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ABSTRACT
In this work, we review two alternative Processing-in-Memory
(PIM) accelerators based on Spin-Orbit-Torque Magnetic Random
AccessMemory (SOT-MRAM) to execute DNA short read alignment
based on an optimized and hardware-friendly alignment algorithm.
We first discuss the reconstruction of the existing sequence align-
ment algorithm based on BWT and FM-index such that it can be
fully implemented leveraging PIM functions. We then transform
SOT-MRAM array to a potential computational memory by pre-
senting two different reconfigurable sense amplifiers to accelerate
the reconstructed alignment-in-memory algorithm. The cross-layer
simulation results show that such PIM platforms are able to achieve
a nearly ten-fold and two-fold increases in throughput/power/area
measure compared with recent ASIC and processing-in-ReRAM
designs, respectively.
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1 INTRODUCTION
Advances in high-throughput sequencing technologies have en-
abled accurate and fast generation of large-scale genomic data for
each individual, and are capable of measuring molecular activities
in cells. Genomic analyses, including mRNA quantification, genetic
variants detection, and differential gene expression, promise to
help improve phenotype predictions and provide more accurate
disease diagnostics [1]. The sequencing data generated from one
patient sample consists of tens of millions of short DNA sequences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’20, September 7–9, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7944-1/20/09. . . $15.00
https://doi.org/10.1145/3386263.3407590

(reads) that range from 50 to thousands nt in length. Most genomic
pipelines rely on the alignment of sequencing reads with respect to
the reference genome [2], which remains to be a time-consuming
and technically difficult step. Specifically, the human reference
genome is comprised of two twistings, paired strands and each
strand carries approximately 3.2 billion nucleotide bases (𝐴, 𝑇 , 𝐶 ,
𝐺), and the bases on two strands follow the complementary base
pairing rule: 𝐴-𝑇 and 𝐶-𝐺 [3]. Therefore, the DNA sequence align-
ment task is becoming to determine the read’s likely point of origin
on the 3.2 billion base pair (bp) reference genome. Although sev-
eral sequence alignment algorithms have been developed in recent
years, the continuously increasing volume of DNA sequencing data
still calls for rapid and accurate aligners. Even the most efficient
algorithm, such as BWA [2] or Bowtie [4] using Burrows-Wheeler
Transformation (BWT), require hours or days to align such large
amount of data using powerful CPU/GPU-based systems.

Today’s sequencing acceleration platforms, like CPU, GPU [5],
ASIC [6–8], and FPGA [9], are mostly based on the Von-Neumann
architecture with separate computing and memory components
connecting via buses and inevitably consume a large amount of
energy in data movement between them. Besides, Processing-in-
Memory (PIM) architectures, as a potentially viable way to solve
the memory wall challenge [10, 11], have been explored for differ-
ent applications that lead to remarkable savings in off-chip data
communication energy and latency. The PIM platform has become
even more intriguing when integrated with emerging Non-Volatile
Memory (NVM) technologies, such as Resistive RAM (ReRAM)
[3, 12, 13]. The most recent ReRAM-based PIM solutions for short
read alignment [12, 14] rely on Ternary Content-Addressable Mem-
ory (TCAM) arrays that unavoidably impose significant area and
energy overheads to the system [3] due to associative processing
dealing with Smith-Waterman (SW)-based algorithms that require
many write operations and takes 75% of the ReRAM cells to store
the intermediate data [15]. Alternatively, RADAR [12] and AligneR
[3] present ReRAM-based PIM architectures that can directly map
more efficient algorithms such as BLASTN and FM-index-based
searches, respectively. In addition, Magnetic RAM (MRAM) is an-
other promising high performance NVM paradigm, due to its ultra-
low switching energy and compatibility with CMOS technology
[16–20].

In this work, we review software-hardware alignment-in-memory
solutions based on SOT-MRAM platforms presented in our previ-
ous works i.e. AlignS [16] and PIM-Aligner [21] to perform DNA
sequence alignment efficiently. This effort mainly highlights two
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possible circuit/architecture alternatives for DNA alignment-in-
memory through reconstruction of the existing sequence align-
ment algorithm based on BWT and FM-index, with a local data
partitioning methodology and mapping technique.

