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. induces an instability of the overall vol-
We prove a formula for the Hodge numbers of square-free divisors of  yme of the compactification, and there-

Calabi-Yau threefold hypersurfaces in toric varieties. Euclidean branes fore realistic particle physics and cosmol-
wrapping divisors affect the vacuum structure of Calabi-Yau compactificedioigguire a computation of the Kahler
of type IIB string theory, M-theory, and F-theory. Determining the moduli potential.

. . . . . incipl ini f the Kahl
nonperturbative couplings due to Euclidean branes on a divisor D requ|r%%';up”rm:£eiﬁarlngazrg: cr:at:d s;

counting fermion zero modes, which depend on the Hodge nughbgrs h competition among purely perturbative
Suppose that X is a smooth Calabi-Yau threefold hypersurface in a toric vatityons to the leading-order Kahler
V, and let D be the restriction to X of a square-free divisor of V. We give @otential. However,at presentthe best-

formula forifj ;) in terms of combinatorial data. Moreover, we construct anderstood constructions of metastable

CW complex, such that§{ ;) = h(%,). We describe an efficient algorithméi?sgt;?i:'lr;f?::ﬁg::g;sn:gsgI? S[L::SI
that makes possible for the first time the computation of sheaf cohomolqgy. . «c of the non-renormaliz.ation

for such divisors at largé.ms an illustration we compute the Hodge theorem, such terms are necessarily
numbers of a class of divisors in a threefold'WwithdB1. Our results are a nonperturbative, resulting from Eu-
step toward a systematic computation of Euclidean brane superpotentia/iggan branes wrapping cycles —in

Calabi-Yau hypersurfaces fact, divisors — in the compact space'
An important goal is to determine

which divisors ina Calabi-Yau three-

fold or fourfold support nonperturba-

tive superpotential terms from Euclidean
1. Introduction branes. Witten has shown!41that Euclidean M5-branes on a

L ) L smooth effective vertical divisor D of a smooth Calabi-Yau four-
Compactifications of type IIB string theory on orientifolds of fold Y give a nonvanishing contribution to the superpotential

Cala.bl-Yau threefoldsand of F—theo'ry on .Calabl-Yau.fourfoldg whenever D is rigid, meaning that the Hodge number&/D) =

provide important classes of four-dimensional effective theories R(D,[ p) =H( o) obey

with > = 1 supersymmetry. The vacuum structure of these the-

ories depends on the potential for the Kahler moduli, which  hoopy = 1, ho(p) = 0, h°2D) = 0, h*3(D) =0, (1.1)

parameterize the sizes of holomorphic submanifolds in the

Calabi-Yau manifold. In particular, inlieu of a potential for  which we abbreviate as'(f 5) = (1, 0, 0, 0). Rigidity corresponds

the Kahler moduli, positive vacuum energy in four dimensions  to the absence of massless bosonic deformationgnd implies
that the only zero modes of the Dirac operator on the M5-brane
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are the two universal Goldstino modes that result from the super-
symmetries broken by the M5-braneln more general circum-
stances — when either D or Y is singular,when fluxes are in-
cluded on D orin Y, or when D is a divisor of a Calabi-Yau three-
fold — the conditions for a nonperturbative superpotential are
more subtle, but the Hodge numbers are still essential data.

For this reason, a long-term aim is to compute the Hodge
numbers of effective divisors D of Calabi-Yau manifolds X . This
is most manageable in the case of smooth Calabi-Yau hypersur-
faces in toric varieties: for many years there have been computa-
tional algorithms and implementations for computing sheaf co-
homology of coherent sheaves on toric varigtieshand there are

1 Strong gauge dynamics in four dimensions, arising on seven-branes
wrapping four-cycles in the compact space, is an alternative. The ge-
ometric requirements on such cycles closely parallel those in the Eu-
clidean brane case, and we will refer only to the latter in this work.
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faster implementations for computing sheaf cohomology of line mal crossing singularities present no obstacle to defining and
bundles on toric varietied.2° lUnfortunately, all of these imple- computing h'([ p), but they do complicate the connection be-
mentations fail to finish for even very modest sizes of H-'(X), tween H([ p) and the number of fermion zero modes: new zero
say for H'(X )= 10 — 20. A key open problem in computational modes can appear at the intersection loci. Thus, the Hodge num-
algebraic geometry is to find algorithms that work for effective bers H([ p) that we compute here mark a significant step toward
divisors or coherent sheaves on alCalabi-Yau threefold hyper- computing the superpotential, but do not provide a final answer.
surfaces arising from the Kreuzer-Skarke databadé®lof four-  Systematically counting the fermion zero modes associated to
dimensional reflexive polytopes, as well as for Calabi-Yau fourfaldrmal crossing singularities,along the lines of [12—14],is an
hypersurfaces in toric varieties. important problem for the futurel 15!

We will not arrive at a fully general answer. However, in the im- The organization of this paper is as follows. In §2 we set no-
portant special case in which X is a smooth Calabi-Yau threefoldation and recall elementary properties of Calabi-Yau hypersur-
hypersurface in a toric variety V, and D is the restriction to X of &aces in toric varieties. Then, given any square-free divisor D in
square-free effective divisdd on V, we will establish a formula @ Calabi-Yau threefold hypersurface, we define a corresponding
for H([ p) in terms of the combinatorial data of V. This formula, A-complex%p and a CW complex %%, which are constructed
given in Theorem 3, is our main result. As we will see,Theo-  so that their homology encodes the sheaf cohomology of| ».
rem 3 allows one to read off the Hodge numbers of many divi- In §3 we prove our main result, Theorem 3, which asserts that
sors by inspection, and moreover it is straightforward to turn thid? ({ o) =(%). In §4 we illustrate our findings in the example
formula into an algorithm that computes the Hodge numbers of of a Calabi-Yau threefold with'fi = 491. We conclude in §5. Ap-
any square-free divisor of any X arising from the Kreuzer-Skarkgendix A defines Mayer-Vietoris complexes and proves some rel-
databasé!"! evant properties. In Appendix B we review key results from strat-

The principal tools in our proof are stratification; the hyperco-ification. In Appendix C we directly compute’tj ») by counting
homology spectral sequence of the Mayor-Vietoris complex (3.2)gttice points in dual faces,for the special case wherd p is re-
and a correspondence that we establish between square-free disiricted to a single 2-face aof".
sors of a Calabi-Yau hypersurface and CW complexes constructed
on a triangulation of the associated reflexive polytopé. Let us ~ Note added:after this work was completed and posted as a
briefly summarize these results.Stratification is the decompo-  preprint, we became aware of [16], which arrives at results that
sition of an n-dimensional toric variety V into tori, andleads have some overlap with ours, in the special case that the CW com-
to the extremely simple expressions (2.9) for the Hodge num- plex& is in fact a simplicial complex.
bers H of particular subvarieties of a Calabi-Yau hypersurface
X cV. Among these subvarieties are prime toric divisors D;,
i'=1,...h"(X )+ 4, each of which corresponds to a lattice point 2, Notation and Preliminaries
of a reflexive polytope\ °, as we review in §2. The Hodge num-
bers h(| p,) and the intersections of the prime toric divisors p 2.1 Polytopes and Toric Varieties
are fully specified by elementary combinatorial data: namely, by
the simplicial complex corresponding to a triangulation of °, In this paper we consider Calabi-Yau threefold hypersurfaces X
together with the number of lattice points interior to each face N simplicial toric varieties V', as studied by Batyrev in [17] (see
of A. also Appendix B for a review). Such Calabi-Yau threefolds are con-

A square-free divisoD is the union of a collection of dis- structed from pairs (A, A ") of four-dimensional polytopes with
tinct prime toric divisors, D=~ D;. In order to compute K[ ),  vertices inZ*, obeying
one can appropriately combine the data characterizing the con- .
stituent prime toric divisors ) < D. To achieve this, we establish AA7) = 4 (2.1)

in Appendix A) that the Mayer-Vietoris sheaf n i-
(ated F:(F))G‘D ?s ex;ct:nd \(:/e ti);i exznz)insesthzacos:g:;o:;:;i?f A pair. of d-c.iimensionalllattice. polytopes obeying (2_.1.) is called a
percohomology spectral sequence. Formally, these methods aréeerX|vg pair. !n each dlmep3|on, there are only.a fl.nlte nymber
already sufficient to derive an expression foi(f,), but we find of reflexive pairs, up to equz\é:a\zlgnce, and those in dimensiod d
it valuable to carry out the computation, and to express the resu'ﬂ?ve. all been enymera.te[é‘?v .
in terms of a particular CW complex that encodes the data lof Given a four-dimensional reAerxwe polytopa *, we chooseAa
andA. The construction of% amounts to attaching cells to each fine star regulaf triangulation! of A . Since each simplex if
jface®° of A, in a manner determined by the number of lattice contains the origin, this triangulation determines a fan X, and
points in the relative interior of the dual face® < AA square- Y := R is the corresponding simplicial toric variety. If Fis a
free divisor D naturally determines a subcompless, 2 and generic linear combination of the monomials in the Cox ring of
via the hypercohomology spectral sequence we are able to relat§ that correspond to the lattice points of the polytopeA, then
the sheaf cohomology df ; to the cellular homology of the CW X :={F =0} =Vis a smooth Calabi-Yau threefold hypersurface
complex%. In particular, we show that (i p) = hi(%), proving

the theorem. 2 . ) ) )
. . . Fine means that the triangulation uses all the lattice points ofA °. A
A subtlety in applying our results to computezEuclldean brane  riangulation is star if the origin, which is the unique interior point

superpotentials is thatany nontrivial sum D =~ D; of prime of a reflexive polytope °, is contained in every four-dimensional sim-
toric divisors D; that is rigid is necessarily reducible, and in- plex of . Regularity is a condition that ensures that V, and hence X ,
volves normal crossing singularities where the Dtersect. Nor- is projective.

Fortschr. Phys. 2020, 68, 2000087 2000087 (2 of 30) © 2020 Wiley-VCH GmbH
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in V.['7IThe toric variety V in general has pointlike orbifold sin-
gularities, but for generic F, X does not intersect these points,
and is smooth.

We denote the set of faces ok ° by ) , the set of faces of di-

mension at most j by) (<j), and the sets of vertices, edges, and

2-faces by (0),) (1), and) (2), respectively. For each fa€e in
) , there is a unique fac® of A defined by
©%50) = 4 (2.2)
Given any fac® < Awe denote by’*(®) the number of lattice
points in the relative interior of®. Given a fac®° of A °, we de-
fine its genus g@°) by
9©") = £(0), (2.3)

i.e. we define the genus @ ° to be the number of interior lattice
points of its dual face.

If & €!" is a simplex, we define the corresponding minimal

face, minface(s), to be the lowest-dimensionalface of A ° con-
taining all of the lattice points {p|/ € 4. We define

(o) :=dim minface(o) (2.4)
and
d(o) = g(minfacegp)). (2.5)

2.2. The Picard Group of X

For each nonzero lattice poin{ on A ° there is an associated ray
of the fanX and a corresponding homogeneous coordinatecf
the toric variety V. We may hence associate the toric divisBy
given by {7 = 0} with the point p,. This notion can be extended
to each d-simplex of the triangulation I by associatingr with
the subvariety Y:={z, =0V, € 4. Let X :=V_nX be the in-
tersection of V. with the Calabi-Yau hypersurface X . This inter-
section is nonzero if and only if the simplexs is contained in a
2-face ofA “. It is therefore useful to define

U i={o €| ho)<2}, (2.6)

www.fp-journal.org

pair of lattice points,mnd gin! corresponds to the intersection
C; :=D, nD;, with Hodge numbers

[
he( c)=

{

1
J
99 for o) =

0

1,

1+ g(o), (2.8)

That is, a curve C associated with a 1-simpliexterior to a 1-face
©° is irreducible, of genus g®°). A curve C associated with a 1-
simplex ¢ interior to a 2-face®° is a union of g@°) + 1 disjoint
P's. A 2-simplexs of | containing three lattice points p 2,
corresponds to the intersection of three divisors, and the corre-
sponding X, consists of # g(o) points.

