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ABSTRACT

Deep Neural Network (DNN) trained by the gradient descent method
is known to be vulnerable to maliciously perturbed adversarial in-
put, aka. adversarial attack. As one of the countermeasures against
adversarial attacks, increasing the model capacity for DNN robust-
ness enhancement was discussed and reported as an effective ap-
proach by many recent works. In this work, we show that shrinking
the model size through proper weight pruning can even be helpful
to improve the DNN robustness under adversarial attack. For obtain-
ing a simultaneously robust and compact DNN model, we propose
a multi-objective training method called Robust Sparse Regulariza-
tion (RSR), through the fusion of various regularization techniques,
including channel-wise noise injection, lasso weight penalty, and
adversarial training. We conduct extensive experiments to show
the effectiveness of RSR against popular white-box (i.e., PGD and
FGSM) and black-box attacks. Thanks to RSR, 85% weight connec-
tions of ResNet-18 can be pruned while still achieving 0.68% and
8.72% improvement in clean- and perturbed-data accuracy respec-
tively on CIFAR-10 dataset, in comparison to its PGD adversarial
training baseline.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have led to tremendous success
in various applications, such as image classification [16], speech
recognition [15], medical applications [17] and etc. Wide deploy-
ment of DNNs has raised several major security concerns [1, 3, 7].
For example, in the context of image classification, an adversarial
example is a carefully modified image that is visually imperceptible
to human eyes, but fools the DNN successfully [7]. Recently, there
have been a cohort of works toward developing new adversarial
attack techniques, which have exposed the underlying vulnerabil-
ity of DNN [2, 22]. In order to counter adversarial attacks, several
works have proposed different techniques, such as training the
network with adversarial samples [7, 22], regularization [14, 20]
and other various methods [20].

In a separate yet related track, investigation towards generat-
ing efficient and compact networks have also been accelerated.
Many prior works have been conducted regarding compression
techniques including quantization [5, 23, 24, 32] and weight prun-
ing [10]. It is shown that many DNNs can function properly (no
accuracy loss) even after significantly (>90%) network pruning [9].
Such sparse DNN achieves significant speed-up and compression
rate which opens the door for DNN in memory and resource con-
straint applications [11]. Previously, several works have tried to
generate both sparse and robust networks [8, 31] by combining the
network pruning (i.e. compactness) technique to defend adversarial
examples. However, their efforts either suffer from poor test data
accuracy or do not improve the robustness significantly.

Overview of RSR. In this work, we propose a multi-objective
optimization mechanism that could lead these two different yet
related tracks, namely pursuit of network robustness and com-
pression, to merge. To achieve this objective, we propose a novel
Robust Sparse Regularization (RSR) method which integrates sev-
eral regularization techniques to achieve such dual optimization.
First, we propose to train a DNN with channel-wise noise injec-
tion (CNI) embedded with adversarial training to improve network
robustness. Such technique injects a channel-wise Gaussian noise
which is trainable during adversarial training. CNI improves test
accuracy for both clean and perturbed data. Second, in order to
simultaneously achieve network compactness and robustness, we
propose a new ensemble loss function including an L-1 weight
penalty term (i.e. lasso). Lasso regularization during adversarial
training performs weight selection by constraining some weight
values to a very small values as shown in figure 1. When training is
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Figure 1: Weight distribution of ResNet-18 for the second convolution layer. We show three cases sequentially 1) clean data
training 2) adversarial training(PGD) and 3) RSR training. Observation 1: Adversarial trained network has less sparsity than
clean training thus making network pruning difficult. Observation 2: RSR training can achieve the desired sparseness with

adversarial training.

done, we could prune the small weight values based on a threshold
to achieve a sparse network. Our extensive experiments show that
RSR training is an effective network pruning scheme to achieve
improved robustness without sacrificing any clean data accuracy
across different architectures.