2 BWT-BASED ALIGNMENT-IN-MEMORY
READ MAPPING

The BWT of a string is a reversible permutation of the characters
in the string. Short read alignment algorithms (e.g., BWA [2] and
Bowtie [4]) take all the advantages of BWT and index the large refer-
ence genome-S to do the read alignment efficiently. Exact alignment
finds all occurrences of the𝑚-bp short-read R in the 𝑛-bp reference
genome-S. Fig. 1 gives an intuitive example of such alignment of a
sample read-𝑅 = 𝐶𝑇𝐴 to a sample reference 𝑆 = 𝑇𝐺𝐶𝑇𝐴$ extracted
from a gene, where $ denotes the end of a sequence. BW matrix
is constructed by circulating string S and then lexicographically
sorting them. Thus, the Suffix Array (SA) of a reference genome-
S is a lexicographically-sorted array of the suffixes of S, where
each suffix is represented by its position in S. In this way, BWT
of the reference-S is given by the last column in the BW matrix,
𝐵𝑊𝑇 (𝑆) = 𝐴𝑇𝐺𝑇𝐶$.

Figure 1: Short read alignment concept.

The FM-Index is then built on top of BWT providing the occur-
rence information of each symbol in BWT. The SA interval (low,
high) covers a range of indices where the suffixes have the same
prefix. Then a backward search of the matched positions in the
reference genome-S is executed for each short read-R starting from
the rightmost nucleotide (𝐴 in Fig. 1). During the backward search,
the matched lower bound (low) and upper bound (high) in a SA of
the S for each nucleotide in R are determined based on FM-Index
and count function [2]. Thus, the result of read searching is rep-
resented as an SA interval. At the end of search, if 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ,
R has found a match in S. Conversely, if low ≥ high, it has failed
to find a match. Such alignment algorithm complexity is linearly
proportional to the number of nucleotides in a read (O(𝑚)) in con-
trast to dynamic programming algorithms such as Smith-Waterman
(SW) with O(𝑛𝑚) complexity [22]. Backtracking can simply extend
the BWT technique to allow mismatches to support approximate
alignment. In this approach, the DNA short read is permuted using
edit operations (substitutions, insertions or deletions).

The presented DNA exact alignment-in-memory algorithm is
based on BWT and FM-Index sequencing algorithm [2], but opti-
mized using three different PIM functions, i.e. MEM, XNOR_Match,
and IM_ADD, which will be detailed later. As the first step of such
process, shown in Fig. 2a, some important tables are needed to be
pre-computed based on reference genome-𝑆 . However, it is just
a one-step computation and only BWT, Marker Table (𝑀𝑇 ), and

Figure 2: (a) Pre-computation needed in PIM’s alignment algorithm,
(b) The Bound procedure implementation.

𝑆𝐴 will be stored in the PIM platform, which will consume ∼12GB
of memory space. To enable fast memory access and parallel in-
memory computing, these data has to be reconstructed and saved
into differentmemory arrays, banks and chips. Such data reconstruc-
tion and mapping methodology will be discussed in the next section.
In Fig. 2a, 𝐶𝑜𝑢𝑛𝑡 (𝑛𝑡) represents the number of nucleotides in the
first column of BW matrix that are lexicographically smaller than
the nucleotide-𝑛𝑡 . It only contains 4 elements for DNA sequence
computation. The Occurrence (Occ.) table, also called FM-index, is
built upon the BWT, where each element-𝑂𝑐𝑐 [𝑖, 𝑛𝑡] indicates the
number of occurrences of nucleotide-𝑛𝑡 in the BWT from position 0
to 𝑖 − 1. Due to its large size, it is sampled every 𝑑 positions (bucket
width) to construct another Sampled Occ-table. Thus, the table size
is reduced by a factor of 𝑑 . Then 𝑀𝑇 is constructed by element-
wise addition of Sampled Occ-table with 𝐶𝑜𝑢𝑛𝑡 (𝑛𝑡), which leads
to the same size as Sampled Occ-Table. 𝑀𝑇 contains the matched
position of the nucleotides in BWT in the First Column and helps
the PIM platform to efficiently retrieve the values of 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ
in each iteration. As shown in Fig. 2b, the read searching operation
is mainly implemented through the presented 𝐵𝑜𝑢𝑛𝑑 (𝑀𝑇 , 𝑛𝑡, 𝑖𝑑)
procedure performed on BWT, which computes the updated inter-
val bound (either 𝑙𝑜𝑤 or ℎ𝑖𝑔ℎ) value from𝑀𝑇 with bucket width 𝑑
and input index-𝑖𝑑 . Such procedure is iteratively used in every step
of ‘for’ loop and our PIM platforms must be designed in a way to
handle such computation-intensive load through comparison and
summing the current ‘marker’ value with the occurrence counting
result of the needed nucleotides between checkpoint position and
remaining positions in BWT.

