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1. Introduction

Affine Kac-Moody Lie algebras[10] are a class of infinite-dimensional Lie algebras
which play a central role in representation theory and conformal field theory. Given a
finite-dimensional complex Lie algebra with invariant form (g,!,"), the corresponding
affine Lie algebra §j is a central extension of the loop algebrag[z,z '] =g ® C[z z ]

by a one-dimensionalcenter Ck. It is well-known (seee.g.[7]) that for eachK € C, the
vacuum module

Vi () = Ind . Ck

(where §* =g[ zZ] ® Ck < b, and Cx denotesits one-dimensional representation on
which the first summand acts trivially and k acts by K) has the structure of a vertex
algebra. The representation theory of § and Vi (§) are inextricably linked - Vk (4) picks
out interesting categoriesof representationsof §, and provides tools for studying these.
Vk () can also be realized geometrically on a smooth complex curve X (see[2,4,7]), and
tied closelyto the geometry of the moduli spaceBun g(X) of principal G-bundleson X.

More generally, for a commutative C-algebra R, one can consider the Lie algebra
gr =g ®c R, and its universal central extensionfz. The caseR = C[ z, z~ '] corresponds
to the affine Kac-Moody algebra,and when R=C[ z*', Z;,- - - Z'], br is known asthe
(n+ 1)-toroidal algebra.lt is a natural question whether one can associateto bz a vertex
algebra analogousto Vi (4), and if so,whether it hasa “geometric” realization. Our goal
in this paper is to showthat the answeris affirmative in the casewhen R = A[z, z~ '] for
a commutative C-algebra A. Connections betweentoroidal algebrasand vertex algebras
have also been explored in [1,6,14,16].

When R = A[z, z '], b contains a subalgebra g;, corresponding to non-negative
powersof z. By analogy with the affine case,we may form the induced module

V(br) :=Ind %7 C
Y
where C denotes the trivial representation of §. We prove the following:

Theorem .1(Theorem 2.9 and Proposition 2.10). When R = A[z,z='], V(br) has the
structure of a vertex algebra. Moreover, this structure is functorial in A.

The bulk of the paper is devoted to giving a geometric realization of V(fg) in the
language of factorization algebras,which we briefly recall.
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1.1. (Pre)factorization algebras

The formalism of (pre)factorization algebras was developedby Kevin Costello and
Owen Gwilliam in [4] to describethe algebraic structure of observablesin quantum field
theory, as well as their symmetries. Roughly speaking, a prefactorization algebra F on
a manifold X assignsto eachopen subset U c Xa cochaincomplex F (U), and to each
inclusion

U'Uy' - "V
of disjoint open subsetsU; of V, a map

my T F(U) e e (G (5 R V) M

subject to some natural compatibility conditions. If F is the prefactorization algebra
of observablesin a quantum field theory, the cohomology groups H'(F (U)) can be in-
terpreted as the observablesof the theory on U as well as their (higher) symmetries.
This structure is reminiscent of a multiplicative cosheaf,and just as in the theory of
sheaves/cosheaves gluing axiom distinguishes factorization algebrasfrom mere prefac-
torization algebras.

An important sourceof prefactorization algebrasare factorization envelopingalgebras.
Let L be a fine sheafof dg (or L, algebras)on X. Denoting by L. the cosheafof
compactly supported sectionsof L, we have maps

697:1 I—c(Ui) =~LC(U1 (R W)U') Lc(w (2)

for disjoint opens U, < V, where the map on the right is extension by 0. Applying the
functor C-® of Chevalley chainsto (2) yields maps

®Ly C° (Lo(U)) (2 €% (Le(V))
The argument just sketchedshowsthat the assignment

U (> € (Le(U) )

definesa prefactorization algebra. It is called the factorization enveloping algebraof |
and denoted UL.

Costello-Gwilliam showedthat there is a closerelationship betweena certain classof
prefactorization algebrason X = C and vertex algebras. The following result from [4]
(paraphrasedfor the sakeof brevity) is central to our construction:

Theorenmt.2([4], Theorem 5.3.3). Let F be a unital, §'-equivariant, holomorphically
translation invariant prefactorization algebraon C satisfying certain natural conditions.
Then the vector space
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V(F):=  H*F(C) (4)
ez

has the structure of a vertex algebra, where F () (C) denotes the |-th eigenspaceof S in
F (C).

1.2. Prefactorization algebrasfrom holomorphic fibrations

In this paper we construct prefactorization algebrasstarting with two piecesof data:

* A locally trivial holomorphic fibration 7 : E » X of complex manifolds with fiber
F.
* A Lie algebra(g,!, ") with invariant bilinear form.

We begin with a sheafof dg Lie algebras(DGLA’s) on X

g = (9 ® 702,79
with bracket
e al fA=[J Ne a A BJ Jeg o B c.02"
g hasan L, central extensiony, whoseunderlying complex of sheavess of the form
b =9 ©® K,
with K, a certain three-term complex. Our prefactorization algebrais
= C.° (Yre),

where by, denotesthe cosheafof sectionswith compact support. This is an instance of
the factorization envelopingalgebra asin Equation (3) described above.

When F is a smooth affine complex variety, and £ = X X Fis atrivial fibration, we
obtain a chain of inclusions of factorization envelopingalgebras

Gﬁ,’% c Ggc Frg
correspondingto the inclusion of sheavesof DGLA’s
9o H(F ) ey . Jc@en(Fa) ey, dcg

which extendsto the central extensions.Here, Oa’g denotesthe sheafof algebraic func-
tions on F.

When X =C (and E is necessarilytrivial), we may attempt to extract from Gé’,’i a
vertex algebra using Theorem 1.2. Our main result is the following:
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Theorem.3(Theorem 5.2). Let F bea smoothcomplexaffine variety, and - C xF >
C the trivial fibration with fiber F. Then

(1) The toroidal prefactorization algebraogfg satisfies the hypothesesof Theorem 1.2.
(2) The vertex algebra V(Gg’/g) is isomorphic to the toroidal vertex algebra \/(fz), with
R= HY(F.OF)[t t']

We may view theseresults as follows. When X is a (arbitrary) Riemann surface,and
p € Xa point, we may choosea coordinate z centeredat p, and a local trivialization of
E near p. The cohomology prefactorization algebra H*(F - ¢) is then locally modeled by
the vertex algebra V(br) via the denseinclusion Gi’gg c Frg.

Most of the work in this paper goesinto proving Theorem 1.3, which involves two
main steps. First, we verify that the various technical hypothesesof Theorem 1.2 are
satisfied. The secondstep is a somewhat lengthy direct calculation following the ap-
proach taken in [19] for the Virasoro factorization algebra and in [4] (Section 5.5.5)
for the affine factorization algebra. This involves constructing explicit representativesin
H*(G;i’%), and verifying that operator product expansionsmatch those of V(fr), where
R= HY(F, 0%t t].

1.3. Outline of paper

In section 2 we recall universal central extensions,the construction of 7, and vertex
algebras. We construct an L,, model of §r which is later used to build our prefac-
torization algebra F , 4. We also show how to associateto the algebra R = A[z, z "],
where A is a commutative C-algebra, a vertex algebra generalizing the affine vacuum
module. Our later geometric construction will be a special caseof this. In section 3 we
recall somebasicfacts about prefactorization algebras.The construction of Fy , and the
related prefactorization algebra cg,’g happensin section4. Finally, in section (5) we con-
sider the special casewhen X = C, and prove Theorem 1.3 usingthe approach outlined
above.

Acknowledgments2. would like to thank Kevin Costello and Owen Gwilliam for
patiently answeringa number of questionsand making severalvaluable suggestions.He
also gratefully acknowledgesthe support of a Simons Collaboration Grant No. 359558
during the courseof this project. B.W. was partially supported by the National Science
Foundation Award DMS-1645877.

2. Liealgebraandvertexalgebras

We begin by recalling some aspects of toroidal Lie algebras, then move towards a
slight variant that will be useful for our purposes.



6 M. Szczesny et al. / Advances in Mathematics 386 (2021) 107799

2.1. Central extensions

Let g be a complex Lie algebra equipped with an invariant bilinear form !, «". Also,
fix a commutative C-algebra R. Then, g5 := g ®¢ R carriesa natural complexLie algebra
structure with bracket

[Jor,de §=[J NN rs

where J, J%€ gand r,s € R It is shown by Kassel[11] that there exists a universal
central extension of the form

0> H3°(gr) » Yr > gr > 0.
Furthermore, when g is simple and !+, " the Killing form, there is an isomorphism of the
Lie algebrahomology H2(gr) £ QL/dR whereQ}, is the R-module of Kahler differentials
of R/Cand d: R » Q is the universal derivation. The bracket on
br = g® R anL/dR, (5)

is given by

[Jorie 3=[J N® rs+ \J, Mrds

=[J, S1® rs+ %!J, J¥(rds — sdr

where @ denotes the classof w € Qf in QL/dR. We will find the secondform of the
central cocyclemore convenientto use.

Exampl@.1.let n > 0 be an integer. An important classof examplesis obtained by
taking

R=C[t, - 2T}

This is the algebra of functions on the (n + 1)-dimensional algebraic torus.
When n =0, the vector spacaﬂ}q/d/? is one-dimensionalwith an explicit isomorphism
given by the residue

Res : OL/dR =-C.