2 RELATED WORKS

Several works [7, 22] have proposed to jointly train the network
with adversarial and clean samples, called adversarial training, to
achieve network robustness. Later, development of backward pass
differential attack (BPDA) [2] has exposed the underlying vulnera-
bility of many other defense methods relying on gradient obfusca-
tion [6, 18]. Then, training the network with adversarial examples
has become one of the most popular defense approach to defend
adversarial examples. Meanwhile, there is a cohort of work investi-
gating the effect of regularization techniques such as quantization
[20, 25] , noise injection [14, 19, 21] and pruning [6, 8, 30, 31] to
improve the robustness. Several previous works have investigated
the effects of network pruning on robustness [8, 30, 31]. Recently,
[31] proposed concurrent weight pruning and adversarial train-
ing to generate robust and sparse network. However, their ADMM
based pruning method’s performance on smaller network (i.e, lesser
width) suffers from poor test accuracy for both clean and adversarial
data. Further, [8] showed that pruned network will defend adver-
sarial examples provided that the network is not over-sparsified.

3 APPROACH

In this section, we first introduce the proposed Robust Sparse Reg-
ularization (RSR) technique, which is incorporated into a multi-
objective optimization process that simultaneously improves net-
work robustness and compactness. Our proposed RSR mainly con-
sists of two components: 1) a trainable Channel-wise Noise Injection
(CNI) and 2) lasso weight penalty (L-1 norm) for model pruning,
which will be introduced in this section.

3.1 Adversarial Training

Training the neural network with adversarial examples is a popu-
lar defense method [7, 22]. Since our method integrates with such
adversarial training, we briefly introduce it first. The goal of ad-
versarial training can be formalized as: if we have a set of inputs-
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x and target labels- ¢, adversarial training tries to obtain the opti-
mal solution of network parameters 6 (i.e, weights, biases) for the
following min-max optimization problem:

argmin { argmax £(g(%:0),t)} (1)

0 x'€Pc(x)

where the min-max optimization is composed of inner maximiza-
tion and outer minimization problem. For inner maximization we
acquire the perturbed data X as shown in the description of PGD
attack [22]. While the outer minimization is optimized through
gradient descent method during network training.

3.2 Channel-wise Noise Injection

The first regularization technique used in RSR is to inject learn-
able channel-wise noise on weights during the DNN adversarial
training process. Considering a convolution layer in DNN with
4-D weight tensor W € RTP*khxkw where g p. kh, kw denotes
number of output channel, input channel, kernel height and kernel
width respectively, the Channel-wise Noise Injection (CNI) can be
mathematically described as:

n~N(0,0%)

W = foni(W) =W + & X ; ()

where o € R$111

is the noise tensor where its elements are independently sampled
from a Gaussian distributed source with zero mean and variance as
o2. Note that, o2 is the variance of W that is statistically calculated
in the run-time. Preliminary work [14] shows that parametric noise
injection is an improved variant of adversarial training, where such
trainable noise injection method could effectively regularize DNN
during the adversarial training. We follow similar optimization and
update rule for @, but extending it into channel-wise version, where
weights for each output channel shares the same noise scaling
coeflicient instead of whole layer.

We train the network with both clean and adversarial samples
to achieve a good balance between adversarial data and clean test
data accuracy. Optimization problem of equation 1 can be solved
by minimizing the ensemble loss Lens in equation 3. The ensemble
loss is basically the weighted sum of losses for clean and adversarial
data with channel-wise trainable noise injected on weights of DNN

is trainable noise scaling coefficient. g € R9<P*khxkw
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model:

Lens = a- L(g(x; foni(0)),1) + (1 - a) - L(g(%; feni(9)).1) (3)

where a is the coefficient to balance the ensemble loss terms which
is chosen as 0.5 by default. Optimizing the loss function £ improves
network robustness. The optimizer tries to solve for both model
parameters 6 and « to find an equilibrium between clean and
perturbed data.

