874; which is ∼ 480× improvement in compar-

ison to the baseline. In the case of VGG-11, the lower Bit-

Width defends BFA even better than ResNet-20; the main

reason for this discrepancy can be the difference between

the size of the network. For a larger network such as VGG-

11, low Bit-Width and PC performs a proper regularization

to successfully defend against BFA. The best performance

of PC for VGG-11 was achieved for a 4-bit network with

λ = 1e− 4 achieving an average value of NBF of 82.59.

In summary, both the binarization-aware training and its

piecewise clustering relaxation can improve the BFA resis-

tance of the target neural network, while the binarization-

aware training can push the NBF to an extremely large value

(e.g., NBF > 7000 on over-parameterized VGG-11). The

implication of such large value is noteworthy, as a larger

value of NBF indicates the significant increase in difficulty

to carry out a memory fault injection through the feasible

cyber-physical attacks. For example, when using the row-

hammer attack to perform the fault injection, the increased

attack execution time might be detected by the operating

system through the data integrity check.

5.3. Comparison of Alternative Defense Methods

Adversarial weight attack [17] is a recently developed

security threat model for modern DNN. Subsequently, the

development of defensive approaches in this field has not

received much attention. Therefore, for the first time, we

investigate an alarming parameter security concern – bit-

flip based adversarial weight attack, with corresponding

defense method. Owing to the lack of competing meth-

ods in this research direction, we attempt to transfer sev-

eral conventional defense methods of adversarial exam-

ples [15, 3, 22], for providing a comprehensive comparison.

Table 2: Alternative Methods Comparison. In this table,

we report the prior- and post-attack test accuracy (%) and

NBF of BFA. The 8-bit quantization is chosen as the base-

line; Binary and PC-8bit is the proposed method. More-

over, comparison with Lasso-based pruning and adversarial

weight training (adv. training) is included as well.

Methods
Prior-Attack

Accuracy (%)

Post-Attack

Accuracy (%)
NBF

8-bit 91.84 10.45 28.0±4.47

PC-8bit 90.02 10.07 58.79±4.14

Binary 88.36 10.13 541.2 ± 49.8

Lasso Pruning 88.11 10.12 6.8±0.44

Adv. Training 87.72 10.09 9.6±6.58

Weight Pruning. Both the activation and weight pruning

have been investigated as the defense against adversarial ex-

ample [21, 3]. Such pruning techniques involve the stochas-

tic process during the inference which suffers from gradient

obfuscation [1] which is a common reason for the failure of

adversarial input defenses. Nevertheless, we investigate the

effectiveness of network pruning to resist adversarial weight

attack as an alternative approach. To achieve this, we train a

regular network with Lasso loss function to shrink most of

the weights to an extremely low value. Thus, we can rewrite

the loss function with additional L1-norm penalty as:

min
{W}

L(f(x, {Wl}); t) + β ·
L∑

l=1

||Wl||1 (7)

where β is the coefficient to tune the pruning strength.

Through training with Eq. (7), we expect the weight tenor
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to be in a highly sparse representation.

The intuition behind pruning working as an adversarial

weight defense can be summarized as: In a sparse network,

we consider these zero-valued weights will not have any

physical connection (pruned) to conduct a bit-flip attack,

thus making them immune from BFA. As a result, the at-

tacker is left with only a few portions of the weights which

he/she can alter to perform the BFA. Nevertheless, as shown

in Table 2, such a sparse regularized network is even more

vulnerable to adversarial weight attack, requiring on aver-

age just 6.8 bit-flips to hamper the functionality of target

DNN. Since a large portion of the weights was pruned, the

remaining weights contain large significance in maintaining

accurate network performance. So altering any of the re-

maining non-zero weights still manages to degrade network

performance significantly.

Adversarial Weight Training. Inspired by the adversar-

ial training [15, 4], we attempt to adopt the same idea and

create a BFA-based adversarial training as an alternative ap-

proach to compare with our proposed method. We modified

the adversarial training objective in Eq. (2) to serve the pur-

pose of adversarial weight training:

min
{B}

L(f(x; {B}), t) + αL(f(x; {B}+ {BBFA}), t)

s.t. {BBFA} = {B̂} − {B}
(8)

where {BBFA} is the different between BFA-perturbed

weight bits {B̂} and its BFA-free counterpart {B}. Dur-

ing the model training, {BBFA} is run-time generated as the

additive constant offset on the model weights.

