
Processing-in-Memory Accelerator for Dynamic
Neural Network with Run-Time Tuning of

Accuracy, Power and Latency

Li Yang, Zhezhi He, Shaahin Angizi and Deliang Fan
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA

{lyang166, zhezhihe, sangizi, dfan}@asu.edu

Abstract—With the widely deployment of powerful deep neural
network (DNN) into smart, but resource limited IoT devices,
many prior works have been proposed to compress DNN in a
hardware-aware manner to reduce the computing complexity,
while maintaining accuracy, such as weight quantization, prun-
ing, convolution decomposition, etc. However, in typical DNN
compression methods, a smaller, but fixed, network structure
is generated from a relative large background model for re-
source limited hardware accelerator deployment. However, such
optimization lacks the ability to tune its structure on-the-fly to
best fit for a dynamic computing hardware resource allocation
and workloads. In this paper, we mainly review two of our
prior works [1], [2] to address this issue, discussing how to
construct a dynamic DNN structure through either uniform or
non-uniform channel selection based sub-network sampling. The
constructed dynamic DNN could tune its computing path to
involve different number of channels, thus providing the ability
to trade-off between speed, power and accuracy on-the-fly after
model deployment. Correspondingly, an emerging Spin-Orbit
Torque Magnetic Random-Access-Memory (SOT-MRAM) based
Processing-In-Memory (PIM) accelerator will also be discussed
for such dynamic neural network structure.

Index Terms—Processing-in-Memory, Dynamic neural network

I. INTRODUCTION

Recently, Artificial Intelligence, especially Deep Neural

Network (DNN), becomes the main stream intelligent data

processing technology due to its remarkable performance in

various domains, like image/video pattern recognition, nature

language processing, etc. [3]. However, to improve DNN

performance, it evolves into deeper, denser, wider network

architecture with rapidly growing network size and computing

complexity, which brings great challenge to deploy such pow-

erful technique into power-, size-, resource-limited computing

hardware, like IoT, embedded system, mobile phone, etc. To

address such issue, many prior works have been proposed

to compress DNN in a hardware-aware manner to reduce

the computing complexity, while maintaining accuracy, such

as weight quantization [4], [5], pruning [6], [7], convolution

decomposition [8], [9], etc.

In general, such model compression techniques need to

optimize for each individual target computing platform due to

This work is supported in part by the National Science Foundation under
Grant No.2005209, No.2003749, No.1931871 and Semiconductor Research
Corporation nCORE

their unique computing resources. Moreover, for one specific

computing hardware platform, after DNN model optimization

and compression, it generated a smaller, but fixed, network

structure from a relative large background model. However, the

real-word is dynamic, meaning that the computing hardware

platform is dynamic (e.g. high performance mode or low

battery mode, dynamic computing resource allocation, etc.),

as well as the working environment is dynamic (e.g. varying

workloads from streaming input data due to dynamic sensing

efforts or communication channels). Thus, it urges the need to

create a new dynamic DNN structure that could equip with the

ability to tune its structure on-the-fly to best fit for a dynamic

computing hardware resource allocation and workloads.

To address above challenge, in this paper, we mainly review

our two previous research works published in ASPDAC’20

and DAC’20 [1], [2] to summarize the construction of

dynamic neural network. [1] samples the multiple uniform
sub-nets from a large background super-net by adjusting the

channel-width ratio, which is fixed among all layers, as well

as leveraging knowledge distillation to improve accuracy of

each sub-net. Furthermore, [2] presents a non-uniform sub-

net selection method, inspired by an important observation

that different DNN layers may have different sensitivities

to capacity reduction. This observation has bee reported in

many prior works in model pruning [10]–[12] or Network

Architecture Search (NAS) [13]–[16]. In general, the overflow

of dynamic neural network can be divided into two successive

stages: Sub-nets generation and Fused sub-nets training [1],

[2], [17]. In the first step, multiple sub-nets are sampled from

a background model (aka. super-net). Two different sub-nets

sampling methods are discussed corresponding to uniform and

non-uniform sub-nets respectively. Then, the sampled sub-nets

are fused into a cross entropy loss function for multi-objective

optimizations to construct a dynamic neural network.

