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Let  X be a complex manifold,  π : E → X a locally  trivial  
holomorphic  fibration  with  fiber  F , and (g, #•, •$) a Lie algebra 
with  an invariant  symmetric  form.  We associate to  this  data  
a holomorphic  prefactorization  algebra F g ,π on X in the 
formalism  of Costello-Gwilliam.  When  X = C,  g is simple, 
and F is a smooth affine variety,  we extract  from  F g ,π a 
vertex  algebra which  is a vacuum module  for  the universal  
central  extension of the Lie algebra g ⊗ H0( ,F  O)[ ,z  z−1 ]. As 
a special case, when F is an algebraic torus  (C ∗)n , we obtain  
a vertex  algebra naturally  associated to  an (n + 1)–toroidal  
algebra, generalizing the affine vacuum module.
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1. Introduction

Affine Kac-Moody Lie algebras [10] are a class of infinite-dimensional Lie algebras 
which play a central role in representation theory and conformal field theory. Given a 

finite-dimensional complex Lie algebra with  invariant  form (g, !,  "), the corresponding 
affine Lie algebra !g is a central extension of the loop algebra g[ ,z  z−1] = g  ⊗ C[ ,z  z−1]
by a one-dimensional center Ck. It  is well-known (see e.g. [7]) that  for each K ∈ C, the 
vacuum module

VK (!g) = Ind !g
!g+ CK

(where !g+ = g[ z] ⊕ Ck ⊂ !g, and CK denotes its one-dimensional representation on 

which the first  summand acts trivially  and k acts by K ) has the structure of a vertex 

algebra. The representation theory of !g and VK (!g) are inextricably  linked - VK (!g) picks 

out interesting categories of representations of !g, and provides tools for studying these. 
VK (!g) can also be realized geometrically on a smooth complex curve X (see [2,4,7]), and 

tied closely to the geometry of the moduli  space Bun G (X ) of principal  G-bundles on X .
More generally, for a commutative C-algebra R, one can consider the Lie algebra 

gR = g  ⊗C R, and its universal central extension !gR . The case R = C[ ,z  z−1] corresponds 
to the affine Kac-Moody algebra, and when R = C[ z±1, z±1 ,   · · · , z±

n ], !gR is known as the 

(n + 1)-toroidal  algebra. It  is a natural  question whether one can associate to !gR a vertex 

algebra analogous to VK (!g), and if so, whether it  has a “geometric”  realization. Our goal 
in this paper is to show that  the answer is affirmative in the case when R = A [ ,z  z−1] for 
a commutative C-algebra A. Connections between toroidal  algebras and vertex algebras 
have also been explored in [1,6,14,16].

When R = A [ ,z  z−1], !gR contains a subalgebra !g+
R corresponding to non-negative 

powers of z. By analogy with  the affine case, we may form the induced module

V (!gR ) := Ind !gR

!g+
R

C

where C denotes the trivial  representation of !g+
R . We prove the following:

Theorem 1.1 (Theorem 2.9 and Proposition 2.10).  When R = A [ ,z  z−1], V (!gR ) has the 
structure of a vertex algebra. Moreover, this structure is functorial  in  A.

The bulk  of the paper is devoted to giving a geometric realization of V (!gR ) in  the 

language of factorization  algebras, which we briefly  recall.
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1.1. (Pre)factorization  algebras

The formalism of (pre)factorization  algebras was developed by Kevin  Costello and 

Owen Gwilliam  in [4] to describe the algebraic structure of observables in quantum field 

theory, as well as their  symmetries. Roughly speaking, a prefactorization algebra F on 

a manifold X assigns to each open subset U ⊂ X a cochain complex F (U), and to each 
inclusion

U1 ' U 2     ' · · · ' Un ⊂ V

of disjoint  open subsets Ui of V , a map

mU1 ,··· ,Un

V : F (U1) ⊗       · · · · · · F(Un ) (→ F(V ) (1)

subject to some natural  compatibility  conditions. If  F is the prefactorization algebra 

of observables in a quantum field theory, the cohomology groups H i (F (U)) can  be in-
terpreted as the observables of the theory on U as well as their  (higher) symmetries. 
This structure is reminiscent of a multiplicative  cosheaf, and just  as in the theory of 
sheaves/cosheaves a gluing axiom distinguishes factorization  algebras from mere prefac-
torization  algebras.

An  important  source of prefactorization algebras are factorization  enveloping algebras. 
Let L be a fine sheaf of dg (or L∞ algebras) on X . Denoting by L c the cosheaf of 
compactly supported sections of L , we have maps

⊕n
i =1 L c(Ui ) ∼= L c(U1 ∪    ∪· · ·  Un ) (→ Lc(V ) (2)

for disjoint  opens Ui ⊂ V, where the map on the right  is extension by 0. Applying  the 

functor  CLie
∗ of Chevalley chains to (2) yields maps

⊗n
i =1 CLie

∗ (L c(Ui )) (→ CLie
∗ (L c(V ))

The argument just  sketched shows that  the assignment

U (→ CLie
∗ (L c(U)) (3)

defines a prefactorization algebra. It  is called the factorization  enveloping algebra of L
and denoted UL .

Costello-Gwilliam  showed that  there is a close relationship between a certain class of 
prefactorization algebras on X = C and  vertex algebras. The following result from [4]
(paraphrased for the sake of brevity)  is central to our construction:

Theorem 1.2 ([4],  Theorem 5.3.3). Let F be a unital,  S1-equivariant, holomorphically 
translation invariant  prefactorization algebra on C satisfying certain natural conditions. 
Then the vector space
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V (F ) :=
"

l∈ Z

H ∗(F ( l ) (C)) (4)

has the structure of a vertex algebra, where F ( l ) (C) denotes the l-th eigenspace of S1 in  

F (C).

1.2. Prefactorization algebras from holomorphic fibrations

In  this paper we construct prefactorization algebras starting  with  two pieces of data:

• A  locally trivial  holomorphic fibration  π : E → X of complex manifolds with  fiber 
F .

• A  Lie algebra (g, !,  ") with  invariant  bilinear  form.

We begin with  a sheaf of dg Lie algebras (DGLA’s)  on X

gπ = (g ⊗ π∗Ω0,∗
E , ∂)

with  bracket

[J ⊗ α, J%⊗ β] = [ , J J%] ⊗ α ∧ β, , J J%∈ g, α, β ∈ π∗Ω0,∗
E .

gπ has an L∞ central extension !gπ whose underlying complex of sheaves is of the form

!gπ = g π ⊕ Kπ ,

with  Kπ a certain three-term complex. Our prefactorization algebra is

Fπ, g := CLie
∗ (!gπ,c ),

where !gπ,c denotes the cosheaf of sections with  compact support. This is an instance of 
the factorization  enveloping algebra as in Equation (3) described above.

When F is a smooth affine complex variety, and E = X × F is a trivial  fibration,  we 

obtain a chain of inclusions of factorization  enveloping algebras

Galg
π, g ⊂ Gπ, g ⊂ Fπ, g

corresponding to the inclusion of sheaves of DGLA’s

(g ⊗ H0( ,F  Oalg
F ) ⊗ Ω0,∗

X , ∂) ⊂ (g ⊗ Γ( ,F Ω0,∗
F ) ⊗ Ω0,∗

X , ∂) ⊂ gπ

which extends to the central extensions. Here, Oalg
F denotes the sheaf of algebraic func-

tions on F .
When X = C (and  E is necessarily trivial),  we may attempt  to extract  from Galg

g,π a 

vertex algebra using Theorem 1.2. Our main result is the following:
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Theorem 1.3 (Theorem 5.2). Let F be a smooth complex affine variety, and π : C ×F →

C the trivial  fibration  with fiber F . Then

(1) The toroidal prefactorization algebra Galg
g,π satisfies the hypotheses of Theorem 1.2.

(2) The vertex algebra V (Galg
g,π ) is  isomorphic to the toroidal vertex algebra V (!gR ),  with 

R = H 0( ,F  Oalg
F )[ ,t  t−1].

We may view these results as follows. When X is a (arbitrary)  Riemann surface, and 

p ∈ X a point,  we may choose a coordinate z centered at p, and a local trivialization  of 
E near p. The cohomology prefactorization algebra H ∗(Fπ, g) is then locally modeled by 

the vertex algebra V (!gF ) via  the dense inclusion Galg
π, g ⊂ Fπ, g .

Most of the work in this paper goes into  proving Theorem 1.3, which involves two 

main steps. First,  we verify that  the various technical hypotheses of Theorem 1.2 are 

satisfied. The second step is a somewhat lengthy direct calculation following the ap-
proach taken in [19] for the Virasoro factorization  algebra and in [4] (Section 5.5.5) 
for the affine factorization  algebra. This involves constructing explicit  representatives in 

H ∗(Galg
π, g ), and verifying that  operator product  expansions match those of V (!gR ), where 

R = H 0( ,F  Oalg
F )[ ,t  t−1].

1.3. Outline of paper

In  section 2 we recall universal central extensions, the construction of !gR , and vertex 

algebras. We construct an L∞ model of !gR which is later used to build  our prefac-
torization  algebra Fπ, g. We also show how to associate to the algebra R = A [ ,z  z−1], 
where A is a commutative C–algebra, a vertex algebra generalizing the affine vacuum 

module. Our later geometric construction will  be a special case of this. In  section 3 we 

recall some basic facts about prefactorization algebras. The construction of Fg,π and the 

related prefactorization algebra Galg
g,π happens in section 4. Finally,  in section (5) we con-

sider the special case when X = C,  and prove Theorem 1.3 using the approach outlined 

above.

Acknowledgments:M.S. would like to thank  Kevin  Costello and Owen Gwilliam  for 
patiently  answering a number of questions and making several valuable suggestions. He 

also gratefully  acknowledges the support of a Simons Collaboration  Grant  No. 359558 
during the course of this project. B.W.  was partially  supported by the National  Science 
Foundation Award DMS-1645877.

2. Lie algebras and vertex algebras

We begin by recalling some aspects of toroidal  Lie algebras, then move towards a 

slight variant that  will  be useful for our purposes.
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2.1. Central extensions

Let g be a complex Lie algebra equipped with  an invariant  bilinear  form !•,  •" . Also, 
fix  a commutative C-algebra R. Then, gR := g  ⊗C R carries a natural  complex Lie algebra 
structure with  bracket

[J ⊗ , r J%⊗ s] = [ , J J%] ⊗ rs

where ,J  J%∈ g and ,r  s ∈ R. It  is shown by Kassel [11] that  there exists a universal 
central extension of the form

0 → H Lie
2 (gR ) → !gR → gR → 0.

Furthermore, when g is simple and !•,  •" the Killing  form, there is an isomorphism of the 

Lie algebra homology H2(gR ) ∼= Ω1
R /dR where Ω1

R is the R-module of Kähler  differentials 

of /R C and  d : R → Ω1
R is the universal derivation. The bracket on

!gR
∼= g⊗ R ⊕Ω1

R / ,dR (5)

is given by

[J ⊗ , r J%⊗ s] = [ , J J%] ⊗ rs+ ! , J J%"rds

= [ , J J%] ⊗ rs+ 1
2
! , J J%"(rds − sdr)

where ω denotes the class of ω ∈ Ω1
R in Ω1

R /dR . We will  find the second form of the 

central cocycle more convenient to use.

Example 2.1. Let  n ≥ 0 be an integer. An  important  class of examples is obtained by 

taking

R := C[ t±1
0 ,   · · · , t±1

n ].