The result of adversarial training is shown in Table 2,

where it does not show the improvement of BFA resistance

from such adversarial weight training. Our interpretation of

the defense failure is summarized in the following. When

performing the adversarial training with the adversarial ex-

amples, each natural image owns similar adversarial exam-

ples even with a different random seed. However, for the

bit-flip based adversarial weight attack, using a single nat-

ural image as the attack sample will lead to massive dif-

ferent combinations of vulnerable weight bits, while BFA

just provides one combination in a greedy way. Thus, per-

forming the adversarial weight training with all the vulner-

able weight bit combinations is not a feasible approach. In

the end, through the comparison of all the potential defense

methods listed in Table 2, we conclude that the binarization-

aware training and the piecewise clustering are the effective

defense methods.

6. Analysis

Effect of Network Width. In prior works [14, 7], en-

hance the capacity of target DNN via increasing the layer

width is recognized as an effective method to defend ad-

versarial example. In this work, it is expected that the

DNN capacity also plays a positive role in defending against

BFA. We summarize the performance of BFA by varying

the width of the network in Table 3.

Table 3: Effect of Network Width. The ResNet-20 [6] with

different width configuration (1×,2× and 4×) are reported.

All the networks use 8-bit quantization.

Baseline (1×) 2× 4×

ResNet-20 28.0± 4.47 26.2± 2.68 36.4± 12.44

ResNet-20 (PC) 58.79 ± 4.14 47.2± 8.04 72± 18.79

In the first row of Table 3, we observe that ResNet-20 be-

comes more resilient to BFA with network width 4× than

the baseline. However, the difference between the perfor-

mance of the baseline and network with 2× width is barely

distinguishable. In the second row of Table 3, a similar

pattern is also observed utilizing our proposed piece-wise

clustering method. Our proposed method with 4× width

requires on average 72 bit-flips to cause complete malfunc-

tion of ResNet-20 architecture. In conclusion, similar to the

observations from adversarial example [15, 7], increasing

the network capacity by a large amount will enhance the

robustness against BFA.

Conclusion 1 Increasing the network capacity improves

the resistance to bit-flip based adversarial weight attack.

Effect of Batch-Normalization and Dropout Nowa-

days, the presence of Batch-Normalization (BN) layer in the

deep neural network is customary to accelerate the train-

ing of DNN [11], by normalizing the hidden features that

forwarded along the inference path. On the other hand, an

adversarial weight attack introduces variance in the weight

tensor through malicious bit-flips on the weight bits, which

changes the hidden features correspondingly. Taken the

batch normalization into consideration, we expect the BN

layer to stabilize the hidden feature errors caused by the

malicious weight bit-flips. As the result listed in Table 4,

we remove the BN layer (case 2) from our baseline model

(case 1). We observe that once the BN layer was re-

moved from the VGG-11 network, it becomes more vulner-

able to a weight attack requiring less than just 10 bit-flips

to cause malfunction of DNN. Thus, we conclude Batch-

Normalization is able to slightly stabilize the Bit-Flip er-

rors.

In addition to the batch-normalization, the conventional

DNN regularization technique, such as dropout, is also used

to enhance the resistance against adversarial example [23].

As shown in Table 4, we increase the dropout rate to 0.7 in
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Table 4: Effect of Dropout and Batch-Normalization (BN):

In order to show this effect, we report NBF for three cases:

Case1. With BN and dropout (p = 0.2, p is the dropout

rate); this is the case we used throughout the experiments

of other sections. Case 2. Without BN and dropout (p =
0.2) to examine the effect of BN layer on BFA. Case 3.

With BN and dropout (p = 0.7) to examine the effect of

dropout regularizer against BFA. For each of the three cases,

we report NBF for both vanilla VGG-11 and VGG-11 with

Proposed Piece-wise Clustering (PC).

Method:
w BN

dropout (0.2)

w/o BN

dropout (0.2)

w BN

dropout (0.7)

VGG-11 16.4 ± 1.14 9.2 ± 0.42 24.6± 3.71

VGG-11 (PC) 29.79 ± 11.3 8.8 ± 0.44 32.79 ± 3.49

case 3. The effect of dropout in resisting BFA is more emi-

nent for vanilla VGG-11 architecture. However, for our case

of piece-wise clustering dropout does not improve the ro-

bustness significantly. Nevertheless, in general, regulariza-

tion techniques such as dropout are expected to prevent the

network from over-fitting [13], subsequently slightly im-

prove network resistance against both adversarial input [23]

and weight attacks [17].

Conclusion 2 Regularization techniques, such as batch-

normalization and dropout, are helpful in improving the re-

sistance against BFA.

Will adversarial input defense method improve robust-

ness against adversarial weight attack? or Vice Versa?