3.3 Lasso Weight Penalty

For incorporating the network pruning into the adversarial training,
we propose to train the neural network with lasso weight penalty.
Lasso is known as least absolute shrinkage and selection opera-
tor [27]. It was introduced as a L-1 regularizer that penalizes the
features with higher values. Lasso is an ideal choice for weight prun-
ing as it shrinks the lesser important weights to zero [13, 28, 29].
We include the lasso weight penalty term into Lens and reformat
equation 3 as:

Lens = a- L(g(x; foni(0)), 1) + (1 —a) - L(g(%; foni(0)), 1) (4)
+1- X5 Wl

where W denotes the weight tensor of /-th layer, and L is the total
number of parametric layers (i.e., convolution and fully-connected
layer). || - || is the absolute sum of all the elements of a tensor. The
effect of lasso weight penalty is determined by the coefficient A,
where A in larger value would generate a sparse model containing
a significant amount of weight with near zero values. We tune A
experimentally and describe the procedure for selecting optimized
value of A in section 4.2.

3.4 Weight Pruning

The proposed ensemble loss Lens serves the purpose of multi-
objective loss function. We expect a network after training with
the ensemble loss to be more resilient to adversarial samples. At
the same time, due to the presence of lasso weight penalty, we
expect a significant portion of the weight tensor to converge to
near zero values. We then perform weight pruning after training
with the proposed ensemble loss function, by setting the weights
below a certain threshold (y) to zero. Note that, after pruning, we
remove the noise injection term for zero-value weights. As a result,
during inference, we only add noise to the non-zero elements of
the weight tensor. For the weight tensor in a fully connected layer,
lets assume W = (a; )", (W € R™"). For convolution layer,

i,j=1
W = (a,-)‘,-)k,l)?f;ckli’fw (W e R?*P¥khxkw) Then, the pruning op-

eration can be described as:
©)
(6)

Here y is the threshold, which is the least absolute non-zero
value in the weight tensor after pruning. Again, we can tune the
value of y for different networks to achieve different sparsity ratio.
Hence, by tuning the value of y, we can effectively show the maxi-
mum amount of parameters that can be pruned without causing
robustness degradation.

FClayer— a;; = 0if |a; j| <y

Conv. layer— a; ;5 = 0if a; j 1 <y
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4 EXPERIMENTS

4.1 Experiment setup

Datasets and network architectures. In this work, we only con-
sider CIFAR-10 dataset for image classification task as most of the
baseline works report their robustness in terms of under-attack
accuracy on this dataset. CIFAR-10 is composed of 50K training
samples and 10K test samples. Our data augmentation method is
same as described in [12]. Attacker can directly add noise to the nat-
ural images as our data normalization layer is placed in front of the
DNN as a non-trainable layer. We adopt three classical networks,
ResNet-20, ResNet-18 [12] and VGG-16 [26], to perform compara-
tive analysis. We also show the analysis on the effect of network
width by varying the width of ResNet-18 network. We report the
mean accuracy with 5 trials due to the presence of randomness in
both CNI and PGD [22]. We tune the hyper parameter A to be 1e™>
for both ResNet-18 and VGG-16 and 5¢ > for ResNet-20.

Competing methods for adversarial defense. In this work, PGD
adversarial training [22] is selected as the primary baseline method.
Additionally, our work includes channel-wise noise injection, so
we also compare the method with parametric noise injection (PNI)
[14]. Additionally, we also compare our work with several network
compression and pruning methods [20, 31]. Finally, comparison
with several state-of-the art regularization techniques serving as a
adversarial defense [19, 21] is also presented.

4.2 Results

White-Box Attack. Our simulation results on two popular white-
box attack PGD [22] and FGSM [7] are presented in table 1. During
adversarial training, as stated in section 3.1, we use PGD algorithm
to generate the adversarial samples. First, for the regular models, we
do not perform any weight pruning. RSR helps to achieve significant
robustness enhancement and even improves the clean data accuracy
compared to baseline PGD training [22]. We observe that, with
increasing the model capacity, network robustness increases as
well. The observation of robustness enhancement with increasing
network capacity is consistent with previous works [14, 22]. For
our proposed RSR, the pattern remains the same. Our best accuracy
was obtained using VGG-16 network. We could improve the clean
test data accuracy by 0.95% and perturbed data accuracy by 9.48%
Under strong PGD attack for VGG-16.