3 PIM ARCHITECTURES
The PIM accelerators are mainly developed on top of main mem-
ory architecture. To run the above discussed DNA exact algorithm
supporting backtracking with a hardware PIM platform, we use
the block level accelerator architecture shown in Fig. 3. It includes
BWT-based mapping based on iteratively-used Bound procedure
and SA and MT query as the crucial operations. A Digital Process-
ing Unit (DPU) is associated with the PIM platforms to control
the entire process through different steps. The DPU takes the ref-
erence genome-S and number of mismatches-𝑧 as the inputs and
accordingly adjusts the controller unit to govern timing and data
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Figure 3: The block level architecture of the presented PIM plat-
forms to support the alignment algorithm with backtracking.

flow of the alignment task. The index-low and index-high bound-
aries are initialized to the length of the reference DNA, 0 and 𝑁 ,
respectively. As mentioned earlier, the possible locations of the
suffixes candidate are indicated with the range of index-low and
index-high. The backtracking is then performed in each iteration
based on the discussed alignment algorithm. To implement the
Bound procedure totally within memory, we need three functions,
i.e. MEM (memory read), XNOR_Match (Comparison-XNOR2), and
IM_ADD (Addition-add), as highlighted in the algorithm and Fig.
3. MEM function is to access data in the saved MT or SA based on
the provided index. XNOR_Match is to conduct parallel in-memory
XNOR2 logic to determine if current input-𝑛𝑡 matches with BWT
elements stored in the whole word-line. IM_ADD is to conduct
32-bit integer (index range) addition operation within memory to
enable fast ‘marker+count_match’ computation without need to
send to other computing units. To reduce the computation load
by the down sampling scheme for reconstructing Occ. table, PIM
platforms exploit multiple XNOR_Match modules in parallel. Given
a 512×256 memory sub-array, 128-bps could be compared to maxi-
mize the query speed for 2-bit DNA bases. This will be elaborated
in Section 4.

Each MRAM chip is divided into multiple Banks. Banks within
the same chip typically share I/O, buffer and banks in different
chips working in a lock-step manner. Each bank consists of mul-
tiple memory matrices (mats) [23]. The general mat organization
of PIM accelerators is shown in Fig. 4a. Each mat consists of multi-
ple computational memory sub-arrays connected to a Global Row
Decoder (GRD) and a shared Global Row Buffer (GRB). Accord-
ing to the physical address of operands within memory, the PIM’s
Controller (Ctrl) is able to configure the sub-arrays to perform
data-parallel intra-sub-array computations. Moreover, every two
sub-arrays share a Local Row Buffer (LRB).