This is the algebra of functions on the (n + 1)-dimensional algebraic torus.
When n = 0,  the vector space Ω1

R /dR is one-dimensional with  an explicit  isomorphism 

given by the residue

Res : Ω1
R /dR

∼=
−→C .

The resulting Lie algebra !gR is the ordinary  affine Kac-Moody algebra usually denoted 
by !g. For n ≥ 1, the vector space Ω1

R /dR is infinite  dimensional. Indeed, let us denote 
ki = t−1

i dt i . The space Ω1
R /dR is generated over the ring C[t±1

0 , . . . , t±1
n ] by the symbols 

k0, . . . , kn subject to the relation
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n#

i =0
mi t

m 0
0   · · · tm n

n ki = 0

where (m0, . . . , mn ) is any n-tuple of integers. The Lie algebra !gR is called the (n + 1)-
toroidal Lie algebra associated to g.

It  will  be useful for us to have a model for the Lie algebra !gR as an L∞ algebra. We 

recall the definition  (see Section 3.2.3 of [12], or Section 10.1.6 of [15] for instance).

Definition 2.2. An  L∞ structure on a graded vector space h is the data of cohomological 
degree 1 coderivation D of the cofree cocommutative coalgebra

Sym(h[1])

satisfying D 2 = 0.  We may write  D =
$ ∞

m =1 lm , where

lm : h⊗m → h[2− m]

and the l%m s are extended to the symmetric coalgebra as coderivations.

Given such a square zero coderivation D the cochain complex

CLie
∗ (g) = (Sym(h[1]) , D)

is called the Chevalley-Eilenberg chain complex. In  what follows, we usually denote the 

differential  by D = dCE .
An  ordinary  Lie algebra corresponds to the case where lm = 0 for  m 0= 2,  and l2 is the 

Lie bracket. For an ordinary  Lie algebra, the differential  dCE is given on generators by 

dCE (xy) = [ ,x  y]. In  this case, the complex computes Lie algebra homology with  trivial  

coefficients.
The linear dual of CLie

∗ (h) is

C∗
Lie (h) =

%

Sym(h∗[−1]) , d∗
CE

&

.

Here, d∗
CE is the linear dual of the map dCE . This cochain complex computes Lie algebra 

cohomology of h with  trivial  coefficients.
Suppose ( ,M  dM ) is a cochain complex with  the structure of an h-module. This means 

that  underlying graded vector space M has an h-module structure and this h-action 

commutes with  the differential  dM . Then, the complex

C∗
Lie (h; M ) =

%

Sym(h∗[−1]) ⊗  ,M d∗
CE + dM + dg,M

&
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is defined. Here, the additional  differential  dg,M encodes the module structure, for a 

precise formula we refer to [15]. This complex computes the Lie algebra cohomology 
H ∗(h; M ) of  h with  coefficients in M .

If  M is a trivial  module, concentrated in cohomological degree zero, then it  is a 

standard fact that  cohomology classes in H 2(h; M ) correspond to central extension of h
by M . Similarly,  if  M is a trivial  dg h-module, then degree two cocycles in C∗

Lie (h; M )
give rise to extensions of h by M as an L∞ algebra.

We return  to the Lie algebra !gR . The L∞ model for the central extension amounts to 

replacing the vector space Ω1
R /dR appearing as the central term by the cochain complex

KR = Ker( d)[2] → R[1] d
−→Ω1

R .

Just as the Lie algebra !gR is a central extension of gR = g  ⊗ R by the trivial  module 

Ω1/dR , the L∞ model we to construct is a central extension of gR by the cochain complex 
KR , thought  of as a trivial  dg module for gR .

The central extension is determined by a cocycle in the Chevalley–Eilenberg cochain 
complex

C∗
Lie (gR , KR ) =

%

Sym(g∗R [−1]) ⊗ KR , dCE + dK

&

of total  degree two. Here dCE is the Chevalley–Eilenberg differential  for gR and dK is 

the differential  induced from the differential  on the complex KR .
The cocycle is of the form φ = φ(0) + φ(1) where

φ(1) : (gR )⊗2 → Ω1
R

(J ⊗ r) ⊗ (J%⊗ s) (→ 1
2 ! , J J%"(rds − sdr)

and

φ(0) : (gR )⊗3 → R

(J ⊗ r) ⊗ (J%⊗ s) ⊗ (J%%⊗ t) (→ 1
2 ! [ , J J%], J%%"rst

Lemma 2.3. The functional  φ defines a cocycle in  C∗(gR , KR ) of  total degree two.

Proof.The differential  in the cochain complex C∗(gR , KR ) is  of the form dCE + d K

where d is the de Rham differential  defining the complex KR , and dCE is the Chevalley-
Eilenberg differential  encoding the Lie bracket of gR . It  is immediate that  dK φ

(1) =
0, dCE φ(0) = 0 by  the Jacobi identity  for g and invariance of the pairing  !•,  •" , and 

dK φ
(0) + dCE φ(1) = 0 by  direct calculation. Thus (dCE + dK )φ = 0 as desired. !

The cocycle φ defines an L∞ central extension

KR → 'gR → gR .
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As a vector space, 'gR = g R ⊕ KR , and the L∞ operations are defined by ' 1 = d , ' 2 =
[·, ·]gR + φ(1) , and ' 3 = φ(0) . The following is immediate from our definitions:

Lemma 2.4. There is an isomorphism of Lie algebras H ∗('gR , ' 1) = !gR .

Proof.The cohomology of g̃R is concentrated in degree zero, and isomorphic to

gR ⊕ H0(KR ) = g R ⊕ Ω1
R / dR

as a vector space. Our definition  of φ implies that

φ(0) ((J ⊗ r) ⊗ (J%⊗ s)) =
1
2
! , J J%"(rds − sdr) =   rds mod dR

so that  the resulting Lie bracket is the same as that  of !gR . !

2.2. Vertex algebras

We proceed to briefly  recall the basics of vertex algebras and discuss an important  

class of examples, which will  later be constructed geometrically via factorization  algebras. 
We refer the reader to [7,9] for details.

Definition 2.5. A vertex algebra ( ,V  |0", ,T  Y ) is a complex vector space V along with  the 

following data:

• A  vacuum vector |0" ∈ V.
• A  linear map T : V → V (the translation  operator).
• A  linear map Y (−, z) : V → End(V )!z±1" (the vertex operator). We write  Y ( ,v  z) =

$
n∈ Z Av

n z−n where Av
n ∈ End(V ).

satisfying the following axioms:

• For  all ,v  v%∈ V there exists an N 1 0 such that  Av
n v%= 0 for  all n > N . (This  says 

that  Y ( ,v  z) is a field for  all v).
• (vacuum  axiom) Y (|0", z) = id V and Y ( ,v  z)|0 ∈ v+ zV !z" for all v ∈ V.
• (translation)  [ ,T  Y ( ,v  z)] = ∂zY ( ,v  z) for  all v ∈ V. Moreover T |0" = 0.
• (locality)  For all ,v  v%∈ V, there exists N 1 0 such that

(z − w)N [Y ( , v z), Y(v%, w)] = 0

in End(V )!z±1, w±1".
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In  order to prove that  a given ( ,V  |0", ,T  Y ) forms  a vertex algebra, the following 

“reconstruction”  or “extension”  theorem is very useful. It  shows that  any collection of 
local fields generates a vertex algebra in a suitable sense.

Theorem 2.6 ([7],  [5]).  Let V be a complex vector space equipped with:  an element |0" ∈ V, 
a linear map T : V → V , a set of vectors {as} s∈S ⊂ V indexed by a set S, and fields 
As(z) =

$
n∈ Z As

n z−n− 1 for each s ∈ Ssuch that:

• For  al l s ∈ S, As(z)|0" ∈ as + zV !z";
• T |0" = 0 and  [ ,T  As(z)] = ∂z As(z);
• As(z) are mutually  local;

• and  V is spanned by {A s1
j 1

  · · · Asm
j m

|0 } as the j %i s range over negative integers.

Then, the data ( ,V  |0", ,T  Y ) defines a unique vertex algebra satisfying

Y (as , z) = As(z).

Remark 2.7. The version stated above appears in [5], and is slightly  more general than 

the version stated in [7].

2.3. The vertex algebras V (!g) and V (!gR )

A  number of vertex algebras are constructed from vacuum representations of affine 

Lie algebras and their  generalizations. We proceed to review the vertex algebra structure 

on the affine Kac-Moody vacuum module V (!g) and extend the construction to vacuum 

representations of !gR , where R = A [ ,t  t−1] for  some C-algebra A .

2.3.1. V (!g)
Let !g = g[ ,t  t−1] ⊕Ck be the affine Kac-Moody algebra, !g+ = g[ t] denote the positive 

sub-algebra, and C denote the trivial  representation of !g+ . For J ∈g, denote J ⊗ tn by 

Jn , and 1 ∈ C by  |0".
It  is well-known (see for instance [7]) that  the induced vacuum representation

V (!g) := Ind !g
!g+ C := U(!g) ⊗U (g[ t ]) C

has a C[k]-linear vertex algebra structure, which is generated, in the sense of the above 
reconstruction theorem, by the fields

J i (z) := Y (J i
−1|0", z) =

#

n∈ Z

J i
n z−n− 1,

where {J i } is a basis for g. These satisfy the commutation relations
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[J i (z), Jk (w)] = [ J i , Jk ](w)δ(z − w) + !J i , Jk "k∂wδ(z − w)

where

δ(z − w) =
#

m

zm w−m− 1

The translation  operator T is determined by the properties

T |0" = 0 , [ , T Ji
n ] = −nJ i

n− 1.

Remark 2.8. The construction above produces a generic version of the affine Kac-Moody 

vacuum module, in the sense that  k is not specialized to be a complex number. In  the 

vertex algebra literature  one typically  specifies a level K ∈ C,  and defines

VK (!g) := Ind !g
g[ t ]⊕Ck C ,

where C denotes the one-dimensional representation of g[t] ⊕Ck on which the first  factor 
acts by 0 and k acts by K . We have an isomorphism

V (!g)/I 2 V K (g)

where I is the vertex ideal generated by K|0" −k|0". V (g) can therefore be viewed as a 

family  of vertex algebras over spec(C[k]), with  fiber VK (g) at  k = K .

2.3.2. The generalized toroidal vertex algebra

In  this section we generalize the construction of the affine Kac-Moody vacuum module 

above to the Lie algebra !gR , for R = A [ ,t  t−1], where A is a commutative C–algebra. 
The construction specializes to V (!g) for  A  = C.

Let A be a commutative C-algebra, R = A [ ,t  t−1] := A ⊗ C[ ,t  t−1], and !gR the Lie 

algebra (5). We have a Lie subalgebra

!g+
R := g ⊗ A[t] ⊕ Ω1

A [t ]/dA [t] )→ !gR .

Let

V (!gR ) := Ind !gR

!g+
R

C (6)

where C denotes the trivial  representation of !g+
R . Our goal is to define the structure of 

a vertex algebra on V (!gR ).
The vacuum vector is simply |0" := 1  ∈ C. The fields of the vertex algebra split  into  

three classes and are defined as follows.
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Ju (z) := Y (J ⊗ ut−1|0", z) :=
#

n∈ Z

(J ⊗ utn )z−n− 1, (7)

K u dt
t

(z) := Y (t−1udt|0", z) :=
#

n∈ Z

(utn− 1dt)z−n , (8)

K t− 1ω (z) := Y (t−1ω|0", z) :=
#

n∈ Z

(tnω)z−n− 1 (9)

where J ∈g, u ∈ ,A  ω ∈Ω1
A .