The above results can be summarized as

ho'i(X{r) = é,b + 4,‘27/,(0)g(0—)'

This result easily generalizes to arbitrary dimension: see
Appendix B.7. Moreover, in Appendix B.6 we give similar, albeit
slightly more complicated and triangulation-dependent, formu-
lae for the Hodge numbers h'(X ).

As shown in [17], the Hodge numbers of a Calabi-Yau hyper-
surface X obey simple combinatorial relations as well. In partic-
ular, the rank of the Picard group of X satisfies

(2.9)

ht1(x )= £HO°) —4+
0°e) (<2)

£(@°)"(0)
0°e) (2)

(2.10)

We can identify N=h'1(X }+ 4 divisors that obey four linear re-
lations, and that generate the Picard group of X . First of all, the
K <N divisors of X associated with lattice points iD (< 1) are
irreducible. However,the divisor associated with a lattice point
P, interior to a 2-face ®° has 1+ g(©°) irreducible, connected

components, which we denote B, « €{0, ..., g@°)}. The N ir-
reducible divisors
{Dy..De DY . DI D) ) (2.11)

then generate the Picard group of X These can be written col-
lectively as {} with @ €{0, ... J,(,,,9(n)}, but we will reindex
them as as

D,‘ S {D1: el DN}

We refer to the Das prime toric divisors, even though the D
do not all descend from prime toric divisors on V unless X is

which omits simplices of!” that pass through facets (3-faces) of favorable, i.e. unless @jg(©) =0V ©€ )(2). By (2.7), a prime
A°, and so correspond to varieties that do not intersect a generiéoric divisor [ associated with a lattice point has
Calabi-Yau hypersurface X . In a slight abuse of language, we refer

to! as a triangulation.

The Hodge numbers of subvarietieg X X are given by rather
simple formulae?'-2% For the divisor O of X associated with a
lattice pointo =P, € ! we find (see Appendix B)

1, 0, g 0
h(p)=1 1, gl 0 lforume)=11. 2.7)
1+g@, 0 0 2

In particular, divisors associated with points interior to 2-faces
©° with g(©°) > 0 are reducible. A 1-simplexof! connecting a

Fortschr. Phys. 2020, 68, 2000087
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1, 0, 9@ 0
h(p)=1, g0, 0 |for mo)= 1. (2.12)
1, 0, 0 2
For any subset GS{1, ..., N}, there is an associated divisor D
(possibly reducible) defined by
z
D="D,. (2.13)
ieG

We call such a D a square-free divisor. The main purpose of this
work is to analyze square-free divisors.

© 2020 Wiley-VCH GmbH
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2.3. The Ravioli Compl&x

Every d-simplex of contained in the relative interior of a face
©° € )(j) forj <2 gives rise to a closed subvariety X c X, of

complex dimension 2—d. When j <1, the simplices in! cor-

respond to irreducible subvarieties of X . However,forj =2,

i.e. wheno € !is in the interior of a 2-face®° of A °, the sim-

plex o corresponds to a subvariety of X that has 4+ g(®°) con-

nected (and irreducible) componentswhich we denote by X7,

for @ =0,..., gb).

The intersection structure of the X is determined by A and
by the triangulation! of A °. For each 2-faceé” of A °, we can
choose an ordering ofr =0,..., gf) such that for anys: 4 € !
with minface(s) = minface(4) = ©, we have

g?Xe ifou deE!

X”ﬂX/]:
o A o ifoU 4¢&!.

(2.14)

Next, for eachr € ! with x(z) <1, the intersection structure

with the X can be written as
{
Xa i |
XTOXZ: if U o €,!

o

2.15
g ifru oceg!. ( )

Finally, fornm @ € |, with 4(7) <1 andu(w) <1, we have:

{

erXw: X ifzU o e,!

Vo

2.16
Jij frUu weg!. ( )

In the special case of (2.16) in whiehu @ € Wwith minface(r U
w) = O € )(2), we can write (2.16) as

")
X X, = X«

Uw”
a=0

(2.17)

We will now define a complex, called the ravioli compiex

that accounts for the intersection structure (2.14)-(2.17Recall
that the simplices in! correspond to subvarieties in X which
are possibly disconnected and reducible. The cellsznwill cor-

www.fp-journal.org

Figure 1.The simplicial compleX defined by a triangulation, the corre-
sponding ravioli complex2, and the subcomplex?, < Z%associated to

a divisor D. The upper figure shows two adjacent two-dimensional faces,
separated by a thick line, and a triangulation. The middle figure shows the
associated ravioli complex in case the genus of the face on the left is zero
and the genus of the face on the right is one, so that? has two sheets
over the right face. The lower figure shows, for D the union of the four
irreducible divisors Dassociated with the points pcolored in red.

Figure 2.The ravioli complex over a 2-face.

respond to the connected, irreducible components of the subva-

rieties in X encoded by . The ravioli complex is defined by

{
P = Xe

o

o € yulo) =2,0< a Ylo)

{
U X|re )<, (2.18)

itself, after which the (1-cell) boundaries of the- (©°) disjoint
copies! | o- of are identified with each other.

In general & is not a simplicial complex, but instead a A-
complex? the 1-cells and 2-cells are not necessarily uniquely
specified by the 0-cells that contain them (in X ). The homology
and cohomology complexes of#2 are readily obtained and the
fact that % is not always a simplicial complex does not present

which as a set consists of the irreducible connected componentslifficulties for computation or visualization. The origin of the

of intersections of the D. The elements of # that have dimen-
sion 2—iin X are called i-cells. For those X such thdtg©°) =
0V O¢€ )H?2), % is the simplicial complex! . In the general
case,the i-cells of # are the same as the i-simplices ofl , ex-
cept that each simplexs in the interior of any two-dimensional
face®° € )(2) of A° is replaced by 1+ g(©°) disjoint copies of

3 Notice that even in the case where Xis  favorable, i.e. obeying
g©)g@°) =0V O € )(2),Z is not necessarily equal td .

Fortschr. Phys. 2020, 68, 2000087
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name should be clear from Figures 1 and 2.

We can now associate\acomplex#%p < %to any square-free
divisor D as follows. The points &f are the points (0-cells) in
% corresponding to the divisors appearing in (2.13). Some pairs
(triples) of the p may in general be connected by 1-cells (2-cells)

4 The term A-complex is standard in topology, and the symioblppear-
ing in the name should not be confused with the polytopé . See [24]
for background onA-complexes and CW complexes.

© 2020 Wiley-VCH GmbH
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of the complex%. The p, together with the set of all 1-cells and The CW complexgz, associated to a divisor D is the sub-complex of
2-cells connecting them, therefore define a unique subcomplex % corresponding to the imaggggfunder the morphisig.

Rp S XA An example is shown in the bottom image in Figure 1.
The points in%Z correspond to codimension-one subvarieties in
X , while the higher-dimensional cells# encode intersections
among the prime toric divisors. One-cells in%p correspond to
the intersections of pairs of divisors in X, which are irreducible
curves in X , and 2-cells i correspond to triple intersections
of divisors in X . Note that a 2-cell i, always corresponds to a
single point on X .

In other words, to construct %, we attach a bouquet of g(v)
two-spheres to each vertexe\G, a bouquet of g(p) circles to each
point p € G interior to an edge, and a bouquet of cylindete3
to each connected component &, restricted to e. These spaces
are glued together along their common points: in particular, the
g(e) cylinders over a complete edge & % are pinched down
into the two vertices bounding e, forming a collection of g(e) two-
dimensional voids.

We will find it useful to divide the puff complex into layers:

2.4. The Puff Complex Definition 2or 0</ <2, the jth lay@¥’ Of the puff complgxs
the subset gf resulting from replacing points interior to eacf){2
face@° of A ° with g(@°) j-spheregeplacing 1-simplices interior to

Let us briefly recapitulate. By (2.9), the sheaf cohomology of ) A g
Is«|, etc., as in Definition 1. In particular,

prime toric divisors and their intersections is fully specified once@OOWfth 9©°) cylinders
one knows the simplicial compléx determined by the triangula- PO = R

tion ! I together with the genera g{“‘) of the face’ € ) (=< ?)- Figure 3 contains a sketch of the different layers of the puff
For ®° a 2-face,the number g(©°) records the extent to which complex for a simple example.

subvarieties corresponding to simplices contained & are re- The homology of % is readily obtained.Distinct connected
ducible. By promoting the simplicial compléxto theA-complex components of % can be examined separately, so we may take
%, we have encoded the information about reducibility directly h (g,) = 1 without loss of generality. Contributions to h (%)

in the complex%. Heuristically, viewed as sets of data about subsgme from

varieties,
{ { | ] (a) One-cycles in%p.
R <1, g@)O €2 . (2.19) (b) For each edge & A", a bouquet of g(p) cylinders over each
connected component of#Zp ethat is strictly interior to e.

The next step is to account for the data of {§(")|©° € ) (< 1)}.
In close analogy to the promotioh » %, we now define a CW Contributions to h(%) come from
complexX 2 that encodes this data. Heuristically,

(c) Two-cycles inZp.

[
P (_)‘ | ’{g(85)|®o €)= 2)} } ’ (2.20) (d) The bouquet of g(e) pinched cylinders over each edge e such
that %p e
which is made precise by the following: (e) The botjzc):]uet of g(v) two-spheres over each vertex.eg, the
layer» ).

Definition 17he puffcompléxis a CW complex constructed

from the ravioli complexz as followsFor each vertex v and edge we will prove in §3.1 that these classes ofcontributions are
e in %, we have naturainclusions @< and e <, where the in one-to-one correspondence with classes of contributions in
latter inclusion induces a cellular structure antlan S attached the hypercohomology spectrabequence that computes the co-

V)
to each interior O-cell. These induce the inclq,szfQﬂN'-g’0 S and homology of [ p. Inother words, the homology of the CW
complex %, encodes the cohomology of[ 5. As we will see,

. . , . i=1
I, ey whereq is defined by the following pushout diagram: this correspondencehas both computational and heuristic

"o utility.
e ——e

[ lr 3. Spectral Sequence Computation of Hodge
11 52 P Numbers

In this section we will prove our principal result:

Theng is defined by the following pushout diagram: > .
Theorem 3,etD =", . D, withG c{1,..., N}, be a square-

IL v IL e R free divisor, as defined above. Dengrednd &, the puff complex
P and the associated subcomplex determined by D, respectively. Then the
[L”” Wie ¥ Hodge numbers'({l p) are given by

MV S, 27— 2 H( o) =) (3.1)

5 The property of CW complexes that is relevant here is that a 2-cell or In the rest of this section, we prove Theorem 3. Our method is

1-cell & can be attached to the complex by a map that identifies the ~Pa@sed on examining a hypercohomology spectral sequence. We
boundary do with a 0-cell in the complex. use stratification to identify the E? page of that sequenceand

Fortschr. Phys. 2020, 68, 2000087 2000087 (5 of 30) © 2020 Wiley-VCH GmbH
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Figure 3.The layers of the puff complex for a single face. The lower row shows the three lay@r$oofthe triangulated face at the top of the figure. In
this example, the genera of the various faces are such th@ &) = 1, g(@io[ll) =(2,1,0)and gi)l.c[ol) =(1, 3, 0).

then we use a somewhat indirect argument to show that the dif-The complex of sheaves (3.2) gives rise to a hypercohomology
ferentials on the £ page are all zero. spectral sequence,r,{g(D) with differentials denoted by

s

p.g»p.q

1 E, D) €5, 4(D)
3.1. Hypercohomology Spectral Sequence ] ]
where p =P+ rand g =9 -7+ 1. The first page of this spectral

To start, let {B. ..., Dy} be the prime toric divisors, as defined in Sequence is
§2. Given a square-free toric divisor in X,

H2(Fy) 0 0

0

| HI(Fy) —— H'(F})
: 0 B 0 v 0
we will compute the cohomology ([ 5). Suppose that we have (Fo) — H°(Fy) —— H°(I3)
indexed the Dso that D=",_, D;, for some r< N.
The set of divisors {D ..., D} is dimensionally transverse on These are indexed such that E! (D) =H%F,), and e.g.
a smooth variety,and so by Proposition A6 of Appendix Athe

lized M Vietori 01511~ &
generalized Mayer-Vietoris sequence The second page, D) reads
@ @® ® 2
0€>pe> [p &> [p > [p, ¢0 (3.2) 0 HA(E) 0 0 0
i=1 i<f i <f <k
: -~ = 0 ker av coker av 0 0
is an exact sequence of sheaves. The hypercohomology spectral ) <
sequence of this complex will allow us to compute the cohomol-V ker 3 kery/Im 8 coker 7y 0
ogy off p. _ . _ .
Define where¢ ;= éwz,o is the only nonzero differential on this page.
The third and final page reads
&)
For="Tlo; 0 H2(Fy) 0 0 0
=1
F — & [ 0 ker ¢ coker av 0 0
1= Loy
<]
@ 0 ker ker~y/Im 3 coker ¢ 0
F, = [ b, - (3.3)
i<k On this page, the differential® is zero.