Fig. 4b depicts the PIM sub-array architecture based on SOT-
MRAM. This architecture mainly consists of Write Driver (WD),
Memory RowDecoder (MRD), Memory ColumnDecoder (MCD), re-
configurable Sense Amplifier (SA), and can be adjusted by Ctrl unit
to work in dual-mode that perform both memory write/read and
bit-line computing. SOT-MRAM device is a composite structure of
Spin Hall Metal (SHM) andMagnetic Tunnel Junction (MTJ) [24, 25].
The resistance of MTJ with parallel magnetization in both magnetic
layers (data-‘0’) is lower than that of MTJ with anti-parallel magne-
tization (data-‘1’). Each SOT-MRAM cell located in computational
sub-arrays is associated with the Write Word Line (WWL), Read

Word Line (RWL), Write Bit Line (WBL), Read Bit Line (RBL), and
Source Line (SL) to perform operations based on reconfigurability
of memory SAs. Here, we mainly discuss two designs based on
block level architecture called AlignS [16] and PIM-Aligner [21].

3.1 Design I: AlignS
The key idea to performmemory read and bit-line computing in our
PIM platforms (here, AlignS [16]) is to choose different thresholds
(references) when sensing the selected memory cell(s). The pre-
sented AlignS’s reconfigurable SA, as depicted in Fig. 4c, consists
of two sub-SAs and totally four reference-resistance branches that
can be selected by control bits (𝐶𝑀𝐴𝐽 ,𝐶𝐴𝑁𝐷2,𝐶𝑂𝑅2,𝐶𝑀𝑒𝑚) by the
sub-array’s Ctrl to realize the memory and computation schemes.
Later, the output is routed through two mux controllers (𝐶𝑚𝑢𝑥𝐼 and
𝐶𝑚𝑢𝑥𝐼𝐼 ) to either LRBout1 and LRBout2. Such reconfigurable SA
is especially optimized to accelerate two read alignment’s inten-
sive operations, i.e. 2-input XNOR and addition as well as typical
memory read operation. Therefore, there are only four available
control-bit sequences (shown in Fig. 4c) that provide an efficient
control circuitry for AlignS.

MEM: For memory read, a read current flows from the selected
cell to ground, generating a sense voltage (Vsense) at the input of
the second SA in Fig. 4c, which is compared with memory mode
reference voltage activated by 𝐶𝑀 (Vsense,P<Vref,M<Vsense,AP). If
the path resistance is higher (/lower) than 𝑅𝑀 (memory reference
resistance), i.e. 𝑅𝐴𝑃 (/𝑅𝑃 ), then the SA produces High (/Low) voltage
indicating logic ‘1’ (/‘0’). The idea of voltage comparison formemory
read is shown in Fig. 5a.

XNOR_Match: To realize XNOR2 in-memory logic, every two
bits stored in the identical column can be selected employing the
MRD [26] and sensed simultaneously, as depicted in Fig. 4b-top.
Then, the equivalent resistance of such parallel connected cells
and their cascaded access transistors are compared with two pro-
grammable references by SAs (𝑅𝐴𝑁𝐷 , 𝑅𝑂𝑅). Through selecting dif-
ferent reference resistances, the sub-SAs can perform basic 2-input
in-memory Boolean functions (i.e. AND2/NAND2 and OR2/NOR2), e.g.
to realize AND2 operation, 𝑅𝐴𝑁𝐷 is set at the midpoint of 𝑅𝐴𝑃//𝑅𝑃
(‘1’,‘0’) and 𝑅𝐴𝑃//𝑅𝐴𝑃 (‘1’,‘1’). Accordingly, as shown in 4c, we
formed a capacitive voltage divider after OR2 and NAND2 outputs
driving a CMOS inverter (with low-𝑉𝑡ℎ PMOS and high-𝑉𝑡ℎ NMOS)
to realize NAND2 function, thereby enabling a multi-kilobyte-wide
bitwise XNOR2 of two rows in AlignS’s sub-arrays. Note that, dual-
threshold technique can eliminate the leakage current through a
transistor, thereby decreasing leakage power consumption while
maintaining performance [27, 28]. The idea of voltage comparison
between Vsense and Vref to realize AND2/NAND2 and OR2/NOR2 is
shown on Fig. 5b.

