2020 IEEE 33rd International System-on-Chip Conference (SOCC) | 978-1-7281-8746-4/20/$31.00 ©2020 IEEE | DOI: 10.1109/S0CC49529.2020.9524770

Processing-in-Memory Accelerator for Dynamic
Neural Network with Run-Time Tuning of
Accuracy, Power and Latency

Li Yang, Zhezhi He, Shaahin Angizi and Deliang Fan
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
{lyang166, zhezhihe, sangizi, dfan}@asu.edu

Abstract—With the widely deployment of powerful deep neural
network (DNN) into smart, but resource limited IoT devices,
many prior works have been proposed to compress DNN in a
hardware-aware manner to reduce the computing complexity,
while maintaining accuracy, such as weight quantization, prun-
ing, convolution decomposition, etc. However, in typical DNN
compression methods, a smaller, but fixed, network structure
is generated from a relative large background model for re-
source limited hardware accelerator deployment. However, such
optimization lacks the ability to tune its structure on-the-fly to
best fit for a dynamic computing hardware resource allocation
and workloads. In this paper, we mainly review two of our
prior works [1], [2] to address this issue, discussing how to
construct a dynamic DNN structure through either uniform or
non-uniform channel selection based sub-network sampling. The
constructed dynamic DNN could tune its computing path to
involve different number of channels, thus providing the ability
to trade-off between speed, power and accuracy on-the-fly after
model deployment. Correspondingly, an emerging Spin-Orbit
Torque Magnetic Random-Access-Memory (SOT-MRAM) based
Processing-In-Memory (PIM) accelerator will also be discussed
for such dynamic neural network structure.

Index Terms—Processing-in-Memory, Dynamic neural network

I. INTRODUCTION

Recently, Artificial Intelligence, especially Deep Neural
Network (DNN), becomes the main stream intelligent data
processing technology due to its remarkable performance in
various domains, like image/video pattern recognition, nature
language processing, etc. [3]. However, to improve DNN
performance, it evolves into deeper, denser, wider network
architecture with rapidly growing network size and computing
complexity, which brings great challenge to deploy such pow-
erful technique into power-, size-, resource-limited computing
hardware, like IoT, embedded system, mobile phone, etc. To
address such issue, many prior works have been proposed
to compress DNN in a hardware-aware manner to reduce
the computing complexity, while maintaining accuracy, such
as weight quantization [4], [5], pruning [6], [7], convolution
decomposition [8], [9], etc.

In general, such model compression techniques need to
optimize for each individual target computing platform due to

This work is supported in part by the National Science Foundation under
Grant No0.2005209, No0.2003749, No.1931871 and Semiconductor Research
Corporation nCORE

their unique computing resources. Moreover, for one specific
computing hardware platform, after DNN model optimization
and compression, it generated a smaller, but fixed, network
structure from a relative large background model. However, the
real-word is dynamic, meaning that the computing hardware
platform is dynamic (e.g. high performance mode or low
battery mode, dynamic computing resource allocation, etc.),
as well as the working environment is dynamic (e.g. varying
workloads from streaming input data due to dynamic sensing
efforts or communication channels). Thus, it urges the need to
create a new dynamic DNN structure that could equip with the
ability to tune its structure on-the-fly to best fit for a dynamic
computing hardware resource allocation and workloads.

To address above challenge, in this paper, we mainly review
our two previous research works published in ASPDAC 20
and DAC’20 [1], [2] to summarize the construction of
dynamic neural network. [1] samples the multiple uniform
sub-nets from a large background super-net by adjusting the
channel-width ratio, which is fixed among all layers, as well
as leveraging knowledge distillation to improve accuracy of
each sub-net. Furthermore, [2] presents a non-uniform sub-
net selection method, inspired by an important observation
that different DNN layers may have different sensitivities
to capacity reduction. This observation has bee reported in
many prior works in model pruning [10]-[12] or Network
Architecture Search (NAS) [13]-[16]. In general, the overflow
of dynamic neural network can be divided into two successive
stages: Sub-nets generation and Fused sub-nets training [1],
[2], [17]. In the first step, multiple sub-nets are sampled from
a background model (aka. super-net). Two different sub-nets
sampling methods are discussed corresponding to uniform and
non-uniform sub-nets respectively. Then, the sampled sub-nets
are fused into a cross entropy loss function for multi-objective
optimizations to construct a dynamic neural network.