The resulting Lie algebra bz is the ordinary affine Kac-Moody algebra usually denoted
by §. For n > 1, the vector spaceQL/dR is infinite dimensional. Indeed, let us denote
ki = t,-‘1dz‘,-. The spaceQL/dR is generatedover the ring C[t§1,. . .t51] by the symbols
ko,. . .k, subject to the relation
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#
m,»t{)""- . 'nmfk,‘:O
i=0

where (mo,. . .my) is any n-tuple of integers. The Lie algebra §r is called the (n+ 1)-
toroidal Lie algebra associatedto g.

It will be useful for us to have a model for the Lie algebrays asan L., algebra. We
recall the definition (seeSection 3.2.3 of [12], or Section 10.1.6 of [15] for instance).

Definitio2.2.An L, structure on a graded vector spaceh is the data of cohomological
degree1 coderivation D of the cofreecocommutative coalgebra

Sym(h[1])
o %,
satisfying D =0. Wemay write D= " __, I, where
Im :h®™ > h[2— m
and the /s are extendedto the symmetric coalgebraas coderivations.

Given such a squarezero coderivation D the cochain complex

C. (9) = (Sym(h[1])), D

is called the Chevalley-Eilenbergchain complex.In what follows, we usually denote the
differential by D = dce .

An ordinary Lie algebracorrespondsto the casewhere/,, =0 for m& 2, and /; is the
Lie bracket. For an ordinary Lie algebra, the differential dgz is given on generators by
dce (xy) =[x, y1. In this case,the complex computes Lie algebra homology with trivial
coefficients.

The linear dual of C- (h) is

% &
Glie ()= Sym(h*[-1]), dce

Here, dfc is the linear dual of the map dce . This cochaincomplex computesLie algebra
cohomologyof h with ftrivial coefficients.

Suppose(M, dy ) is a cochain complexwith the structure of an h-module. This means
that underlying graded vector space M has an h-module structure and this h-action
commuteswith the differential dy . Then, the complex

% &
Gle (M) = Sym(h'[-1)® M .dce + du + Gy
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is defined. Here, the additional differential dyu encodesthe module structure, for a
precise formula we refer to [15]. This complex computes the Lie algebra cohomology
H*(h; M) of h with coefficientsin M.

If M is a trivial module, concentrated in cohomological degree zero, then it is a
standard fact that cohomologyclassesn H?(h; M) correspond to central extensionof h
by M. Similarly, if M is a trivial dg h-module, then degreetwo cocyclesin G/, (h; M)
give rise to extensionsof h by M asan L,, algebra.

We return to the Lie algebrabg. The L., model for the central extensionamounts to
replacing the vector spaceQ}/dR appearing asthe central term by the cochain complex

Kp = Ker( d[2] » A[1] 2.

Just as the Lie algebra br is a central extensionof gz =g ® Rby the trivial module
Q'/dR, the L., model weto construct is a central extensionof gg by the cochaincomplex
K g, thought of as a trivial dg module for gg.

The central extensionis determined by a cocyclein the Chevalley-Eilenberg cochain
complex

% &
Clie (R, Kr)= Sym(gg[-1]) ® Kg, dce + dk

of total degreetwo. Here dce is the Chevalley-Eilenberg differential for gz and ok is
the differential induced from the differential on the complex Kpg.
The cocycleis of the form ¢ = ¢/9 + ¢!" where

R (9r)®? > Qp
(J® yo (e §(» i, J'rds — sdr

and

@0 (9r)®3 > R
(Jo Fyo (S 3 (" | (= 3!J, JI, J*st

Lemma.3.The functional ¢ definesa cocyclein C*(gr,Kpg) of total degreetwo.

Proof.The differential in the cochain complex C*(gg,Kg)is of the form dgg +dk
where dis the de Rham differential defining the complex Kz, and dge is the Chevalley-
Eilenberg differential encoding the Lie bracket of gg. It is immediate that ok ¢/ =

0, dee ¢® =0by the Jacobi identity for g and invariance of the pairing !*, «", and
ak @9 + dge ¢!V =0 by direct calculation. Thus (dce + dk )@ =0 as desired. !

The cocycle ¢ definesan L., central extension

Kr = br = 05
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As a vector space,gg =g r ® Kg, and the L., operations are definedby '1 =d, ', =
[ 1gs + ¢V, and '3 = ¢f9 . The following is immediate from our definitions:

Lemma.4.There is an isomorphism of Lie algebrasH*(gg, '1) = bg-
Proof.The cohomologyof gz is concentratedin degreezero, and isomorphic to
gr © /'P(KR):g,q @Q}q/d/’?

as a vector space.Our definition of ¢ implies that

@O(J & e (e §)= %u, J'(rds — sdr= rds mod dR
sothat the resulting Lie bracket is the sameasthat of gg. !

2.2. Vertex algebras

We proceedto briefly recall the basicsof vertex algebrasand discussan important
classof examples,which will later be constructed geometrically via factorization algebras.
We refer the reader to [7,9] for details.

DefinitioR.5.A vertex algebra(V, 0", 7, Y) is a complex vector spaceV/ along with the
following data:

A vacuumvector [0" € V.

*A linear map 7: V » V (the translation operator).

. A$ linear map Y(—,2) : V = End(V)!z*'" (the vertex operator). We write Y(v, 2) =
A} z" where A}, € End( V).

neZ

satisfying the following axioms:

«For all v, v*e Vthere existsan N 1 0 suchthat A%v*=0for all n > N. (This says
that Y(v, 2) is a field for all v).

* (vacuum axiom) Y(|0",2) =id v and Y(v,2)|0 € w zV!Z' forall v € V

* (translation) [T, Y(v,2)] = &, Y(v, 2) for all v € VMoreover T (" = 0.

* (locality)  For all v, v*e V, there exists N 1 0 such that

(z = WIY(v, 3, XVi W=0

in End(V)! z*1, w1,
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In order to prove that a given (V, |0", 7, Y) forms a vertex algebra, the following
“reconstruction” or “extension” theorem is very useful. It showsthat any collection of
local fields generatesa vertex algebrain a suitable sense.

Theore.6(7], [5]). Let v bea complexvector spaceequippedvith: an element|0" € W
a linear gap T:V > V, asetof vectors (g% .5 c Vindexedby a set 5, and fields
AS(2) = " L, ASZT 1 for eachs ¢ Ssuchthat:

«For allse S AS(2)|0"e &+ z\V12"

* TQ"=0and [T, A%(2)] = 2;A%(2);

+ AS(z) are mutually local;

-and V is spannedby (A% - - - SA 0] as the js range over negativeintegers.

Then, the data (v, |0", T, Y) defines @ unique vertex algebrasatisfying

Y(&®, 3= A°(2).

Remark.7.The version stated above appearsin [5], and is slightly more generalthan
the version stated in [7].

2.3. The vertex algebras /() and V(bg)

A number of vertex algebras are constructed from vacuum representations of affine
Lie algebrasand their generalizations.We proceedto review the vertex algebrastructure
on the affine Kac-Moody vacuum module V(§) and extend the construction to vacuum
representationsof bz, where R = A[t, t~ '] for someC-algebra A.

2.31. v(y)

Let = g[t t '] @ Ck be the affine Kac-Moody algebra, §* = g[ #] denote the positive
sub-algebra,and C denote the trivial representationof §j* . For J €g, denote J ® % by
Jn,and 1€ Chby |0".

It is well-known (seefor instance [7]) that the induced vacuum representation

V(b):=Ind {, C:= U(l) ®ugin C

has a C[k]-linear vertex algebra structure, which is generated,in the senseof the above
reconstruction theorem, by the fields

. . #
J(2):= Y(J 40", 3= Jiz 1,

neZ

where {J'} is a basisfor g. These satisfy the commutation relations
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V2, Jm1=[J, SIwmsz — w+ WJ', S" Ko,z — W
where
#
Nz — w= 2w

The translation operator T is determined by the properties
TO=0,[T, 4l= —nJp_+.

RemarkR.8.The construction aboveproducesa genericversion of the affine Kac-Moody
vacuum module, in the sensethat kis not specializedto be a complex number. In the
vertex algebra literature one typically specifiesa level K € C, and defines

Vic (8) :=1nd ¥ o0 C-

where C denotesthe one-dimensionalrepresentation of g[f]® Ck on which the first factor
acts by 0 and k acts by K. We have an isomorphism

V(g)1 2 Vk(9)

where / is the vertex ideal generatedby K| 0" — k|0". V(g) can therefore be viewed as a
family of vertex algebrasover spec(C[k]), with fiber Vi (g) at k= K.

2.3.2. The generalizedtoroidal vertex algebra

In this sectionwe generalizethe construction of the affine Kac-Moody vacuummodule
aboveto the Lie algebra g, for R = A[t, t~'], where A is a commutative C-algebra.
The construction specializesto V(f) for A =C.

Let A be a commutative C-algebra, R = A[t t '] := A® C[t t '], and bg the Lie
algebra (5). We have a Lie subalgebra

br =9 ® Afl® Q) 4/dA[f] ] ba.

Let
V(bg) := Ind gf C (6)

where C denotes the trivial representation of f. Our goal is to define the structure of
a vertex algebraon V(bg).