IM_ADD: AlignS’s sub-array can perform addition/subtraction
(add/sub) operation quite efficiently. The carry-out of the full-adder
can be directly produced by MAJ3 function (Carry in Fig. 4c) just
by setting 𝐶𝑀𝐴𝐽 to ‘1’ in a single memory cycle. As shown in
Fig. 5c, to perform MAJ3 operation, 𝑅𝑀𝐴𝐽 is set at the midpoint of
𝑅𝑃//𝑅𝑃//𝑅𝐴𝑃 (‘0’,‘0’,‘1’) and 𝑅𝑃//𝑅𝐴𝑃//𝑅𝐴𝑃 (‘0’,‘1’,‘1’). Meanwhile,
the existing latch in LRB (Fig. 4c) is equipped with additional NOT
and XOR2 gates to first store intermediate carry outputs and then
perform the summation of next bits using two XOR2 gates (imple-
menting XOR3). Now, assume 𝐴, 𝐵, and 𝐶 operands (Fig. 4b), the 3-
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Figure 4: (a) The PIM memory organization, (b) Block level scheme of computational sub-array and SOT-MRAM realization, (c) AlignS’s re-
configurable SA [16], (d) PIM-Aligner’s reconfigurable SA [21].

and 2-input in-memory logic schemes can generate Carry(/Borrow)
and Sum (/Difference), respectively, in two consecutive cycles. The
Ctrl’s configuration for such add operation is shown in Fig. 4c.

3.2 Design II: PIM-Aligner
The PIM-Aligner’s reconfigurable SA [21], as depicted in Fig. 4d, con-
sists of three sub-SAs and totally four reference-resistance branches
that can be selected by enable control bits (𝐶𝐴𝑁𝐷3, 𝐶𝑀𝐴𝐽 , 𝐶𝑂𝑅3,
𝐶𝑀 ) by the sub-array’s Ctrl to realize the memory read and compu-
tation schemes, as tabulated in the table in Fig. 4d. Such reconfig-
urable SA could implement memory read and one-threshold based
logic functions only by activating one enable at a time e.g. by setting
𝐶𝐴𝑁𝐷3 to ‘1’, 3-input AND/NAND logic can be readily implemented
between operands located in the same bit-line.

MEM: The memory read operation is similar to that of Design I
in Fig. 5a.

XNOR_Match: PIM-Aligner’s SA exploits a unique circuit de-
sign that allows single-cycle implementation of XOR3 in-memory
logic. To realize XOR3 in-memory logic, every three bits stored
in the identical column can be selected employing the MRD [26]
and sensed simultaneously, as depicted in Fig. 4b-below. Then, the
equivalent resistance of such parallel connected cells and their cas-
caded access transistors are compared with three programmable
references by SAs (𝑅𝐴𝑁𝐷3, 𝑅𝑀𝐴𝐽 , 𝑅𝑂𝑅3). Through selecting these
reference resistances simultaneously, the sub-SAs can perform ba-
sic 3-input in-memory Boolean functions (i.e. AND3,MAJ, OR3). The
idea of voltage comparison between Vsense and Vref to realize these
functions is shown on Fig. 5c. After SA-unit, we used six control
transistors to realize XOR3 function. Assuming one row in memory
sub-array initialized to one, XNOR2 can be readily implemented in a

single memory cycle out of XOR3 function. Therefore, every mem-
ory sub-array can potentially perform XNOR_Match function in
DNA algorithm.

IM_ADD: The carry-out of the full-adder can be directly pro-
duced by MAJ function (Carry in Fig. 4d) just by setting 𝐶𝑀𝐴𝐽 to ‘1’
in a single memory cycle. Now, assume M1, M2, and M3 operands
(Fig. 4b-below), the PIM-Aligner can generate Carry-MAJ and Sum-
XNOR3 in-memory logics in a single memory cycle. The Ctrl’s con-
figuration for such add operation is tabulated in Fig. 4d.

Figure 5: Reference comparison to realize in-memory operations:
(a) Memory read, (b) 2-input operations in AlignS [16], (c) 3-input
operations in PIM-Aligner [21]. Note: MAJ function is applicable to
both PIM designs.