The commutation relations between these fields are easily checked to be

[J 1
u (z), J2

v (w)] =
(
[J 1, J2]uv (w) + !J 1, J2"K t − 1 udv (w)

)
δ(z − w)

+ !J 1, J2"K uv dt
t

(w)∂wδ(z − w) (10)

with  all other commutators 0.
The operator T , corresponding to the Lie derivative L−∂ t , is defined by

T |0" = 0 , [ , T Ji ⊗ utn ] = −nJ i ⊗ utn− 1, [ , T utn dt] = −nft n− 1 ,dt [  , T tnω] = −nt n− 1ω.

Theorem 2.9. The above field assignments, together with T equip V (!gR ) with  the structure 
of a vertex algebra.

Proof.We begin by checking that  the field assignment above is well-defined. This 

amounts to verifying that  Y (d(t−1u)|0", z) = 0.  We have

Y (d(t−1u)|0", z) = Y (t−1du|0", z) − Y(  f t−2udt|0", z)

= Y (t−1du|0", z) − Y([  , T t−1udt]|0", z)

= Y (t−1du|0", z) − ∂zY (t−1udt|0", z)

=
#

n

(tn du + nt n− 1u)z−n− 1 =
#

n

d(tn u)z−n− 1 = 0

To obtain the structure of a vertex algebra, we apply the reconstruction Theorem 2.6
to V (!gR ) and  the fields {J u (z), K u dt

t
(z), K t− 1ω(z)} for J ∈ g, f ∈ ,A  ω ∈Ω1

A . The only 

nontrivial  axiom to check is mutual  locality  for the J (z)-fields, which follows from the 

explicit  commutator (10). !

2.4. Some properties of V (!gR )

The map sending a C-algebra A to V (!gR ), with  R = A [ ,t  t−1] has a number of pleasing 
properties. While  these are not used in the remainder of this paper, they are simple to 

establish and useful for the study of the representation theory of V (!gR ) and its conformal 
blocks, which we plan to pursue in future  work.
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Denote by C −Alg the  category of commutative C-algebras and Vert the  category of 
vertex algebras. We have the following result:

Proposition 2.10. The map

C-Alg → Vert

A (→ V(!gA [ ,t t − 1 ])

defines a functor.

Proof.We must check that  a homomorphism of C-algebras ψ : A → B induces a vertex 

algebra homomorphism 'ψ : V (!gA [ ,t t − 1 ]) → V (!gB [ ,t t − 1 ]). We begin by constructing a Lie 

algebra homomorphism

ψ : !gA [ ,t t − 1 ] → !gB [ ,t t − 1 ] .

Recall that  a C-algebra homomorphism σ : R → S induces a map on Kahler  differentials 

(as vector spaces) σ∗ : ΩR → ΩS given by σ∗(rdr %) = σ(r ) σd (r%), which sends exact 
elements to exact elements, inducing a map

σ∗ : ΩR /dR → ΩS /dS

Extending ψ : A → B to a homomorphism (abusively also denoted ψ) ψ : A [ ,t  t−1] →
B [ ,t  t−1], and taking  σ = ψ yields a map

ψ∗ : ΩA [ ,t t − 1 ]/dA [ , t t−1] → ΩB [ ,t t − 1 ] /dB [ , t t−1]

Now, ψ : !gA [ ,t t − 1 ] → !gB [ ,t t − 1 ] is defined by

ψ(Jut n + ω) = ψJ (u)tn + ψ∗ω where J ∈g, u ∈ ,A ω ∈ΩA [ ,t t − 1 ] /dA [ , t t−1]

and easily checked to be a Lie algebra homomorphism. Finally,

'ψ : V (!gA [ ,t t − 1 ]) → V (!gB [ ,t t − 1 ])

may be defined on the generating fields Ju (z), K u dt
t
, K t− 1ω in the obvious way by:

'ψ(Ju (z)) :=
#

n∈ Z

(J ⊗ ψ(u)tn )z−n− 1,

'ψ(K u dt
t

(z)) := K ψ∗(u dt
t ) (z) =

#

n∈ Z

(ψ(u)tn− 1dt)z−n ,

'ψ(K t− 1ω (z)) := K ψ∗( t − 1ω) (z) =
#

n∈ Z

(tnψ∗ω)z−n− 1
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where u ∈ ,A  ω ∈ΩA . One easily checks that

'ψ([Ju (z), J%v (w)]) = [ 'ψ(Ju (z)) , 'ψ(J%
v (w))] ,

which shows that  'ψ respects the only non-trivial  OPE among the generating fields. It  

follows that  'ψ is a vertex algebra homomorphism. !

If  A is any C-algebra, we may apply this result to the structure map C → A , to 

obtain:

Corollary 2.11. The structure map C → A induces an embedding of vertex algebras

V (!g) → V (!gA [ ,t t − 1 ]).

Remark 2.12. As explained in Remark 2.8, we have

VK (g) 2 V (!gC[ ,t t − 1 ])/ ,I

where VK (g) denotes the “usual”  affine vacuum module at level K ∈ C,  and I is the 

vertex ideal generated by k|0" − K|0". When K 0= −h∨ (where h∨ denotes the dual Cox-
eter number of g), VK (g) is  a conformal vertex algebra with  conformal Segal-Sugawara 
vector

S =
1

2(K + h∨)

d#

i =1
(J i ⊗ t−1)(J i ⊗ t−1)|0",

where {J i }
d
i =1 an orthonormal  basis of g with  respect to the invariant  pairing !•,  •" . It  

follows that  when K 0= −h∨, S defines a conformal vector in V (!gA [ ,t t − 1 ])/I %, where I %is 

the vertex ideal generated by dt
t |0" − K|0".

As another consequence of Proposition 2.10, we note that  any algebra automorphism 

ψ : A  → A induces a vertex algebra automorphism of V (!gA [ ,t t − 1 ]):

Corollary 2.13. There is a natural group homomorphism

Aut( A) → Aut( V (!gA [ ,t t − 1 ]))

ψ → 'ψ.

3. (Pre)factorization algebras and examples

In  this section we recall basic notions pertaining  to pre-factorization algebras. We 

refer the reader to [4] for details.
Let X be a smooth manifold, and C⊗ a symmetric monoidal category.
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Definition 3.1. A  prefactorization algebra F on X with  values in C⊗ consists of the 

following data:

• for  each open U ⊂ M, an object F (U) ∈ C⊗ ,
• for  each finite  collection of pairwise disjoint  opens U1, . . . , Un and an open V con-

taining  every Ui , a morphism

mU1 ,··· ,Un

V : F (U1) ⊗    ⊗ · · · F(Un ) → F (V ), (11)

and satisfying the following conditions:

• composition  is associative, so that  the triangle

*
i

*
j F (Tij )

*
i F (Ui )

F (V )

commutes for any disjoint  collection {U i } contained in V , and disjoint  collections 
{T ij } j ⊂ Ui

• the  morphisms mU1 ,··· ,Un

V are equivariant under permutation  of labels, so that  the 

triangle

F (U1) ⊗    ⊗ · · · F(Un ) F (Uσ(1) ) ⊗    ⊗ · · · F(Uσ(n ) )

F (V )

*

commutes for any σ ∈ Sn .

In  this paper, we will  take the target category C⊗ to be Vect, dg-Vect, or their  smooth 

enhancements DVS described below.

Remark 3.2. A  factorization  algebra is a prefactorization algebra satisfying a descent (or 
gluing) axiom with  respect to a class of special covers called Weiss covers. As Theorem 1.2
connecting the Costello-Gwilliam  formalism to vertex algebras does not require this 

axiom, it  will  not play a role in this paper. We refer the interested reader to [4] for more 

details on descent..

Example 3.3 ([4],  Section 3.2). Given an associative algebra over C,  one can construct a 

prefactorization algebra FA in Vect on R by  declaring FA (I ) = A for a connected open 

interval I ⊂ R, and defining the structure maps in terms of the multiplication  on A. For 
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instance, if  I = ( ,a  b), J = ( ,c  d), K = ( ,e  f ), with  e < a < b < c < d < f , the structure 

map is

FA (I ) ⊗ FA (J ) (→ FA (K )

a ⊗ b (→ ab

FA has the property  that  it  is locally constant, in the sense that  if  I ⊂ I%are connected 
intervals, then FA (I ) (→ FA (I %) is an isomorphism. It  is shown in Section 3.2 of [4] that  

locally constant prefactorization algebras on R in Vect correspond precisely to associative 
algebras.

Prefactorization algebras can be pushed forward under smooth maps as follows. Sup-
pose f : X (→ Y is a smooth map of smooth manifolds, and F a prefactorization algebra 
on X . One then defines the prefactorization algebra f ∗F on Y by

f ∗F (U) := F (f −1(U))

The structure maps of f ∗F are defined in the obvious way.
If  F,  G are prefactorization algebras on X with  values in C⊗ , then a morphism φ :

 → F G is the data of maps

φU : F (U) → G(U) ∈ HomC⊗ (F (U), G(U))

for each open U ⊂ X, compatible with  all structure maps (11).

3.1. Prefactorization enveloping algebras

We will  define a prefactorization algebra associated to the data of a holomorphic 

fibration.  Such a factorization  algebra is an instance of a prefactorization enveloping

algebra, which we proceed to briefly  review following Section 3.6 of [4].1

Let L be a fine sheaf of L∞ algebras, and L c its associated cosheaf of sections with  

compact support. The prefactorization enveloping algebra of L , UL is the complex of 
Chevalley chains of L c. In  other words, for each open U ⊂ X

UL (U) := CLie
∗ (L c(U)) (12)

The structure maps are given explicitly  as follows. Let U1,   · · · , Uk be disjoint  open subsets 
of an open V ⊂ X. The cosheaf L c induces a map of L∞ –algebras

⊕k
i =1 L c(Ui ) (→ Lc(V )

1 In  [4] this  is called  the  “factorization  enveloping  algebra”  but  as we mentioned  above,  we will  not  use 
the  gluing  axiom.
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Applying  the Chevalley chains functor  (which sends sums to tensor products) to this 

sequence yields structure maps

⊗k
i =1 CLie

∗ (L c(Ui )) (→ CLie
∗ (L c(V )) .

See Section 6.6 of [4] for more details.

Theorem 3.4. If  L is a fine cosheaf of L∞ algebras, then UL is a prefactorization algebra 
in  dg-Vect. The cohomology H ∗(UL ) is  a prefactorization algebra in  Vect.

Example 3.5 (Section 3.4 [4]).  Let X = R,  and gdR := (g  ⊗ Ω∗
R , ddR ) the  sheaf of 

DGLA’s  on R obtained by tensoring g with  the de Rham complex. The prefactorization 

enveloping algebra U(gdR ) is locally constant, and the cohomology factorization  algebra 
H ∗(U(g  ⊗Ω∗

R ), ddR ) is a locally constant prefactorization algebra in Vect, corresponding 
to the enveloping algebra U(g) as in Example (3.3).

Example 3.6 (Section 5.4 [8]).  Let X = C n , and (g ⊗ Ω0,∗
C n , ∂) the  sheaf of DGLA’s  on 

Cn obtained by tensoring g with  the Dolbeault  complex of forms of type (0, q), q ≥0. 
As explained below, when n = 1,  the factorization  algebra U(g ⊗ Ω0,∗

C , ∂) allows one to 

recover the affine vertex algebra V (!g) (at  level 0).