Fortschr. Phys. 2020, 68, 2000087 2000087 (6 of 30) © 2020 Wiley-VCH GmbH
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The hypercohomology spectral sequence converges to the call other components are zero. If C is an irreducible component

homology of[ p, meaning that of D ND;, and if P is a point of the intersection BD; NDy, (for
I <), then

dim H°([ p) =dim kerg (3.4)
dim H'([ b) = dim ker¢ +dim(ker ' Im 2) 3.5 (@) =signl.j k)
dim H%([ p) =dim H%(F,) + dim cokera +dim coker¢ (3.6) Now consider the complex of row 0 @ page 1of the

ectral sequence.We see &Bat HYF) =" €&, HYF) =
In the special case thatis the zero map, we have the simplifica- ~ c.4,()C&, and H(F,) = Pegin(2) Co, 1-€. the complex
tions

V) 7

dim H'( 5) = dim kera +dim(ker » Im ) (3.7) 0 ¢ YR pececear B o S € C O e

dim H*([ p) =dim H*(F,) + dim cokera +dim cokery (3.8) and the complex (3.13) have the same terms. Under this identi-
o . fication, it is easy to see that the maps are identical toags the
If the dependence on a divisor is understood, we denote the magforphisms £ and » are canonically induced by the generalized
a, B, 7, ¢, while if a divisor D is specified, we write(D), etc. Mayer-Vietoris complex. ]
Proposition 4 generalizes to all rows of the second page:

3.2. Cohomology from Stratification Proposition B all p and g,

We now use stratification to compute the cohomology organizedy;, g2
by the spectral sequence given above. P

Proposition 8ow 0 of page 1 of the hypercohomology spectral sBroof.\We have already established the caséqgFor g= 2, we

(D) =dim H, ().

quence has cohomology ectaahat of the raviolicomplexg, =  note that stratification gives A p,) =0, unless D corresponds
P, that is: to a vertex of ° having positive genus g(v). Summing these gives
dim kerg =dim Hy(%p) (3.9) D
. . dim H¥(F) =~ g(v), (3.14)
dim(ker 7 Im 4) =dim H,(%p) (3.10) ve) (0)
veD
dim cokery =dim H,(Z%p) (3.11)
proving Proposition 5 for g= 2.
Note: this can be written more succinctly in the form The case g= 1 can be established by noting that row 1 of page
1 of the spectral sequencebecause of stratificationpreaks up
dim E;O(D) =dim Hp(yéo)), (3.12) into a direct sum of complexes, summed over all edges e in”
intersecting D:
for all p, even though dinﬁ!g(D) can only be nonzero for0, 1, ( )
or2. ® ® ®
C®® 0¢> C > C «9 (3.15)
Proof.\We will identify row 0 of page 1 of the spectral sequence, 1) 7! b e(O) e <t orell)

with the cohomology complex of the comple®p. In the follow-

ing, we will takeZp (k) to be the set of k-facegif. In particular, The complex in parentheses is simply the relative cochain com-
%p(0) is the set of 0-dimensional faces (i.e. the)[32p(1) is the  plex for the pair (! p.¢ ! b, ). Note that because e is an edge,
set of 1-dimensional faces, i.e. one for each connected componerny ., | prg) = (Bore Rong)

ofaD mD,-. The same connected component C cannot occur for  Therefore the p-th cohomology (for P=0, 1) of the di-
two different such intersections, as otherwise the component C rect %Jm of complexes (3.15) is the relative cohomol-
would be contained in the intersection of three or four of the,D agy CI®®HP( R o Bp,g), Which is the same as
which cannot happen since the [are dimensionally transverse. CIe) Hp(ggDFﬁ, Rpng), Whichby the definition of &
flnally,_%o(2) corresp_o_nds to the points in e_ach of the t_rlple in- equals "la+1(g’o(1))- O
ersections of three divisors, D‘\D,- ND,. Again, each point can
only appear in one such intersection. Notice thak, is a Delta  Corollary @iven a square-free divisor Bof = £ .520(D) then
complex whose cohomology sequence is o

0 e & cads® o e (343 (D=0 == dimH'( o) =dim H(b) for all (3.16)
i=1 Ce%p(1) Pe%p(2)
== dimH'( p) =dim H,(%) (3.17)
where the maps 4, are as follows:if C is a connected compo-
nent of D; ND;, fori <, (6y(ey,))c = -1 and (5(&y,))c = 1, and == dim H2([ p) =dim Hy(%). (3.18)
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3.3. Proof thaf =0 of genus> 0, D contains at least two full sheets over a 2-face, and

finally, D contains a collection of full 2-faces that contain a void.
In this section we will prove the following, which also, by Corol- Since by definition, not all of the lattice points of the edge con-
lary 6, proves Theorem 3. taining B; are in D, and Bcontains no vertices% and 9% must

Lemma 7I/f D corresponds to a square-free divisor on X , then F}f’e\’e the same A o
map Proof of Lemma 7, and therefore also the proof of Theeram 3.

mas 8, 11, and 12 imply that
(D)= §.,,,D)

is the zero map.

We prove this result by first spliting D =A + B, + .. 4B, ~and so by Corollary 6, we have ¢(D) =0, proving the

where A and the B are all square-free divisors having disjoint theorem. O

support. Consider the subgraphy(< 1). Suppose that this graph

has m components each of which is contained in the strict inte- 3.4. Generalization to Calabi-Yau n-Folds

rior of an edge of °. Let Bbe the sum of the divisors correspond-

ing to the lattice points in the ith componeft. Let A be the sum Most aspects of the computation above generalize immediately

of the rest of the divisors. Define/A=A + ~_ B;, with A=A to Calabi-Yau n-folds.

and A" =D. Definition 182t V be a simplicial toric variety of dimension n

Lemma 8he mag(A) is zero, and so dirﬁ(?—IA) = dim H;(%). and let X be a smooth Calabi-Yau n-fold hypersurface in V,zwith N

. . . . MAX Yy n+ 1. Let D=, D;, with Gc{1, ..., N,}, be a square-
Proof. The map is zero, because its domair}, ), which has  free divisor. The construction of Definition 1 generalizes to any n

dimension dim H,(%"), is zero by construction. O 3, and we denote by and &, the puff complex and the associated
) subcomplex determined by D, respectively.

Lemma 9iim H?([ 5) =0.

dim H3(%) = dim H3(%) = dim H3([ ») =dim H?([ p),

We note that the constructions of? and % are immediate
because our results on the stratification of subvarieties Xc X
apply for any n.

(1.9, 0). Next, the Mayer-Vietoris sequence generalizing (3.2) contains
Lemma 1@ix an integer i <m, and let C=A'-' 0B, Then 1+ 1 nonzero terms. The resulting hypercohomology spectral se-
C is a curve whose irreducible components ap&sltwo intersect quence again converges to the cohomology[of, and it is easy

Proof. If the given component B consists of divisors associ-
ated to lattice points interior to an edge of genus g, théng) =

in at most one point, andff ) = 0. to see that row zero of page one of the hypercohomology spectral
P . . . sequence again has cohomology equal to that@f,. Moreover,
Proof. C:=A""nB; is a collection of rational curves C=  proposition 5 holds for arbitrary nt ' However, for n> 3 there

UnCi. As a complex, C corresponds to a collection of 1-simplic@$e more diagonal maps, generalizing

oum, each with one end in%g,, and the other end in an edge not |t for every n the diagonal maps were shown to be identically

containing %z, in a 2-face, or in a vertex. Two curvesahd Gv  zero, as we have proved in the case # 3, then we would have

intersect if and only ifoy and oy share a 2-simplexy, . h( ) = h(9) for all n. However, examining the diagonal maps
Now notice that A([ c) # 0 is possible only if the intersect  girectly in the same manner as done fin §3.3 would be some-

in such a way as to form a nontrivial loop. But this would requireyhat involved. We defer a proper analysis of these maps to [15],
a closed loop in which three or more 1-simplicesr;, ... ok are  and state here only the following:

connected by 2-simplices, » ... ok 4 0x 1. HOwever, because ) . L
R, is in the strict interior of an edge, no such loop can be formeGonjecture 14( V. X, D, an% be as in Definition 13, and set
Thus, H( ¢) =0 O 1=4. Foreach such D there exists f(3, Such that

Lemma 14im H%([ ») =dim H([ p). h'( b) =h () —(0, kD), k(D), 0) (3.19)

Proof. We prove this by induction. Consider A =A™+ B, \yg show in [15]that k(D) = 0 for all D except those obeying a
where A° = A. We use induction to show that dim H%([ 4) = rather restrictive condition.

dim H?([ ), fori =0,..., m. The statement is trivial for i =0,
and for i > 0, we use the long exact sequence associated to the

Mayer-Vietoris sequence 4. Interpretation and an Example

06> |y €3 s @ [5 €3 | €0, We VYi|| now briefly Qi§cuss the interprgtation of our result, and
' then illustrate the utility of our formula in an example.
combined with Lemmas 9 and 10.0One obtains that H([ 4) =
H2([ ). O  4.1. Contractible Graphs
Lemma 12im H*() = dim H(%). Equation 3.1 depends on only certain topologicgbroperties of
Proof. There are four cases where an element of Hcan ap- the complex%, and so two complexes that correspond to divi-
pear: D contains a vertex of genas), D contains an entire edge sors that are related to one another by deformations that preserve
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N N

Figure 4.Example of contraction for a graph - D; + D, + D3, where the D correspond to points interior to a 2-face. First Dis removed, and then
D5 is removed.

these topological properties will have identical Hodge numbers. Table 1. The genera of all vertices, edges, and faceg'in
This leads to a useful tool in enumerating certain divisors, as we
now explain. dim face # int pts genus

Given a triangulation and the associated simplicial complex

o . ) L 0 1 0
!, a square-free divisor D determines a unique simplicial com- L L o
plex!p c !, as well as a corresponding CW complesh, ¢ &
The number > of distinct square-free divisors of a given puff ° 2 1 1
complex 2 that corresponds to a Calabi-Yau hypersurface X is © 3 1 3
2M'(X¥4 Thus, the task of working out the Hodge numbers of all® 4 1 6
possible square-free divisors appears formidable for lafgéxh). 1 0,1 83 0
Fortunately,as we will now explain, Theorem 3 implies that 1 0,2 6 0
square-free divisors fall into equivalence classes. 1 0,3 2 0
Suppose that we begin with a set  of lattice points G, ¢ 0.4 1 0
{1, ..., N}, which define a square-free divisor,and a CW com- 12 6 0
plex %, . Now let us add or remove one lattice point from 1 13 5 0
G,, so that G, is changed to some G, {1, ..., N}. This oper- '
: . ! - 1 1,4 1 0
ation uniquely defines a new square-free divisor Pand a new
CW complex % . By Equation (3.1),if hi(%.) = hi(%) then ' 23 0 !
j i 2 ! 2 2,4 0 2
(o) =H(0). o o .
We define a single contraction to be the operation of chaﬁging '
D, » D, by adding or removing a lattice point, as specified above, 012 246 0
in such a way that A9, ) = h’(%z). We define a contraction t8 0,13 82 0
be an arbitrary composition of single contractions. Contraction i$ 0,14 41 0
an equivalence relation on square-free divisors, and all members 02,3 6 0
of a contraction equivalence class have the same Hodge num- 2 02,4 3 0
bers. However,two divisors with the same Hodge numbers do 0,34 1 0
not necessarily belong to the same contraction equivalence class. 123 6 0
As an example consider the complex in Figure 4, with assogj- 124 3 0
ated divisor D=D, + D, + D,, where the D correspond to the 1’3’4 1 o
points p. Equation 3.1 gives H[ p) =(1+ g(f), 0, 0), where fs 2’3’4 0 .

the 2-face containing G. We can perform a contraction by, for ex-
ample, first deleting p, and then deleting g, as in Figure 4. We
will present a more involved example in §4.2.