4 CORRELATED AND LOCALIZED
COMPUTATION

4.1 Partitioning
The pre-computed tables (BWT, MT, and SA) require a large mem-
ory space, therefore, to fully leverage AlignS and PIM-Aligner’s
parallelism, and maximize alignment throughput, we come up with
a partitioning, mapping and pipeline design. Given a BWT index
range, the accessed memory region ofMT and BWT could be readily
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Figure 6: (a) The PIM sub-array partitioning technique for comparison and addition operations, (b) Parallel comparison operation
(XNOR_Match), (c)MEM function to retrieve marker_add, (d) IM_ADD function with two methods.

predicted and computation could be localized if we store such cor-
related region into the same memory sub-array. The correlated data
partitioning and mapping methodology, as shown in Fig. 6, locally
stores correlated regions of BWT and MT vectors in the same mem-
ory sub-array to enable fully local computation (i.e. XNOR_Match
and IM_ADD completely within the same sub-array without inter-
bank/chip communication). To do it, each PIM sub-array (512×256)
is spilt into four zones to save four different data types, i.e. BWT,
CRef, MT, and reserved space for IM_ADD (Fig. 6a). First, 256 rows
are filled with the corresponding BWT, where each row stores up
to 128 bps (encoded by 2 bits). Besides, 4 nucleotide computational
reference vectors (CRef ) are initialized, in which each vector gives
one type of nucleotide with vector size of number of bits in one
word-line. CRef is designed to enable fully parallel match operation-
XNOR_Match. Next to it, the value of markers (MT) is check-pointed
every 𝑑 (=128) positions (one row), and vertically stored to keep the
size in check within the platform. Hence, 256 columns are allocated
for storing MT, each storing 4-byte value for bps (128-bit). After
partitioning, starting from the rightmost symbol in R, the Bound
procedure runs and returns low and high for next symbol.

4.2 Mapping and Computation
Considering current input nucleotide is 𝑇 and input index as 𝑖𝑑
(in Fig. 6b), AlignS and PIM-Aligner convert the BWT index into
the corresponding memory 𝑊𝐿 and 𝐵𝐿 addresses storing data
𝐵𝑊𝑇 [𝑖𝑑 − (𝑖𝑑 mod 𝑑)] to 𝐵𝑊𝑇 [𝑖𝑑]. Then, such bits and corre-
sponding CRef-𝑇 can implement the parallel comparison operations
(XNOR_Match). If the XNOR output is ‘1’ (a match is found), DPU’s
embedded counter counts up to eventually compute 𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑡𝑐ℎ

for next operation. Fig. 6b intuitively shows the XNOR_Match pro-
cedure to locate 𝑇 s in a sub-array. When counting is done, the sub-
array returns the 𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑡𝑐ℎ and marker address (𝑚𝑎𝑟𝑘𝑒𝑟_𝑎𝑑𝑑),
shown in Fig. 6c. The correlated data partitioning methodology
guarantees the read of𝑚𝑎𝑟𝑘𝑒𝑟 value (MEM) is always a local mem-
ory access within the samememory array (Fig. 6c). Now, the𝑚𝑎𝑟𝑘𝑒𝑟

and just computed and transposed 𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑡𝑐ℎ are buffered inMT
and reserved memory spaces, respectively, as shown in Fig. 6d.
To further implement IM_ADD function, we present two distinct
hardware-friendly methods; method-I performs the bit-line addi-
tion within the same computational sub-array based on in-memory
addition operation though it degrades the system performance as
other sub-array resources (MEM and XNOR_Match) are not used.

To alleviate this issue, method-II essentially duplicates the num-
ber of sub-arrays, where only in-memory addition computation is
transferred to a second sub-array.