Moreover, in terms of DNN hardware accelerator design,
the traditional Von-Neumann computing architecture faces
large challenges in such data-/compute-intensive applications,
such as long memory access latency, significant congestion at
I/Os, limited memory bandwidth, huge data communication
energy and large leakage power consumption for storing
network parameters in volatile memory [1], [18]-[20]. To
address these challenges, accelerating DNN in a Processing-
in-Memory (PIM) platform is widely explored nowadays [1],

978-1-7281-8746-4/20/$31.00 ©2020 IEEE 117

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

Background Model

Sub-netl 0.25x iuh netN 0.5X 4
5] oo A Uniform '\
g I—l_’ Sub-nets
E—— i i
§ GEnElRtion _. Non-uniform _ _ _~»
< i :

l \

. ! 1

Channel index i ;
! 3]

i i

— i
.Sub-netl 0.25x Sub netN 0. 5x

Dynamlc Model

FuII net

[TTITT]
Dynam|c in Real-time

Figure 1: Overview of two-stage dynamic neural network framework for both uniform and non-uniform sub-nets sampling. In
the first stage, #V sub-nets are sampled from the background model with difference sizes by a sub-nets generator. Note that,
the weights of these sub-nets are partially shared according to the same weight channels utilization. Then in the followed
second step, fused sub-nets training helps to construct the full-size dynamic model. In the end, these #/N sub-nets can do
inference individually to achieve the complete trade-off among speed, power consumption and accuracy [1], [2].

[18], [21], [22]. The key idea of utilizing PIM to accelerate
DNN is to leverage the logic-in-memory design to directly
implement the required computation of DNN within mem-
ory, without relocating the large DNN model parameters
out of memory chip, leading to greatly reduced comput-
ing energy and latency. From device technology perspective,
there are many recent works carried out by the emerging
Non-Volatile Memories (NVM) that are promising to design
such PIM concept, for example, Resistive Random-Access
Memory (RRAM), Phase Change Memory (PCM), Spin-
Transfer Torque Magnetic Random-Access Memory (STT-
MRAM). Comparing with STT-MRAM, which is the leading
non-volatile memory candidate, Spin-Orbit Torque Magnetic
Random-Access-Memory (SOT-MRAM) not only improves
the write/read stability but also requires a much smaller
writing current due to strong spin-orbit coupling [23]. In this
review paper, the SOT-MRAM based PIM accelerator will be
discussed for the uniform dynamic neural network [1].

II. DYNAMIC NEURAL NETWORK

In this section, we first review the dynamic neural network
framework leveraging both uniform and non-uniform sampling
methods and then summarize the main experiment results. As
illustrated in 1, the general overflow of constructing dynamic
neural network consists of two stages:1) Sub-nets generation:
various sub-nets are sampled from the background model
with different sizes. Two sub-nets generation methods will be
discussed for uniform and non-uniform sub-nets respectively;
2) Fused sub-nets training: the sub-nets sampled form stage
1 will be constructed to a dynamic inference model, where
the overlapped weights are partially shared. To optimize the
dynamic model, these sub-nets are fused into a cross entropy
loss with multi-objectives optimization [17]. By doing so,
the dynamic model could switch between different sub-nets
for run-time trade-off between speed, power consumption and
accuracy.