The vacuum vector is simply |0" :=1 € C. The fields of the vertex algebra split into
three classesand are defined as follows.
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#

Ju(2)=YJ o ut'|0", 3:=  (Jo ut)z" T, (7)
neZ
#

Kya(2):= Y(t Tudll0", 3= (ut"™ d)z", (8)
r#ez

K@= Yt l0", 3= ("a)z" " (9)
neZ

whereJ €g,ue Aw €Q).
The commutation relations betweenthesefields are easily checkedio be

[Ji(2). $(w)]= ([J1, Flav(w) + 1J7, J"Kwudv(w)) Xz — W
+1J7, F'K o (W)owdz — W (10)

with all other commutators 0.
The operator T, correspondingto the Lie derivative L_;,, is defined by

TQ=0.[T Je uf]= —ns'® uf ', [T, ufdl= —nft " 'at. [T ."t]= —nt" "o,

Theorer.9.7he abovefield assignments,togetherwith T equip \/(4z) with the structure
of a vertex algebra.

Proof.We begin by checking that the field assignment above is well-defined. This
amounts to verifying that Y(d(t~'u)|0", 2) = 0. We have

Y(t 'aul0", 3 — Xf f2udt0", 3
Y(t 'aulo", 3— XIT ., fudf|o", 3
Y(t 'aul0", 3 - aY(t 'udt0", 3

Y(dt '), 3

# #
= ("du+ nt" 'z = A'uyz"'=0
n n

To obtain the structure of a vertex algebra, we apply the reconstruction Theorem 2.6
to V(br) and the fields {Ju(z),Kude(z), Ki1o(2)) for J €g,fe A w €. The only
nontrivial axiom to checkis mutual locality for the J(2)-fields, which follows from the
explicit commutator (10). !

2.4. Someproperties of /(fgr)

The map sendinga C-algebra A to V(bg), with R = A[t, t~'] hasa number of pleasing
properties. While theseare not usedin the remainder of this paper, they are simple to
establish and useful for the study of the representationtheory of V(br) and its conformal
blocks, which we plan to pursuein future work.
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Denote by C — Alg the category of commutative C-algebrasand Vert the category of
vertex algebras.We have the following result:
PropositioR.10.7he map
C-Alg » Vert
A (> Wagee-1)

defines a functor.

Proof.\We must checkthat a homomorphism of C-algebras y: A & B inducesa vertex
algebra homomorphism 1 : V(Baree-17) > V(bspi:-11)- We begin by constructing a Lie
algebra homomorphism

Yibape-11 2 Yspe-1-

Recall that a C-algebra homomorphismo: R < Sinducesa map on Kahler differentials
(as vector spaces)o. : Qr > Qs given by o.(rdr”y = ofr)do(r’), which sendsexact
elementsto exact elements,inducing a map

oy Qr/dR » Qs/dS

Extending v : A » B to a homomorphism (abusively also denoted y) vy : A[t t'] »
B[t t '], and taking o= w yields a map

Wit Qapr-11/0ALL £ Qppye-1/dB L 1]
Now, v : Bar-1) @ Yspee-1) is defined by
WJut" + o) = Jp(u)t"+ y.o whered €9, U € Ao EQupy-1/dATL ]
and easily checkedto be a Lie algebra homomorphism. Finally,

v V(Bage-1) » Vs -1)

may be defined on the generating fields J,(2), KudTp, K1, in the obvious way by:

, #
Y(Ju(2) = (J® quthz ",

neZ

WKy (D)= Ky ey (D= (U™ 'd)z ",

neZ

. #
w(Kt”w(Z)) = Kw*(t*1o))(z) = (tnw*w)zini

neZ

1
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whereue A w €Q4. One easily checksthat

W[Ju(2), L)) = WJu(2)), WJAW)],

which showsthat z'p respectsthe only non-trivial OPE among the generating fields. It
follows that z',u is a vertex algebra homomorphism. !

If A is any C-algebra, we may apply this result to the structure map C > A, to
obtain:

Corollarg.11.7he structure map C » A inducesan embeddingof vertex algebras

V() > V(Bag-1)-

Remark.12As explained in Remark 2.8, we have

Vk (9) 2 V(bBeree -1/

where Vx (g) denotes the “usual” affine vacuum module at level K € C, and / is the
vertex ideal generatedby k|0" — K[0". When K & —h" (where hY denotesthe dual Cox-
eter number of g), Vk(g) is a conformal vertex algebra with conformal Segal-Sugawara
vector

1 #

= ) 1 ) 1 "
S K+ (Ji® th(Jie 0",

where {J;} %, an orthonormal basis of g with respectto the invariant pairing !, *". It
follows that when K & —h", S definesa conformal vector in V(fay:;-11)// * where /*is
the vertex ideal generatedby 2 (0" — K|0".

As another consequencef Proposition 2.10, we note that any algebra automorphism
y: A > Ainducesa vertex algebra automorphism of V(fa;-1):

Corollar®.13.There is a natural group homomorphism
AUt( A) - AUt( V(gA[i,t*1]))
vy
3. (Pre)factorizatialgebraandexamples

In this section we recall basic notions pertaining to pre-factorization algebras. We
refer the reader to [4] for details.
Let X be a smooth manifold, and €® a symmetric monoidal category.
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Definitio8.1.A prefactorization algebraF on X with valuesin €® consists of the
following data:

« for eachopen U = M an object F (U) € C®,
« for eachfinite collection of pairwise disjoint opens U;,. . .U, and an open V con-
taining every U;, a morphism
U1 1“. ,Un -
my tF(U) e - - - &) > F(V), (11)

and satisfying the following conditions:

« composition is associative,sothat the triangle

;o F(Ty) )
F(V)

commutes for any disjoint collection { U;} contained in V, and disjoint collections

[Tjljc Uy
*the morphisms m‘,ﬁ wUn - are equivariant under permutation of labels, so that the

triangle

F(Une - &) * F(Un) ® =+ &)
F(V)

commutesfor any o € S.

In this paper, wewill take the target category C® to be Vect, dg-Vect, or their smooth
enhancementsDVS described below.

Remarl8.2.A factorization algebra isa prefactorization algebra satisfying a descent(or
gluing) axiom with respectto a classof specialcoverscalled Weisscovers.As Theorem 1.2
connecting the Costello-Gwilliam formalism to vertex algebras does not require this
axiom, it will not play a role in this paper. We refer the interested readerto [4] for more
details on descent..

Exampl8.3([4], Section3.2). Given an associativealgebra over C, one can construct a
prefactorization algebraF 4 in Vect on R by declaring F 4(/) = A for a connectedopen
interval / c R, and defining the structure mapsin terms of the multiplication on A. For
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instance,if / =(a,b,J=(cd,K =(ef), with e<a< b< c< d< f, the structure
map is

Fa(l)® Fa(J) (> Fa(K)
a® b (> ab

F 4 hasthe property that it is /ocally constant, in the sensethat if / c /*are connected
intervals, then F4(/) (® Fa(/% is an isomorphism. It is shownin Section 3.2 of [4] that
locally constant prefactorization algebrason R in Vect correspondpreciselyto associative
algebras.

Prefactorization algebrascan be pushedforward under smooth maps as follows. Sup-
posef : X (= Yis a smooth map of smooth manifolds, and F a prefactorization algebra
on X. One then definesthe prefactorization algebra f.F on Y by

f.F(U) = F(f-'(U))

The structure maps of 7.F are defined in the obvious way.
If F, G are prefactorization algebrason X with valuesin €®, then a morphism ¢ :
F - Gis the data of maps

gu - F(U) » G(U) € Home. (F (U), GU))
for eachopen U < X compatible with all structure maps (11).

3.1. Prefactorization envelopingalgebras

We will define a prefactorization algebra associatedto the data of a holomorphic
fibration. Such a factorization algebra is an instance of a prefactorization enveloping
algebra, which we proceedto briefly review following Section 3.6 of [4].

Let L be a fine sheafof L,, algebras,and L. its associatedcosheafof sectionswith
compact support. The prefactorization enveloping algebraof | UL is the complex of
Chevalley chains of L .. In other words, for eachopen U c X

UL(U) = G (Le(U)) (12)

The structure mapsare givenexplicitly asfollows.Let U, - - Uy bedisjoint opensubsets
of an open V c X The cosheafl ; inducesa map of L., —algebras

ol Lo(U) (» L(V)

" In [4] this is called the “factorization enveloping algebra” but as we mentioned above, we will not use
the gluing axiom.
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Applying the Chevalley chains functor (which sendssums to tensor products) to this
sequenceyields structure maps

®fL) G (Le(U) (> €° (Lo(V)).
SeeSection 6.6 of [4] for more details.

Theorem.4./f L is afine cosheafof |  algebras,then yL is a prefactorization algebra
in dg-Vect. The cohomologyH*(UL) is a prefactorization algebrain Vect.

Exampl&.5(Section 3.4 [4]). Let X =R, and gz :=(g © Q. dyr) the sheaf of
DGLA’s on R obtained by tensoring g with the de Rham complex. The prefactorization
envelopingalgebraU(gqr) is locally constant, and the cohomologyfactorization algebra
H*(U(g ®QR). dur) is alocally constant prefactorization algebrain Vect, corresponding
to the envelopingalgebra U(g) as in Example (3.3).

Exampl8.6(Section 5.4 [8]). Let X =C ", and (g ® O, ) the sheafof DGLA’s on
C" obtained by tensoring g with the Dolbeault complex of forms of type (0, g), g >=0.
As explained below, when n = 1, the factorization algebra U(g ® Q%*, ) allows one to
recoverthe affine vertex algebra V() (at level 0).