3.2. Differentiable vector spaces

The prefactorization algebras considered in this paper typically  assign to each open 

subset U ⊂ X a cochain complex of infinite-dimensional vector spaces. This is apparent 
already in the Example 3.5 above, where the graded components of U(gdR ) = U(g  ⊗

Ω∗
R )(U) for U ⊂R are tensors in g ⊗Ω∗

R (U)c. The structure maps (11) are thus multilinear  

maps between such complexes. In  order to formulate the notion of translation-invariance 

for prefactorization algebras in the next section, we will  have to discuss what it  means 
for these to depend smoothly on the positions of the open sets Ui ⊂ X. This raises some 
functional-analytic  issues, which in turn  complicate homological algebra involving these 
objects.

In  [4] these technical issues are resolved by introducing  the category DVS of  Dif-
ferentiable Vector Spaces together with  certain sub-categories. DVS provides a flexible 

framework within  which one can discuss smooth families of smooth maps between 
infinite-dimensional cochain complexes parametrized by auxiliary manifolds,  and carry 

out homological constructions. We briefly  sketch this category below, and refer to ap-
pendices B and C in [4] for all details.

Definition 3.7. Let C∞ denote the sheaf of rings on the site of smooth manifolds sending 
each manifold M to the ring of smooth functions C∞ (M ), and assigning to each smooth 

map f : M → N the pullback f ∗ : C∞ (N ) → C∞ (M ). A  C∞ -module F is a sheaf of 
modules over C∞ . In  other words, F assigns to each M a C∞ (M )-module F (M ), and to 
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f : M → N a pullback map F (f ) : F (N ) → F (M ) of  C∞ (N )-modules. A differentiable 
vector space is a C∞ -module equipped with  a flat  connection. Explicitly,  this amounts 
to assigning a flat  connection

∇ : F (M ) → F (M ) ⊗C ∞ (M ) Ω1(M )

for each manifold M , compatible with  pullbacks. The objects of the category  DV Sare 

differentiable vector spaces, and the morphisms Hom  DV S (F,  G) maps of C∞ -modules 
intertwining  the connections.

Any  locally convex topological vector space V gives rise to a differentiable vector space 
as follows. There is a good notion of a smooth map from any manifold M to V introduced 

by Kriegl  and Michor (see [13]), and we denote by C∞ ( ,M  V ) the  space of such. The 

space C∞ ( ,M  V ) is  naturally  a C∞ (M )-module, and carries a natural  flat  connection 
whose horizontal sections are constant maps M → V . The assignment M → C∞ ( ,M  V )
thus produces an object of DVS. Multi-linear  maps

F1 × F2 ×    × · · · Fr (→  G Fi ,  ∈G DVS (13)

equip DVS with  the structure of a multi-category (or equivalently, a colored operad) 
by inserting the output  of a multilinear  map into  another. We denote the space of such 
maps by DVS(F1,   · · · , F r |G).

The multicategory  DVS allows  us to formulate the notion of a smooth family  of 
multilinear  operations parametrized by an auxiliary  manifold M . For  ∈F DVS, one first  
defines the mapping space C∞ ( ,M  F ) ∈ DVS as the differentiable vector space given by 

the assignment N (→ F(N × M). As explained in [4], it  has a natural  flat  connection 
along N .

Definition 3.8. Let F1,   · · · , F r ,  ∈G DVS. A  smooth family  of multilinear  operations 
F1 ×    · · · Fr (→ Gparametrized by a manifold M is by definition  an element of

DVS(F1,   · · · , Fr |C∞ ( ,M  G))

where C∞ ( ,M  G) is as explained in the preceding paragraph.

DVS has several good properties. Among these are:

• DVS is  complete and co-complete.
• DVS is  a Grothendieck Abelian  Category.

The second property  ensures that  all standard constructions in homological algebra 
behave well in DVS. This is in contrast to the category of topological vector spaces, which 
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is not even Abelian.  As the authors explain in [4], this is because DVS has essentially 
been defined as the category of sheaves on a site.

Finally,  we review some examples of differentiable vector spaces which will  be useful 
to us.

Example 3.9. The following is an important  example from [4]. Suppose p : W → X

is a vector bundle over the manifold X . Then V = Γ( ,X  W ) is  naturally  a Frechet 
space, and so locally convex. C∞ ( ,M  V ) is then identified with  Γ(M × ,X  π∗

X E ), where 
πX : M × X → X is the projection  on X . In  particular,  taking  W to be the trivial  

bundle, we have C∞ ( ,M  C∞ (X ))  = C∞ (M ×X ). The same line of reasoning shows that  

the space of compactly supported sections of W , V%= Γ c( ,X  W ) has a DVS structure.

Example 3.10. The following generalization of the previous example will  be useful in 

Sections 4, 5. Let π : E → X be a smooth map, and p : W → E a vector bundle on E . 
Denote by W the sheaf of smooth sections of W on E . Then V = Γ( ,X  π∗W ) yields  a 

differentiable vector space, with  C∞ ( ,M  V ) = Γ( M× ,X  ̃π∗
+W ), where π̃ : E×M → X×M

is defined by π̃( ,e  m) = ( π(e), m), and +W denotes the sheaf of sections of π∗
E W on E×M , 

with  πE : E×M → E the projection  on the first  factor. The connection is determined by 

the condition that  the horizontal sections are those constant in the M direction.  When 

E = X and π = idX , this example reduces to the previous one. We may similarly  equip 

V%= Γ c( ,X  π∗W ) with  a DVS structure.

Example 3.11. Suppose that   ∈F DVS, and V is any vector space (note that  we don’t  
specify a topology on V ). Then the assignment M (→ F(M ) ⊗R V , with  the connection 
acting trivially  on the V factor, yields an object of DVS which we denote FV . When V

is finite-dimensional, this amounts to a finite  direct sum of F .

3.2.1. Monoidal structures on DVS
To discuss prefactorization algebras with  values in DVS, we must specify a symmetric 

monoidal structure, which is used in defining the structure maps (11). Certain subtleties 

arise on this point,  typical  of the issues one encounters when trying  to define tensor 
products of infinite-dimensional topological vector spaces. We restrict  ourselves to a few 

brief remarks, and refer the interested reader to appendices B and C of [4] for details.

• Given  F,   ∈G DVS, we can define  ⊗ F Gas the sheafification of the presheaf X (→
F (X ) ⊗C ∞ (X ) G(X ), equipped with  the flat  connection ∇F ⊗ Id + Id  ⊗ ∇G. When 

F = C∞ (M ), G = C∞ (N ), and X = pt is a point,  this yields  ⊗F G(pt) = C∞ (M ) ⊗R

C∞ (N ). We call this symmetric monoidal structure the naive tensor product in DVS.
• The  naive tensor product  has certain shortcomings. Most importantly,  it  does not 

represent the space of multilinear  maps (13). In  order to remedy this situation,  a 

certain completed tensor product  ⊗̂β has to be introduced. This operation is only 

defined on a certain sub-category of DVS however. In  the last example, we would 
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obtain F ⊗̂β G(pt) = C∞ (M × N). We will  refer to this operation as the completed 
tensor product.

Using ⊗̂β rather than ⊗ is important  if  one wishes to obtain a factorization,  rather 
than merely a prefactorization algebra. As we work with  prefactorization algebras in 

this paper, the naive tensor product  is adequate, and will  be the symmetric monoidal 
structure on DVS throughout.

3.3. Translation-invariant  prefactorization algebras

Our construction in Section 4, when applied to the trivial  fibration  E = F ×Cn (→Cn , 
produces a prefactorization algebra which is holomorphically translation-invariant.  This 

property  will  be used when extracting  a vertex algebra in Section 5 in the case n = 1.  

We proceed to briefly  review this notion and refer the interested reader to Sections 4.8 

and 5.2 of [4] for details.

3.3.1. Discrete translation-invariance

Suppose now that  F is prefactorization algebra on Cn in the category of complex 
vector spaces. Cn acts on itself by translations. For an open subset U ⊂Cn and x ∈ Cn , 
let

τx U := {y ∈Cn |y − x ∈ U}

Clearly, τx (τy U) = τx + y U. We say that  F is discretely translation-invariant if  we are 

given isomorphisms

φx : F (U) → F (τx U) (14)

for each x ∈ Cn compatible with  composition and the structure maps of F . We refer to 

section 4.8 of [4] for details.

Example 3.12. For any Lie algebra g, U(g ⊗Ω0,∗
C n ) in  Example 3.6 is discretely translation-

invariant.

3.3.2. Smooth and holomorphic translation-invariance

A  refined version of translation-invariance expresses the fact that  the maps φx , and 

hence the structure maps mU1 ,··· ,Un

V depend smoothly/holomorphically  on the positions 

of the open sets Ui . This notion is operadic in flavor.
For z ∈Cn and  >r 0 let PD( ,z  r ) denote the polydisk

PDr (z) = {w ∈Cn ||wi − zi | < ,r 1 ≤ i ≤ n}

and let
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PD( r 1,   · · · , rk |s) ⊂ (C n )k

denote the open subset (z1,   · · · , zk ) ∈ (C n )k such that  the polydisks PDr i (zi ) have dis-
joint  closures and are all contained in PDs(0). The collections PD( r1,   · · · , r k |s) form  an 

R> 0–colored operad in the category of complex manifolds under insertions of polydisks.
Suppose that  F is a discretely translation-invariant  prefactorization algebra on Cn

with  values in DVS. We may then identify  F (PD r (z))  2 F (PD r (z%)) for  any two ,z  z%∈

Cn using the isomorphisms (14), and denote the corresponding complex simply by F r . 
For each p ∈ PD( r1,   · · · , r k |s), we have a multilinear  map

m[p] : F r 1 ×    × · · · Fr k (→ Fs (15)

As explained in Section 3.2, we say that  m[p] depends smoothly on p if

m ∈DVS(F r 1 ,   · · · , Fr k ,C∞ (PD( r 1,   · · · , rk |s), Fs)) .

To formulate the definition  of smooth translation-invariance, we will  need the notion of 
a derivation of a prefactorization algebra.

Definition 3.13 ([4],  Definition  4.8.2). A  degree k derivation of  a prefactorization algebra 
F is a collection of maps DU : F (U) (→ F(U) of  cohomological degree k for each open 

subset U ⊂ M, with  the property  that  for any finite  collection U1,   · · · , Un ⊂ V of disjoint  

opens and elements αi ∈ F(Ui ), the following version of the Leibniz rule holds

DV mU1 ,··· ,U n

V (α1,   · · · , αn )

=
n#

i =1
(−1)k (|α1 |+ ··· + |α i− 1 )|mU1 ,··· ,Un

V (α1,   · · · , αi− 1, DUi αi ,   · · · , αn )

The derivations of F form a DGLA,  with  bracket [ ,D  D%]U = [ DU , D%
U ] and differential  

d given by dDU = [ dU , DU ], where dU is the differential  on F (U).
The notion of smoothly translation-invariant  prefactorization algebra F on Cn can 

now be formulated as follows:

Definition 3.14 ([4],  Definition  4.8.3). A  prefactorization algebra F on Cn with  values 
in DVS is (smoothly) translation-invariant if:

(1) F is discretely translation-invariant.
(2) The  maps (15) are smooth as functions of p ∈ PD( r 1,   · · · , r k |s)
(3) F carries an action of the complex Abelian  Lie algebra Cn by derivations compatible 

with  differentiating  m[p].

We can further  refine the notion of translation-invariance to consider the holomorphic 

structure. We say that  F is holomorphically translation invariant if
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• F is smoothly translation  invariant.
• There  exist degree −1 derivations ηi :  → F F such that

– [ ,d  ηi ] = ∂
∂ z̄i

(as derivations of F )
– [ηi , ηj ] = [ ηi , 

∂
∂ z̄ j

] = 0
for i  = 1 ,   · · · , n, and where d is the differential  on F .