Our proposed RSR can prune 60%, 85% and 50% of the network’s
weight for ResNet-20, ResNet-18 and VGG-16, respectively, without
any clean test accuracy loss. To show the comparative effect of net-
work robustness and sparsity, we prune each of the four training
cases (PGD/ CNI/ Lasso/ RSR) by equal amount. The level of sparsity
can always be tuned by choosing different values of y. As expected,
both PGD and CNI performance suffers significantly after pruning.
On the contrary, RSR outperforms baseline PGD (even without
pruning) training method. We observe 8.72% and 6.83% improve-
ment on test accuracy under PGD and FGSM attack respectively for
ResNet-18 architecture. Again the most significant improvement
observed in the VGG-16 network which has the largest capacity.
Such observation confirms that increasing the number of param-
eters increases the effect of weight penalty and noise injection to
enhance the network robustness. Another question to be asked is



Session 3B: Efficient and Secure Deep
Learning and Reinforcement Learning in Embedded Systems GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Table 1: Summary of CIFAR-10 Results: We report clean and perturbed-data(under PGD and FGSM attack) accuracy (%) on
CIFAR-10 test data. To visualize the effect of lasso and CNI, we also report the independent test accuracy for both channel-wise
noise injection (CNI) and lasso loss. We report the percentage of weight being pruned (exactly equal to zero) as the sparsity(%).
Capacity denotes the number of trainable parameters in the network.

ResNet-20 ResNet-18 VGG-16
Capacity 269,722 11,173,962 138,357,544
Scheme Clean PGD FGSM Sparsity Clean PGD FGSM Sparsity Clean PGD FGSM Sparsity
Before Pruning
PGD 83.58 3944  46.87 0 86.11 4431 53.52 0 82.88  37.57 46.94 0
CNI 84.67 46.11  54.40 0 86.82 47.85 56.04 0 83.13 4423 51.56 0
Lasso 83.56 38.69 45.78 0 85.92 46.94 55.2 0 83.26 4193  50.33 0
RSR 84.96 47.95 56.72 0 86.95 52.94 60.89 0 83.83 47.05 54.05 0
After Pruning
PGD 51.58 1249 16.11 60.47 70.31 31.00 35.8 85.43 78.40 32.14 4221 50.62
CNI 5593 2391 29.11 60.74 50.97 22.54 25.31 85.27 75.79 4039  46.37 50.62
Lasso 83.64 3846 4544 60.14 85.92 46.8 55.2 85.38 83.24 42.01 5032 50.15
RSR 84.32 47.44 55.74 60.85 86.79 53.03 60.35 85.36 83.02 47.70 54.16 50.93

Table 2: Ablation study with varying width. We report clean and perturbed-data(under PGD and FGSM attack) accuracy on
CIFAR-10. ResNet-18(1x) is chosen as the baseline. Network width w = 0.5X and w = 0.25X denotes that the width of the
network’s both input channel and output channel is scaled by 0.5x and 0.25X respectively.

Clean Adversarial Sparsity: (%) of parameter
Test (%) Attack(PGD) P ) ¥: remain in the network
’ % ‘ compared to ResNet-18(1x)
Channel Adv. Adv. Adv.
Width Trained RSR Trained RSR Trained RSR RSR
w = 0.25% 82.68  83.18  39.01 45.38 0 38.33 —(100-38.33)%0.125=7.7
w = 0.5X 84.99 8485 4333 50.7 0 63.17 —(100-63.17)%0.25=9.21
w = 1X 86.82  86.79  47.85 53.03 0 85.36 —(100-85.36)=14.37
= — = 100 =
=501 <80 j e
o X -
£ 40 \ ? é © ® /
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Figure 2: a) The relationship between test accuracy (%) under PGD attack Vs Percentage of weight pruned(exactly equal to zero).
It shows each network can be pruned up to certain level of sparsity. Pruning beyond that level would make the model over-
sparsified [8] and the network no longer remains robust. b) The plot shows both clean and perturbed data (PGD) accuracy (%)
for ResNet-20(RSR) VS Lambda(A). A is the regularization parameter for the lasso loss. ¢) X- axis contains different Gamma(y)
values and Y-axis shows the percentage of weight below a certain threshold Gamma(y). y is least absolute value after pruning
in a network. Clean, Adv and RSR denotes clean test data training method, adversarial training method and Our proposed
RSR method respectively. This plot is only for convolution layer of ResNet-18 architecture.