3.2. Differentiable vector spaces

The prefactorization algebras consideredin this paper typically assignto eachopen
subset U c Xa cochain complex of infinite-dimensional vector spaces.This is apparent
already in the Example 3.5 above, where the graded components of U(gqsr) = U(g ®
QF)(U) for U =R aretensorsin g®Qg (U).. The structure maps(11) arethus multilinear
maps betweensuch complexes.In order to formulate the notion of translation-invariance
for prefactorization algebrasin the next section, we will haveto discusswhat it means
for theseto depend smoothly on the positions of the opensets U; c X. This raisessome
functional-analytic issues,which in turn complicate homological algebrainvolving these
objects.

In [4] these technical issuesare resolved by introducing the category DVS of Dif-
ferentiable Vector Spaces togetherwith certain sub-categories.DVS provides a flexible
framework within which one can discuss smooth families of smooth maps between
infinite-dimensional cochain complexesparametrized by auxiliary manifolds, and carry
out homological constructions. We briefly sketch this category below, and refer to ap-
pendicesB and C in [4] for all details.

DefinitioB.7.Let C* denotethe sheafof rings on the site of smooth manifolds sending
eachmanifold M to the ring of smooth functions C* (M), and assigningto eachsmooth
map f : M > N the pullback f*: C* (N) » C* (M). A C* -module F is a sheafof
modulesover C” . In other words, F assignsto eachM a C* (M)-module F (M), and to
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f:M > N apullback map F(f) : F(N) » F(M) of C* (N)-modules. A differentiable
vector space isa C” -module equipped with a flat connection. Explicitly, this amounts
to assigninga flat connection

V:F(M)> F(M)®c: m) Q(M)

for eachmanifold M, compatible with pullbacks. The objects of the category DV Sare
differentiable vector spaces,and the morphisms Hom py s(F, G) maps of C* -modules
intertwining the connections.

Any locally convextopological vector spaceV givesrise to a differentiable vector space
asfollows. There is a good notion of a smooth map from any manifold M to V introduced
by Kriegl and Michor (see[13]), and we denote by C* (M, V) the spaceof such. The
space C* (M, V)is naturally a C* (M)-module, and carries a natural flat connection
whosehorizontal sectionsare constant maps M -» V. The assignmentM » C* (M, V)
thus producesan object of DVS. Multi-linear maps

FIXRBXx- %P GE G &VS (13)

equip DVS with the structure of a multi-category (or equivalently, a colored operad)
by inserting the output of a multilinear map into another. We denote the spaceof such
maps by DVS(F4,- - -E/|G.

The multicategory DVS allows us to formulate the notion of a smooth family of
multilinear operations parametrized by an auxiliary manifold M. For F € DVS, onefirst
definesthe mapping spaceC* (M, F) € DVS as the differentiable vector spacegiven by
the assignmentN (> F(N x M). As explained in [4], it has a natural flat connection
along N.

Definitio8.8.Let F1,- - -F,,G € DVS. A smooth family of multilinear operations
Fi1Xx - -+ F> Gparametrized by a manifold M is by definition an element of

DVS(F1, - - - /€7 (M, G)
where C* (M, G) is as explained in the preceding paragraph.
DVS has severalgood properties. Among these are:

*DVSis complete and co-complete.
*DVSis a Grothendieck Abelian Category.

The secondproperty ensuresthat all standard constructions in homological algebra
behavewell in DVS. This is in contrast to the category of topological vector spaceswhich
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is not even Abelian. As the authors explain in [4], this is becauseDVS has essentially
been defined as the category of sheaveson a site.

Finally, we review someexamplesof differentiable vector spaceswhich will be useful
to us.

Exampl8&.9.The following is an important example from [4]. Supposep : W » X
is a vector bundle over the manifold X. Then V =T( X, W)is naturally a Frechet
space,and so locally convex. C* (M, V) is then identified with (M X X xzx E), where
mx : M X X = X is the projection on X. In particular, taking W to be the trivial
bundle, we have C* (M, C* (X)) = C* (M X X). The sameline of reasoningshowsthat
the spaceof compactly supported sectionsof W, V*=T (X, W) has a DVS structure.

Exampl&.10.The following generalization of the previous example will be useful in
Sections 4,5. Let 7: E » X be a smooth map, and p: W -» E a vector bundle on E.
Denote by W the sheafof smooth sectionsof W on E. Then V =T( X, n.W) yields a
differentiable vector spacewith C* (M, V) =T( MxX, 7.W), where : EXM » XXM
is defined by (e, m) = ( z(€), m), and W denotesthe sheafof sectionsof 7z W on EXM ,
with 7 : EXM - E the projection on the first factor. The connectionis determined by
the condition that the horizontal sectionsare those constant in the M direction. When
E = X and 7 = idx, this examplereducesto the previous one. We may similarly equip
V=T (X, 7.W) with a DVS structure.

Exampl8.11Supposethat F € DVS, and V is any vector space(note that we don'’t
specify a topology on V). Then the assignmentM (- F(M) ®r V, with the connection
acting trivially on the V factor, yields an object of DVS which we denote F,. When V
is finite-dimensional, this amounts to a finite direct sum of F.

3.2.1. Monoidal structures on pVS

To discussprefactorization algebraswith valuesin DVS, we must specify a symmetric
monoidal structure, which is usedin defining the structure maps(11). Certain subtleties
arise on this point, typical of the issuesone encounterswhen trying to define tensor
products of infinite-dimensional topological vector spacesWe restrict ourselvesto a few
brief remarks, and refer the interested reader to appendicesB and C of [4] for details.

*Given F, G €DVS, we can define F ® Gas the sheafification of the presheaf X (=
F(X) ®c- (x) G(X), equipped with the flat connection VF ® Id+ Id ® VP. When
F=0C"(M),G= C”(N), and X = ptis apoint, this yieldsF ®Gpt) = C* (M) ®r
C* (N). We call this symmetric monoidal structure the naive tensor product in DVS.

* The naive tensor product has certain shortcomings. Most importantly, it does not
representthe spaceof multilinear maps (13). In order to remedy this situation, a
certain completed tensor product ®; has to be introduced. This operation is only
defined on a certain sub-category of DVS however. In the last example, we would
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obtain F ®G(ptf) = C* (M x N). We will refer to this operation as the completed
tensor product.

Using é,g rather than ® is important if one wishesto obtain a factorization, rather
than merely a prefactorization algebra. As we work with prefactorization algebrasin
this paper, the naive tensor product is adequate, and will be the symmetric monoidal
structure on DVS throughout.

3.3. Translation-invariant prefactorization algebras

Our construction in Section 4,when applied to the trivial fibration £= F xC" (+C”",
producesa prefactorization algebrawhich is holomorphically transiation-invariant. This
property will be used when extracting a vertex algebrain Section 5 in the casen = 1.
We proceedto briefly review this notion and refer the interested readerto Sections4.8
and 5.2 of [4] for details.

3.3.1. Discrete translation-invariance

Supposenow that F is prefactorization algebra on C” in the category of complex
vector spaces.C” acts on itself by translations. For an opensubsetlU cC” and x € C”,
let

wlU={yeC’ly - xe U

Clearly, 7o(1,U) = 74+ ,U. We say that F is discretely translation-invariant if we are
given isomorphisms

ox :F(U) » F(U) (14)

for eachx € C" compatible with composition and the structure maps of F. We refer to
section 4.8 of [4] for details.

Exampl8.12For any Lie algebrag, U(g ®Q%Z‘) in Example 3.6 isdiscretely translation-
invariant.

3.3.2. Smooth and holomorphic translation-invariance

A refined version of translation-invariance expresseshe fact that the maps ¢y, and
hencethe structure maps m’lf 7 sUn depend smoothly/holomorphically on the positions
of the open sets U;. This notion is operadicin flavor.

For z €C” and r > 0 let PD( z, r) denote the polydisk

PD,(2)= {(weC"|lw— gl <1< i< n

and let
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PD(r1, - - - 4|8 < (C™)¥

denote the open subset (2, - -z) € (C")¥ suchthat the polydisks PD,,(z) have dis-
joint closuresand are all contained in PD4(0). The collections PD(r4,* - - rg|9 form an
R o—colored operad in the category of complex manifolds under insertions of polydisks.

Supposethat F is a discretely translation-invariant prefactorization algebra on C”
with valuesin DVS. We may then identify F (PD,(2)) 2 F (PD,(29) for any two z, Z*€
C” using the isomorphisms(14), and denote the corresponding complex simply by F,.
Foreachpe PD(ry,- - -rg|9, we have a multilinear map

mlpl:F, x -+ % F>FR (15)
As explained in Section 3.2, we say that m[p] dependssmoothly on p i
m €DVS(F,,, - - - ,FC* (PD(r1, - - - k|9, F)).

To formulate the definition of smooth translation-invariance, we will needthe notion of
a derivation of a prefactorization algebra.

DefinitioB.13[4], Definition 4.8.2). A degreex derivation of a prefactorization algebra
F is a collection of maps Dy : F(U) (» F(U) of cohomologicaldegreek for eachopen
subsetU < M with the property that for any finite collection Uy, - - U, < Vof disjoint
opensand elementsa; € F(U;), the following version of the Leibniz rule holds

Dvmg“" ’U”(a1, SR Yo'

= (_1)k(\d1 [+t o 1)Imgm'" 'U"(OM, i@ Dy, g
i=1
The derivations of F form a DGLA, with bracket[D, D1y = [ Dy, D}}] and differential
dgiven by dDy =[ dy, Dy], where gy is the differential on F (U).