This condition  means that  anti-holomorphic  vector fields act homotopically trivially  

on F .

As explained in Section 5.2 of [4], if F is a holomorphically translation-invariant  

prefactorization algebra, then upon passing to cohomology, the induced structure maps

m[p] : H ∗(F r 1 ) ×    ×· · ·  H∗(F r k
) (→ H∗(Fs) (16)

are holomorphic as functions of p ∈ PD( r 1,   · · · , r k |s). In  other words, m can be viewed 
as a map

m : H ∗(F r 1 ) ×    ×· · ·  H∗(F r k
) (→Hol(PD( r 1,   · · · , rk |s), H∗(F s)) (17)

where Hol denotes the space of holomorphic maps in DVS.

Example 3.15. For any Lie algebra g, the prefactorization enveloping algebra U(g ⊗

Ω0,∗
C n ) of Example 3.6 is holomorphically translation-invariant.  The action by translation  

invariant  vector fields is simply by Lie derivative. The homotopy for anti-holomorphic  

translations is ηi = ι∂/∂z i
the contraction by the anti-holomorphic vector field ∂/∂z i . 

The fact that  this is a homotopy as above follows from Cartan’s formula for operators 
on the Dolbeault  complex

,
∂̄, ι∂/∂z i

-
= L ∂/∂z i

.

4. Prefactorization algebras from holomorphic fibrations

In  this section, we describe our main construction of prefactorization algebras from 

locally trivial  holomorphic fibrations.
Our starting  point  is the following data:

• Complex  manifolds ,F  X .
• (g , !,  ") a Lie algebra with  an invariant  bilinear  form.
• A  locally trivial  holomorphic fibration  π : E → X with  fiber F .

From this data we will  construct a sheaf of L∞ algebras on the total  space E of the 

fibration.  In  turn,  we obtain a prefactorization algebra on E upon taking  its prefactor-
ization enveloping algebra.
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4.1. A sheaf of Lie algebras

Let Ω0,∗
E be the sheaf of dg vector spaces given by the Dolbeault  complex of the 

complex manifold E , equipped with  the ∂ operator. For any Lie algebra g, we can define 
the sheaf of dg Lie algebras

gE = g ⊗ Ω0,∗
E

which on an open set U ⊂ Eassigns g ⊗ Ω0,∗
E (U). The differential  is again given by the 

∂ operator, and the Lie bracket is defined by

[X ⊗ α, Y ⊗ β] = [ , X Y] ⊗ (α ∧ β)

where ,X  Y ∈g, α, β ∈Ω0,∗(U).
Let K E be the bigraded complex of sheaves

C[2] → Ω0,∗
E [1] ∂

→ Ω1,∗
E

where the first  arrow is an inclusion, and the second is given by the holomorphic de Rham 

operator ∂. We view K E as a bigraded complex with  ∂ acting as vertical differential  on 

Ω ,p ∗
E , p = 0 , 1. Let KE = Tot( K E ) be the totalization  of this bigraded complex.
We consider the complex of sheaves KE as a trivial  dg module for the sheaf of dg Lie 

algebras gE . We will  construct a cocycle on gE with  values in this trivial  dg module. To 

this end, define the following maps of sheaves

φ(1) : (gE )⊗2 → Ω1,∗
E

φ(1) ((X ⊗ α) ⊗ (Y ⊗ β)) =
1
2
! , X Y "(α ∧ ∂β −(−1)|α|∂α ∧ β),

and

φ(0) : (gE )⊗3 → Ω0,∗
E [1]

φ(0) ((X ⊗ α) ⊗ (Y ⊗ β) ⊗ (Z ⊗ γ)) =
1
2
! [ , X Y], Z"(α ∧ β ∧ γ)

The sum φ = φ(0) + φ(1) is a cochain in the Chevalley-Eilenberg complex

φ ∈ C∗(gE , KE )

of total  degree 2.
By an identical calculation as in Lemma 2.3 we obtain the following.

Lemma 4.1. φ defines a cocycle in  C∗
Lie (gπ , KE ) of  total degree 2.
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The cocycle φ defines a central extension !gE of the sheaf gE as a sheaf of L∞ algebras 
which has non-vanishing ' 1, ' 2 and ' 3. More directly, we can define the cochain complex 
computing the Lie algebra homology of this sheaf of L∞ algebras.

Definition 4.2. Define the sheaf of dg vector spaces

CLie
∗ (!gE ) := (Sym(g E [1]⊕ KE [1]), d+ dCE + φ)

where

• d = ∂ + dK E is the sum of the differentials on gE and KE .
• dCE is the Chevalley-Eilenberg differential  of the original Lie algebra gE .
• the  linear map φ is extended to Sym(gE [1] ⊕ KE [1]) as a co-derivation.

The fact that  (d + dCE + φ)2 = 0 follows  from the fact that  φ is a cocycle.

4.1.1. Relation to local cocycles

There is a relationship between our construction and the theory “twisted”  factorization  

enveloping algebras given in Section 4.4 of [3] when the complex dimension dimC (E ) = 1.  

There, the data one uses to twist  is that  of a local cocycle which lives in the local 
cohomology of a sheaf of Lie algebras. We don’t  recall the precise definition,  but  if  L
is a sheaf of Lie algebras obtained from a bundle L , the local cohomology C∗

loc (L ) is  a 

subcomplex

C∗
loc (L ) ⊂ C∗Lie (L c)

where L c denotes the cosheaf of compactly supported sections. The condition for a 

cochain in C∗
Lie (L c) to  be local is that  it  is given by integrating  a “Lagrangian density”. 

Such a Lagrangian density is a differential  form valued cochain which only depends on the 

∞ -jet of the sections of L , that  is, it  is given by a product  of polydifferential  operators.
We have defined the cocycle φ as an element in C∗

Lie (gE , KE ). The complex 
C∗

Lie (gE , KE ) is neither a sheaf or a cosheaf, however, the object

C∗
Lie (g ,E c , KE )

is a sheaf. Here, we restrict  to cochains defined on compactly supported sections of 
gE . The cocycle φ is a section of this sheaf, meaning it  is compatible with  the natural  
restriction  maps.

The cocycle φ is not just  any section of this sheaf. For any open U ⊂ E, it  actually  

lies in the subcomplex

φ(U) ∈ C∗Lie (g ,E c (U), K ,E c (U)) ⊂ C∗Lie (g ,E c , KE )(U).
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In  other words, φ preserves the condition  of being compactly supported.
Now, the cosheaf K ,E c admits a natural  integration  map

.

: K ,E c → C[−1]

where C[−1] is the constant cosheaf concentrated in degree +1.  (Integration  is only 

nonzero on the Ω1,1
c , which accounts for the shift  above) Thus, for every U ⊂ E, we 

obtain a cocycle

φ(U) ∈ C∗Lie (g ,E c (U)) .

The cocycle φ is clearly built  from differential  operators, which implies that  φ(U) is  

actually  a element of the local cochain complex

φ(U) ∈ C∗loc (gE )(U).

In  conclusion, upon integration,  we see that  φ determines a degree one cocycle in the 

local cohomology of the sheaf of Lie algebras gE .
In  higher dimensions, there is a similar  relationship to local functionals which hence 

determine one dimensional central extensions of Kac-Moody type algebras in any dimen-
sion. This class of cocycles is studied in detail in the context of “higher  dimensional” 
Kac-Moody algebras in [8].

4.2. The prefactorization algebra Fg,π

We proceed to construct a prefactorization algebra on X — the base of the holomor-
phic fibration  π : E → X .

Let !gπ := π∗(!gE ) - a  sheaf of L∞ algebras on X , and let !gc
π denote the cosheaf of 

sections of !gπ with  compact support. Explicitly,  for an open subset U ⊂ X we have

!gc
π (U) = Γ c( ,U !gπ )

= Γ c( , πU ∗gE ) ⊕ Γc( , πU ∗KE ).
(18)

Remark 4.3. Though the assignment U (→gc
π (U) is  a cosheaf of dg vector spaces, it  is 

just  a precosheaf of L∞ algebras on X (with  L∞ structure defined by the cocycle φ in 

the previous subsection). This subtle issue arises since direct sum is not the categorical 
coproduct in the category of Lie algebras, but  it  will  play no essential role for us.

Definition 4.4. Define the cosheaf

Fg,π := CLie
∗ (!gc

π ) (19)
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as the Chevalley-Eilenberg complex for Lie algebra homology for the precosheaf of L∞

algebras !gc
π . For each open U ⊂ X this cosheaf assigns the complex

Fg,π (U) = CLie
∗ (!gc

π (U)) = (Sym(Γ c( , πU ∗gE )[1] ⊕ Γc( , πU ∗KE )[1]), d+ dCE + φ) (20)

Remark 4.5. The cosheaf !gc
π is equipped with  a DVS structure  as in Example 3.10, and 

therefore so is Fg,π , being constructed from algebraic tensor product.

Proposition 4.6. Fg,π has the structure of a prefactorization algebra on X valued in  

dg −DVS. When X = C n , Fg,π is holomorphically translation-invariant.

Proof.Note that  if  π : E → X is a locally trivial  fibration  and W is a smooth vector 
bundle on E , then π∗

+W is a fine sheaf. The smooth translation-invariance of Fg,π is es-
tablished just  as in the example of the free scalar field in Section 4.8 of [4]. To see that  the 

prefactorization algebra is holomorphically translation-invariant  we choose holomorphic 

coordinates {z i } for Cn . Then, the operators ηi = ι∂/∂z i
, i  = 1 , . . . , n given by contrac-

tion  with  the vector fields ∂/∂z i , i  = 1 , . . . nare degree (−1) derivations satisfying the 

conditions in Definition 3.14,  see Example 3.15. !

4.3. The prefactorization algebra Gg,π

In  this section we discuss some prefactorization algebras closely related to Fg,π , which 

are both  more convenient from a computational  standpoint  and more closely related to 

the class of toroidal  algebras we have introduced previously. Concretely we will  construct 
a sequence of prefactorization algebras on X

Galg
g,π → Gg,π → Fg,π (21)

with  the property  that  each map above is an inclusion at the level of graded vector spaces. 
(Strictly  speaking, the final map requires a choice of trivialization  of the fibration  - see 
Lemma 4.11.) While  the definition  of Fg,π is reasonably simple, explicit  calculations 

of H ∗(Fg,π (U)) for  an open subset U ⊂ X require the ∂-cohomology of the complex 
Γc( ,U  π∗(!gE )) in  Equation (18). This complex involves forms with  compact support along 

the base X and arbitrary  support along the fiber F , and its ∂-cohomology even when E is 

a trivial  fibration  is a certain completion of H 0,∗
c (U) ⊗H 0,∗(F ) whose explicit  description 

involves non-trivial  analytic  issues, due to the failure of naive Kunneth-type  theorems for 
Dolbeault  cohomology. As a hint  of the types of issues involved, we note that  the space 
of holomorphic functions on C2 = C × C is  not simply the algebraic tensor product  of 
holomorphic functions on the factors C, though the latter  forms a dense subspace.

The advantage of the prefactorization algebra Gg,π is that  its cohomology is simple 

to describe, as the Kunneth  formula holds at this level. The use of the even smaller 
prefactorization Galg

g,π is that  it  is closely related to vertex algebras and the toroidal  
algebras we have met earlier in the paper.
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Let us first  suppose that  E = X × F is a trivial  fibration.  For each ,p  ,q  p%, q%we have 
a map of cosheaves

Ω ,p q
,X c ⊗ Γ( ,F Ωp%,q%

F ) → (π∗Ωp+ p%,q+ q%

E )c

where the subscript c denotes sections with  compact support and we use the ordinary  

(algebraic) tensor product.  Explicitly,  for an open subset U ⊂ X, this map is just  the 

wedge product

Ω ,p q
,X c (U) ⊗ Γ( ,F Ωp%,q%

F ) → Γc( , πU ∗Ωp+ p%,q+ q%

E )

α ⊗ β → α ∧ β

It  is injective provided all three factors are non-zero.
Our first  definition  uses this injection  to split  off the dependence of the fiber F in the 

definition  of the cosheaf gc
π .