Moreover, in terms of DNN hardware accelerator design,

the traditional Von-Neumann computing architecture faces

large challenges in such data-/compute-intensive applications,

such as long memory access latency, significant congestion at

I/Os, limited memory bandwidth, huge data communication

energy and large leakage power consumption for storing

network parameters in volatile memory [1], [18]–[20]. To

address these challenges, accelerating DNN in a Processing-

in-Memory (PIM) platform is widely explored nowadays [1],

978-1-7281-8746-4/20/$31.00 ©2020 IEEE 117

20
20

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l S

ys
te

m
-o

n-
Ch

ip
 C

on
fe

re
nc

e
(S

O
CC

) |
 9

78
-1

-7
28

1-
87

46
-4

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SO
CC

49
52

9.
20

20
.9

52
47

70

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

Background Model

Sub-net1 0.25x

Fused sub-
nets training

Dynamic Model

Sub-netN 0.5x

Full-net

Dynamic in Real-time

Channel index

la
ye

r i
nd

ex

Non-uniform

Sub-net1 0.25x Sub-netN 0.5x
UniformSub-nets

Generation

Figure 1: Overview of two-stage dynamic neural network framework for both uniform and non-uniform sub-nets sampling. In

the first stage, #N sub-nets are sampled from the background model with difference sizes by a sub-nets generator. Note that,

the weights of these sub-nets are partially shared according to the same weight channels utilization. Then in the followed

second step, fused sub-nets training helps to construct the full-size dynamic model. In the end, these #N sub-nets can do

inference individually to achieve the complete trade-off among speed, power consumption and accuracy [1], [2].

[18], [21], [22]. The key idea of utilizing PIM to accelerate

DNN is to leverage the logic-in-memory design to directly

implement the required computation of DNN within mem-

ory, without relocating the large DNN model parameters

out of memory chip, leading to greatly reduced comput-

ing energy and latency. From device technology perspective,

there are many recent works carried out by the emerging

Non-Volatile Memories (NVM) that are promising to design

such PIM concept, for example, Resistive Random-Access

Memory (RRAM), Phase Change Memory (PCM), Spin-

Transfer Torque Magnetic Random-Access Memory (STT-

MRAM). Comparing with STT-MRAM, which is the leading

non-volatile memory candidate, Spin-Orbit Torque Magnetic

Random-Access-Memory (SOT-MRAM) not only improves

the write/read stability but also requires a much smaller

writing current due to strong spin-orbit coupling [23]. In this

review paper, the SOT-MRAM based PIM accelerator will be

discussed for the uniform dynamic neural network [1].

II. DYNAMIC NEURAL NETWORK

In this section, we first review the dynamic neural network

framework leveraging both uniform and non-uniform sampling

methods and then summarize the main experiment results. As

illustrated in 1, the general overflow of constructing dynamic

neural network consists of two stages:1) Sub-nets generation:
various sub-nets are sampled from the background model

with different sizes. Two sub-nets generation methods will be

discussed for uniform and non-uniform sub-nets respectively;

2) Fused sub-nets training: the sub-nets sampled form stage

1 will be constructed to a dynamic inference model, where

the overlapped weights are partially shared. To optimize the

dynamic model, these sub-nets are fused into a cross entropy

loss with multi-objectives optimization [17]. By doing so,

the dynamic model could switch between different sub-nets

for run-time trade-off between speed, power consumption and

accuracy.

A. Problem definition

Suppose that we have a neural network f(x;W) with L
layers, where x is the input data and Wl is the weight

parameters with the size of Rp×q×kh×kw. To perform the sub-

nets sampling, we also denote the sub-net-ith weight binary

mask as Ml,i ∈ {0, 1}p×q×1×1. Thus, the overflow as shown

in Fig.1 can be formatted as:

Stage 1︷ ︸︸ ︷
min

{Wl}L
l=1

N∑
i=1

Li

(
f(x; {Wl · Ml,i}Ll=1),y

)

s.t. R(M0,i) = R(M1,i) = ... = R(ML,i)︸ ︷︷ ︸
Stage 2: uniform

{Ml,i}Ll=1 = argminL∗(f(x; {Wl · Ml,i}),y, λi, βi)︸ ︷︷ ︸
Stage 2: non-uniform

(1)

where N is the total number of sub-nets, and i ∈ {1, ..., N}
is the index of sub-nets. Note that, the weights are partially

shared for all sub-nets. For the uniform sub-nets generation,

R represents the channel-width ratio which is a fixed constant

among all layers. For the non-uniform alternative, we have

two hyper-parameters λi and βi, which are utilized to adjust

model capacity during sub-nets sampling. Li is the general

loss function(i.e. cross-entropy) for sub-net-i, and L∗ is the

loss with a weight penalty term to perform sampling. We will

discuss each stage in the two subsections below.