The notion of smoothly translation-invariant prefactorization algebra F on C” can
now be formulated as follows:

DefinitioB.14(4], Definition 4.8.3). A prefactorization algebra F on C” with values
in DVS is (Smoothly) translation-invariant if:

(1) F is discretely translation-invariant.

(2) The maps (15) are smooth as functions of p€ PD(rq,- - “r«|9

(3) F carriesan action of the complex Abelian Lie algebraC” by derivations compatible
with differentiating m[g].

We can further refine the notion of translation-invariance to considerthe holomorphic
structure. We saythat F is holomorphically translation jnvariant if
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* F is smoothly translation invariant.

* There exist degree—1 derivations 7; : F & F suchthat
- [d,n] = ZZ (as derivations of F)
- [, n1=1m 5=1=0
fori=1,---n, énd where dis the differential on F.

This condition meansthat anti-holomorphic vector fields act homotopically trivially
onF.

As explained in Section 5.2 of [4], if F is a holomorphically translation-invariant
prefactorization algebra, then upon passingto cohomology,the induced structure maps

mlp: H*(Fr) x - - - X)) (> H(Fs) (16)
are holomorphic as functions of p € PD(r4,- - -r|9. In other words, m can be viewed
asa map

m:H*(Fr) x - - X"(f;,) (*HO(PD(r1, - - - k|9, H(Fs)) (17)

where Hol denotes the spaceof holomorphic mapsin DVS.

Exampl&.15For any Lie algebra g, the prefactorization enveloping algebra U(g ®
Q%,’,‘) of Example 3.6 is holomorphically translation-invariant. The action by translation
invariant vector fields is simply by Lie derivative. The homotopy for anti-holomorphic
translations is 7 = 144, the contraction by the anti-holomorphic vector field &/57;.
The fact that this is a homotopy as above follows from Cartan’s formula for operators
on the Dolbeault complex

"0, wor, = Loz
4. Prefactorizatialyebraomholomorphfibrations

In this section, we describe our main construction of prefactorization algebras from
locally trivial holomorphic fibrations.
Our starting point is the following data:

* Complex manifolds F, X.
*(g ,!, ") a Lie algebrawith an invariant bilinear form.
* A locally trivial holomorphic fibration 7 : E » X with fiber F.

From this data we will construct a sheafof L., algebrason the total spaceE of the
fibration. In turn, we obtain a prefactorization algebraon E upon taking its prefactor-
ization envelopingalgebra.
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4.1. A sheafof Lie algebras

Let Q(Z_-’* be the sheaf of dg vector spacesgiven by the Dolbeault complex of the
complex manifold £, equipped with the & operator. For any Lie algebrag, we can define
the sheafof dg Lie algebras

9e =g ® OF°

which on an openset U — Eassignsg ® Q%*( U). The differential is again given by the
2 operator, and the Lie bracket is defined by

X & a YIF[X Ve (a AP

where X, Y €g, a, f €Q%*(V).
Let K be the bigraded complex of sheaves

C[2] » Q2" [1] 35 ak*

wherethe first arrow is an inclusion, and the secondis given by the holomorphic de Rham
operator 4. We view K £ as a bigraded complex with & acting as vertical differential on
02", p=0,1. Let Kg = Tot( Kg) be the totalization of this bigraded complex.

We considerthe complex of sheavesK g as a trivial dg module for the sheafof dg Lie
algebrasgge. We will construct a cocycleon gg with valuesin this trivial dg module. To
this end, define the following maps of sheaves

1,%
#V 1 (ge)®? > O

1'x, Yla A B —1)40a A B

A(Xe ge(Ye p= 5!

and

@9 1 (ge)®3 > Q1]

1
F(X® ge(Ye fe(Ze )= SlIX Y. Zlanp Ay
The sum ¢ = ¢/ + ¢!V is a cochainin the Chevalley-Eilenberg complex

¢ € Age, Ke)

of total degree2.
By an identical calculation asin Lemma 2.3 we obtain the following.

Lemmal.1.¢ definesa cocyclein o (9., Kg) Of total degreep,
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The cocycle ¢ definesa central extension g of the sheafge asa sheafof L, algebras
which has non-vanishing '¢, ‘2 and ‘3. More directly, we can define the cochain complex
computing the Lie algebra homology of this sheafof L., algebras.

Definitior.2.Define the sheafof dg vector spaces

C (be) = (Sym(g e[1] ® Ke[1]), o dee + ¢)
where

« d= 0+ d, is the sum of the differentials on gz and K¢.
* dce is the Chevalley-Eilenbergdifferential of the original Lie algebra ge.
*the linear map ¢ is extendedto Sym(ge[1]® Ke[1]) as a co-derivation.

The fact that (d+ dce + ¢)? = 0 follows from the fact that ¢ is a cocycle.

4.1.1. Relation to local cocycles

There is arelationship betweenour construction and the theory “twisted” factorization
envelopingalgebrasgivenin Section4.4 of [3] whenthe complexdimensiondim¢ (E) = 1.
There, the data one usesto twist is that of a local cocycle which lives in the local
cohomology of a sheafof Lie algebras. We don’t recall the precise definition, but if L
is a sheafof Lie algebrasobtained from a bundle L, the local cohomology G;.(L) is a
subcomplex

ch(l-) < QIe (LC)

where L. denotes the cosheafof compactly supported sections. The condition for a
cochainin G, (L) to be local is that it is given by integrating a “Lagrangian density”.
Sucha Lagrangian density is a differential form valued cochainwhich only dependson the
w -jet of the sectionsof L, that is, it is given by a product of polydifferential operators.
We have defined the cocycle ¢ as an element in G, (ge,Kg). The complex
e (9, Kg) is neither a sheafor a cosheaf,however,the object

Clie (9ec - Ke)

is a sheaf. Here, we restrict to cochains defined on compactly supported sections of
ge. The cocycle ¢ is a section of this sheaf, meaning it is compatible with the natural
restriction maps.

The cocycle ¢ is not just any section of this sheaf.For any open U = E it actually
lies in the subcomplex

AU) € Gie (90 (V). Kee (U)) © Gie (9. Ke)(U).
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In other words, ¢ preservesthe condition of being compactly supported.
Now, the cosheafK £, admits a natural integration map

:Kge @ C[—1]

where C[—1] is the constant cosheafconcentrated in degree+1. (Integration is only
nonzero on the Q' which accounts for the shift above) Thus, for every U < E, we

obtain a cocycle

AU) € Gie (9ec (V).

The cocycle ¢ is clearly built from differential operators, which implies that ¢(U) is
actually a elementof the local cochain complex

AU) € Gee(9e)(V).

In conclusion, upon integration, we seethat ¢ determines a degreeone cocyclein the
local cohomology of the sheafof Lie algebrasgg.

In higher dimensions, there is a similar relationship to local functionals which hence
determine one dimensional central extensionsof Kac-Moody type algebrasin any dimen-
sion. This classof cocyclesis studied in detail in the context of “higher dimensional’
Kac-Moody algebrasin [8].

4.2. The prefactorization algebraf o

We proceedto construct a prefactorization algebraon X — the baseof the holomor-
phic fibration 7: E > X.

Let b, = 7.(be)-a sheafof L, algebrason X, and let §¢ denote the cosheafof
sectionsof §, with compact support. Explicitly, for an open subsetU c Xwe have

(W) =T J(U.)
=T (U, 7ge) © (U, 7Ke), (18)

Remarkd.3.Though the assignment U (= g°(U) is a cosheafof dg vector spaces,it is
just a precosheafof L., algebrason X (with L. structure defined by the cocycle ¢ in
the previous subsection). This subtle issuearisessincedirect sum is not the categorical
coproduct in the category of Lie algebras,but it will play no essentialrole for us.

Definitiol.4.Define the cosheaf

For = C° (89) (19)
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as the Chevalley-Eilenberg complex for Lie algebra homology for the precosheafof L.,
algebrasf’. For eachopen U < Xthis cosheafassignsthe complex

Fg.(U)= C° (55(U)) = (Sym(T o(U, age)l1l @ Fo(U, aKe)1]), o+ dee + ¢) (20)

Remarkl.5.The cosheafy? is equipped with a DVS structure asin Example 3.10, and
therefore sois Fg ,, being constructed from algebraic tensor product.

Propositiod.6.F , has the structure of a prefactorization algebraon x valuedin
dg -DVS. When x =C ", F o is holomorphically translation-invariant.

Proof.Note that if 7 : E & X is a locally trivial fibration and W is a smooth vector
bundle on E, then 7, is a fine sheaf. The smooth translation-invariance of Fg , is es-
tablished just asin the exampleof the free scalarfield in Section4.8 of [4]. To seethat the
prefactorization algebrais holomorphically translation-invariant we chooseholomorphic
coordinates { z;} for C”. Then, the operators 1 = s, i =1,. . .n given by contrac-
tion with the vector fields 6/0z;, i =1,. . . are degree(—1) derivations satisfying the
conditions in Definition 3.14, seeExample 3.15. !