Definition 4.7. Define a sub cosheaf !g# c
π of !gc

π by

!g# c
π := g ⊗ Ω0,∗

,X c ⊗ Γ( ,F Ω0,∗
F ) ⊕ K#

π

where

K#
π := Tot(Ω 0,∗

,X c ⊗ Γ( ,F Ω0,∗
F )[1] ∂

→ Ω1,∗
,X c ⊗ Γ( ,F Ω0,∗

F ) ⊕ Ω0,∗
,X c ⊗ Γ( ,F Ω1,0

F )) .

Here, ∂ acts “vertically”  within  each term.

Remark 4.8. The cosheaf !g# c
π may be equipped with  a dg −DVS structure  as in Exam-

ple 3.11.

The L∞ structure on !gc
π induces one on the sub-complex !g# c

π (this  follows from the fact 
that  the cocycle φ restricts). The advantage of !g# c

π lies in the fact that  it’s  constructed 

from ordinary  (algebraic) tensor products of complexes whose cohomology is easy to 

describe.

Definition 4.9. Define the precosheaf Gg,π on X by

Gg,π := CLie
∗ (!g# c

π )

The same argument for Fg,π in Proposition 4.6 implies  that  Gg,π has the structure of a 

prefactorization algebra on X .

The arguments of the previous section show:
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Proposition 4.10. Gg,π has the structure of a prefactorization algebra on X . When X =
Cn , n ≥ 1, Gg,π is holomorphically translation-invariant.

When E = X × F, we have the following relationship between Gg,π and Fg,π :

Lemma 4.11. Suppose π : E = X × F → X is trivial.  Then, there exists a map of 
prefactorization algebras on X :

Gg,π → Fg,π (22)

Proof.We have just  constructed a map of DGLA’s  !g# c
π → !gc

π , which induces a map 

Gg,π → Fg,π upon taking  the factorization  enveloping algebra. !

For a general locally trivial  holomorphic fibration  π : E → X , we can construct a 

map of prefactorization algebras Gg,π → Fg,π locally on X . Indeed, for any x ∈ X there 

exists a local trivialization  of E on an open neighborhood V of x. On V , we obtain the 

map (22). It  depends on the choice of trivialization  however.

4.3.1. An algebraic variant

When the fiber F is a smooth complex affine variety and π : E = X × F → X is 

trivial,  we may further  refine Gg,π to obtain a prefactorization algebra Galg
g,π with  stronger 

finiteness properties, by considering the algebraic rather than analytic  cohomology of 
OF . This variation  will  be important  in the next section, when we make contact with  

vertex algebras. Let Oalg
F denote the sheaf of algebraic regular functions on F , and Ω1,alg

the sheaf of Kahler  differentials. We have

H 0( ,F  Oalg
F ) ⊂ H0( ,F  OF ) )→ (Ω0,∗

F , ∂)

H 0( ,F Ω1,alg
F ) ⊂ H0( ,F Ω1

F ) )→ (Ω1,∗
F , ∂)

Definition 4.12. We define

!g# ,c alg
π := g ⊗ Ω0,∗

,X c ⊗ H0( ,F  Oalg
F ) ⊕ K# ,alg

π

where

K# ,alg
π := Tot(Ω 0,∗

,X c ⊗ H0( ,F  Oalg
F )[1] ∂

→ Ω1,∗
,X c ⊗ H0( ,F  Oalg

F ) ⊕ Ω0,∗
,X c ⊗ H0( ,F Ω1,alg

F )) .

The totalization  is with  respect to the horizontal ∂-operator and the vertical ∂-operator 
acting on Ω ,p ∗

,X c .

Remark 4.13. Again, !g# ,c alg
π may be equipped with  the DVS structure  of Example 3.11, 

yielding a prefactorization algebra in dg −DVS.
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We can now define the main object of study for us.

Definition 4.14. The n-dimensional toroidal prefactorization algebra associated with  the 

trivial  holomorphic fibration  F → X × F
π
−→ Xis the prefactorization algebra

Galg
g,π := CLie

∗

(
!g# ,c alg
π

)

with  the structure maps induced from those of Gg,π .

Proposition 4.15. Suppose that F is a smooth complex affine variety and X = C n . Then 

Galg
g,π has the structure of a holomorphically translation-invariant  pre-factorization algebra 

valued in  dg −DVS.

The reasoning at the end of the previous section shows that  for a general locally 

trivial  fibration  π : E → X , a point  x ∈ X, and a choice of trivialization  of E|U on a 

neighborhood U of x, one obtains prefactorization algebra maps

Galg
g,π → Gg,π → Fg,π |U

Remark 4.16. We remark that  in this paper we are primarily  concerned with  the case 
in which the fiber F is a smooth complex affine variety. There is another interesting 

case in which we take the fibers to be compact. One can still  study the pushforward 

π∗(!gE ) as a sheaf of L∞ algebras, and its factorization  enveloping algebra. Unlike the 

case of affine fibers, this pushforward may have interesting higher cohomology in the 

fiber direction,  and moreover the factorization  enveloping algebra is equipped with  the 

analytic  Gauss-Manin connection. The case of a trivial  fibration  has been studied in 

Section 4.3 of [8].

5. X = C and vertex algebras

In  [4], it  is shown that  prefactorization algebras on X = C which  are holomorphically 

translation-invariant  and S1-equivariant for the natural  action by rotations  are closely 
related to vertex algebras. More precisely, given such a prefactorization algebra F , the 

vector space

V (F ) =
"

l

H ∗(F ( l ) (C))

equal to the direct sum of S1-eigenspaces in the cohomology H ∗(F (C)) has a ver-
tex algebra structure. We begin by reviewing this correspondence following [4], and 

then apply it  to the case of the one-dimensional toroidal  prefactorization algebra Galg
g,π , 

where π : C × F (→ C is  the trivial  fibration  on C with  fiber a smooth complex 
affine variety F . We show that  resulting vertex algebra is isomorphic to V (!gR ) where 
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R = H 0( ,F  Oalg
F )[ ,t  t−1] from Section 2.3.2. As a special case, when F = (C ∗)k , we 

recover a toroidal  vertex algebra.

5.1. Prefactorization algebras on C and  vertex algebras

We review here the correspondence between prefactorization algebras on C and vertex 

algebras established in [4], where we refer the reader for details. Recall that  S1 acts on 

C by  rotations  via z (→exp( θi )z. Suppose that  F is a prefactorization algebra on C that  

is holomorphically translation-invariant  and S1-equivariant. Let F (r ) := F (D (0, r )) be  

the complex assigned by F to a disk of radius r (we allow here r = ∞ , in which case 
D (0, ∞ ) = C),  and F ( l ) (r ) ⊂ F(r ) be the l th  eigenspace for the S1-action. The following 

theorem from [4] establishes a bridge between prefactorization and vertex algebras:

Theorem 5.1 (Theorem 5.3.3 [4]).  Let F be a unital  S1-equivariant holomorphically 
translation  invariant  prefactorization algebra on C.  Suppose

• The  action of S1 on F (r ) extends smoothly to an action of the algebra of distributions  
on S1.

• For   < r r%the map

F ( l ) (r ) → F ( l ) (r%)

is a quasi-isomorphism.

• The  cohomology H∗(F ( l ) (r )) vanishes for l 1 0.
• For  each l and  >r 0 we require that H∗(F ( l ) (r )) is  isomorphic to a countable se-

quential colimit  of finite  dimensional vector spaces.

Then V (F ) :=
/

l∈ Z H∗(F ( l ) (r )) (which  is independent of r by assumption) has the 
structure of a vertex algebra.

We briefly  sketch how the vertex algebra structure on V (F ) can be extracted from 

the prefactorization structure on F .

• Using  the notation  of Section 3.3.2, polydisks in one dimension are simply disks, and 

we denote PD( r 1,   · · · , r k |s) by  Discs(r 1,   · · · , r k |s). If  r%i < r i , we obtain an inclusion

Discs(r 1,   · · · , rk |s) ⊂ Discs(r%1,   · · · , r%
k |s) (23)

In  the limit  lim r i → 0, these spaces approach Confk , the configuration space of k

distinct  points in C.
• The  structure maps (17) are  compatible with  the maps F (r%i ) (→ F(r i ) and  the 

inclusions (23), and one may take lim r i → 0, s = ∞ , obtaining  maps
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m : ( lim
r→ 0

H ∗(F (r )))⊗k → Hol(Conf k , H∗(F (C))) (24)

• We  set k = 2,  and fix  one of the points to be the origin. There is a natural  map 

V (F ) (→ lim r→ 0 H ∗(F (r )),  as well as projections H ∗(F (C))  → H ∗(F ( l ) (C)).  Pre 

and post-composing by these in (24), yields a map

m0,z : V (F ) ⊗ V(F ) →
0

l

Hol(C × , V(F ) l ) (25)

where V (F ) l = H ∗(F ( l ) (C)).  Laurent expanding m0,z we obtain

m0,z : V (F ) ⊗ V(F ) →
0

l

V (F ) l [[ , z z−1]]

whose image can be shown to lie in V (F )(( z)).  The vertex operator can now be 

defined by

Y : V (F ) → End(V (F ))[[ , z z−1]]

Y ( , v z)v%= m0,z (v%, v)

• Holomorphic  translation  invariance yields an action of ∂z

∂z : F ( l ) (r ) → F ( l− 1) (r ).

which descends to H ∗(F l (r )).  This induces the translation  operator T : V (F ) →
V (F ).

• The  vacuum vector is obtained from the unit  in F (∅).

5.2. The main theorem

Our goal in this section is to prove the following theorem

Theorem 5.2. Let F be a smooth complex affine variety, and π : C × F → C the  trivial  
fibration  with fiber F . Then

(1) The  toroidal prefactorization algebra Galg
g,π satisfies the hypotheses of Theorem 5.1.

(2) The  vertex algebra V (Galg
g,π ) is  isomorphic to the toroidal vertex algebra V (!gR ), with 

R = H 0( ,F  O
alg
F )[ ,t  t−1] defined in  Section 2.3.2.

Throughout  this section, R will  denote the algebra H 0( ,F  Oalg
F )[ ,t  t−1]. We will  denote 

H 0( ,F  Oalg
F ) simply  by C[F ], so R = C[ F ][ ,t  t−1]. Recall that
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!gR = g ⊗ C[F ][ , t t−1] ⊕ Ω1
C[ F ][ ,t t − 1 ]/d (C[ F ][ , t t−1])

= g ⊗ C[F ][ , t t−1] ⊕
C[ , t t−1] ⊗ Ω1

C[ F ] ⊕ C[F ] ⊗ Ω1
C[ ,t t − 1 ]

!t k du + kt k− 1udt"

5.2.1. Recollections on Dolbeault cohomology

In  this section we recall some facts regarding ordinary  and compactly supported Dol-
beault cohomology and apply these to compute H ∗(Galg

g,π (U)) over opens U ⊂C.  These 
results will  be used in proving Theorem 5.2.