B. Sub-nets generation

1) Uniform sub-nets generation method: The channel-

width ratio is utilized as a factor for each layer to select sub-

net. All layers share the identical channel-width ratio (e.g.,

0.25×, 0.5×) which is manually configured. For example, the

sub-net 0.5× sequentially selects half number of weight output

channels for all layers except the last one [1], [17].

2) Non-uniform sub-nets generation method: Different

from the uniform sub-nets generation, which simply selects

sub-nets by hand, the non-uniform dynamic neural network

utilizes optimized group Lasso-based regularization method,

named clipped Lasso [2], [7], to learn the sub-nets structures

as depicted in Eq.1.

Group Lasso-based regularization is a general technique for

structured pruning [12], which is a weight penalty term that

118

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

consistently acts on all the weights. Different from that, the

clipped group Lasso only works on the “important” weights

(larger magnitude) by utilizing an adaptive Weight Penalty

Clipping (WPC) as the countermeasure [2], which is:

L∗ = L(f(x; {Wl}Ll=1),y) + λ

L∑
l=1

Gl∑
i=1

min
(||Wl,i||2; τl

)
︸ ︷︷ ︸

WPC

s.t. τl = β · 1

Gl

Gl∑
i=1

||Wl,i||2
(2)

Where λ is a scaling factor to adjust the weight penalty

strength. Through choosing different λi, multiple non-uniform

sub-nets with different model sizes can be generated [7].

Moreover, to avoid the weight penalty unnecessarily acts on all

weights, the adaptive threshold τl is used to clip the penalty on

weights with larger L2-norm ||Wl,i||2. The clipping threshold

τl is calculated by mean of ||Wl,i||2 with a scaling hyper-

parameter β. Thus, during the training processing, the weight

penalty will be only added on the “important” weights, which

has larger L2-norm ||Wl,i||2 comparing with the threshold τl.
Otherwise, the clipped group Lasso term will be treated as a

constant, where has no effect on backward propagation of the

corresponding weights.

C. Fused sub-nets training

After sampling multiple sub-nets from stage one, the fused

sub-net training is leveraged to fuse those sampled sub-

nets into a cross entropy loss function for multiple objective

optimizations (Eq.1). Fig. 1 shows the training processing.

Similar with multiple individual networks optimization, all

sub-nets go through the forward and backward to compute

their gradients. Then differently, these gradients are gathered

to update the weights once. In spite of the fact that the

computation complexity is increased in comparison with a

single network training scheme, the dynamic model frame-

work reduces the developer-costs of training these sub-nets

individually. Furthermore, it achieves the complete trade-off

among speed, power and accuracy in run-time for a trained

inference model. So, utilizing dynamic neural network, users

can adjust the model to the suitable sub-net according the

current hardware and environment requirements in real-time.

In addition, to avoid the effect on shared batch-norm layers,

we follow [17] to use independent batch-norm layers for each

sub-net.

The fused training scheme are slightly different between

uniform and non-uniform counterparts as shown in Fig. 2.

For uniform dynamic neural network training, knowledge

distillation [1], [24] is utilized to improve accuracy while

sacrificing the memory and computation cost. The main idea

behind it is to train sub-nets by mimicking a pretrained larger

model (teacher net as shown in Fig. 2(a)). In practice, the sub-

nets are not only learned by the general cross entropy loss

with data labels, but also by distilling knowledge from the

teacher network whose output is treated as soft label. On the

other hand, non-uniform fused training just computes a cross

entropy loss for all sampled sub-nets as shown in Fig. 2(b)

[2].

Input

Dynamic Model

Forward and
Backward

+ Loss

Sub-net N

Forward

Teacher net

Sub-net 1

(a)

Input

Dynamic Model

Sub-net 1

Forward and
Backward

+ Loss

Sub-net N

Forward

(b)

Figure 2: Fused sub-nets training pipeline for (a) uniform [1]

and (b) non-uniform sub-nets [2].

D. Dynamic neural network evaluation

We perform the experiments for both uniform [1] and

non-uniform dynamic neural network [2] on CIFAR-10 [25]

and ImageNet [26] dataset using ResNet [27] architecture.