There are 679 nonzero lattice points in A°, but 184 of these
4.2, Example with-h= 491 are interior to 3-faces,and therefore do not intersect X X has

h1(X )= 491, with 495 toric divisors. The face structure is very
As a demonstration of the utility of Theorem 3 we will now calcusimple: A 'is a 4-simplex, with vertices indexed by {0,1,2,3,4}, cor-
late the Hodge numbers of some nontrivial divisors in a Calabi- responding to the columns of B. There are 5 vertices, 10 edges,
Yau hypersurface X in a toric variety corresponding to a fine, st@d 10 triangles i\ [, before triangulation. The genera of all the
regular triangulation of the largest polytopeA; in the Kreuzer- ~ faces are given in Table 1.
Skarke databas€?In this example,A is the convex hull of the ~ Consider the largest 2-fageirf A/, which is a triangle with ver-
columns of tices labeled by {0, 1, 2}. This face has 344 lattice points, as shown
in Figure 5. All (sub)faces except vertex 2 have genus 0, and so the
puff complex restricted to fis simply! restricted to f, with a

g_ |7t 1 1 2 -+ 4.1) single $ cell attached to vertex 2. If we choose, excluding point 2,
-1 -1 6 -1 -1 a set of points on f whose corresponding complex is connected
-1 83 -1 -1 -1 and has no cycles, then the corresponding divisor will be rigid.
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1 corresponding divisors as h([ p,) =(1, 0, 0)1( p,) =(1, 1, 3),

h([ DC) = (11 0! 5)v and ﬂ Dd) = (11 01 6)

5. Conclusions

In this work we have computed the Hodge numbers A( p) of
square-free divisors D of Calabi-Yau threefold hypersurfaces in
toric varieties. Given the data of a simplicial complex! corre-
sponding to a triangulation of a four-dimensional reflexive poly-
tope A °, we constructed a CW complex? that simultaneously
encodes data about ° and its dualA. The construction of% in-
volves attaching certain cells td in a manner determined by
A. The specification of a square-free divisor D determines a sub-
\ complex%,, as well as an exact Mayer-Vietoris sheaf sequence.
> By examining the corresponding hypercohomology spectral se-
quence, we proved that'fi p) = h,v(%). Here the left-hand side
is manifestly the dimension of a sheaf cohomology groupbut
the right-hand side is the dimension of a simplicial (or cellular)
homology group.

Our results are a step forward in the study of divisors in Calabi-
Yau hypersurfaces. Theorem 3 permits extremely efficient com-
putation of the Hodge numbers of square-free divisors in three-
folds, even for A' >1. Conjecture 14 extends these methods to
fourfolds, enlarging the range of divisors with computable Hodge

I
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§\§ A& \\\ = The ultimate goal of this work was to determine which effec-
0 2 tive divisors D of a Calabi-Yau hypersurface support Euclidean

brane superpotentialterms. Theorem 3 represents significant
progress toward this goal,but further advances will be neces-
sary to give a completely generainswer.First of all, although
the Hodge numbers /([ p) provide essential information about
the number of fermion zero modes of a Euclidean brane on
D, when D is not smooth there can be additional zero modes
The divisor corresponding to the entire face has Hodge numbergssociated to singular lociThe only smooth, rigid, square-free
(1,0,1).The divisor corresponding to the line connecting 2to 4 divisors are the prime toric divisors D, themselves;a nontriv-
has Hodge numbers (1,0,9). As a more nontrivial example we cagy square-free divisor that is rigid necessarily involves normal
form simplicial complexes with cycles ondndA ;. The complex  crossing singularities where the components Pintersect. One
defined by taking all the boundary points of.f and none of the  should therefore ask how to count fermion zero modes on a divi-
interior points, defines a divisor with Hodge numbers (1,1,1). In sor with normal crossings. In some cases, normal crossings can
Figure 5 we show a triangulatiof of f,, and a choice of a more pe shown to yield no new fermion zero modesso that rigidity
complicated subcomplex containing cycles. Theorem 3 allows Ug g sufficient condition for a superpotential!® Moreover, there
to easily read off the Hodge numbers of the corresponding divi- exist nontrivial smooth square-free divisors D with Hodge num-
sorDas ([ p)=(1,9,1). bers h([ p) = (1, 0, n), with n> 0. In a suitably magnetized Eu-
As a further example of contraction,one can consider com-  clidean D3-brane wrapping such a divisor, worldvolume flux can
plexes that are not just restricted to a single 2-facas depicted |ift the zero modes counted by #([ »), and so lead to a super-
in Figure Btlere we show a facet ofA | defined by the points  potential term, even though D is not rigid. Finally,Donagi and
{0, 1, 2, 3}with severalcomplexes drawn on it. The red points  Wjijnholt have proposed that in general the fermion zero modes
indicate lattice points included in the complex, and the red lines can be counted by the logarithmic cohomology of ngd p)[12]

cycle-free paths that may include additionalattice points. The Verifying and applying this  idea is a natural task for the
red triangles indicate entire faces that are included in the com- ¢4 ,re.

plex. Note that the point 1, corresponding to (—1,—-1, -1, 83),
has been scaled in,for visualization purposes.In complex (d)

we have included the entire boundary of the faceErom Theo-
rem 3 we can immediately read off the Hodge numbers of the

Figure 5. The largest 2-face f in the largest four-dimensional reflexive
pontopeAZ, with a ‘banded’ complex show in red. The Hodge numbers
of the corresponding divisor D are easily read off af fp) = (1, 9, 1).

There are many possible extensions of this work. The effects of
worldvolume flux could plausibly be incorporated along the lines
of [25], but including the effects of bulk fluxes appears more chal-
lenging. A further step would be to compute the Hodge num-
bers of effective divisors that are not square-freeAdvances in
these directions would allow for a truly systematic computation
6 This triangulation of £ is for illustrative purposes; the triangulation we ©Of the nonperturbative superpotential for the Kahler moduli in

have obtained from a regular triangulation oA is difficult to render.  compactifications on Calabi-Yau hypersurfaces.
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1 1 1 1
2 2 2 2
0 3 0 3 0 3 0 3

(@) (b) () (d)
Figure 6.A facet of | defined by the points {0, 1, 2, 3}, with several complexes drawn on it. The red points indicate lattice points included in the complex,
and the red lines cycle-less paths that may include additional lattice points. The red triangles indicate entire faces that are included in the complex. Note
that the point 1, corresponding to{1, —1, —1, 83), has been scaled in, for visualization purposes. In complex (d) we have included the entire boundary
of the facet. From Theorem 3 the Hodge numbers of the corresponding divisors are f{[ Da) =(1,0,0),h ([ Db) =(1, 1, 3)h( Dc) =(1, 0, 5),and
h([ p,) =(1,0,6).

Appendix A: Mayer-Vietoris Complexes where
p. @
In this section we establish the exactness of the generalized MP .= ) _ (/fo + o *Iip)
Mayer-Vietoris sequenceand we give related background on 1< <lp=ht
spectral sequences.
Given closed subvarieties (or subschemes) D and E of a varié
(or scheme) X, the Mayer-Vietoris complex is

gd the differential d : MP «-MP+1 s defined by

1

06> bheéd h@[ce bee0 A (@@ ., =j:0(‘”¢fo...c...fp+1
This i§ always an exact sequence,and one can vigw it. asan oo checks immediately that kerd=/, N -~ K, and that the
inclusion-exclusion sequencdf / and J are ideals in a ring R, sequence (A.4) is in fact a complex. Notice thatjits R for all
then we have the related exact sequences: then M(R, ..., R) is the (reduced) cochain complex of an-{)-
simplex, and so is exact.

The Mayer-Vietoris quotient cbigplex, . 7/,) is the
cochain complex defined in a completely analogous manner:

0 R nJeR 1 @R JeR (I +J)e0 (A.2)

and

0 1 1
Ded nJed @desd + Jex (A3) 0 R (N - K €N eN e .. NI e, (A.5)

There are well-known generalizations of these sequences to theWhere
cases where there are more than two subvarieties, ideals, or qQuURp ._ ® Rl + - 4))
tients, but at this level of generality the resulting Mayer-Vietoris ‘o '»
sequence is often not exact. We will now prove exactness for sev-
eral cases of interest in this paper. . . D . AP Del )
We start with the case of ideals. Suppose that /. I, cR are azgtitzr(?t(::;er:ntlal (d"f: NP €N T is defined by the natural
ideals in a ring R. Define the Mayer-Vietoris ideal sequenge, M P
M(l4s ... 1), to be the cochain complex 1

('Y, i _z GO/
0, N - [’B) MO M e ... M1 0, (A.4) - Tpyq _j: To-Tje Tpeq

1<dy< <ip<n
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Again, one checks that (A.5) is a complexand that ker(d')? = Example AlZ! S= Gx,, ..., X,] be a polynomial ring over a field
R/ (1, n --- R). There is an exact sequence of complexes F. Then the lattice of ideals generated by, {(x, (x)} is the set of
square-free monomial ideals of S. This is a distributive lattice of ideals.

06 By ) €3 R, R WLy BLy) €0, A square-free monomial ideal Mc [, ..., X,] has a unique

and coupled with the exactness of the middle complex, the ComTdescription as an irredundant intersection of monomialprime

plexM(l,. ..., |) is exact precisely whem(R/ /. ..., 1) is ex- ideals

act. n ;
Finally, given closed subvarieties (or subschemes) & D, U M= Xlie a
. D, of a variety (or scheme) X , we define the Mayer-Vietoris <A

sheaf sequehi¢®;. ... D,) in parallel to the above, taking where the intersection is over a uniquely defined set of subsets

@® of [1..n]. The ideals in the intersection are the minimal primes of
MOy ... DY = ] D}, Pi, - Dy, - M.
Tocly<<lp=n A key example is a generalization of this to the case where F
{f;r..., £} cR s a regular sequenceWe will only consider the
case where R is a local ring, or a graded ring, and in these cases
any permutation of thefremains a regular sequence.
Given F={f,,..., } cR, define a maps: Z[x; ..., X,] €9R,
& @ whereg(x;) = f.. In this section, we call an ideatR an F-square-
0e> bed> [p e | DD, € . > [p,nm, €. free ideal if there is a square-free monomial ideal M such that / is
i=1 iq generated byA(M), i.e., | is generated by square-free products of

Define maps @ : M(D;, ... D)’ - KD, ..., D,Y*! in the same
manner as for quotients of ideals above. The resulting complex
M(D,, ..., D) has the form

the £. We will say that | is an F-square-free monomial ideal if it is
(A.6) F-square-free, and I can be written as the intersection

n .

A.1. Distributive Lattices of Ideals and Mayer-Vietoris Complexe’s of (filie a
Ideals ach
The relationship between distributive lattices of ideals and the where
exactness of Mayer-Vietoris ideal sequences was explained in [RPL n
In this section, we summarize their results, and then show that
several sets of ideals of interest form distributive lattices, so that
their Mayer-Vietoris sequences are exact. This is the key technical
fact that will allow us to show in §A.2 that certain Mayer-VietorisTheorem A.32t F={f,, ..., f} be a regular sequence in the max-
complexes of sheaves are exact. imal ideal of a local ring R.