Stein manifolds are complex analytic  analogues of smooth affine varieties over C
[18]. In  particular,  Cn and smooth affine complex varieties are Stein. In  addition,  all 
open subsets U ⊂C are Stein. We recall the following classic result pertaining  to Stein 

manifolds:

Theorem 5.3 (Cartan’s Theorem B).  Let X be a Stein manifold. Then

H k (Ω ,p ∗(X ), ∂) =

1
0 k 0= 0
Ωp

X k = 0

where Ωp
X

denotes the space of holomorphic p-forms on Z .

Remark 5.4. When n > 1 the open subset Cn \ 0 ⊂ Cn is not Stein,  since it  has higher 
cohomology.

On a complex manifold X of dimension n, Serre duality  implies that  there is a non-
degenerate pairing  between ordinary  and compactly supported forms

Ω ,p q
,X c ⊗ Ωn− ,p n−q

X → C

α ⊗ β →

.

X

α ∧ β.

Thus, compactly supported differential  forms yield continuous linear functionals on dif-
ferential forms. At  the level Dolbeault  cohomology, one obtains the following corollary 

to Theorem 5.3 noted by Serre ([17]):

Corollary 5.5. Let X be a Stein manifold. Then

H k (Ω ,p ∗
c (X ), ∂) =

1
0 k 0= dim (X )
(Ωn−p

X (X ))∨ k = n = dim (X )

where (Ωn−p
X (X ))∨ denotes the continuous dual to the space of holomorphic n − pforms 

with respect to the Frechet topology.
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We now specialize to our situation,  where π : C × F →C is the trivial  fibration  with  

F a smooth complex affine variety. The cosheaf !g# ,c alg
π on C defined in Section 4.3.1 has 

the form

!g# ,c alg
π := g ⊗ C[F ] ⊗ Ω0,∗

,X c ⊕ K# ,alg
π

where K# ,alg
π is the total  complex of the following double complex

Ω0,1
c ⊗ C[F ] Ω1,1

c ⊗ C[F ] ⊕ Ω0,1
c ⊗ Ω1

C[ F ]

Ω0,0
c ⊗ C[F ] Ω1,0

c ⊗ C[F ] ⊕ Ω0,0
c ⊗ Ω1

C[ F ] .

∂+ d

∂+ d

∂ ∂

Here, Ω ,p q
c denotes the cosheaf of compactly supported forms on C, and Ω1

C[ F ] is the 

space of algebraic 1-forms (i.e. Kahler differentials) on F . Recall, from this cosheaf we 

have defined the factorization  algebra

Galg
g,π = CLie

∗ (!g# ,c alg
π ) = Sym( !g# ,c alg

π [1], 'd)

where the differential  'd may be decomposed as 'd = d1 + d2 + d3, with

di : Symi (!g# ,c alg
π [1]) → !g# ,c alg

π [1]

of cohomological degree 1 defined by:

• d1 = ∂ + dK # ,alg
π

, the linear differential  operators defining the underlying cochain 
complexes of Dolbeault  forms;

• d2 = d ,CE g , the Chevalley-Eilenberg differential  induced from the Lie bracket on g;
• d3 = φ, where φ is the cocycle defined in Section 4.1, which extends to CLie

∗ (−) by  

the rule that  it  is a coderivation.

The complex CLie
∗ (!g# ,c alg

π ) has an increasing filtration  by symmetric degree, leading 

to a spectral sequence whose E1 page is

H ∗(Sym(!g# ,c alg
π [1], d1)) = Sym( H ∗(!g# ,c alg

π [1], d1))

Now (!g# ,c alg
π , d1) is  the direct sum of the complexes (g ⊗ C[F ] ⊗ Ω0,∗

c , ∂) and  K# ,alg
π . 

Applying  Theorem 5.3 and Corollary 5.5 on an open Stein subset U ⊂C,  the cohomology 
of the first  is

g⊗ C[F ] ⊗ (Ω1(U))∨[−1].

Similarly,  by first  computing the ∂ cohomology in K# ,alg
π , we have
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H ∗(K# ,alg
π (U)) = Coker

(
(Ω1

X (U))∨ ⊗ C[F ])
1⊗∂ + ∂∨⊗1

→ (Ω1
X (U))∨ ⊗ Ω1

C[ F ] ⊕ (O(U))∨ ⊗ C[F ]
2

where ∂∨ denotes the transpose of ∂ : Ωn− 1
X (U) (→Ωn

X (U). We have the following:

Lemma 5.6. Let U ⊂C be an open subset. Then

H ∗(!g# ,c alg
π (U), d1) = g ⊗ (Ω1

X (U))∨ ⊗ C[F ]
"

Coker
3

(Ω1
X (U))∨ ⊗ C[F ]) 1⊗∂ + ∂∨⊗1

→ (Ω1
X (U))∨ ⊗ Ω1

C[ F ] ⊕ (O(U))∨ ⊗ C[F ]
2

where ∂∨ denotes the transpose of ∂ : OX (U) (→Ω1
X (U).

It  follows that  H ∗(!g# ,c alg
π [1], d1) is concentrated in cohomological degree 0. Since 'd has 

cohomological degree 1, this means that  the spectral sequence computing H ∗(Galg
g,π (U))

collapses at E1, and we have an isomorphism of vector spaces

H ∗(Galg
g,π (U)) 2 Sym(H ∗(!g# ,c alg

π (U)[1], d1)) (26)

Next, we note that  the value of Galg
g,π on a disk U = D has a natural  S1-action induced 

by rotations.  Rotations act by holomorphic diffeomorphisms and so extend to an action 

on Dolbeault  forms, and hence to the factorization  algebra Galg
g,π . This action clearly 

preserves the first  term in the differential  d1. Furthermore, S1 acts by the identity  on 

the Lie algebra g, so its action preserves the differential  d2 as well. Finally,  to see that  

the S1 action preserves the differential  d3 note that  the cocycle φ is defined in terms of 
diffeomorphism invariant  operators.

Applied  to a disk U = D , the sum of the S1-eigenvalues of the cohomology of Galg
g,π

naturally  embeds into  the left  hand side of Equation (26). We now characterize this 

cohomology.

Lemma 5.7. There is an isomorphism of vector spaces

V (Galg
g,π ) 2 Sym(!gS / !g+

S ) 2 U (!gS ) ⊗U ( !g+
S ) C (27)

where S = C[ F ][ ,z  z−1].

Proof.We introduce the vector spaces

S+ = C[ F ][z]

S− = C[ F ] ⊗ z−1C[z−1]

Ω1
S+ = Ω 1

C[ F ] ⊗ C[z] ⊕ C[z]dz ⊗C[F ]

Ω1
S− = Ω 1

C[ F ] ⊗ z−1C[z−1] ⊕ z−1C[z−1]dz ⊗C[F ]
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We have S = S+ ⊕ S− and Ω1
S = Ω 1

S+ ⊕Ω1
S− as vector spaces, and these decompositions 

are moreover compatible with  the differential,  in the sense that  d(S± ) ∈ Ω1
S± . Hence

Ω1
S /dS 2 Ω1

S+ /dS + ⊕ Ω1
S− /dS −

which implies that  as vector spaces

!gS / !g+
S 2 g⊗ S− ⊕ Ω1

S− /dS −

Now, the residue identifies z−1C[z−1] with  a subspace of (Ω1(D ))∨. With  respect to 

this embedding, the weight l-eigenspace of the S1 action on this space is C{z l } . Similarly,  
the residue identifies z−1C[z−1]dz with  a subspace of (Ω0(D ))∨. The weight l-eigenspace 
of the S1 action is C{z l− 1dz} .

Using this, we can read of the cohomology of the corresponding eigenspaces as follows. 
For  <l 0 we have

H ∗(!g# ,c alg
π (D ), d1)( l ) 2 g⊗ C[F ] ⊗ {zl } ⊕

3
Ω1

C[ F ] ⊗ {zl } ⊕C[F ] ⊗ {zl− 1dz}
2
/ im( 'd).

For l = 0 we have

H ∗(!g# ,c alg
π (D ), d1)(0) 2

(
C[F ] ⊗ {z−1dz}

)
/ im( 'd).

When l > 0 the  cohomology H ∗(!g# ,c alg
π (D ), d1)( l ) vanishes since (Ωp(D ))∨ has non-

positive S1 spectrum for p = 0 , 1 for any disk D .
Therefore, as vector spaces

V (Galg
g,π ) = Sym

4
"

l∈ Z

H ∗(!g# ,c alg
π (D ), d1)( l )

5

= Sym(g ⊗ S− ⊕ Ω1
S− /dS − ) = Sym( !gS / !g+

S ) !

5.2.2. Verifying  the hypotheses of Theorem 5.1

We proceed to verify the hypotheses of Theorem 5.1, establishing part  (1) of  Theo-
rem 5.2 above.

• The  first  hypothesis is verified as in Section 5.3.1 of [4].
• The  second and third  hypotheses follow from Lemma 5.7, from which it  follows in 

particular  that  H ∗((G
alg
g,π (D (0, r ))) ( l ) ) is non-zero only if  l ≤0.

• The  last hypothesis requires some attention.  By Lemma 5.7 H ∗((Galg
g,π (D (0, r ))) ( l ) )

may be identified with  the elements of weight l in

Sym
(
g⊗ S− ⊕ Ω1

S− /dS −
)
.
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We begin by showing that  C[F ] and Ω1
C[ F ] are naturally  a sequential colimit  of 

finite-dimensional vector spaces. This can be done as follows. Embed F ⊂ AN =
Spec C[x1,   · · · , xN ]. This induces an increasing filtration  F k C[F ], k ≥ 0, where 
F k C[F ] is spanned by the images of polynomials of degree ≤ k in x1,   · · · , xN . C[F ]
and by the same reasoning Ω1

C[ F ] can therefore be expressed as a countable union of 
finite-dimensional vector spaces. This induces a filtration  on !g# ,c alg

π compatible with  

the DVS structure,  which in turn  induces one on H ∗((Galg
g,π (D (0, r ))) ( l ) ).

5.2.3. Constructing the isomorphism

We proceed to prove part  (2) of Theorem 5.2. The proof is a variation  on the approach 
taken in [19] with  respect to the Virasoro factorization  algebra, and involves three main 

steps:

(1) Showing  that  V (Galg
g,π ) has the structure of a !gR -module.

(2) Showing  that  V (Galg
g,π ) 2 V (!gR ) as !gR -modules.

(3) Checking  that  the vertex algebra structures agree by using the reconstruction The-
orem 2.6.

Let ρ : C× → R> 0 be the map ρ(z) = zz = |z|2. The universal enveloping alge-
bra U(!gR ) defines a locally constant prefactorization algebra on R> 0 which we denote 
AU (!gR ).

Lemma 5.8. There is a homomorphism Φ : AU (!gR ) → ρ∗H ∗(Galg
g,π ) of  prefactorization 

algebras on R> 0.

Proof. • It  is shown in Section 3.2 of [4] that  a map of prefactorization algebras on R> 0

is determined by the maps ΦI on connected open intervals. For each open interval 
I ⊂ R> 0, A I = ρ−1(I ) is  an annulus. We choose for each such a bump function  

f I : A I → R having the properties
– f I is a function  of r 2 = zz only.
– f I ≥ 0 and f is supported in A I .
–

6

A f I dzdz = 1.
The map ΦI is uniquely determined by where it  sends the generators of !gR . We 

define ΦI on these linear generators by the assignments:

ΦI (J ⊗ utk ) = −[J ⊗ uzk+1 f I dz]

ΦI (tkω) = [ zk+1 f I ω ∧ dz]

ΦI (tk udt) = [ uzk+1 f I dzdz]

where J ∈ g, u ∈ C[F ], ω ∈ Ω1
C[ F ] , and [−] ∈ H ∗(Galg

g,π (A I )) denotes the ∂-
cohomology class of the closed differential  form. The elements on the right  are clearly 
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closed for the differential  'd, and the corresponding 'd-cohomology classes are easily 
seen to be independent of the choice of the function  f I .