Extensive experiments analysis and ablation study have been

conducted in our prior works [1], [2]. Here we only show

important experimental results.

1) Uniform dynamic neural network: ResNet20 [27] is

tested on CIFAR-10 dataset. It compares with Slimmable

Neural Network (S-NN) [17], which also presents channel-

width based uniform dynamic neural network but without

utilizing knowledge distillation. Both methods have the same

configurations and are compared under the same model capac-

ity. Table I shows the accuracy results. To deploy the dynamic

model to our PIM platform later, instead of using full precision

(FP) model, both weight and activation are further quantized

into 8-bit and 16-bit with little accuracy degradation.

Network
Width S-NN [17] Ours [1]

FP FP 16-bit 8-bit

ResNet20

1.0× 89.8 91.1 91.0 91.1

0.75× 88.4 90.2 89.8 89.8

0.5× 85.6 87.5 87.0 86.9

0.25× 79.5 81.0 80.7 80.6

Table I: Inference accuracy (%) of ResNet20 on Cifar10 for

uniform dynamic neural network [1].

We further study the performance with ResNet50 on Im-

ageNet dataset. To prove the non-uniform sampling method,

[2] also does comparison with the single network which are

trained independently under the same sizes. As depicted in

Table II, the best accuracy is achieved on each model size.

119

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

Network Width I-NN S-NN [17] Ours [1] Params(MB)

ResNet50

1.0× 76.1 76.0 76.6 25.5

0.75× 74.7 74.9 75.4 14.7

0.5× 72.0 72.1 72.4 6.9

0.25× 63.8 65.0 65.2 2.0

Table II: Inference accuracy (%) of ResNet50 on ImageNet

for uniform dynamic neural network [2].

2) Non-uniform dynamic neural network: Similar to the

experiments of uniform dynamic neural network, four non-

uniform sub-nets are sampled. The experiment results are

shown in Table. III. Non-uniform method achieves almost

the same or better accuracy in both individual and dynamic

networks, with even smaller number of parameters (106) and

FLOPS (108) of each sub-net, .

Sub-nets subnet1 subnet2 subnet3 subnet4

S-NN

[17]

Parameters 0.83 3.05 6.68 11.68

FLOPS 1.35 4.83 10.4 18.14

Individual 49.9 61.1 66.7 69.7

Dynamic 48.7 60.9 66.6 69.4

Ours

[2]

Parameters 0.66 2.73 5.14 12.2

FLOPS 0.89 3.97 7.17 19.8

Individual 50.1 62.6 66.9 71.4

Dynamic 48.4 61.8 66.8 69.8

Table III: Inference accuracy (%) of ResNet18 on ImageNet

for non-uniform dynamic neural network [2].

III. BIT-WISE PIM ACCELERATOR

In this section, we present a Processing-in-Memory (PIM)

accelerator architecture for uniform dynamic neural net-

work [1]. The presented platform, as depicted in Fig 3a,

consists of image and kernel banks, computational memory

sub-arrays, and a Digital Processing Unit (DPU). DPU is

essentially composed of three components indicated by Active.

(Activation) Function, Quantizer (Qunt.), and Batch Normal-

ization (BN). A controller unit in every sub-array governs

and synchronize the platform to execute various DNNs layers.

The presented design is inspired by our preliminary works in

PIM domain mainly IMCE [22], CMP-PIM [19], and GraphS

[28]. Prior to the computation, Input feature maps (denoted by

I) and Kernels (W) are required to be stored in Image and

Kernel Banks as shown in Fig 3a. During the first computation

stage (1), W , kernels can be instantly quantized by DPU’s

Quantizer and then mapped into computational sub-arrays.

The PIM-enhanced sub-arrays are especially designed to take

the computational load and process it in parallel. During the

(2) and (3) stages, the sub-arrays with add-on shifter/counter

units execute feature extraction based on method explained

accordingly. Eventually, the DPU activates the feature maps

and generates the output (stage (4) in Fig 3a).

•Sub-array architecture. Fig. 3b illustrates the processing in

memory sub-array architecture implemented by SOT-MRAM.

To realize a dual mode computation supporting both memory

I1[31] I1[30] I1[29] I1[2] I1[1] I1[0]
I2[31] I2[30] I2[29]

I1[[2[[]]2
I2[2]

I1[[1[[]]
I2[1]

I1[[0[]]0
I2[0]

W1[31] W1[30] W1[29] W1[2] W1[1] W1[0]
W2[31] W2[30] W2[29]

W1WW [[2[[]]2
W2[2]

W1WW [[1[]]
W2[1]

W1WW [[0[]]0
W2[0]

Kernel Bank

Image Bank

(1) mapping weights Active.
BN

Qunt.