Fix a (commutative) ring R and ideals J ;-..., J of R. This
set of ideals generates a lattice ofdeals:the join of two ideals (&) The lattice of ideals generated,hy.(f, () is exactly the set of
is their sum, and the meet of two ideals is their intersection. F-square-free ideals.
The smallest set of ideals that contains ..., J and is closed  (b) This lattice of ideals is distributive.
under these two operations is the lattice of ideals generated

X |l € a).
SHN

by Ji.... J. This follows from the following more precise lemma, which
This lattice of ideals is called distributive if for every three ided§ Prove by induction on n.
Ly Ly Lyin the lattice, one has Lemma A.4ket F={f,, ..., [} be a regular sequencket F :=

f....., f_.). The following statements hold.
L1 m(Lz + L3) = (L1 mL2)+ (L1 ﬁLB)' { 1 'n 1} g

(@) IfJis an F-square-free ideal, then (,J =fJ-
Equivalently, the lattice is distributive if and only if for every thregn) If 1, J are F-square-free ideatben L, =1.f + 1, and L, =
ideals L, L, L; in the lattice, one has Jf, + J, obey

Lit (Lonby) = (L + L) n(Ly + Ly). Lo, =@, 0+ 1, 0d+ L, nd)+1,nJ,
The importance of this notion is the following useful charac- (c) If I and J are Fsquare-free ideals, then
terization due to Maszczyk.

Theorem A.1 (Masz¢#9k For a set of ideals,J ., J, of a ring ((R)+ 1) N((f) + J) = ((f) + (I NJ))
R, the following are equivalent:
(d) If I and J are Fsquare-free ideals, then

(a) The lattice of ideals generated by, JJ, is distributive.
(b) M(J ..., J) is exact, and hence sl J,, ..., R J,). (f+J) f=1+J

The following is a typical distributive lattice of ideals: (e) Every F-square-free ideal is an F-square-free monomial ideal.
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() If L, and L, are F-square-free ideathen L, nL, is also F-  ated by (f),..., (f) is the set of F-square-free idealsFinally, by
square-free. Lemma A4(g), the lattice is distributive. O
(9) IfL,, L, L are F-square-free ideals, then

Lin+ L) =L nL+ Ly nL,. A.2. Mayer-Vietoris Sequences Corresponding to Divisors and Curves

Proof. We prove this by induction. The case 2 is immedi-  Recall that Dc X is called a prime divisor on X if it is irreducible
ate. Suppose the statements are true for a number of elements ahd codimension one in X.

F less than n. ) o ] )
Proposition A%.X is a simplicialtoric varietyand D,, ..., D,

are prime torus-invariant Weil divisors on X , then the Mayer-Vietoris

(a) By part (e) in the induction hypothesis,
sheaf sequenggD.,, ..., D)) is an exact sequencg gfmodules.

n
J= (ilie a Proof. Let S= Gx,, ..., Xy] be the Cox ring of X , where D;

<h corresponds to the ring variable x, for 1 </ <r. Consider the
Mayer-Vietoris ideal sequenceM(x,: ..., X). This is exact, as
the x; generate a distributive lattice,and so M(S' X,; ... SX.)
is also exact. Sheafification of this exact sequence of graded
S-modules remains exact, but this sheafification is precisely
M(D; ..., D). O

where all the;fthat appear have £ n. Then J : fis the inter-
section of

flie a:f="F8|ie a
whose intersection is again J. Proposition Al6X is a smooth variety, andD. ., D, are effec-

(b) The right hand side is clearly contained in the left hand sidetive divisors, such that the intersection of each set of n of these is either
solety = &, + & = #,+ €L, nL,. One shows thatis empty, or has codimension n in X , then the Mayer-Vietoris sheaf se-

contained in the right hand side (wheeg €/, &, €1, 4, € quence(D,, ..., D.) is an exact sequencg gfmodules.
J, p€d). Thus, (&s — Af, = f— g<l,+J,. Therefore,
by part (a),since I, + J, is F -square-freez, — gel,+J,. Proof. We prove exactness locally. Le&pX be a point. Sup-

Therefore, there exists 5, € |, 5, € J, such that @, — g=  pose that the set of Dthat pass through pis {D ..., D;}. Local-
6, — & Now plug this back into the formula feto gets;f, +  izing the Mayer-Vietoris sheaf complex at p results in the com-
a = ¢+ gel,nd,. Since this is already in the right handplex M(R';, ..., 'T), where R = [, and the Cartier divisor
side, we can subtract it from y, obtaining an elementy = D; is defined locally in this ring by f. Note that, by hypothesis,
(s — f, = (4 — 9, thatis in the right hand side precisely the elements £; ..., f, form a regular sequence in the maximal
when y is. Since f, is a nonzero divisor, , — §= #— ¢, ideal of R. Therefore, Theorem A3 shows that(f,. ..., f,) is ex-
soy € ((I4 + 1) Nn(J, + I))f,. Combining this with the in- act. This implies that M(R/ f;, ..., B f,) is also exactwhich im-
duction hypothesis of part(g),we have that (}, + /,) n(J, +  plies that the original complex is exact at each & , proving the
L)y =l nd +1,nd,+1,nJ, +1,nJd, and thereforg’, and  proposition. a

hencey, is contained in the right hand side. ) . . )
(c) This follows immediately from (b), by taking,/=J, =R. Notice that this proof can be generalized to the case when X is

(d) This follows immediately from (b): (if+ J)N(f,) = (I + J)f, eggidimeqsional, qot ngcessarily smooth, gnd the Bre Cartier
andso (If+J):f=1+J. divisors with the.glven mtersechop properties. .

(e) For any ideal /, and fe R, such that [ : £ =1 : f, we always There also exists a corresponding exact sequence in the case
have I= (I : f) N((f)+ I). Let L=If, + J be an F-square-free of curves simply using the corresponding normalization without

ideal. If | = 0, then the inductive hypothesis gives thatJ Necessitating the above technology.

!s F-square-free monorr_1ia|, arjd is thereforfe F-_square-free. li.emma A.7Suppose X isa smooth, projective variety and as-

instead, / € L, then the induction hypothesis gives a decom-g;me that G. ..., C are smooth, irreducible curves on X, and that

position for J,- and part (c) gives the required decomposition ;e corresponding closed subschem@1@ ... G, is anodal, re-

f[;rtﬁ . (?tt?]emlie, bydpart (d) wi_havebL: ((/ )+( ];7) f:' ()(fn); i])) ducible curve with componentsT®en the Mayer-Vietoris sequence
oth of these have decompositions, by (e) (for) and (), 1= | C)is an exact sequenc odules.

and putting them together gives a decomposition for L. (Cp.... G) q & o

(f) This follows immediately from (b) and the inductive hypoth-  Proof. By hypothesis, the normalization f C>» Cis the
esis for (f ). scheme corresponding to the disjoint union of the smooth, ir-
(g) This follows immediately from part (b). reducible components G Thus, the normalization induces the
following short exact sequence

® ®
Proofof Theorem A.1.The set of F-square-free ideals is plainly [ c®¢,  [c»f,  [c] o (A7)

closed under addition of ideals. By Lemma A.4(b), the lattice f i

of ideals generated by (#, ..., (f) contains the set of F-square-

free ideals. Also by Lemma A4(f ), the set of F-square-free idealehere the quotient sheaf is a torsion sheaf with support pre-

is closed under intersection,and so the lattice of ideals gener- cisely on the nodes of C. By considering the sequence locally at
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the nodes,we thus obtain the following exact sequence of -
modules

® ®
[cod,  [c> 9 [p (A.8)

i i

where g is the natural closed immersion andcprrespond to the
nodes of C. Higher direct images of closed immersions vanish
and hence we obtain an exact sequence|of-modules yielding
exactness ofA(C,, ..., G). O

A.3. Background on Spectral Sequences

www.fp-journal.org

spectral sequence, the spectral sequence converges to the coho-
mology of the total complex

E)?= HP*(Tot(C))

where the total complex is a complex with the n-th term defined
by

@
Tot(cf = = ©
p+q=n

with the natural differential defined by &= d, + d},.

We will now highlight the essential aspects of hypercohomologyA.4. The Hypercohomology Spectral Sequence

spectral sequences needed to follow the computation offhp).
We begin by describing the basic usage of the two spectrske-
quences corresponding to a double complexlnstead of going
into detail about filtrations, we assume that the entries of the

We now explain the utility of the spectral sequence discussed
above in computing sheaf cohomology. Let us fix a smooth com-
plex projective variety X and closed subvarieties,D.., D,. We

second and subsequent pages of the spectral sequence are finitgssume that the intersection of each set of k of the s either
dimensional vector spacesWe are describing “first quadrant”  empty, or has codimension k in X, so that by Proposition A6 the
spectral sequencesgs that is what we need for hypercohomol- corresponding Mayer-Vietoris sheaf sequeb@®;, ... D,) is an
ogy. exact sequence.

We start with a bounded double complex of vector spaces, Let { p} denote a complex localized in degree 0 with the term
C ={c"% g, q}, i.e. a collection of vector spaces ¢ where [ ,and let ,'-7:1 [ p, € - ¢3 [ p }denote the correspond-
CP9 =0 outside of the box 0<P <M, 0 <G <M, for some M, ing complex beginning in degree 0. These complexes are quasi-
horizontal differentials d/?: ©*9 «C"*'4, and vertical differen- isomorphic and hence, as objects in the bounded derived category
tials of'?: €7 €C %1 satisfying ¢ = A2 =0, and the compati- D°(X ), they are isomorphic. We have the natural global sections
bility condition that they anticommute: g, = -6,d,. More gen- functor I' : Qcoh(X)- Vec(), and by deriving on the right and
erally, we could allow C”7 to be modules, or objects in some  restricting to the full subcategory of bounded complexes of qua-
Abelian categoryand the maps would then be morphisms in  sicoherent sheaves with coherent cohomology, we obtain the in-
this category. duced derived functor R: D°(X )» D"(Vec()). For a given com-

There are two spectral sequences corresponding t'Ep,Cf,and plex of coherent sheaves, we then compute the hypercohomol-
"B We will describe the first, from which the second is eas- ogy groups,or higher derived functors, by taking cohomology,
ily obtained. A spectral sequence is a set of pages E forr = namely H(X,) ) =H'Rr( .

0, 1, 2,... Each page is a two-dimensional array of vector spaces In order to compute the hypercohomology groups of a complex
B for0 <p, <M, together with a map d. The zeroth page, ) -, we take a quasi-isomorphic complex of injective objects given
E,, starts with C*%in the (p, g) spot, and the map is the vertical by f :) = (" and compute the cohomology H(I'({ *)). Such a
differential of ! := d?: €% %1, The differential d at each complex is often constructed as the total complex of the Cartan-

step satisfies the equatiorfa= 0, and maps Eilenberg resolution) " of ) - where existence is proved by ap-
plying the horseshoe lemma. In particular, the hypercohomology
P9 B9 B, HO ) is independent of the resolution. However, in practice, in-
jective resolutions are usually hard to find explicitly, and so one
The first page is obtained from the zeroth page by setting often resorts to taking acyclic resolutions.
We wish to compute
E%:=kerd? Im(d)*"). ( & )
H'D,[p)=H X [p € ... €[ o, (A.9)

The differential d is simply the horizontal map it
9B e In the general situation, given a scheme (X x), and given a
bounded-below complex “ of [ x-modules, we have the follow-
induced by the horizontal differential on C. In general, given theing computational tool:
r-th page of the spectral sequence, the (t)-st page is the array Lemma A.ghere exists a spectral sequence with
E :=ker §'Y Im(d?"*"1). ( )
1 ¢ (dr ) EY=HP HIX,) )

By iterating this procedure, the spectral sequence eventually con- ]
verges when all terms on the page stabilize. For a first quadrantcOnVverging @>9(x,> -).
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Appendix B: Stratification of Toric Hypersurfactsre is an associated one-parameter subgrou€” € G which
and Hodge Numbers of Strata acts as

In this appendix we will review a number of results about the (217 ) ~ (£1Z,..., £Z)) (B.4)
stratification of toric varieties and the associated stratification of

hypersurfacesIn particular, we will review how the algorithm  for £ € €. In most cases of interest,G can be completely de-
of [27] can be used to conveniently read off the Hodge numbersssfibed through relations like this.In general, however, G may
toric strata. Although all of these techniques are in principle welleontain discrete factors. Note that the above discussion implies
known, a succinct exposition, especially in the physics literaturethat the (complex) dimension of V equals the (real) dimension
is lacking. We refer the reader to [28-30] for an introduction to of N. In the following, we also use the notatioR; to denote the
toric geometry. The original reference for how to compute Hodgéoric variety determined by the fai.

numbers of toric strata for hypersurfaces is [27]; see [17, 21, 22] For all Z; # 0, the coordinates ¢ defined in (B.2) parameter-

for a number of applications close to physics. ize the open dense €*)" giving the toric variety its name. The
strata that are added to turn€*)” into a nontrivial toric variety
B.1. Toric Varieties and Stratification are encoded in the fan as follows. We first associate the unique

zero-dimensional conesY, i.e. the origin, of = with (C*)". Each

By definition, a toric variety V is characterized as containing an d-dimensional coneofd] is naturally associated with the homoge-
open dense algebraic torusC()”, the action of which (on itself ) neous coordinates;zorresponding to its generating rays. Choos-
extends to the whole variety. One can think of an n-dimensionaling the basis gin (B.2) from lattice vectors contained in the dual
toric variety as a (partial) compactification of ()" in which var-  cone
ious lower-dimensionalalgebraic tori are added.These can be
thought of as ‘limits’ of the original (C*)", so that the action of (s, &) >0, (B.5)
(C*" on itself extends naturally to the whole variety.