A. Problem definition

Suppose that we have a neural network f(a; W) with L
layers, where « is the input data and W; is the weight

parameters with the size of RPX9*khxkw To perform the sub-
nets sampling, we also denote the sub-net-ith weight binary
mask as M;; € {0,1}P>*2*1x1 Thus, the overflow as shown
in Fig.1 can be formatted as:

Stage 1
N
i ﬁl 3 w;,-M i Lf ’
Wik, & (e - W)
st. R(Mg;) = R(My;) = ... = R(M_ ;) 1)

Stage 2: uniform
(M} = argmin £°(f (z; {W; - Myi}),y. \i, B;)

Stage 2: non-uniform

where N is the total number of sub-nets, and i € {1,..., N}
is the index of sub-nets. Note that, the weights are partially
shared for all sub-nets. For the uniform sub-nets generation,
R represents the channel-width ratio which is a fixed constant
among all layers. For the non-uniform alternative, we have
two hyper-parameters \; and 3;, which are utilized to adjust
model capacity during sub-nets sampling. £; is the general
loss function(i.e. cross-entropy) for sub-net-i, and L£* is the
loss with a weight penalty term to perform sampling. We will
discuss each stage in the two subsections below.

B. Sub-nets generation

1) Uniform sub-nets generation method: The channel-
width ratio is utilized as a factor for each layer to select sub-
net. All layers share the identical channel-width ratio (e.g.,
0.25x%, 0.5x) which is manually configured. For example, the
sub-net 0.5x sequentially selects half number of weight output
channels for all layers except the last one [1], [17].

2) Non-uniform sub-nets generation method: Different
from the uniform sub-nets generation, which simply selects
sub-nets by hand, the non-uniform dynamic neural network
utilizes optimized group Lasso-based regularization method,
named clipped Lasso [2], [7], to learn the sub-nets structures
as depicted in Eq.1.

Group Lasso-based regularization is a general technique for
structured pruning [12], which is a weight penalty term that

118

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

consistently acts on all the weights. Different from that, the
clipped group Lasso only works on the “important” weights
(larger magnitude) by utilizing an adaptive Weight Penalty
Clipping (WPC) as the countermeasure [2], which is:

L G

Lx = L(f(@; AW }1),) + A DY min(|[Wi]2 7)

=1 i=1
WPC

1 &
s.t. 7= B EZHWLZHQ
=1

2)
Where A is a scaling factor to adjust the weight penalty
strength. Through choosing different \;, multiple non-uniform
sub-nets with different model sizes can be generated [7].
Moreover, to avoid the weight penalty unnecessarily acts on all
weights, the adaptive threshold 7; is used to clip the penalty on
weights with larger Lo-norm ||W; ;||2. The clipping threshold
7 is calculated by mean of ||W);||2 with a scaling hyper-
parameter . Thus, during the training processing, the weight
penalty will be only added on the “important” weights, which
has larger Lo-norm ||W, ;||2 comparing with the threshold 7;.
Otherwise, the clipped group Lasso term will be treated as a
constant, where has no effect on backward propagation of the
corresponding weights.

C. Fused sub-nets training

After sampling multiple sub-nets from stage one, the fused
sub-net training is leveraged to fuse those sampled sub-
nets into a cross entropy loss function for multiple objective
optimizations (Eq.1). Fig. 1 shows the training processing.
Similar with multiple individual networks optimization, all
sub-nets go through the forward and backward to compute
their gradients. Then differently, these gradients are gathered
to update the weights once. In spite of the fact that the
computation complexity is increased in comparison with a
single network training scheme, the dynamic model frame-
work reduces the developer-costs of training these sub-nets
individually. Furthermore, it achieves the complete trade-off
among speed, power and accuracy in run-time for a trained
inference model. So, utilizing dynamic neural network, users
can adjust the model to the suitable sub-net according the
current hardware and environment requirements in real-time.
In addition, to avoid the effect on shared batch-norm layers,
we follow [17] to use independent batch-norm layers for each
sub-net.

The fused training scheme are slightly different between
uniform and non-uniform counterparts as shown in Fig. 2.
For uniform dynamic neural network training, knowledge
distillation [1], [24] is utilized to improve accuracy while
sacrificing the memory and computation cost. The main idea
behind it is to train sub-nets by mimicking a pretrained larger
model (teacher net as shown in Fig. 2(a)). In practice, the sub-
nets are not only learned by the general cross entropy loss
with data labels, but also by distilling knowledge from the
teacher network whose output is treated as soft label. On the
other hand, non-uniform fused training just computes a cross

entropy loss for all sampled sub-nets as shown in Fig. 2(b)

(2].
Teacher net
—
—
Dynamic Model —
—|
T 71)
= .
£) p H
..... 1 == — Forward
- Forward and
Sub-net 1 Sub-net N Backward
(a)
Sub-net 1
 I—
(]
Dynamic Model —

Dl |
1
1
&[]
1
1
1

<« = =" —» Forward
< Forward and
Subonet N Backward
(b)

Figure 2: Fused sub-nets training pipeline for (a) uniform [1]
and (b) non-uniform sub-nets [2].