DPU

Conv (I,W)

(4) activate.

#1

Output fmaps

Ctrl (2) parallel
 AND compute.

#N

Ctrl

bias

Qunt.
Activate.

BN

DPU

Compute.
Sub-arrays

Ac
ce

le
ra

to
r U

ni
ts

Qunt.
Activate.

BN

DPU

Compute.
Sub-arrays

Ac
ce

le
ra

to
r U

ni
ts

Ctrl

#2

 5
12

 ×
 2

56

 5
12

 ×
 2

56

 5
12

 ×
 2

56

MCD

M
R

D

SA

WD
A A

Ct
rl

B

MCD

M
R

D

SA

WD
A A

Ct
rl

B

C

M
R

D

MCD
V1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M
R

D

MCD
V1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

Count

Shift

PSum

Count

Shift

PSum

Count

Shift

PSum

(3) bitcount
&

 shift

Figure 3: (a) MRAM accelerator platform, (b) Computational

sub-array design [1].

read/write and PIM operations, the sub-array is composed

of a Memory Row Decoder (MRD), a Memory Column

Decoder (MCD), a Write Driver (WD) and y configurable

Sense Amplifier (SA) (y ∈ # of columns) by controller. SOT-

MRAM device is a composite device of a Magnetic Tunnel

Junction (MTJ) and a spin Hall metal (SHM). With MTJ as

the storage element, the parallel magnetization resistance in

both magnetic layers is shown by ‘0’ and is smaller than that

of anti-parallel magnetization resistance (‘1’). As shown in

Fig. 3b, a SOT-MRAM bit-cell is controlled by 5 signals,

namely Write Word Line (WWL), Write Bit Line (WBL),

Read Word Line (RWL), Read Bit Line (RBL), and Source

Line (SL). The computational sub-array implements bulk bit-

wise in-memory AND and addition operations between in-

memory operands with 2-row activation and 3-row activation

to respectively.

RAND2

RAND3

Vsense

RNOR3

RM

Iref

Sum

CM

CNOR3

CAND3

CAND2

Isense

V1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

WWL1

T1

T2
Cout

RMAJ

CMAJ

VP,P VAP,PVAP,AP

AND2OR2

Vsense

RM
1

R1
Ise

ns
e

RM
2

R2

SA

RA
N
D
2

Ire
f

Vref

Figure 4: The configurable SA to realize single cycle AND2

and addition operations, adapted from [1].

•Bit-line computing: In the 2-/ 3-row activation PIM mech-

anism, MRD [29] activates two/three bits saved in the similar

column. Then the SA can simultaneously sense the connected

SOT-MRAM cells resistance within every bit-line. As shown

120

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

in Fig 4, the configurable Sense Amplifier (CSA), consists

of three sub-SAs and 5 reference resistors. The integrated

references are enabled by the controller through enable bits

(CM, COR3, CMAJ, CAND3, CAND2). The CSA is designed

to implement read operation and one-threshold logic opera-

tions such as (N)AND2/(N)OR2/(N)AND3/(N)OR3/ by

enabling one control bit at a time. Besides, the CSA could

implement up to three logic operations at a same time realized

with its SAs. Such scheme is used to produce 2-threshold

logic operations such as XOR3/XNOR3. As shown in Fig 4,

the CSA works as follow: by injecting a very small current

Isense over the selected cells in the memory, a sense voltage

Vsense is generated on the RBL that goes to the first input

of 3 sub-SAs as voltage comparator. At the same time, a

reference current (Iref) is injected to reference resistance

branches to generate a Vref at the second input of sub-

SAs. Depending on the enable bit configuration up to three

references could be selected. The CSA’s voltage comparison

idea between Vsense and Vref to realize (N)AND2/(N)OR2
is shown on Fig 4. For example, through selecting RM and

RAND2, the CSA respectively executes memory and 2-input

AND function. We’ll refer the readership to Ref. [1] to get

more information about reference tuning. Besides, the sub-

array implements single cycle add/sub operation leveraging

CSA. Comprehensive experiments on process variation of 2-

/3- row activation mechanisms have been performed in our

preliminary works [22], [28].