In this section, we want to examine how adversarial input

defense and weight parameter defense interplay in increas-

ing the overall robustness of the network. To achieve this,

we take the most popular adversarial input attack known

as Projected Gradient Descent (PGD) [15]. We conduct

PGD attack on our PC weight defense and observe that

the network test accuracy after the PGD attack drops to

0.51% in Table 5. Thus, our weight defense completely

fails against a strong PGD input attack. Then, we reverse

the role by attacking a strong input defense known as PGD

Trained adversarial defense [15] with strong weight attack

BFA [17]. Again, adversarial input defense fails to defend

BFA, requiring even less number of NBF than the baseline

shown in Table 5.

Conclusion 3 Improvement of network parameter robust-

ness against BFA does not provide any guarantee of im-

provement of robustness against the vulnerability of input

attack, and vice versa.

Table 5: In this table we report the test accuracy after ad-

versarial input attack (PGD [15]) on both adversarial input

defense [15] and adversarial weight defense (proposed PC).

Then Report NBF after conducting BFA on both adversarial

weight defense and input defense.

Method:
Test Accuracy

w/o Attack(%)

Test Accuracy

After PGD attack (%)
NBF

Baseline 91.84 0.41 28.0 ± 4.47

Adversarial Training 85.51 40.07 16.2 ± 2.95

Piece-wise Clustering 90.02 0.51 58.79 ± 4.14

Directions to the Parameter Security of DNNs. Fi-

nally, we summarize the findings of this work in Table 6,

which provides an enhanced guide of regulation to follow

while constructing DNNs with higher BFA-resistance. Our

weight binarization and its clustering relaxation provides

the best solution so far in achieving network parameter im-

munity from BFA. Additionally, network width and certain

key elements of the DNN architecture also build slight re-

silience against the BFA.

Table 6: Checklist of investigations to improve the BFA re-

sistance.

Directions to improve the BFA resistance Yes No

1. Perform Weight Clustering (i.e., Binarization & PC) X

2. Increase Network Capacity X

3. Dropout, Batch-Norm Regularization X

4. Adversarial Weight Training X

5. Network Pruning X

7. Conclusion

In this work, we tried to develop a comprehensive inves-

tigation of adversarial parameter security enhancement and

provide several insightful observations for the future strug-

gle against DNN parameter vulnerability. Based on those

observations, we highlight potential successful directions

to develop adversarial weight defense. Finally, through the

comprehensive experiments, our proposed methods, espe-

cially binarization-aware training, are proven to improve

the resistance against the emerging bit-flip based adversarial

weight attack.
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Terminal brain damage: Exposing the graceless degradation

in deep neural networks under hardware fault attacks. arXiv

preprint arXiv:1906.01017, 2019. 1

[9] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, volume 1, page 3, 2017. 1

[10] I. Hubara et al. Binarized neural networks. In Advances

in neural information processing systems, pages 4107–4115,

2016. 4

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International conference on machine learning, pages 448–

456, 2015. 7

[12] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (cana-

dian institute for advanced research). URL http://www. cs.

toronto. edu/kriz/cifar. html, 2010. 5

[13] J. Liang and R. Liu. Stacked denoising autoencoder and

dropout together to prevent overfitting in deep neural net-

work. In 2015 8th International Congress on Image and Sig-

nal Processing (CISP), pages 697–701. IEEE, 2015. 8

[14] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to adver-

sarial attacks. arXiv preprint arXiv:1706.06083, 2017. 7

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to ad-

versarial attacks. In International Conference on Learning

Representations, 2018. 2, 6, 7, 8

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 5

[17] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing

neural network with progressive bit search. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), pages 1211–1220, 2019. 1, 2, 3, 5, 6, 8

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016. 4

[19] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and

H. Bos. Flip feng shui: Hammering a needle in the software

stack. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 1–18, 2016. 1

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3, 5

[21] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq:

Hardware-aware automated quantization. arXiv preprint

arXiv:1811.08886, 2018. 6

[22] S. Wang, X. Wang, S. Ye, P. Zhao, and X. Lin. Defending

dnn adversarial attacks with pruning and logits augmenta-

tion. In 2018 IEEE Global Conference on Signal and In-

formation Processing (GlobalSIP), pages 1144–1148. IEEE,

2018. 6

[23] S. Wang, X. Wang, P. Zhao, W. Wen, D. Kaeli, P. Chin, and

X. Lin. Defensive dropout for hardening deep neural net-

works under adversarial attacks. In Proceedings of the Inter-

national Conference on Computer-Aided Design, page 71.

ACM, 2018. 7, 8

[24] Q. Xie, E. Hovy, M.-T. Luong, and Q. V. Le. Self-training

with noisy student improves imagenet classification. arXiv

preprint arXiv:1911.04252, 2019. 1

14103