what if we want to prune the network beyond the reported sparsity. our method also follows the same trend, we show an ablation study
For example, if we want to prune ResNet-18 beyond 85% , does the on ResNet-18 with decreasing network width in table 2. Our obser-
network still remain robust? We try to answer this question in the vation confirms that RSR method still remains more robust than
next paragraph where we explain the effect of network width with the baseline PGD method for each case (i.e., w = 0.25 X /0.5 X [1x).
sparsity. On the other side, we achieve less sparsity on network with smaller
network width. In w = 0.25X case, we could only achieve 38.33%

Effect of Network Width. [31] demonstrated that decreasing a sparsity without sacrificing any clean or perturbed data accuracy.
network width may have negative impact on robustness. To verify if This observation is quite intuitive as ResNet-18(0.25X) network
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Table 3: We compare our method with three major categories of defense: a) Adversarial training defenses: Projected Gradient
Descent (PGD) training [22], Parametric Noise Injection (PNI) [14] b) Compression or pruning techniques: Defensive Quanti-
zation (DQ) [20], Second Rethinking of Network Pruning (SR) [31] and c) Regularization techniques: Differential Privacy (DP)

[19] and Robust Self Ensemble(RSE) [21].

Adve.r s?rlal Compression Regularization This work
Training
PGD PNI DQ SR DP RSE RSR
Model ResNet-18 ResNet-20(4%) Wide ResNet ResNet-18  Wide ResNet ResNext ResNet-18
Clean(%) 86.11 87.7 87.0 81.83 87.0 87.5 86.79
PGD(%) 44.31 49.1 51.8 48.00 25.0 40.0 53.03
Sparsity (%) 0 0 (6x) Compression - 0 0 85.36

already has 0.125X less parameters than that of ResNet-18 (1x).
Thus, even after performing less amount of weight pruning, the
percentage of parameter (7.7%) in the network would still be smaller
compared to ResNet-18(1x) (14.37%). Finally, such observation also
answers the question asked previously: A particular architecture
(e.g., ResNet-18) can be pruned up to a certain amount of sparsity
levels based on the network width. The maximum number of pa-
rameters which can be pruned without any sacrifice in robustness
may vary across different architectures. Figure 2 (a) shows ResNet-
20, ResNet-18 and VGG-16 test accuracy under PGD attack starts
to drop at different sparsity levels (% weight equal to zero). If any
model is sparsified beyond this point, it falls under the definition
of over-sparsified model [8] and the network no longer remains
robust.

Robustness improvement coming from Lasso training? or CNI train-
ing? or Both? We have provided comprehensive experimental anal-
ysis on our proposed RSR method to show its performance en-
hancement on three fronts: clean data accuracy, robustness (i.e.
under attack accuracy) and sparsity. Table 1, confirms that lasso
loss primarily contributes to the sparse model generation through
weight shrinkage. However, in order to identify the chief contribu-
tor towards robustness improvement, an ablation study is shown
in table 1, where we also report effect of training the network only
with lasso loss and CNI, respectively. The regularization effect of
lasso is less significant for ResNet-20 and CNI plays the dominant
role in network robustness improvement. However, both lasso and
Channel-wise noise injection contributes towards the improvement
of robustness for redundant networks (i.e, VGG-16). Both lasso and
CNI can improve the network robustness by close to 4 % and 7 %,
respectively, on VGG-16. Nonetheless, we choose lasso because it
helps shrink weight values to a very small value, thus performing
a robust model selection during adversarial training. Apart from
that, lasso regularization also supplements CNI towards defending
adversarial examples .