This structure can be summarized by a combinatorial object \yhich sits inf €M ® R where M is the dual lattice to N, we may

called a fan.A fan X is a collection of strongly convex rational  take a limit of (B.2) where we set the;z= 0 for all v generating
polyhedral cones such that the face of every cone counts as a cgngg 5 g-dimensional cones® has d generatorsthis lands us
in the fan and two cones only intersect along a face of each. Hegg, gan n — d-dimensionalalgebraic torus T, =~ (C*)"“ and the

strong convexity demands that no subspace (except the origin) gkfinition of a fan ensures that all of these strata are consistently
the ambient vector space is contained in any cone. One can thinfe\wn together.

of each cone as being spanned by a finite number of rays with  penoting the set of d-dimensional cones by

primitive generators v that are elements of a lattice N.Finally,
we (mostly) make the further assumption that every cone is sim-z(d) _ {old]} (B.6)
plicial, i.e. any d-dimensional cone is spanned by d rays. In this kI '
case the associated toric variety has at most orbifold singularities

and is factorial. we can hence stratify any toric variety according to the data of our
Let us label the (generators of the) rayslnf v, with the index fan as

i running from 1 to r. The toric varietf, associated with the fan I 11 I 11 o

= can then be described in analogy to complex projective spacefPs = Tga = ). (B.7)

by associating a homogeneous coordingtezach ray of the fan 4 Mex(a) 4 oMex(a)

and forming the quotient
In terms of the homogenous coordinates zthe stratum of each

r
P, = c (_ESR, (B.1) conecis described by setting
This data is encoded in the fan as follows. First, the exceptional{zi =0 W, € 4 and {z;#0 W ¢ 4. (B.8)
set or Stanley Reisner ideal,SR corresponds to all collections
{vi| € I} for which the cones v do not share a common higher- Let us discuss some exampleslhe fan corresponding tolP’

dimensional cone. Wheneve this is the case, the set SR containves inIR and is composed of three cones: the origin, a ray gen-
the subspace oft” in which the associated collection of coordi- erated by 1 and a ray generated byl. We recover the standard
nates {z|/ € I} vanishes simultaneously. The Abelian group G is presentation from (B.1) as
given as the kernel of the homomorphism
H () H>1 = M B.9
Zia b= 7 (B.2) (zy %) ~ (42, dzy) (B9)
where the g form a basis of the lattice M. Note that this implies Thelopen dense" can be described by the coor.dlnatqa/._iz, or
: ) . equivalently by z/Z,, and the strata corresponding to the two
that whenever there is a linear relation : . . .
one-dimensional cones are simply given by=z0 and z =0, re-
)y Vv — spectively. We hence recover the descriptiolt aé the Riemann
av, =0, (B.3) . : ; o
j sphere, i.e. adding the point at infinity t6.
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Let us now see how,@ stratified using (B.13). First consider the
lowest dimensional strata df2, which correspond to the highest-
dimensional cones. Each of the three two-dimensional cones of
the fan of P? corresponds to a point ofP? that is defined by set-
ting two of the three homogeneous coordinates to zero. For a suf-
= ) { = ficiently generic polynomial R, such points will never lie on Z,

so that these strata do not contribute to Z (indeed they are sup-
posed to be 2-2 —1 = 4-dimensional).For each of the three
one-dimensionalcones in the fan of P2, there is a stratum C*
obtained by setting one of the three homogeneous coordinates
° e to zero while forbidding the remaining two from vanishing. In-
tersecting this with B = 0 we find that Z ;, consists of k points
for every one-dimensionalcone 4i'l. Finally, the complex one-
dimensional stratum Zy, is a Riemann surface of genus g(k) with
3 -k points excised. Below, we will show how to reproduce these
numbers combinatorially by using the Newton polytope of.P

B.2. Toric Varieties and Divisors from Polytopes

In order to describe how to determine the geometry of straja Z
Figure B.1.The fan of P2 contains a zero-dimensionakone, three rays ~ cOMbinatorially, we need to present the situation of interest from
(one-dimensional cones) and three two-dimensional cones. a slightly different perspective. Note first that the data defining
the topology of Z consists of the toric variety V (or, equivalently,
the fanZ) and a line bundle- on V. We can write the divisor class
D of > in terms of the toric divisors D corresponding to rays of
3 as

The fan corresponding tofP? is shown in Figure B.#gain,
(B.1) gives the standard presentation as

pr (20 % 2)—{(0,0,0)
(21 &y B) ~ (424 A2y AZ3)

From the fan, we can directly read off the stratification data (B.7
which becomes

(B.10) D=c1(>):z ab;. (B.15)

i

)The group of holomorphic sections of is then given by a poly-
topeA, known as the Newton polytope, defined by

P2=(Cc*? ¢* pt (B.11)
i=1.3  k=1.3 Po={meM| my > aw} (B.16)

In the bulk of this paper we are not interested in the geome- More explicitly, we may use the monomials
try of toric varieties per se, but rather in the geometry of algebraic
subvarieties. In the simplest setting, such an algebraic subvariepym)= "~ z.™""* (B.17)
Z is given as the vanishing locus of a section of a line bundie i
V. For such an algebraic subvariety Z, one easily obtains a strati-
fication of Z from that of V if all toric strata meet Z transversely. @S @ basis for the group of sections. This provides a convenient

In this case we can define ansad — 1-dimensional stratum way to find the zeroth cohomology group (which is in fact the
only non-vanishing one) of a divisor D (line bundle>), as this
Za=ZnT 4 (B.12)  counts global holomorphic sections of:
for every d-dimensional coné” € = The stratification of the hy- h°(P, [ 4 (D)) = Po NM]. (B.18)
persurface Z is then simply
I 1 Interestingly,A determines both the line bundle> and (a blow-
Z = Z,)M, (B.13) down of ) the toric variety V. To any polytope in the M-lattice,
4 Jcsa) , we can associate its normal faXy,(A), which then gives rise to a

toric varietyPy ) along with a divisor D. This works as follows.
Let us illustrate this in the simple example of hypersurface of To every fac® of the polytopeA, we associate a cone

degree k inP?, i.e. we consider the vanishing locus of a homoge-v o U
neous polynomial R(z,» Z, Z) of degree k in the homogeneous 6:(@") = -(p, —Pgu) (B.19)
coordinates ofP?. Call the resulting curve £ By adjunction one =0

finds that such a hypersurface is a Riemann surface of genus ) ) o W )
where p, is any point lying inside A and p,’ is any point ly-

(k—1)(k—2) ing inside ©M. The dual cones ¢,(0X) (defined as in (B.5))

g(k)= — (B.-14)  form a complete fan that is called the normal fan =,(A) of A.
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Here, k-dimensional face®* of A are associated with & —k-  to determine the topology of the stratg.Zappearing above from

dimensional cones 0,(©%). In particular, the cones of £(A) of  the Newton polytope. '

highest dimension are associated with the verticestof What we have ignored so far, however, is that the normal fan
On the toric varietyPy ), the polytopeA then determines a  5,(A) in most cases (contrary to our simple example) does not

line bundle (Cartier divisor) via a strongly convex support func- give rise to a smooth toric variety. In fact, the fap(A) does not

tion y; . For each cone of maximal dimension af,(A), ¥, can  even need to be simplicidl.We are hence interested in a refine-

be described by using its dual vertex and setting ment X of the fan 2,(A) in order to resolve the hypersurface Z.
Fortunately, this process results in only minor modifications of
Wy a,,(m,)(p) =M P (B.20)  the stratification (B.26) above. In a slight abuse of notation, we

o ) . will use the same letter Z also for the resolved hypersurface. Un-
for each point p ing,(m;). This also determinesl, for all cones  ger 4 refinementz: = = YA), the stratification associated with

of lower dimension. The divisor faces ofA becomes:
z I oo
D, = ab; B21) Z2=2, Z(_)I[,,,ﬂ E@V a XZ@P . (B.27)
1EZn(1) i ks2 |
can then be determined from Here Eyn 4 is the exceptional set of the refinement of the cone in

>(A) associated with the fadg®l" 4,
lPA

an(m,')(V’) = _ai VVE ﬁ(ml) (822) 1

wa = (CY. (B.28)

E
With the numbers awe can recover a basis for the sections of the® iz

line bundle > via (B.17).

The above relations can be used to associate a cone-wise linE@r every I-dimensionalcone in 7 '(s), where o € ¥A) is the
support function W, to any divisor D. If the line bundle associ- cone in the normal fan associated with the fac®"*, there is a
ated to D is ample, Wy, is strongly convex (i.eit is convex and ~ corresponding stratum € *)" in Egy, u.
different for each cone of maximal dimension). A toric variety is

projective iff its fan is the normal fan of a lattice polytop¥.! B.4. Computing Hodge-Deligne Numbers of Strata
Let us come back to the example & and a hypersurface €
determined by R = 0. We may write In order to compute the Hodge numbers of toric hypersurfaces
and, more generally, toric strata in such hypersurfaces, we need
[P] = kD, (B.23) tointroduce a further piece of machinery. The strata appearing

in the stratification (B.27) naturally carry a mixed Hodge struc-
in terms of toric divisors, sothat &, =a, =0and a; =k. As  ture. In very simple terms, this means that the Hodge-Deligne
shown in Figure B.1, the one-dimensional cones Bfare gener- numbers
ated by the vectors ¥ (1, 0),Y, =(0, 1),V; = (-1, -1). The New-

8 k
ton polytopeA corresponding to R = 0 has vertices WYH (x,c)) (B.29)

can be nonzero even when p + g #k, see e.g. [32,33]for a
proper introduction.

and its integral points correspond to all monomials of homogene- These data can be packedllnto the numbers (which we will also
ity degree k by using (B.17). In particular call Hodge-Deligne numbers in the following)

(k. 0), (0, k), (0, 0) (B.24)

x
— Z((k0),(10) £(k0),(0,1) 7(kO)1,-1)+K _ Sk eIx)=" (-1yPYH (x,C)), B.30
p((k, 0))=2, z] z =7 (X) . (=1)PPHHY (X, C)) (B.30)

k k
p((0, k))=2, p((0, 0))= 2. (B-25)  \which are convenient for a number of reasons. First of all, in case
these is a pure Hodge structure, they agree (up to a sign) with the
usual Hodge numbers. Secondly, they behave in the same way as

B.3. Resolution of Singularities the topological Euler characteristic under unions and products of
spaces
As there is a one-to-one correspondence between faces afid
cones ofg,(A), we may write the stratification (B.13) in terms of E9x, u X,) = €9X,) + €9X,) (B.31)
faces ofA instead of cones aE,(A):
I 1 )
Z= Z, B.26) €U xX)= T @i(x,) - €%(x,). (B.32)
i Py +P,=P
k @I[k] q+0,=q