• We  first  check that  ΦI is well-defined, which amounts to verifying that

ΦI (d(utk )) = Φ I (tk du + kt k− 1udt) = 0 ∈ H∗(Galg
g,π (A I ))

for each u ∈ C[F ], k ∈Z.  We have

ΦI (tk du + kt k− 1udt) = −
(
[zk+1 f I dzdu] + [kzk uf I dzdz]

)
.

Notice that

ΦI (tk du + kt k− 1udt) + [ dK # ,alg
π

(zk+1 uf I dz)]

= −[zk+1 f I dudz] − [kzk uf I dzdz]

+ [ zk+1 f I dudz + ( k + 1) zk uf I dzdz + uzk+1 ∂f I ∧ dz]

= +[ u(zk f I dzdz + zk+1 ∂f I ∧ dz)]

It  therefore suffices to show that  [zk f I dzdz + zk+1 ∂f I ∧ dz] = 0  ∈ (OX (A I ))∨, or 
equivalently, that

.

A I

zm ∧(zk f I dzdz + zk+1 ∂f I ∧ dz) = 0 ∀m ∈Z

This follows from the identities
.

A I

za f I dzdz = δ ,a 0 ,

.

U

zb∂f I ∧ dz= −δ ,b 1 (28)

for ,a  b ∈ Z that  we obtain via integration  by parts.
• Consider  three disjoint  open intervals I 1, I 2, I 3 ⊂ R> 0, such that  I i +1 is located to the 

right  of I i , all contained in a larger interval I . Their  inverse images under ρ correspond 
to three nested annuli A I i

inside a larger annulus A I . We have structure maps

• ,i i +1 : ρ∗H ∗(Galg
g,π )( I i ) ⊗ ρ∗H ∗(Galg

g,π )( I i +1 ) → ρ∗H ∗(Galg
g,π )( I ) i = 1 , 2

To show that  Φ is a prefactorization algebra homomorphism, we have to check that  

for ,X  Y ∈!gR ,

ΦI 1 (X ) • 1,2 ΦI 2 (Y ) − ΦI 2 (Y ) • 2,3 ΦI 3 (X ) = Φ I ([ , X Y])

Let



38 M. Szczesny et al. / Advances in Mathematics 386 (2021) 107799

Fm ( , z z) = zm

zz.

0

(f I 1 (s) − fI 3 (s))ds

Then on A I 2 , Fm = zm , and moreover,

∂Fm ( , z z) = zm ∂(
zz.

0

(f I 1 (s) − fI 3 (s))ds)

= zm ∂(zz)
∂z

∂

∂(zz)
(

zz.

0

(f I 1 (s) − fI 3 (s))ds)dz

= zm +1 (f I 1 (zz) − fI 3 (zz))dz

Let J1, J2 ∈ g, ,u  v ∈C[F ]. Then

ΦI 1 (J1utk ) • 1,2 ΦI 2 (J2vt l ) − ΦI 2 (J2vt l ) • 2,3 ΦI 3 (J1ut k ) − ΦI 2 ([J1utk , J2vt l ])

= Φ I 1 (J1utk ) • 1,2 ΦI 2 (J2vt l ) − ΦI 2 (J2vt l ) • 2,3 ΦI 3 (J1utk )

− ΦI 2

%

[J1, J2]uvt k+ l +
1
2
!J 1, J2"(ut k d(vt l ) − vtl d(utk ))

&

=
(
[J1uzk+1 f I 1 dz] · [J2vzl+1 f I 2 dz] − [J2vzl +1 f I 2 dz] · [J1uzk+1 f I 3 dz]

)
+

+ [[ J1, J2]uvzk+ l+1 f I 2 dz] +
1
2
!J 1, J2"[zk+ l +1 f I 2 (udv − vdu)dz

+ ( l − k)uvzk+ l f I 2 dzdz]

We also have

'd
(
[J1uFk ] · [J2vzl +1 f I 2 dz]

)

=
(
[J1uzk+1 f I 1 dz] · [J2vzl +1 f I 2 dz] − [J2vzl +1 f I 2 dz] · [J1uzk+1 f I 3 dz]

)

+ [[ J1, J2]uvzk+ l +1 f I 2 dz] +
1
2
!J 1, J2"[uFk∂(vzl +1 f I 2 dz) − ∂(Fk u)

∧(zl +1 vf I 2 dz)]

=
(
[J1uzk+1 f I 1 dz] · [J2vzl +1 f I 2 dz] − [J2vzl +1 f I 2 dz] · [J1uzk+1 f I 3 dz]

)

+ [[ J1, J2]uvzk+ l +1 f I 2 dz] +
1
2
!J 1, J2"[zk+ l +1 (udv − vdu)f I 2 dz

+ uv(( l − k+ 1) f I 2 zk+ l dzdz − zk + l +1 ∂f I 2 ∧ dz)]

where we have used the fact that  over the support of f I 2 , Fk = zk . Using the identities 

(28), we obtain

[( l − k+ 1) zk+ l f I 2 dzdz − zk+ l +1 ∂f I 2 ∧ dz] = [( l − k)zk + l f I 2 dzdz].
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It  follows that

ΦI 1 (J1utk ) • 1,2 ΦI 2 (J2vt l ) − ΦI 2 (J2vt l ) • 2,3 ΦI 3 (J1utk ) − ΦI 2 ([J1utk , J2vt l ])

= 0 ∈ ρ∗H ∗(Galg
g,π )( I )

proving the lemma. !

The homomorphism Φ of Proposition (5.8) equips V (Galg
g,π ) with  the structure of a 

!gR -module. Let us fix  0 <  < r r%< R We have the following commutative diagram:

H ∗(Galg
g,π (D (0, r))) ⊗ H∗(Galg

g,π (A(r%, R))) H ∗(Galg
g,π (D (0, R))

V (Galg
g,π ) ⊗ AU(!gR ) V (Galg

g,π )

m

ι⊗Φ ι

where ι denotes the inclusion of V (Galg
g,π ) ⊂ H∗(Galg

g,π (D (0, r ))) (for  any r ), and m is the 

prefactorization structure map. As explained in the proof of Theorem 5.3.3 in [4], the 

existence of the dotted arrow (i.e. the fact that  the U(!gR )-action preserves the subspace 
V (Galg

g,π ))  follows from the fact that  the structure map m is S1-equivariant.
In  concrete terms, the action of X ∈ !gR on v ∈ V(Galg

g,π ) is  given as follows: we may 

represent v by a closed chain 'v ∈ CLie
∗ (!g# ,c alg

π (D (0, r )) - then  X · v is represented by 

Φ( r %,R ) (X ) · 'v.

Lemma 5.9. There is an isomorphism of !gR -modules

η : V (!gR ) → V (Galg
g,π )

which sends |0" ∈ V(!gR ) to  1 ∈ V(Galg
g,π ).

Proof.Let h( ,z  z) =
6 zz

0 f (s)ds. By the chain rule, we have that

∂(zn h( , z z)) = zn +1 f (zz)dz

Thus in H ∗(Galg
g,π (D (0, R)),  we have for k ≥0:

Φ( r %,R ) (Jut k ) = [ Juz k +1 f (zz)dz] = 'd(Juz k h( , z z))

Φ( r %,R ) (tk udv) = [ zk+1 f (zz)udzdv] = 'd(zk h( , z z)udv)

Φ( r %,R ) (utk dt) = [ uzk +1 f (zz)dzdz] = 'd(uzk h( , z z)dz)

In  other words, if  X ∈ !g+
R , then Φ( r %,R ) (X ) = 0  ∈ H∗(Galg

g,π (D (0, R)).  This shows that  

the vector 1 ∈ V(Galg
g,π ) is  annihilated  by !g+

R . It  follows that  there exists a unique map 

of !gR -modules η : V (!gR ) → V (Galg
g,π ) sending |0" → 1. It  remains to show this is an 
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isomorphism, which can be done as in [4,19] for the affine and Virasoro algebra, so we 

will  be brief. Both  V (!gR ) and  V (Galg
g,π ) have the structure of filtered U(!gR )-modules, 

where in each case the filtration  is induced by symmetric degree. It  is straightforward  to 

verify that  η induces an isomorphism at the level of associated graded modules, proving 

the result. !

To complete the proof of Theorem 5.2, we check that  η induces an isomorphism of 
vertex algebras. Suppose that  z ∈ A(( r%, R)).  Recall that  the operation

Y : V (Galg
g,π ) ⊗ V(Galg

g,π ) → V (Galg
g,π )(( z))

is induced from the diagram

V (Galg
g,π ) ⊗ V(Galg

g,π )

H ∗(Galg
g,π (D ( , 2z ))) ⊗ H∗(Galg

g,π (D (0, r))) H ∗(Galg
g,π (D (0, R)))

ι⊗ι z

m ,z 0

as the Laurent expansion of the map m ,z 0 ◦ ι ⊗ ιz . By the Reconstruction Theorem 2.6, 
it  suffices to show that  the generating field assignments agree, that  is we need to verify 

that  for v ∈ V(Galg
g,π ),

m ,z 0(ιz (η(Jut −1  |· 0")) , ι(v)) =
#

n∈ Z

(Φ(Jut n ) · v)z−n− 1

m ,z 0(ιz (η(ut−1dt  |· 0")) , ι(v)) =
#

n∈ Z

(Φ(utn− 1dt) · v)z−n

m ,z 0(ιz (η(t−1ω  |· 0")) , ι(v)) =
#

n∈ Z

(Φ(tnω) · v)z−n− 1

ιz (η(Jut −1  |· 0")) may  be identified with  the element ψJu z ∈ g ⊗C[F ] ⊗ (Ω1(D ( ,z  2)))∨, 
where ψz ∈ (Ω1(D ( ,z  2))) ∨ is defined by

ψz (h(w)dw) =
1

2πi

7

C ( ,δz )

h(w)dw

w − z

By the residue theorem, for h(w)dw ∈Ω1(A( ,r  R)),  we may switch contours, to write
7

C ( ,δz )

h(w)dw

w − z
=

7

C (0 ,R−δ )

h(w)dw

w − z
−

7

C (0 ,r %+ δ)

h(w)dw

w − z

=
#

n≥ 0

(
7

C (0 ,R−δ )

w−n− 1h(w)dw)zn +
#

<n 0
(

7

C (0 ,r %+ δ)

w−n− 1h(w)dw)zn
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where in the second line we have expanded 1
w−z into  a geometric series in the domains 

|w| > |z|and |w| < |z|respectively. Using the fact that

Res0h(w)w−n− 1dw =
.

A ( r %,R )

h(w)w−n f ( ,r R ) dwdw

and Φ(Jut −n− 1) · v= [ Juz −n f ( r %,R ) dz] · vwe obtain the first  identity.  Similarly,  we may 

identify  ιz (η(ut−1dt  |· 0")) with  the element ξu z ∈ C[F ] ⊗ (O(D ( ,z  2))) ∨, where

ξz (h(w)) = h(z) =
1

2πi

7

C ( ,δz )

h(w)dw

w − z

and ιz (η(t−1ω  |· 0")) with  ωψz ∈ Ω1
C[ F ] ⊗ (Ω1(D ( ,z  2)))∨. Expanding these in contour 

integrals centered at 0, and identifying  the coefficients with  appropriate elements in the 

image of Φ as above proves the remaining two identities.
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