D. Dynamic neural network evaluation

We perform the experiments for both uniform [1] and
non-uniform dynamic neural network [2] on CIFAR-10 [25]
and ImageNet [26] dataset using ResNet [27] architecture.
Extensive experiments analysis and ablation study have been
conducted in our prior works [1], [2]. Here we only show
important experimental results.

1) Uniform dynamic neural network: ResNet20 [27] is
tested on CIFAR-10 dataset. It compares with Slimmable
Neural Network (S-NN) [17], which also presents channel-
width based uniform dynamic neural network but without
utilizing knowledge distillation. Both methods have the same
configurations and are compared under the same model capac-
ity. Table I shows the accuracy results. To deploy the dynamic
model to our PIM platform later, instead of using full precision
(FP) model, both weight and activation are further quantized
into 8-bit and 16-bit with little accuracy degradation.

Width S-NN [17] Ours [1]
Network FP FP 16-bit 8-bit
1.0x 808 911 910 9Ll
0.75x 884 902 898 898
ResNet20 5 85.6 875 870 869
025x 795 810 807 806

Table I: Inference accuracy (%) of ResNet20 on CifarlO for
uniform dynamic neural network [1].

We further study the performance with ResNet50 on Im-
ageNet dataset. To prove the non-uniform sampling method,
[2] also does comparison with the single network which are
trained independently under the same sizes. As depicted in
Table II, the best accuracy is achieved on each model size.

119

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

Network Width I-NN S-NN [17] Ours [1] Params(MB)
1.0x 76.1 76.0 76.6 25.5
0.75x 74.7 74.9 754 14.7

ResNeS0 o5 720 721 724 6.9
0.25x 63.8 65.0 65.2 2.0

Table II: Inference accuracy (%) of ResNet50 on ImageNet
for uniform dynamic neural network [2].

2) Non-uniform dynamic neural network: Similar to the
experiments of uniform dynamic neural network, four non-
uniform sub-nets are sampled. The experiment results are
shown in Table. III. Non-uniform method achieves almost
the same or better accuracy in both individual and dynamic
networks, with even smaller number of parameters (10°) and
FLOPS (10%) of each sub-net, .

Sub-nets subnetl subnet2 subnet3 subnetd
Parameters 0.83 3.05 6.68 11.68
S-NN FLQPS 1.35 4.83 10.4 18.14
[17] Individual 499 61.1 66.7 69.7
Dynamic 48.7 60.9 66.6 69.4
Parameters 0.66 2.73 5.14 12.2
Ours FLOPS 0.89 3.97 7.17 19.8
2] Individual 50.1 62.6 66.9 71.4
Dynamic 48.4 61.8 66.8 69.8

Table III: Inference accuracy (%) of ResNetl8 on ImageNet
for non-uniform dynamic neural network [2].

III. BIT-WISE PIM ACCELERATOR

In this section, we present a Processing-in-Memory (PIM)
accelerator architecture for uniform dynamic neural net-
work [1]. The presented platform, as depicted in Fig 3a,
consists of image and kernel banks, computational memory
sub-arrays, and a Digital Processing Unit (DPU). DPU is
essentially composed of three components indicated by Active.
(Activation) Function, Quantizer (Qunt.), and Batch Normal-
ization (BN). A controller unit in every sub-array governs
and synchronize the platform to execute various DNNs layers.
The presented design is inspired by our preliminary works in
PIM domain mainly IMCE [22], CMP-PIM [19], and GraphS
[28]. Prior to the computation, Input feature maps (denoted by
I) and Kernels (W) are required to be stored in Image and
Kernel Banks as shown in Fig 3a. During the first computation
stage (1), W, kernels can be instantly quantized by DPU’s
Quantizer and then mapped into computational sub-arrays.
The PIM-enhanced sub-arrays are especially designed to take
the computational load and process it in parallel. During the
(2) and (3) stages, the sub-arrays with add-on shifter/counter
units execute feature extraction based on method explained
accordingly. Eventually, the DPU activates the feature maps
and generates the output (stage (4) in Fig 3a).
eSub-array architecture. Fig. 3b illustrates the processing in
memory sub-array architecture implemented by SOT-MRAM.
To realize a dual mode computation supporting both memory