Choice of Lambda (). In figure 2 (b), we show a plot of test
accuracy on both clean and perturbed data versus Lambda(A) for
ResNet-20. Clearly, both the test accuracy starts to drop if we in-
crease A beyond 5¢7°. So for ResNet-20 we choose 5¢7° as the
standard value of A to achieve the maximum sparsity without any
degradation in test accuracy. Similarly, the value of A for other
architectures (i.e, ResNet-18, VGG-16) is optimized experimentally.

Black-Box Attack. We report the black-box attack accuracy for
ResNet-20 architecture in table 4. We test our defense method
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Table 4: Black-Box attack summary. ZOO attack success rate
(in 2" column) is the percentage of test sample being suc-
cessfully classified to a wrong class by the attack. We re-
port two sets of transfer attack accuracy: one with VGG16
as the source (3rd column) and the other with ResNet-18 as
the source (4! column). For both PGD and RSR ResNet-20
is the target model.

700 Success  Source(VGG-16)  Source(ResNet-18)
Method
rate (%) Accuracy(%) Accuracy(%)
PGD 68.50 66.13 67.44
RSR 56.00 66.04 67.27

against un-targeted ZOO attack [4]. We randomly select 200 test
samples to calculate the attack success rate. Our proposed method
defends ZOO attack better as it decreases the attack success rate
by 12 % compared to baseline PGD method.

To perform transferable attack on RSR and PGD, we use VGG-
16 and ResNet-18 network as the source model. For both cases,
our RSR performs on par with the PGD method. Additionally, our
proposed RSR reports higher test accuracy against black-box attack
compared to white-box PGD method. Better resistance against
black-box attack is considered as a sign of a defense that does not
effectively uses obfuscated or masked gradient [2] as a defense tool.

Comparison to state-of-the art techniques. In table 3, we summa-
rize the performance of our defense in comparison to some other
state-of-the-art defense techniques. Our proposed RSR method
outperforms these comparative defenses and achieves significant
robustness improvement.

Note that, we compare with the unbroken defenses that are not
reported to show signs of obfuscated gradients [2] yet. Again there
are some previous works on network pruning and robustness [6]
which might suffer from gradient obfuscation [2]. [8] first theoreti-
cally shows the effect of pruning on non-linear DNN to demonstrate
the vulnerability of over-sparsified model to adversarial attacks.
However, we are the first to formulate an improved adversarial
defense with sparse regularization. Our proposed RSR generates
sparse and compact neural network that can achieve state-of-the-art
under-attack accuracy and much improved robustness.

5 ANALYSIS

RSR is performing regularization. Robust Sparse Regularization
is performing regularization on the network to enhance both ro-
bustness and compactness. It does not show any obvious signs of
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gradient masking proposed in [2]. First, RSR performs better against
single step attack (i.e, FGSM) compared to multiple step attack (i.e.,
PGD). Also we report higher test accuracy against black-box attack
than white-box. Finally, increasing the attack strength linearly de-
creases the effectiveness of our defense. Such observations confirm
primarily our robustness enhancement is not achieved through any
gradient obfuscation or masking [2]. Instead, our improvement in
robustness primarily comes from regularized training method.

Optimal Gamma provides the improvement on three fronts. We can
fine-tune the model after training to prune the weights of a network
below a certain threshold (y). During training apart from enhancing
robustness, RSR mainly shrinks the weights of the network. The
demonstration of weight shrinkage is presented in figure 2 (c).
ResNet-18 network training with RSR contains 85% weights with
near zero value (less than 1e73). So pruning weights with such
small values will have minimal effect on clean test accuracy and
robustness. Thus, the value of y can be tuned to an optimal point
for each network to achieve improvement on three fronts: clean
data accuracy, robustness(i.e., under attack accuracy) and sparsity.

6 CONCLUSION

We successfully co-optimize the objective of network robustness
and compactness through our proposed RSR training method. As
a result, we show that heavily sparse network can resist adversar-
ial examples to generate both robust and compact neural network
at the same time. Our proposed method performs dual optimiza-
tion during training to resist state-of-art white-box and black-box
attacks using a more compact network.

ACKNOWLEDGEMENT

This work is supported in part by the National Science Foundation
under Grant No.1931871.