4.3. The prefactorization algebragG; ,

In this sectionwe discusssomeprefactorization algebrascloselyrelated to Fg -, which
are both more convenientfrom a computational standpoint and more closely related to
the classof toroidal algebraswe haveintroduced previously. Concretely we will construct
a sequenceof prefactorization algebrason X

Ggfg > Gyx > Fgx (21)

with the property that eachmap aboveis an inclusion at the level of graded vector spaces.
(Strictly speaking, the final map requires a choice of trivialization of the fibration - see
Lemma 4.11.) While the definition of Fgy, is reasonably simple, explicit calculations
of H*(Fg.(U)) for an open subset U c X require the 5-cohomology of the complex
(U, m«(be)) in Equation (18). This complexinvolvesforms with compact support along
the baseX and arbitrary support alongthe fiber £, and its 5-cohomologyevenwhen E is
atrivial fibration is a certain completion of H2*(U) ® H%*(F) whoseexplicit description
involves non-trivial analytic issues,dueto the failure of naive Kunneth-type theoremsfor
Dolbeault cohomology.As a hint of the types of issuesinvolved, we note that the space
of holomorphic functions on C? = C x Cis not simply the algebraic tensor product of
holomorphic functions on the factors C, though the latter forms a densesubspace.

The advantage of the prefactorization algebra G, . is that its cohomologyis simple
to describe, as the Kunneth formula holds at this level. The use of the even smaller
prefactorization Ggf’ffgr is that it is closely related to vertex algebras and the toroidal
algebraswe have met earlier in the paper.
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Let us first supposethat £ = X x Fis atrivial fibration. For eachp, g,p* ¢*we have
a map of cosheaves

(&Z‘ ® r(E Qﬁ_”,q’“) > (]17*(2%+p2q+ q")c
where the subscript ¢ denotes sectionswith compact support and we use the ordinary

(algebraic) tensor product. Explicitly, for an open subset U < X, this map is just the
wedgeproduct

B9 (U) @ T(F, Q7Y » T(U, 70 P 7)

a® p>anp
It is injective provided all three factors are non-zero.
Our first definition usesthis injection to split off the dependenceof the fiber F in the
definition of the cosheafg?.
Definition.7.Define a sub cosheaft ° of §¢ by
gio=g ey o N(FO) e K
where
K# :=Tot(Q %, @ [(FOX)[1] 3 O} o [(F o) @ 0% e (F, Q).
Here, d acts “vertically” within eachterm.

Remarkd.8.The cosheafty’ ¢ may be equipped with a dg —DVS structure asin Exam-
ple 3.11.

The L., structure on i< inducesoneon the sub-complexy? ¢ (this follows from the fact
that the cocycle ¢ restricts). The advantageof b ¢ lies in the fact that it's constructed
from ordinary (algebraic) tensor products of complexeswhose cohomology is easy to
describe.

Definitiod.9.Define the precosheafG, , on X by
Gyr = G (8} °)

The sameargument for Fg , in Proposition 4.6 implies that G, . has the structure of a
prefactorization algebraon X.

The arguments of the previous section show:
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PropositioA10G, , has the structure of a prefactorization algebraon x. When x =
C".n>1, G is holomorphically translation-invariant.

When E = X x F we havethe following relationship betweenG; , and Fg ,:

Lemmad.11Suppose; - E = X x F > X is trivial. Then, there exists a map of
prefactorization algebrason x:

Gyr 2 Fgx (22)

Proof.We have just constructed a map of DGLA’'s §# ¢ » §°, which induces a map
Gy » Fg.r upon taking the factorization envelopingalgebra. !

For a general locally trivial holomorphic fibration =7 : E » X, we can construct a
map of prefactorization algebrasG, , » Fq . locally on X. Indeed, for any x € Xthere
exists a local trivialization of £ on an open neighborhood V of x. On V, we obtain the
map (22). It dependson the choiceof trivialization however.

4.3.1. An algebraic variant

When the fiber F is a smooth complex affine variety and 7 : E = X X F > X is
trivial, wemay further refine G, , to obtain a prefactorization algebra Gj’% with stronger
finiteness properties, by considering the algebraic rather than analytic cohomology of

Of. This variation will be important in the next section, when we make contact with

vertex algebras.Let Of_-’g denote the sheafof algebraic regular functions on £, and Q-9

the sheafof Kahler differentials. We have

HOF, G%) c H(F, O) J» Q%9
HO(F, Q) ¢ H(F, QL) > (QF. 3

Definitio#.12We define
gt eds =g ®Q())(’,2 ® H(F, 09) e K
where
K#-a = TotQ % ® H(F, OIS Qs © H(F, G7) e O: © H(FQEY)).

The totalization is with respectto the horizontal J-operator and the vertical /-operator
acting on O .

Remarld.13Again, §? ©%9 may be equipped with the DVS structure of Example 3.11,
yielding a prefactorization algebrain dg —DVS.
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We can now define the main object of study for us.

Definitio#.14The n-dimensional toroidal prefactorization algebra associatedwith the
trivial holomorphic fibration F » X x FZ- Xs the prefactorization algebra

Gglg = CLie (g# c,a/g)
with the structure maps induced from those of G, .

Propositioa15.5upposethat F is a smoothcomplexaffine variety and x = C 7. Then
Gg’g hasthe structure of a holomorphically translation-invariant pre-factorization algebra

valuedin dg -DVS.

The reasoning at the end of the previous section showsthat for a general locally
trivial fibration & : E » X, a point x € X, and a choice of trivialization of E|y, on a
neighborhood U of x, one obtains prefactorization algebra maps

Gg,/}qz > Ggfr - Fg,n|U

Remarl.16We remark that in this paper we are primarily concernedwith the case
in which the fiber F is a smooth complex affine variety. There is another interesting
casein which we take the fibers to be compact. One can still study the pushforward
7+(Be) as a sheafof L, algebras,and its factorization enveloping algebra. Unlike the
caseof affine fibers, this pushforward may have interesting higher cohomology in the
fiber direction, and moreoverthe factorization envelopingalgebra is equipped with the
analytic Gauss-Manin connection. The caseof a trivial fibration has been studied in
Section 4.3 of [8].

5. X =C andvertexlgebras

In [4], it is shownthat prefactorization algebrason X = C which are holomorphically
translation-invariant and S'-equivariant for the natural action by rotations are closely
related to vertex algebras.More precisely, given such a prefactorization algebra F, the
vector space

V(F)=  H*FY(C)
/

equal to the direct sum of S'-eigenspacesin the cohomology H*(F (C)) has a ver-
tex algebra structure. We begin by reviewing this correspondencefollowing [4], and
then apply it to the caseof the one-dimensionaltoroidal prefactorization algebra G§f§,
where 7 : C X F (» Cis the trivial fibration on C with fiber a smooth complex
affine variety F. We show that resulting vertex algebra is isomorphic to V(bg) where
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R = HO(F,029)[t t "] from Section 2.3.2. As a special case,when F =(C *)¥, we
recovera toroidal vertex algebra.

5.1. Prefactorization algebrason C and vertex algebras

We review herethe correspondencebetweenprefactorization algebrason C and vertex
algebrasestablishedin [4], where we refer the reader for details. Recall that S' acts on
C by rotations via z (exp(if)z. Supposethat F is a prefactorization algebraon C that
is holomorphically translation-invariant and S'-equivariant. Let F(r) := F(D(0, r)) be
the complex assignedby F to a disk of radius r (we allow here r = o, in which case
D(0,0) =C), and F!)(r) = F(r) be the /th eigenspacdor the S'-action. The following
theorem from [4] establishesa bridge between prefactorization and vertex algebras:

Theorenb.1 (Theorem 5.3.3 [4]). Let F be a unital S'-equivariant holomorphically
translation invariant prefactorization algebraon ¢, Suppose

« The action of g' on F (r) extendssmoothlyto an action of the algebraof distributions
on §'.
sFor r < r%the map

FO(ry»> FO(r

is a quasi-isomorphism.

« The cohomologyH*(F ()(r)) vanishes for | 1 0.

«For eachjand r > 0 we require that H*(F ()(r)) is isomorphic to a countable se-
quential colimit of finite dimensional vector spaces.

Then V(F) := / ez H*(F () (r)) (which Is independentof r by assumption) has the
structure of a vertex algebra.

We briefly sketch how the vertex algebra structure on V(F) can be extracted from
the prefactorization structure on F.

* Using the notation of Section 3.3.2,polydisks in one dimension are simply disks, and
we denote PD(r1, - - -r«|9 by Discs(r1,- - - rx|9. If ri*< r;, we obtain an inclusion

Discs(r1, - - - |9 < Discs(r?, - - - 2|9 (23)

In the limit lim, s o, these spacesapproach Conf,, the configuration spaceof k
distinct points in C.

«The structure maps (17) are compatible with the maps F (r}) (& F(r;)and the
inclusions (23), and one may take lim,, 5 g, s= o, obtaining maps
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m: (rI_i)ng) H*(F (r))) ®K » Hol(Conf,, H'(F(C))) (24)

*We set k=2, and fix one of the points to be the origin. There is a natural map
V(F) (2 lim. o H*(F (r)), as well as projections H*(F(C)) > H*(F{)(C)). Pre
and post-composingby thesein (24), yields a map

0
moz: V(F)® YWF) - Hol(C ™, WF))) (25)
!

where V(F), = H*(F()(C)). Laurent expanding 7z we obtain

0
moz: V(F)® WF)>  V(F)llz z']]
/

whose image can be shown to lie in V(F)((2)). The vertex operator can now be
defined by

Y: V(F) = End(V(F)[z z]]
Y(v, 3V= mo (V5 Y
» Holomorphic translation invariance yields an action of &,
O, F(r)y» FU0(p).
which descendsto H*(F/(r)). This induces the translation operator 7 : V(F) -

V(F).
* The vacuum vector is obtained from the unit in F (2).