IV. HARDWARE EVALUATION RESULTS

In this section, we elaborate on the evaluation configuration,

then study the performance trade-off between the hardware

specifications (e.g., overhead, memory, energy) and accuracy.

A. Platform Setup

The PIM accelerator is configured with 256×512 memory

sub-array and 512Mb total capacity adhered to an H-tree

routing fashion. We built a device to architecture evaluation

framework starting from the device modeling using Non-

Equilibrium Green Function (NEGF) and Landau-Lifshitz-

Gilbert (LLG) equation with spin Hall effect term [22], [30].

The we developed a Verilog-A model for 2T1R SOT-MTAM

cell and used it in Cadence Spectre to simulate it with other

CMOS circuitry. To estimate the circuit performance, we used

45nm NCSU PDK library [31]. Based on the results, we got

from circuit simulations, we extensively modified NVSim [32]

by presenting a particular PIM library at architecture level. The

simulator updates the configuration files (.cfg) w.r.t. various

memory array organization and the model size. We then

coded a behavioral simulator that calculates the latency and

energy parameters that the platform consumes to run the

uniform dynamic neural network. Additionally, we considered

a mapping optimization algorithm w.r.t. the resources to boost

the throughput. Here, we take the 8-bit quantized ResNet20

to run on the CIFAR-10 data-set.

B. Energy Consumption

In this subsection, we analyze and report the energy con-

sumption of the presented PIM platform emphasizing on two

intensive operations i.e. the bit-wise AND and write-back.

In this way, Fig. 5a depicts the break-down of number of

AND operations in various convolutional layers of ResNet20.

Similarly, the latency is proportional to the computation load.

Fig. 5b shows the estimated energy consumption of ResNet20

with various model sizes split into 4 regions namely: AND-

compute, AND-WB, bitcount-shift, and add operations. It is

worth pointing out that we plotted the energy consumption

of Bit-Counter and Shifter together in Fig. 5b. Based on the

figure, it can be observed that the number of PIM operations

and so energy consumption diminish as a result of presented

adaptive sub-array pruning technique. The presented technique

essentially eliminates the energy overhead of the the indolent

computational sub-arrays sacrificing the accuracy. Based on

our analysis, the energy consumption of 0.25× model reduces

by a factor of 2.7 as compared with the baseline PIM platform.

1.0x 0.75x 0.50x 0.25x
Model Size

0

1

2

3

N
o.

 B
it-

W
is

e
AN

D
 O

ps

109
Conv1
Conv2
Conv3
Conv4
Conv5
Conv6
Conv7
Conv8
Conv9
Conv10
Conv11
Conv12
Conv13
Conv14
Conv15
Conv16
Conv17
Conv18
Conv19
FC 1.0x 0.75x 0.50x 0.25x

Model Size

0

50

100

150

200

250

En
er

gy
 C

on
su

m
pt

io
n

(
 J

)

AND-compute
AND-WB
bitcount-shift
add

(b)(a)

230.4 J

2.7x

83.8 J

Figure 5: Break-down of (a) number of AND Ops to process

ResNet20’s convolutional layers w.r.t. model size, (b) Energy

consumption of the PIM design under various model sizes [1].

C. Memory Storage Requirement

Fig. 6 reports the PIM platform’s memory storage to execute

a full-precision and quantized (8-bit) ResNet20 model for

CIFAR-10 with various model sizes. We can see that by

adaptively tuning the channel-width, the memory storage is

different. In addition, Fig. 6 depicts the accuracy and the

memory storage trade-offs for the PIM design. In the figure,

for example 8:0.50x configuration represents 8-bit-quantized

ResNet20 with 0.50x as model size.

D. Area Overhead

We consider 3 important hardware cost sources to estimately

calculate the area overhead of the design. (1) The CSAs’ add-

on transistors connected to every BL. (2) The enhanced multi-

row activated MRD overhead; we edited all WL driver by

inserting two extra transistors in the memory decoder buffer.