REFERENCES

[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of Adversarial Attacks on Deep
Learning in Computer Vision: A Survey. IEEE Access 6 (2018), 14410-14430.
Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
In Proceedings of the 35th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.),
Vol. 80. PMLR, Stockholmsmissan, Stockholm Sweden, 274-283.

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning.
arXiv preprint arXiv:1712.02051 (2017).

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. ACM, 15-26.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems. 3123-3131.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi,
Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar. 2018. Stochastic
activation pruning for robust adversarial defense. In International Conference on
Learning Representations. https://openreview.net/forum?id=H1uR4GZRZ

Ian ] Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. 2018. Sparse
dnns with improved adversarial robustness. In Advances in neural information
processing systems. 242-251.

Song Han, Huizi Mao, and William ] Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[2

[3

4

=

[5

=

[6

[7

[8

[

130

[10

[11

(12]

=
&

[14

[15

(18

[19

[20

S
=

[22]

[23]

[24

26

[27

[28

[29

[32

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135-1143.

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman,
and Arvind Krishnamurthy. 2016. Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 123-136.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International Conference on
Computer Vision. 1389-1397.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. 2019. Parametric Noise Injection:
Trainable Randomness to Improve Deep Neural Network Robustness against
Adversarial Attack. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Geoflrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing
Magazine 29, 6 (2012), 82-97.

Geoffrey Hinton, Nitsh Srivastava, and Kevin Swersky. 2012. Neural networks
for machine learning. Coursera, video lectures 264 (2012).

Chen-Ying Hung, Wei-Chen Chen, Po-Tsun Lai, Ching-Heng Lin, and Chi-Chun
Lee. 2017. Comparing deep neural network and other machine learning algo-
rithms for stroke prediction in a large-scale population-based electronic medical
claims database. In 2017 39th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC). IEEE, 3110-3113.

Colin Raffel Ian Goodfellow Jacob Buckman, Aurko Roy. 2018. Thermometer
Encoding: One Hot Way To Resist Adversarial Examples. International Conference
on Learning Representations (2018). https://openreview.net/forum?id=S18Su--CW
accepted as poster.

M Lecuyer, V Atlidakis, R Geambasu, D Hsu, and S Jana. 2018. Certified Robust-
ness to Adversarial Examples with Differential Privacy. ArXiv e-prints (2018).
JiLin, Chuang Gan, and Song Han. 2019. Defensive Quantization: When Efficiency
Meets Robustness. In International Conference on Learning Representations. https:
//openreview.net/forum?id=ryetZ20ctX

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2017. Towards Ro-
bust Neural Networks via Random Self-ensemble. arXiv preprint arXiv:1712.00673
(2017).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversar-
ial Attacks. In International Conference on Learning Representations. https:
//openreview.net/forum?id=rJzIBfZAb

Adnan Siraj Rakin, Shaahin Angizi, Zhezhi He, and Deliang Fan. 2018. Pim-tgan:
A processing-in-memory accelerator for ternary generative adversarial networks.
In 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE,
266-273.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-Flip Attack: Crushing
Neural Network With Progressive Bit Search. In The IEEE International Conference
on Computer Vision (ICCV).

Adnan Siraj Rakin, Jinfeng Yi, Boqing Gong, and Deliang Fan. 2018. Defend deep
neural networks against adversarial examples via fixed anddynamic quantized
activation functions. arXiv preprint arXiv:1807.06714 (2018).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267-288.
Huan Wang, Qiming Zhang, Yuehai Wang, and Haoji Hu. 2018. Structured
Pruning for Efficient ConvNets via Incremental Regularization. arXiv preprint
arXiv:1811.08390 (2018).

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074-2082.

Shaokai Ye, Siyue Wang, Xiao Wang, Bo Yuan, Wujie Wen, and Xue Lin. 2018.
Defending DNN Adversarial Attacks with Pruning and Logits Augmentation.
https://openreview.net/forum?id=S1qI2FJDM

Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang,
Aojun Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin. 2019. Second Rethinking
of Network Pruning in the Adversarial Setting. arXiv preprint arXiv:1903.12561
(2019).

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. DoReFa-Net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).