5.2. The main theorem

Our goal in this sectionis to prove the following theorem

Theorens.2.L.et F bea smooth complexaffine variety, and 7 - C x F - C the trivial
fibration with fiber F. Then

(1) The toroidal prefactorization algebra Ggfg satisfies the hypothesesof Theorem 5.1.
(2) The vertex algebra V(C-g,’%) is isomorphic to the toroidal vertex algebra \/(fz), with
R= HO(F, Of—'g)[t, t~1] defined in Section 2.3.2.

Throughout this section, R will denotethe algebra HO(F, O,‘i’g)[z‘, t~']. We will denote
HO(F, 029) simply by C[F], so R =C[ F][t, t']. Recall that
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br =9 ® C[F][t, f1]€9Q1c[F][f,t—1]/d(C[F][t ')
C[t, f“]@Q};[F] @C[F]@Qé[,’,,q

_ 1
g eClFlE r]e \thkdu+ kt*Tudt'

5.2.1. Recollectionson Dolbeaultcohomology

In this section we recall somefacts regarding ordinary and compactly supported Dol-
beault cohomologyand apply theseto compute H*(Cﬁ’%(U)) over opens U < C. These
results will be usedin proving Theorem 5.2.

Stein manifolds are complex analytic analogues of smooth affine varieties over C
[18]. In particular, C” and smooth affine complex varieties are Stein. In addition, all
open subsetsU < C are Stein. We recall the following classicresult pertaining to Stein
manifolds:

Theorens.3(Cartan’s TheoremB). Let x bea Stein manifold. Then

1

i@ 0. 9= 0 K20

Qy k=0
Wherte)’( denotesthe spaceof holomorphic pforms on z.

Remarlb.4.When n > 1 the opensubsetC”\ 0 c C” is not Stein, sinceit has higher
cohomology.

On a complex manifold X of dimension n, Serre duality implies that there is a non-
degeneratepairing betweenordinary and compactly supported forms

.q n-p.n—q
Fl © QY > C

a® B> aoaAp
X
Thus, compactly supported differential forms yield continuous linear functionals on dif-

ferential forms. At the level Dolbeault cohomology,one obtains the following corollary
to Theorem 5.3 noted by Serre ([17]):

Corollarg.5.Let x bea Stein manifold. Then

1
HK @R (X). ] = 0 k® dim(X)
e QY P (X)) k= n= dim(X)

Where(Qg’(*P (X))V denotesthe continuous dual to the spaceof holomorphic n — pforms
with respectto the Frechettopology.
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We now specializeto our situation, wherez: C X F - C is the trivial fibration with
F a smooth complex affine variety. The cosheafy? @9 on C defined in Section 4.3.1 has
the form

b ¢ =g ® C[F]® Oy © K-
where K# 29 is the total complex of the following double complex

%' e ClF] 7% L' o ClFle %' e O

i ]

o+d
0@ C[F] =5 Q@ C[Fle 2% @ Of /.

Here, 029 denotesthe cosheafof compactly supported forms on C, and Q};[ Fl is the
spaceof algebraic 1-forms (i.e. Kahler differentials) on F. Recall, from this cosheafwe
have defined the factorization algebra

G3Y = CL° (4} %) = Sym( Y} ># [1]. )
where the differential Hmay be decomposedas da= a+ &b+ a5, with
o : Sym' (4 S [1]) > g *¥0[1]
of cohomologicaldegree1 defined by:

s =0+ O a0 , the linear differential operators defining the underlying cochain
complexesoleoIbeauIt forms;

* @ = dce g, the Chevalley-Eilenbergdifferential induced from the Lie bracket on g;

« o = ¢, where ¢ is the cocycledefined in Section 4.1, which extends to C. (—) by
the rule that it is a coderivation.

The complex Ct (4 ©29) has an increasing filtration by symmetric degree, leading
to a spectral sequencenvhose E1 pageis

H*(Sym(Y} *#9 [1], @) = Sym( H* (4} *# 1], 4))

Now (4% 249  a)is the direct sum of the complexes(g ® C[F] ® Q%*,9) and K# .49
Applying Theorem 5.3 andCorollary 5.5 onan open Stein subsetlU < C, the cohomology
of the first is

g® C[F]® (Q'(U))"[-1]

Similarly, by first computing the & conomologyin K#-@9  we have
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(

H*(K% 99 (U)) = Coker " (Q} (U))" ® C[F])
2

190+0" 1
YT (U) 8 Qs @ (O(U)Y ® CLF]
where 6" denotesthe transposeof J7: Q} (V) (» Q (U). We havethe following:

Lemm®.6.Let U cC be an opensubset. Then

H* (4% %% (U), d)=g ® (Q) (V)" ® C[F]
3 o 2
Coker (Q)(U))Y @ C[F]) "*7% °" (L (1)¥ @ Ol @ (O(U)) ¥ ® C[F]

where 5V denotesthe transposeof 5: O (U) (- Q (V).

It follows that H*(4 @9 [1], d}) is concentratedin cohomologicaldegree0. Sincedhas
cohomologicaldegree1, this meansthat the spectral sequencecomputing H*(Gﬁ,’?[(U))
collapsesat £, and we have an isomorphism of vector spaces

H*(GJ4(U)) 2 Sym(H*(g; > (U)[1]. @) (26)

Next, we note that the value of G;’i onadisk U= D hasa natural S'-action induced
by rotations. Rotations act by holomorphic diffeomorphisms and so extend to an action
on Dolbeault forms, and henceto the factorization algebra GZ¢. This action clearly
preservesthe first term in the differential ¢;. Furthermore, S' acts by the identity on
the Lie algebra g, soits action preservesthe differential & as well. Finally, to seethat
the S' action preservesthe differential ¢ note that the cocycle ¢ is defined in terms of
diffeomorphism invariant operators.

Applied to a disk U = D, the sum of the S'-eigenvaluesof the cohomology of G&%9
naturally embedsinto the left hand side of Equation (26). We now characterize this
cohomology.

Lemmd®.7.There is an isomorphism of vector spaces

V(C'gli) 2 Sym(gs/gg) 2 U(QS) ®U(g*s) C (27)
where S=C[ Fliz, z7].
Proof.\We introduce the vector spaces

S" =C[ Fll4

S =C[Fle z'C[z ]

Q5 =Q¢ ) © C[Z ® C[Zdz C[F]
QF =Q e 2'Clz 1o z'Clz "dz eC[F]
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WehaveS= S" @ S and Q1S =Q 13 ® Q1S_ as vector spaces,and thesedecompositions
are moreovercompatible with the differential, in the sensethat o(S*) € QL. . Hence

QL/dS 2 QL. /dS* © QOf /dS~
which implies that as vector spaces
bs/bs2 g® S © QL /dS~

Now, the residueidentifies z~'C[z~ '] with a subspaceof (Q'(D))". With respectto
this embedding, the weight /-eigenspacef the S' action on this spaceis C{z'} . Similarly,
the residueidentifies z~'C[z~ ']dz with a subspaceof (Q°(D))". The weight /-eigenspace
of the S' action is C{z"~ 'dz}.

Using this, we canread of the cohomologyof the correspondingeigenspacesas follows.
For / <0 we have

3 2
H* (4@ (D), @) 2 go C[F]1® (2] @ Ol s ® (2] ®C[Fl® [# 'dZl /im(Q).

For /=0 we have
H* (4 °49 (D), )@ 2 (C[F]® {Z1dz})/im(b).

When / > 0the cohomology H*(4* ¢29 (D), ¢)") vanishessince (Q°(D))" has non-
positive S' spectrum for p= 0, 1 for any disk D.
Therefore, as vector spaces

4 5

V(GZY) = Sym H*(4 %% (D), q)"
leZ

=Sym(g ® S @ QL /dS~)=Sym(bs/bs) !

5.2.2. Verifying the hypothesesof Theorem 5.1

We proceedto verify the hypothesesof Theorem 5.1, establishing part (1) of Theo-
rem 5.2 above.

» The first hypothesisis verified asin Section 5.3.1 of [4].

* The secondand third hypothesesfollow from Lemma 5.7, from which it follows in
particular that H*((G$9(D(0, r))) (") is non-zeroonly if / <O0.

* The last hypothesis requires someattention. By Lemma 5.7 H*((GZ9(D(0, r))) ")
may be identified with the elementsof weight / in

Sym(g® S @Qg,/dS*) )
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We begin by showing that C[F] and Q“C[F] are naturally a sequential colimit of
finite-dimensional vector spaces.This can be done as follows. Embed F ¢ AN =
Spec Ck4,- - -xy]. This induces an increasing filtraton FXC[F], kK > 0, where
FKC[F]is spannedby the imagesof polynomials of degree< kin x1,- - xy. C[F]
and by the samereasoningQé[ F) €an therefore be expressedas a countable union of
finite-dimensional vector spaces This inducesa filtration on §# 29 compatible with
the DVS structure, which in turn inducesone on H*((GZ9(D(0, r))) ").

5.2.3. Constructing the isomorphism

We proceedto prove part (2) of Theorem 5.2.The proof is a variation on the approach
taken in [19] with respectto the Virasoro factorization algebra, and involves three main
steps:

(1) Showing that V(G&9) has the structure of a r-module.

(2) Showing that V(G&9) 2 V(br) as br-modules.

(3) Checking that the vertex algebra structures agreeby using the reconstruction The-
orem 2.6.