Image Bank

------ e (Active.)
Compute | |

q

'

: Sub-arrays | |
|

e
(2) parallel
AND comput
cee

(4) activate.

Accelerator Units

(2) (b)

Figure 3: (a) MRAM accelerator platform, (b) Computational
sub-array design [1].

read/write and PIM operations, the sub-array is composed
of a Memory Row Decoder (MRD), a Memory Column
Decoder (MCD), a Write Driver (WD) and y configurable
Sense Amplifier (SA) (y € # of columns) by controller. SOT-
MRAM device is a composite device of a Magnetic Tunnel
Junction (MTJ) and a spin Hall metal (SHM). With MTJ as
the storage element, the parallel magnetization resistance in
both magnetic layers is shown by ‘0’ and is smaller than that
of anti-parallel magnetization resistance (‘1’). As shown in
Fig. 3b, a SOT-MRAM bit-cell is controlled by 5 signals,
namely Write Word Line (WWL), Write Bit Line (WBL),
Read Word Line (RWL), Read Bit Line (RBL), and Source
Line (SL). The computational sub-array implements bulk bit-
wise in-memory AND and addition operations between in-
memory operands with 2-row activation and 3-row activation

to respectively.
@ VSE

b dref
- R'g;z Vet H3

Canp3
Rmay Viepz
-||-
Cmaj @
Rm

0R2 ANi)Z

VepiVappVapap

Figure 4: The configurable SA to realize single cycle AND2
and addition operations, adapted from [1].

eBit-line computing: In the 2-/ 3-row activation PIM mech-
anism, MRD [29] activates two/three bits saved in the similar
column. Then the SA can simultaneously sense the connected
SOT-MRAM cells resistance within every bit-line. As shown

120

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

in Fig 4, the configurable Sense Amplifier (CSA), consists
of three sub-SAs and 5 reference resistors. The integrated
references are enabled by the controller through enable bits
(CM, COR.% CMAJ, CAND?” CAND2)~ The CSA is designed
to implement read operation and one-threshold logic opera-
tions such as (N)AND2/ (N)OR2/ (N)AND3/ (N)OR3/ by
enabling one control bit at a time. Besides, the CSA could
implement up to three logic operations at a same time realized
with its SAs. Such scheme is used to produce 2-threshold
logic operations such as XOR3/XNOR3. As shown in Fig 4,
the CSA works as follow: by injecting a very small current
Isense over the selected cells in the memory, a sense voltage
Visense 1S generated on the RBL that goes to the first input
of 3 sub-SAs as voltage comparator. At the same time, a
reference current (I,.r) is injected to reference resistance
branches to generate a V,.; at the second input of sub-
SAs. Depending on the enable bit configuration up to three
references could be selected. The CSA’s voltage comparison
idea between Vene and Vi to realize (N)AND2/ (N)OR2
is shown on Fig 4. For example, through selecting Ry and
Ranp2, the CSA respectively executes memory and 2-input
AND function. We’ll refer the readership to Ref. [1] to get
more information about reference tuning. Besides, the sub-
array implements single cycle add/sub operation leveraging
CSA. Comprehensive experiments on process variation of 2-
/3- row activation mechanisms have been performed in our
preliminary works [22], [28].

IV. HARDWARE EVALUATION RESULTS

In this section, we elaborate on the evaluation configuration,
then study the performance trade-off between the hardware
specifications (e.g., overhead, memory, energy) and accuracy.