As faces of dimension k correspond to cones of dimension<
P 7 Afan is simplicial if all of its d-dimensional cones are generated by d

M —k, the dimension of the.se Strata. isn - d- 1= k- 1. Note rays. Fans that are not simplicial give rise to toric varieties with singu-
that A counts as a face of itself, which corresponds to the zero-  |arities that are more general than orbifold singularities. In particular,

dimensional cone o&,(A). We will discuss in Appendix B.4 how  not every Weil divisor isQ-Cartier for such varieties.
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Hence knowing the numbers €'4Z) (and of (C*)") is suf-

ficient to compute the Hodge numbers of a toric hypersurface.
This information has been supplied (in the form of an algorithm) (
in the work of [27]. Before reviewing their algorithm, let us first E%Zw) = (_1)“1 e -1,

discuss toric varieties themselves to illustrate the methodWe
have that
()

ey ) = g1, - (8.33)
For a smooth toric variety V, we hence see thdt 2 0 for p> 0.
A direct consequence of this formula combined with the strat-
ification of a toric variety read off from its fan is the standard
formula [31] for the nontrivial Hodge numbers of a smooth n-
dimensional toric variety. Letting| =(/)| denote the number of /-
dimensional cones iz we can write

()
h'J"J(FI’Z)Z2 (=1 “ |2(n = k)| .
=0

k:

b (B.34)

For the smooth hypersurface strata Z, the following rela-

tions, shown in [27], allow to compute the Hodge-Deligne num- | 293 - 4(@13)

bers. First we have that forp 0

EZ ) = (—1) A

el <ekd

(B.35)

www.fp-journal.org

the number of points on the n-skeleton of@. Let us derive the
Hodge-Deligne numbers & of strata Z, for k < 3. First,

) (B.40)

so that @%Zy) = £(0") + 1, i.e. the stratum Z,, consists of
£*(@") + 1 points. Hence

EYZom) = f*(@)[?]) . 8 (B.41)
For Z, we immediately find e *'(Z) = 1. Furthermore,
€9z,,) = —2(0P), and we can write
el
@Y Zom) = } 1 _f ;?9[21) 3 f*z o1 (B.42)
Similarly, we find for Zy that
£+(©1) 0 1

—3+ £(208) —474@B) — 2@+ A@©F) 0

wherez*(@P*'l) counts the number of lattice points in the relativeand for Z,

interior of ®P*" and the sum runs over all face®* ! of dimen-

sion p+ 1 contained in the fac®. Note that this sum only has &9z, .,) =1 - Z(@"“)

one term for p+ 1 = k which corresponds to the fag@/ itself.

The remaining Hodge-Deligne numbers satisfy the ‘sum rule’ €%Zg1a) =

()

T
(1T @9YZ ) = (—1Y + g (O1), (B.36)
q P+ 1
where the functiong,(6) is defined by
¥ Cpn )
2r(@W) = (< n"_} (o). (B.37)

j=1

Here jO© denotes the polytope that is found by scaling the fae
by j.
For a face of dimension & 4 there is the simple formula

( 5 )
€21z = (17 @) - p@© ") . (B39
Ok-1<@k
Finally, for higher Hodge numbers, p 9 > n, one has
()
EUZgm) = 1) (B.39)

p+1

By subsequent application of these formulaene can derive

ACRE 208 — A(e) £*(08)
(B.43)
_37(@[4])_,_ f1(@[4])
EYZga) = 2O + AO) (B.44)
E1Zow) = £(O") — £(01) — gOl)
62'2(29[41) = 4

Let us return to the example of a degree k hypersurfac®
The stratification of P? has already been discussed in §B.4ee
(B.11), and its Newton polytopé  is given in (B.24). The open
dense torus (C*)? in P? gives rise to an open dense subset of
C,, i.e. a Riemann surface with a number of points excised. Its
Hodge-Deligne numbers are given by

, _| —2(Ax) 1
N2 =4 f(Akk) — (M)
(B.45)
| ~k=1)(k—2y 2 1
= 1-3k  —(k—1)k—2)y2

The stratum associated with each of the three 1-face§! of A,
consists of

1+ @) =k (B.46)

combinatorial formulae for the Hodge-Deligne numbers of stratapoints. We hence recover the results derived in §B.1 for this ex-

Z . for arbitrarily high k. It is convenient to usé”(®) to denote
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B.5. Calabi-Yau Hypersurfaces and Reflexive Polytopes simplex contains the origin as a vert&Projectivity of a toric va-

riety is equivalent to its fan being the normal fan of a lattice poly-

Let us now come back to our prime interest, which is in Calabi- tope. While the toric varietyP; ., is projective by construction,
Yau manifolds. We assume that the dimension of the vector spaibés is not necessarily true for a refinemeit » 3,(A). Triangu-
N ® RRcontaining the farx is n, so that we get an n-dimensional lations T for which the associated fa(T) is the normal fan of
toric varietyP; in which we want to embedd a Calabi-Yau hyper-a polytope are called regular (or projectivesoherent) in the lit-
surface of dimension n-1. erature, see [34] for more details. Finally, a fine triangulation is

In order for a hypersurface to be Calabi-Yau, its defining polyin general not sufficient to completely resolv& all singularities
nomial must be a section of the anticanonical bund;, . The  of 5. ) meeting a generic Calabi-Yau hypersurface of dimen-

corresponding divisor is hence given by sion > 4!["7IThe reason for this is that having a fine triangulation
of a 2-face of a reflexive polytope implies that the correspond-

D , =C,(Py) = z D,. (B.47) ing cones do not lead to any singularities. The first dimension in
Les() which singularities can persist even for fine triangulations of a

reflexive polytope is n=5, i.e. Calabi-Yau fourfolds. For Calabi-
Yau threefolds we are considering four-dimensiongbolytopes.

Here, simplices in 3-faces can lead to pointlike singularities of
the ambient toric variety even for fine triangulations, but these

In the notation of (B.2), we hence have a= 1 for all / and we
can identify sections of—KIPz with the set of lattice points on the

polytope do not meet a generic Calabi-Yau hypersurface. In contrast, the
four-dimensional cones associated with three-simplices for five-

A ={meM|m.y) = 4Vve @)} cMo R (B-48)  dimensional polytopes lead to singularities along curves which
may meet a generic Calabi-Yau fourfold hypersurface.

A general section of fKn,z, the zero locus of which defines a For a pair of n-dimensional reflexive polytopes, there is a one-

Calabi-Yau hypersurface, is then given by to-one correspondence between the fad®¥ of A and the faces

s © 11 of A ° defined by
amp(m) = amZ " B.49 ek
m pim meA yes(1) : ( ) W) = 4 (B.51)

Under the resolution induced by the refinemert > 3(A), the
stratum ZE_';] of a Calabi-Yau hypersurfacewhich corresponds
to a (k —1)-dimensional subvariety of Z before resolution, is
changed according to the new simplices introduced in the dual
face © "*11. A simplex of dimension / (a cone of dimension
I+ 1) corresponds to a subvariety of Z of dimension n—/ —2.
Hence a simplex of dimension [ that is contained in the interior
of a face® "1l corresponds to a subvariety of the form

for complex constantsy,.

In general, the vertices of the polytopeare not lattice points
of M and we are not guaranteed that a generic section c#K,,,Z
defines a smooth (or even irreducible) Calabi-Yau hypersurface
If all of the vertices of A are contained in M (in which case we
will call A a lattice polytope), it follows that the verticesare all
sitting on a lattice polytopé °, defined by

(A AY) = 4 (B.50)  Zu x(CH), (B.52)

Note that vertices®!! of A, which are dual to the faces® "I
of maximal dimension, correspond to-1-dimensional varieties,

i.e. they do not contribute in the stratification of Z. This persists
after the resolutionZ - 3,(A). A simple intersection argument

A is called the polar dual of, andA and A ° are called a reflex-
ive pait ' lif they are both lattice polytopes. Any lattice polytope
whose polar dualis also a lattice polytope is called reflexiveA
necessary condition for reflexivity is that the origin is the unique A\ X ¢ )
interior point of the polytope in question. shows that none of the divisors corresponding to points v in-

Repeating the construction of §B.2, Calabi-Yau hypersurfacederior to a face of maximal dimension (and hence none of the
in toric varieties are naturally constructed from reflexive pairs ofOther strata corresponding to simplices interior to a face of maxi-

lattice polytopes\, A °. Starting from a lattice polytopk, we may mal dimension) ?nters.ect a gmooth Calabi-Yau hyper(sur;face. For
construct its normal far,(A). In the case of a reflexive pair, this @1 face of maximal dimension (also called a fac%t)@ 1 we

is equal to the fan over the faces\df Of course, such a fan does ¢@n find a normal vector n (this is the dual vgrteﬁ[ ) such that

not in general define a smooth toric variety.In fact, the cones (n@11) = 4. This means that there is a linear relation of the
need not even be simplicial. However,there is a natural maxi- oM

mal projective crepant partial (MPCP) desingularization that can = D+ 2 aD, =0 (B.53)

be found as follows. Using (B.49), it follows that any refinement o o i e )

of the fan X,(A) that only introduces rays generated by lattice nee 1ee

points von A ° is crepant, i.e. preserves the Calabi-Yau property-
We may hence find a MPCP desingularization by a fan refine- 8 The simplices of the triangulations are hence the cones of the?fmyt
mentS - 3(A) for which all lattice points on A “are employed off at the surface o\ °. Note that one may start from any triangulation

. . Lo . . o - T of A°, restrict it to a triangulation T, - of the faces ofA ° and then
and for whichPy is a projective toric variety. This is equivalent to simply construct the cones over J; -.

finding a fine regular star triangulation T of. Here, fine means 9 of course, we can always find non-crepant resolutions by introducing
that all lattice points of A° are used,and star means that every rays generated by lattice points outside af°.
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for some integers a Let us now assume we have refin@such  a straightforward explanation. In particular, the formula for

that there is a point, interior to the facet® 1"-". The associated h"-21(Z) counts the number of complex structure deformations
divisor D, can only have a nonzero intersection with divisors D by counting the number of monomial deformations appearing in
for which 1 also lies in®@ "1, as all others necessarily lie in dif- the defining equation and subtracting the dimension of the auto-
ferent cones of the fax. This means that the above relation im- morphism group offPy. Finally, the last term in (B.57) corrects for

plies the fact that not all deformations are realized as polynomial de-
3 formations. Similarly, the formula for h'(Z) counts the number
Dp . D; =0, (B.54) of inequivalent divisors oPy that meet Z, with a correction term
11 taking into account that some divisors ofPy become reducible
onZ.
where we sum over all toric divisors coming from points on As is apparent from the above formulae, exchanging the roles

T The Calabi-&au hypersurface is given as the zero locus @f A and A° exchanges h'(Z) < h2'(Z). This is how mirror
a section of Ky, =; D;, where we sum over all toric divisors. symmetry is realized for toric Calabi-Yau hypersurfaces.
We now find

z T . y
D, = D, =D,. D, =0, (B.55) B.6. Topology of Subvatrieties of Calabi-Yau Threefolds

) 1e@In-1 . . . L .
= In this section we describe the topology of subvarieties of Calabi-

by using the same argument againHence D, does not meet a Yau hypersurfaces in toric varieties that are obtained by restrict-
generic Calabi-Yau hypersurface. Correspondingly, a refinemenid toric subvarieties of the ambient space. For ease of notation
of 2 introducing 1, does not have any influence on Z. As the straty® restrict to the case:n.4, I.&. Qa'aP"YaU .threef.olds, but a simi-
corresponding to simplices of dimension= 1 interior to @ 11 lar analysis may be carried out in higher dimensions. As we have

can be thought of as (an open subset of ) intersections of divisofiTeady explained, we only need to consider simplices on the 2-
at least one of which corresponds to an interior point a1 skeleton ofA °, as strata ofPy associated with simplices interior

none of the simplices interior to a face of maximaldimension 0 3-faces ofA “ do not meet a smooth Calabi-Yau hypersurface.
gives rise to any subvariety o, meeting Z. Correspondingly, Each -simplex of a triangulation T o\ * corresponds to a# 1-
such strata do not appear in the stratification of Z. The fact that g'men3|oqa| cone in the _fa” Z and henc_e to an open stratum
simplices contained in faces of maximal dimension &f do not (C*)**Vin P;. Depending on the location of the simplex on

contribute to Calabi-Yau hypersurfaces means that we can ignofe » the defining equation of the Calabi-Yau hypersurface will only
such faces when constructing a triangulation af". constrain some of theC* factors, while others will lie entirely in