(3) The overhead of Ctrl’s to handle CSA’s enable bits. We

consider area of the counter and shifter as a part of Ctrl

area. In general, the PIM platform incurs 7.9% overhead to

main memory die [1]). Fig. 7a reports such area overhead

121

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

32:1.0x 8:1.0x 8:0.75x 8:0.50x 8:0.25x
Model Size

0

0.5

1

1.5

2
M

em
or

y
St

or
ag

e
(M

B)

80

83

86

89

92

95

Ac
cu

ra
cy

 (%
)91.1%

1.7MB

91.1%
0.45MB 89.8%

0.3MB
86.9%
0.16MB 80.6%

0.07MB

Figure 6: The accuracy/memory storage trade-off in our PIM

platfrom for various model sizes [1]).

breakdown. In addition, in Fig. 7b, we profile the distribution

of area of the PIM components to run ResNet-20 for various

convolutional layers to process an image with various model

sizes. Besides, having various number of computational sub-

arrays, Fig. 7b shows the energy consumption by different

model sizes. According to this, we can clearly see how

effectively the presented adaptive sub-array pruning technique

could be leveraged to reduce the PIM platform’s power budget

through dynamically cutting down the sub-arrays.

0 20 40 60 80 100
No. Required Sub-arrays

0.25x

0.5x

0.75x

1.0x

M
od

el
 S

iz
e

80

100

120

140

160

180

200

220

240

En
er

gy
 C

on
su

m
pt

io
n

(
 J

)

(a) (b)

Figure 7: (a) The area overhead pie-chart of the PIM design,

(b) Trade-off between energy consumption and area for various

model sizes [1]).

V. CONCLUSION

In this work, we explicitly review the method to construct

a dynamic neural network, which mainly includes two steps:

sub-nets generation and fused sub-nets training. Two different

sub-nets generation methods are presented, which are used

for the uniform and non-uniform dynamic neural networks

respectively. Moreover, in terms of the hardware acceleration,

we discuss a processing-in-MRAM platform for such neural

network to accelerate dynamic inference. In the end, the

performance trade-off between the hardware specification (e.g.

memory, energy, overhead) and accuracy is elaborated.

REFERENCES

[1] L. Yang et al., “A flexible processing-in-memory accelerator for dynamic
channel-adaptive deep neural networks,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2020.

[2] L. Yang, Z. He, and D. Fan, “Non-uniform dnn structured subnets
sampling for dynamic inference,” 57th Design Automation Conference
(DAC), 2020.

[3] Y. LeCun et al., “Deep learning,” nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[4] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approximation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11 438–11 446.

[5] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[6] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” in ICLR’16.

[7] L. Yang et al., “Harmonious coexistence of structured weight pruning
and ternarization for deep neural networks.” in AAAI, 2020, pp. 6623–
6630.

[8] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint:1704.04861, 2017.

[9] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018, pp. 4510–4520.

[10] H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

[11] D. Molchanov et al., “Variational dropout sparsifies deep neural net-
works,” in ICML. JMLR. org, 2017, pp. 2498–2507.

[12] W. Wen et al., “Learning structured sparsity in deep neural networks,”
in NIPS, 2016, pp. 2074–2082.

[13] B. Zoph et al., “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[14] C. Liu et al., “Progressive neural architecture search,” in ECCV, 2018,
pp. 19–34.

[15] H. Liu et al., “Darts: Differentiable architecture search,” arXiv preprint
arXiv:1806.09055, 2018.

[16] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,” arXiv preprint arXiv:2007.09087, 2020.

[17] J. Yu et al., “Slimmable neural networks,” arXiv preprint
arXiv:1812.08928, 2018.

[18] P. Chi et al., “Prime: A novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[19] S. Angizi, Z. He et al., “Cmp-pim: an energy-efficient comparator-based
processing-in-memory neural network accelerator,” in Proceedings of the
55th Annual Design Automation Conference. ACM, 2018, p. 105.

[20] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-
shot learning,” Nature Electronics, vol. 2, no. 11, pp. 521–529, 2019.

[21] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
MICRO, 2017.

[22] S. Angizi et al., “Imce: energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in Proceedings of the 23rd ASP-DAC.

[23] Z. He, S. Angizi, and D. Fan, “Accelerating low bit-width deep convolu-
tion neural network in mram,” in 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2018, pp. 533–538.

[24] G. Hinton et al., “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

[25] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[26] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR. Ieee, 2009, pp. 248–255.

[27] K. He et al., “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE CVPR, 2016, pp. 770–778.

[28] S. Angizi et al., “Graphs: A graph processing accelerator leveraging
sot-mram,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 378–383.

[29] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC, 2016.

[30] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, 2016.

[31] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[32] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

122

Authorized licensed use limited to: ASU Library. Downloaded on September 18,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