A. Platform Setup

The PIM accelerator is configured with 256512 memory
sub-array and 512Mb total capacity adhered to an H-tree
routing fashion. We built a device to architecture evaluation
framework starting from the device modeling using Non-
Equilibrium Green Function (NEGF) and Landau-Lifshitz-
Gilbert (LLG) equation with spin Hall effect term [22], [30].
The we developed a Verilog-A model for 2T1R SOT-MTAM
cell and used it in Cadence Spectre to simulate it with other
CMOS circuitry. To estimate the circuit performance, we used
45nm NCSU PDK library [31]. Based on the results, we got
from circuit simulations, we extensively modified NVSim [32]
by presenting a particular PIM library at architecture level. The
simulator updates the configuration files (.cfg) w.r.t. various
memory array organization and the model size. We then
coded a behavioral simulator that calculates the latency and
energy parameters that the platform consumes to run the
uniform dynamic neural network. Additionally, we considered
a mapping optimization algorithm w.r.t. the resources to boost
the throughput. Here, we take the 8-bit quantized ResNet20
to run on the CIFAR-10 data-set.

B. Energy Consumption

In this subsection, we analyze and report the energy con-
sumption of the presented PIM platform emphasizing on two
intensive operations i.e. the bit-wise AND and write-back.
In this way, Fig. 5a depicts the break-down of number of
AND operations in various convolutional layers of ResNet20.
Similarly, the latency is proportional to the computation load.
Fig. 5b shows the estimated energy consumption of ResNet20
with various model sizes split into 4 regions namely: AND-
compute, AND-WB, bitcount-shift, and add operations. It is
worth pointing out that we plotted the energy consumption
of Bit-Counter and Shifter together in Fig. 5b. Based on the
figure, it can be observed that the number of PIM operations
and so energy consumption diminish as a result of presented
adaptive sub-array pruning technique. The presented technique
essentially eliminates the energy overhead of the the indolent
computational sub-arrays sacrificing the accuracy. Based on
our analysis, the energy consumption of 0.25x model reduces
by a factor of 2.7 as compared with the baseline PIM platform.

10°
3f -
) 4 250 [T AND-compute
= = [AND-WB
o < 200 [_bitcount-shift
[a)] o [add
z? 3
£150
2 2
B 5100
=1 o
e 3 50
o b
z 2
onv’ Lu
1.0x 0.75x 0.50x 0.25x |[=Fc 1.0x 0.75x 0.50x 0.25x

~
=3
~

Model Size

(a) Model Size

Figure 5: Break-down of (a) number of AND Ops to process
ResNet20’s convolutional layers w.r.t. model size, (b) Energy
consumption of the PIM design under various model sizes [1].

C. Memory Storage Requirement

Fig. 6 reports the PIM platform’s memory storage to execute
a full-precision and quantized (8-bit) ResNet20 model for
CIFAR-10 with various model sizes. We can see that by
adaptively tuning the channel-width, the memory storage is
different. In addition, Fig. 6 depicts the accuracy and the
memory storage trade-offs for the PIM design. In the figure,
for example 8:0.50x configuration represents 8-bit-quantized
ResNet20 with 0.50x as model size.

D. Area Overhead

We consider 3 important hardware cost sources to estimately
calculate the area overhead of the design. (1) The CSAs’ add-
on transistors connected to every BL. (2) The enhanced multi-
row activated MRD overhead; we edited all WL driver by
inserting two extra transistors in the memory decoder buffer.
(3) The overhead of Ctrl’s to handle CSA’s enable bits. We
consider area of the counter and shifter as a part of Ctrl
area. In general, the PIM platform incurs 7.9% overhead to
main memory die [1]). Fig. 7a reports such area overhead

121

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

o : : : : :
S 20 oi% 9
= 17MEB loo 3
0150 ot 2R
3 91.1% lgo =
S 4 0.45MB 89.8% 8
% 5
2 86 3
Q
80.5 83 <
(]
=0 80

32:1.0x

8:1.0x 8:0.75x 8:0.50x
Model Size

8:0.25x

Figure 6: The accuracy/memory storage trade-off in our PIM
platfrom for various model sizes [1]).

breakdown. In addition, in Fig. 7b, we profile the distribution
of area of the PIM components to run ResNet-20 for various
convolutional layers to process an image with various model
sizes. Besides, having various number of computational sub-
arrays, Fig. 7b shows the energy consumption by different
model sizes. According to this, we can clearly see how
effectively the presented adaptive sub-array pruning technique
could be leveraged to reduce the PIM platform’s power budget
through dynamically cutting down the sub-arrays.