5 PERFORMANCE EVALUATION
5.1 Evaluation Framework
To evaluate the performance of AlignS and PIM-Aligner, a com-
prehensive device-to-architecture evaluation framework with two
in-house simulators were developed. At the device level, we jointly
used the Non-Equilibrium Green’s Function (NEGF) and Landau-
Lifshitz-Gilbert (LLG) with spin Hall effect equations to model
SOT-MRAM bit-cell [24]. For the circuit level, a Verilog-A model of
2T1R SOT-MRAM device was developed to co-simulate with the
interface CMOS circuits in Cadence Spectre and SPICE. We used
45nm North Carolina State University (NCSU) Product Develop-
ment Kit (PDK) library in SPICE to analyze the presented design and
achieve the performance. Besides, we built an architectural-level
simulator on NVSim [29]. It can change the configuration files (.cfg)
corresponding to different array organization and report perfor-
mance for PIM operations based device/circuit level data. Then we
fed the performance data to a behavioral simulator based on Matlab
to calculate the latency and energy that each platform spends on
alignment task based on the algorithms. We perform an extensive
comparison with the counterpart computing platforms including
SW-based Darwin [7], ReCAM [30] and RaceLogic [6], as well as
FM-Index-based platforms including Soap3-dp [5] on GPU, FPGA
[9], ASIC [8], AligneR [3]. In the interest of limited space, we refer
the readership to the papers for the detailed configuration of each
accelerator. Note that, to perform short read alignment on GPU,
we used Soap3 [5] considering only reads with ≤2 mismatches. We
re-implemented, ReRAM-, SOT-MRAM, and CAMs with NVSim
[29]. For evaluation, we generated 10 million 100-bps short read
queries via ART simulator [31] and aligned them to the human
genome Hg19 with different computing platforms. Note that the
population variation and genome error rate were set to 0.1% and
0.2%.

5.2 Results
We report the estimated performance of short read alignment task
on our presented platforms compared with various acceleration so-
lutions in Table 1. From the throughput point of view, Race Logic [6]
and Darwin [7] platforms show the best performance compared to
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Table 1: Performance of short read alignment accelerators.
GPU ASIC FPGA AligneR Darwin Race ReCAM AlignS PIM-Aligner

Throughput (query/sec) 150K 379K 1.5M 483K 5.7M 8.3M 177K 4.7M 4.9M
Power (W) 393 3.1 247 1.86 442 97 6.6K 11.4 18.4

Throughput/Power (query/sec/W) 581.3 122K 6.1K 259.6K 12.8K 85K 26.81 412.28K 266K
Throughput/Power/Area (query/sec/W/m𝑚2) 0.39 547 0.42 7.2K 0.47 47 0.24 6.6K 4.83K

others. However, PIM-Aligner and then AlignS achieve the highest
throughput compared to others such as GPU, ASIC, FPGA, ReCAM,
and AligneR due to their massively-parallel and local computational
scheme. In terms of power consumption, we observe that ASIC de-
sign [8] and ReRAM-based AligneR [3] consume the least power
compared to other designs, where AlignS and PIM-Aligner stand as
the third- and fourth-best power-efficient design.

We further investigate the existing trade-offs between power,
throughput, and area Table 1. Such trade-off can be better under-
stood by correlated parameters as tabulated in Table 1. Based on
this table, we observe thatAlignS outperforms different accelerators
w.r.t. throughput/power. AlignS improves short read alignment’s
throughput per Watt by 4.8× over the best SW-based accelera-
tor, Race Logic [6], and ∼1.6×, 3.4×, 67.5× over AligneR [3], ASIC
[8], and FPGA [9] acceleration solutions, respectively. PIM-Aligner
achieves the second highest throughput/power ratio due to the
its intrinsic three SAs scheme compared with AlignS. Table 1 also
estimates throughput per power per area for various accelerators.
Considering the area factor, we observe thatAlignS and PIM-Aligner
can improve read alignment performance significantly over all the
other solutions except AligneR.AlignS improves the throughput per
Watt per𝑚𝑚2 by ∼12× compared to the ASIC accelerator. There-
fore, AlignS and PIM-Aligner’s parallel computing schemes can be
leveraged to accelerate short read alignment and provide ultra-high
internal bandwidth.

6 CONCLUSION
In this paper, we studied two promising Processing-in-Memory
(PIM) accelerators based on SOT-MRAM to run DNA short read
alignment task leveraging on an optimized and PIM-friendly align-
ment algorithm. Our cross-layer simulation results and comparison
show that such PIM platforms improve the alignment task through-
put per power per area compared to promising GPU, ASIC, FPGA,
and recent processing-in-ReRAM designs.
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