Let p: C* » R.o be the map p(2) = zz = |zP. The universal enveloping alge-
bra U(bgr) defines a locally constant prefactorization algebra on R which we denote
AU (Br).

Lemmadb.8.There is a homomorphism ¢ : AU (bg) - p*H*(Ggfg) of prefactorization
algebrason R .

Proof. < It is shownin Section3.2 of [4] that a map of prefactorization algebrason R.
is determined by the maps ®, on connectedopen intervals. For eachopen interval
I € Rsg, A; = p '(/)is an annulus. We choosefor each such a bump function
f; : Ay @ R having the properties
- f, is a function of r?2 = zz only.
- é, > 0and f is supported in A,.
- ,fidzaz=1.
The map @, is uniquely determined by where it sendsthe generators of z. We
define ®; on theselinear generatorsby the assignments:

O(J e u)= —[J o ut a7
O () =[Z" fro A dz
& (tudt) = [ uZ" £, dzaZ

where J € gu € C[Fl,w € Qff, and [-] € H*(G%(A,)) denotes the 7-
cohomologyclassof the closeddifferential form. The elementson the right are clearly
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closedfor the differential d and the corresponding H—cohomology classesare easily
seento be independent of the choice of the function f,.
* We first checkthat ®; is well-defined, which amounts to verifying that

O (Aut’)) = @ (tFdu+ kt* Tudt) =0 € H(GY(A)))
for eachu € C[F], k €Z. We have
& (t“du+ kt* Tudt) = —([z"” f, dzad + [kzkuf,dzdz]),
Notice that

@ (t“du+ Kkt "udt) + [der . (277 uf02)]
= —[Z* f, dudd] — [kZ¥ uf dzdA
+ [ 2 fdudz+ (k+ 1) ZXuf dzdz+ uZ" of | A
= +[ w(Zf dzdz+ 2V of ) A O

It therefore sufficesto show that [Z4f,dzdz+ Z*' of; A dk=0 € (Ox(A/))Y, or
equivalently, that

2" AN(ZFrdzdz+ 2 of ) A dp=0 Ym &
A

This follows from the identities

Zfidzdz= 850 , Z2POf; A OF —p1 (28)
A/ U

for @, be Z that we obtain via integration by parts.

 Consider three disjoint openintervals /1, /2, /3 < R, suchthat /;+¢ islocatedto the
right of /;, all containedin alargerinterval /. Their inverseimagesunder p correspond
to three nestedannuli A, inside a larger annulus A,. We have structure maps

it D pHY(GEE)(1) ® pH Y (GE9)(1iv) > pHY(GEE)(1) i=1,2

To showthat @ is a prefactorization algebra homomorphism, we haveto checkthat
for X, Y €bp,

D (X) 1.2 P, (Y) = D (Y) 223 Py (X) =D, ([X Y])

Let
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zz

Fo(z 3= 2" (Fr(9) — f,(9)ds
0

Thenon A,,, F, = 2™, and moreover,

zz

BFm(z 3= 273 (F1.(8) — £.(9)d9)
0
Az o 7
=Z" > ﬁ(z?)( (f1,(s) — #,(s)) ds)az

0
= 2" (f1,(22) — f,(22))d2

Let Ji,J2 €9, u,v €C[F]. Then
Dy, (J1ut) o 12 O, (Sovt') — O, (Sovt) *2.3 By, (Jrut?) — @, ([Jrutt, $vit'))
= CD/1 (J1 (L);fk) *1,2 CD/Z(JQ Vf/) — CD/2 (J2 Vf/) *2,3 ¢/3(J1 Ufk)
0
0, W vt T () — vidurt)
= ([J1 uZ* £, 02 - [JovZ™ £, 02 — [dovZ™ £, d2) - [JyuZ™ f,sdz]) +
+[[J1, Sluv ™ £, dF + %m, S f), (udv — vooz
+ (1 — kuvz"'f),dzdZ
We also have
(':1( [J1uF] - [ovZ™ £, dz]) )
= [uZ ) dA - [ovZ ), dA - [dovZt £, 0 - [JiuZt F, aF
+ ([, SluvZ 1 f, a7 + %!Ju S"uFd(vZ* 1,02 — &Fku)
A v, 02)] )
= [hu"" f,d2 - [ovZ" £r,07 — [JovZ™ £1,08 - [JuZ™ £1, 07
+[[Jr, SuvZ 1), dA + %w S (udv — vayf ), oz
+ u(l — k), 2" dzdz — %" oF ), A df

wherewe haveusedthe fact that overthe support of f,,, Fx = Z¥. Using the identities
(28), we obtain

(] — k1) F),dzaz — GV of 1, A DR=[(1 — kZ*'f),dzdd.
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It follows that

O, (Jrut?) o 1.2 Dy, (Jovt') — By, (Jovt') o 0.3 By, (Jrut) — @, ([Jrut®, Svt'])
=0 e aH*(GY)(/)
proving the lemma. !

Al

The homomorphism ® of Proposition (5.8) equips V(Gb,lﬂ) with the structure of a
br-module. Let usfix 0 < r < F*< R We havethe following commutative diagram:

HY(GZ(D(O, ) ® H(GS(A(r A)) —— H*(GI(D(O, A)
® @T tT
V(GES) ® AUGR) » V(GES)

where : denotesthe inclusion of V(GI9) ¢ H*(GI9(D(0, r))) (for any r), and m is the
prefactorization structure map. As explained in the proof of Theorem 5.3.3 in [4], the
existenceof the dotted arrow (i.e. the fact that the U(bg)-action preservesthe subspace
V(G&9)) follows from the fact that the structure map m is S'-equivariant.

In concrete terms, the action of X € g on v € L(Gi’g) is given as follows: we may

represent v by a closedchain v € G® (4% 39 (D(0, r)) -then X - vis representedby
D rnpy(X) - V.

Lemmd&.9.7here is an isomorphism of y,-modules
n: V(gr) > V(GY)
which sends|0" € Wbg)to 1€ |,((3§”§7r),
Proof.Let h(z,2) = GOZZ f(s)ds. By the chain rule, we have that
Az )= 2" f(z2)dz
Thus in H*(GZ%(D(0, R)), we havefor k >0:

Dy (Jutk) = [ Juzk*" F(22)d2 = AJuzkh(z,3)
gy (K udv) = [ 2 F(22)udzadl = A2 h(z, Fudv)
Dy (uthdt) = [ uZ* f(22)dzdd = AuZh(z,3d2)
In other words, if X € 4, then ®«z)(X) =0 € H*(GY(D(0, R)). This showsthat

the vector 1 € UGY)is annihilated by b It follows that there exists a unique map
of r-modules n : V(bg) » V(Gg’,’%) sending |0" » 1. It remains to show this is an



40 M. Szczesny et al. / Advances in Mathematics 386 (2021) 107799

isomorphism, which can be done asin [4,19] for the affine and Virasoro algebra, so we
will be brief. Both V(gr)and V(GE9) have the structure of filtered U(fr)-modules,
wherein eachcasethe filtration is induced by symmetric degree.lt is straightforward to
verify that »ninducesan isomorphism at the level of associatedgraded modules, proving
the result. !

To complete the proof of Theorem 5.2, we checkthat 7 induces an isomorphism of
vertex algebras.Supposethat z € A(r” R)). Recall that the operation

Y:iV(GEY) e UGY) > V(GY)(2)

is induced from the diagram

V(GY) © UGY)

J/L@L z

H*(GE49(D(z ) ® H(GI9(D(O, §) —=% H*(GI9(D(O, A))

asthe Laurent expansionof the map m;o © ® ¢. By the Reconstruction Theorem 2.6,
it sufficesto showthat the generating field assignmentsagree,that is we needto verify
that for v e WGY),

#
mzo(iz((dut ™" - ), (V)= (D(ut") - yz "

neZ
#
mzo(ez(mut™"dt - @), (V)= (D(ut"™ 'dt)- yz"
nezZ
#
mzo(z(n(t o -0, (V)= (D(t"w) - Yz
neZ

tz(n(Jut="- 0")) may be identified with the elementJuy, € g® C[F]® (Q'(D(z 2))",
where v, € (Q'(D(z 2)) " is defined by

i 7 h(w)aw
27 w— z
C(z0)

yz(h(w)dw) =

By the residuetheorem, for h(w)adw €Q'(A(r, R)), we may switch contours, to write

h(w)dw _ 7 h(w)yaw 7 h(w)dw

w-— z w— z w-— z
C(z9) C(0,R-6) C(0,r% )

#
= w T Th(wadw 2"+ ( w ™ Th(w)dw) 2"
2000 Rs) n<0 o0, ro o)
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where in the secondline we have expanded Wl—z into a geometric seriesin the domains
|w|> |z|and |w| < |z|respectively. Using the fact that

Ressh(myw™ " dw= hwW)w ™" (. r\dwdw
A(rR)

and ®(Jut ="y v=[Juz™" f(rsmydZ]- vwe obtain the first identity. Similarly, we may
identify «,(m(ut~1dt- Q")) with the element us, € C[F] ® (O(D(z, 2)) ", where

7
() = h2)= 5 N

w— z
C(z9)

and (1t "o - Q") with oy, € Q7 ® (Q'(D(2 2)) V. Expanding thesein contour
integrals centeredat 0, and identifying the coefficientswith appropriate elementsin the
image of @ as above provesthe remaining two identities.
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