N
iN
=)

1.0 220 2
.Ox =
7.9% =
200

g S

No.75x 180 &

n £

o) 160 >

g 2

9 0.5x 140 &

= o

120 >

o

o

0.25x 100 ©

[=

]

Y
3

Decoders &
add-on mux

0 20 40 60 80 100
No. Required Sub-arrays

(b)

(a)

Figure 7: (a) The area overhead pie-chart of the PIM design,
(b) Trade-off between energy consumption and area for various
model sizes [1]).

V. CONCLUSION

In this work, we explicitly review the method to construct
a dynamic neural network, which mainly includes two steps:
sub-nets generation and fused sub-nets training. Two different
sub-nets generation methods are presented, which are used
for the uniform and non-uniform dynamic neural networks
respectively. Moreover, in terms of the hardware acceleration,
we discuss a processing-in-MRAM platform for such neural
network to accelerate dynamic inference. In the end, the
performance trade-off between the hardware specification (e.g.
memory, energy, overhead) and accuracy is elaborated.

REFERENCES

[1] L. Yang et al., “A flexible processing-in-memory accelerator for dynamic
channel-adaptive deep neural networks,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC). 1EEE, 2020.

[5]

[6

=

[7]

[8]
[9

—

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]
[25]
[26]
[27]

(28]

[29]
(30]
[31]

[32]

122

L. Yang, Z. He, and D. Fan, “Non-uniform dnn structured subnets
sampling for dynamic inference,” 57th Design Automation Conference
(DAC), 2020.

Y. LeCun et al., “Deep learning,” nature, vol. 521, no. 7553, pp. 436—
444, 2015.

Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approximation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11438-11446.

I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 6869-6898, 2017.

S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” in /CLR’16.
L. Yang et al., “Harmonious coexistence of structured weight pruning
and ternarization for deep neural networks.” in AAAI, 2020, pp. 6623—
6630.

A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint:1704.04861, 2017.
M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018, pp. 4510-4520.

H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

D. Molchanov et al., “Variational dropout sparsifies deep neural net-
works,” in ICML. JMLR. org, 2017, pp. 2498-2507.

W. Wen et al., “Learning structured sparsity in deep neural networks,”
in NIPS, 2016, pp. 2074-2082.

B. Zoph et al., “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

C. Liu e al., “Progressive neural architecture search,” in ECCV, 2018,
pp. 19-34.

H. Liu et al., “Darts: Differentiable architecture search,” arXiv preprint
arXiv:1806.09055, 2018.

W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,” arXiv preprint arXiv:2007.09087, 2020.

J. Yu et al, “Slimmable neural networks,”
arXiv:1812.08928, 2018.

P. Chi et al., “Prime: A novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 27-39, 2016.

S. Angizi, Z. He et al., “Cmp-pim: an energy-efficient comparator-based
processing-in-memory neural network accelerator,” in Proceedings of the
55th Annual Design Automation Conference. ACM, 2018, p. 105.

K. Ni et al., “Ferroelectric ternary content-addressable memory for one-
shot learning,” Nature Electronics, vol. 2, no. 11, pp. 521-529, 2019.
S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
MICRO, 2017.

S. Angizi et al., “Imce: energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in Proceedings of the 23rd ASP-DAC.
Z. He, S. Angizi, and D. Fan, “Accelerating low bit-width deep convolu-
tion neural network in mram,” in 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 1EEE, 2018, pp. 533-538.

G. Hinton et al., “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR. leee, 2009, pp. 248-255.

K. He et al., “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE CVPR, 2016, pp. 770-778.

S. Angizi et al., “Graphs: A graph processing accelerator leveraging
sot-mram,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 378-383.

S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC, 2016.
X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, 2016.
(2011) Ncsu eda freepdk45. [Online].
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15-50.

arXiv preprint

Available:

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