Using the methods explained abovepne can derive combi-  the Calabi-Yau hypersurfacdhe reason for this is in the reso-
natorial formulas for the Hodge numbers of toric Calabi-Yau lution processX > %,(A). If we work with the singular varieties
hypersurfacek'” lthat do not depend on the specific triangula- ~ determined by=,(A), every k-dimensional fac® ™ of A~ gives

tion chosen. For a Calabi-Yau hypersurface of dimensionn 1 ris€ 0 @ stratum ...y Og dimension 2-k. This stratum is given
which is embedded in a toric variety of dimension n we have to @S @ hypersurface inG")”". The resolution proces& > %,(A),

consider a pair of reflexive polytopes of dimension n and stratifi-described in Appendix B.3, yields

cation gives
g 5 Zoprn > Lgurn XEguic, (B.59)
1.1 — °y _ *(@ [n—1]
M(2) = 407 = (n+ 1) ’{M]f ©® ) The factor Gu « 1 is determined by the simplices contained in the
5 © relative interior of the fac® 1. Every I-simplex contained in the
+ AR A CD) (B.56) relative interior of a deimen.sionaI fac@ ™ contributes a €)'
(@120l to Egs«1, and hence it contributes a stratum

hn—2,1(z) - dA) _(n+ 1)_ Z f*(@[n—ﬂ) Z@[“H] X(C*)kil (BGO)

or to Z. Note that the factor Z,; « is common to all of the strata

+ z 2@y @1 (B.57) originating from simplices contained in a chosen face. For a
Calabi-Yau threefoldthis correspondence is such that Z, is a

(eIn-2,e11)
s two-dimensional variety for vertices,a curve for strata interior
hm(z) = O @M) for N—2>m 1, zjoirﬁéfs;:iii;nfc;:ecs;olIectlon of points for strata interior to two-
(©1n-m-11,glm) )

The closed subvarieties #;, and hence of Z, associated with
(B.58) a simplex t are found by collecting all lower-dimensionalsim-
plices u attached to t (i.ef = &) and taking the disjoint union
Note that these numbers only make sense for a smooth Calabi-of the associated strata. As the Hodge-Deligne numbers’are
Yau hypersurface, which is only guaranteed without further in- additive, this provides an efficient way to find the Hodge num-
vestigation for Calabi-Yau hypersurfaces of dimensisr3. bers of the associated subvariety. Again, we may neglect all sim-
Although the above formulas for h"(Z) and h"-2'(Z) are plices that are contained in the relative interior of faces of max-
derived using the stratification technique of [27], they have imal dimension (three in this case) as these do not contribute
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any strata to a Calabi-Yau hypersurface. In the following, we wilBumming it all up, the result is

explicitly write down the resulting stratifications of various sub-
varieties and compute their Hodge numbers.
At this point, we will adopt a different notation than in the

rest of this appendix. As in the main text of the paper, we focus
on threefolds, and so only need to distinguish vertices, edges, 2-

faces, and 3-faces (facets)of which we denote by v, eahd c,

h' (D)) = B+ £(2v) -4 () — (V) + (V)
+ 1+ x (£*(F°) + 1)2 1 (B.66)
e fov toy

respectively. These are dual to 3-faces, 2-faces, edges and vertices 6.2, Simplices Interior to 1-Faces of Let us first consider

on the M-lattice polytopeA, which are consequently denoted by
Ve, €, f?and c¢. We hope this does not confuse the reader.
B.6.1. Vertices:Let us consider a divisor Pfor which the as-

sociated lattice point; = v is a vertex. The vertex has a dual face

V° on A that contributes an open two-dimensional stratum £Z.

Furthermore, there will be 1-simplices contained in edges e (duaj

to faces g ending on v contributing £ as well as 1-simplices on
2-faces f(dual to 1-faces f) contributing Z;. X €. Finally there
are 2-simplices on faces fidual to 1-faces f) contributing Z-.
Hence such divisors contain the irreducible hypersurface.zs

an open dense set that is compactified by the other strata. Note(

that Z;. is just a collection o *(f °) + 1 points.

Collecting all of these strata we find the stratification of;®o
be

)

D, =Z, 1g,Ze X(PY 117, Zf X c*u pt, (B.61)

With the stratification (B.61) at hand, we can start computing
the Hodge numbers. For h'%(D;), only the first two strata con-
tribute and we find

h'py) = €Dj)
( )
— _ oz 197,
= S ejve (2e) (B.62)
( s \)
= - T e)-" re) =0

For ?%(D;), only the first stratum in (B.61) contributes and we
find
h>%py) =€%z,) = £(z,). (B.63)

Finally, we can compute'(D;). Here, we find a contribution
from Z,., computed in (B.43), as well as a contribution

€z, = 2 1

eV

(B.64)

eV

from any edge e emanating from the vertex vFurthermore, 1-
simplices interior to any 2-face f (dual to f °) connected to the
vertex v contribute

2 z
€9(Z;.) x

f-e t

b

e1,1(c*)

(B.65)

. z
@ (Fy+1 1

f-e tioy
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divisors originating from points i; interior to edges e ofA * dual

to 2-faces é of A. The 0-simplex corresponding toy; is of the
form Z.. X €, and the two 1-simplices on the edge e containing
correspond to £. One-simplices containing; that are interior
to 2-faces {dual to f°) contributeZ*(f °) + 1 points timesC* and
-simplices contributeZ*(f °) + 1 points.

The open and dense stratum of such divisors (which origi-
nates from the simplex 1) is simply the product of a curve of
genusz*(€°) (with £21(€") points excised) times & *, which gets
compactified by the remaining strata. We may think of these as
the open dense subsets of ) the intersection of;Qvith ‘neigh-
boring’ divisors. The two 1-simplices along the edge e partially
compactify Z. X €to Z.. X B. The remainingC*'s and points
sit over theZ'(e) points excised in the open curve Z We may
hence think of such divisors as follows:they are flat fibrations
of alP! over a curve of genug*(€’). Overz'(€) points, the fiber
P! degenerates into a chain of?'’s, as determined by number
of 1-simplices (and 2-simplices) attacheditdying on neighbor-
ing 2-faces fov. To see the details of how this works first note
that

Vi

>
)+ 1.

foce

£\(€) (B.67)

Over each of the 7*(f °) + 1 points that are excised due to the
face f° c€°, we find the strata corresponding to the one-(and
two-) simplices interior to the dual faceofe. Hence ovef*(f °) +
1 points, where f° f are dual faces,the generic fiber P' of D;
degenerates into a number of IP’s equal to the number of 1-
simplices which are attached toy; and interior to f. A cartoon
of this is shown in Figure B.2.

From this analysis of the fibration structure, we expect that

( )

>
-1+ 1,

toy

h''(D)y =2+ > (f*(f“)+ 1) .

f-e

(B.68)

which will be confirmed by a direct computation using the strat-
ification below.
As explained above, the stratification of B

> )
D, =Z, x(C*+2ptgusoZ;.  C*+  pt. (B.69)

Here, the C* multiplying Z .. is due to v; (k =2, I=1), whereas
the 2 points correspond to the two 1-simplices on e contain-
ing v (k=2,/=2). Each C* multiplying Z . corresponds to
a 1-simplex containing 1 that is interior to the face f and
each pt corresponds to a 2-simplex containing that is interior
tof.

© 2020 Wiley-VCH GmbH
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reducible fibre consisting of ZL‘DW 1 touching Plg

generic P! fibre

L+ 0*(f°) points ¢ @/

genus £*(e°) curve

Figure B.2.The fibration structure of a divisor [bf Z associated with a lattice poing; interior to an edge e of a four-dimensional polytope. The base is
agenus g= 7 (e°) curve and the generic fiber is R. For each neighboring 2-face p e, there are & #*(f °) points over which the fiber degenerates
into as manyP!s as there are 1-simplices bn f that contain y;.

Again, h%%D;) = 1 as D is irreducible. The computation for Similarly, one may analyze curves C that correspond to 1-
h'.% now becomes simplices ¢ interior to a 1-face e. Here, the stratification is
>
hop)) = €9z, -(C*u 2pt9) C=Z,+ Z; X (pt). (B.72)
foce
= #(e) - (€%C*) + 28%pt)) (B.70)

The stratum Z. is a curve of genus'(€’) with a number of points
excised. The second term is due to the unique 2-simplex attached
to t, on every face f o e, which consists of #*(f )+ 1 points for

We have #(D;) = €%D;) = 0 as no stratum contributes. Already each two-dimensionalface containing e.lt supplies the points

for the highest stratum Z., we have to count interior points to 3- that compactify Z to C. It follows immediately that the genus of
dimensional faces of & of which there are none. These Hodge C is

numbers fit with the fibration structure discussed above.

= £(€).

Finally, let us compute h'(D;). Here we need oy = £(€). (B.73)
h(py) = e"'(z,) .(élo(q:*) + 2é10(pt)) + €9z, .e(c) This fits with the fact that the union of all strata corresponding
D D to simplices in the interior of e sits over the curve C, so that two
+ e9z;.) - 1 neighboring divisors D and D intersect in the common base of
foce 4oy both their fibrations.

3 3 B.6.3. Simplices Interior to 2-Facgs; ofAgain, let us first con-
=1-(-1+2)+ (1= 2€) -1+  (1+ () 1 sider 0-simplicesy; interior to a 2-face fof A . The open dense

free bou subset of Doriginating from ; is given by
( )
> z )X
=2- Y1+ (1 £F) - Zi X (C*Y (B.74)
foce foce f1 =
( ) while 1-simplices (2-simplices) containing; compactify O this
—o4 2 1+ £() - 1+ 2 1 (B.71) by contributing Z;. X € and Z. X (pts). All in all, the stratifica-
' ' tion of D; is
foce Loy !
( s s )
as predicted from the analysis of the fibration of D; carried D, =Z,. x (CY2+ €'+  pt. (B.75)
out above. t, oy t,oy
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Figure B.3.0n the left hand side, the neighborhood of a lattice pointinside a 2-face fvith a triangulation. We have colored the simplices containing
v in red. These contribute to the star fan staff shown on the right hand side.

where t and t, are simplices interior to f. As Z is just a collec- The 3-faces oA ° as well as the vertices df° spanning them,
tion of £*(f °) + 1 points, the divisors considered here are, in gentheir numbers of interior points and the dual vertices anare
eral, reducible with each irreducible component being a toric va-

riety H_’Sra,(w) dgtermined by the stratification above. Starting from C=<Vy V% Y > £ q)=0 < C =[0,8-1,-1]
the triangulation of a 2-face, we may construct the star fan w.r.t.
v to find the fan of the toric variet¥y,,,.,, see Figure B.3. C=<Vyp Y}y % Y, > £*c)=0 < ¢ =[0,-1,2-1]
From this, it immediately follows that ,
s C,=<Vp b Y, Y > () =0 < =[27,-1,-1,-1]
1.1 —
P Py)) = 2+ MCWT B.76) ¢ —cv, v, v, v > £9e) =0 ¢ =[-1,-1,2,-1]
o _ G =<Vp V% Y ¥ >  £)=3 < =[-1-1,-11]
The same result is easily recovered from the stratification (B.75):
( | C=<Vy % Y, ¥ > £e)=0 < C =[-1,-1,-1,-1]
B(DY =9z ) x ST Py« > Ei(e) Ga<Vr b % %> Q=0 < G=[-18-1]
t, oy (B.79)
( ) (B.77)
= (f)+ 1) —2+ 2 1 The 3-faces oA dual to the vertices oh “ are
t1cy
Vo o V=<6 GGG £ =1
Similarly, the closed subvariety associated with each 1-simplex i ! o
interior to f is #*(f °) + 1 times alP' and the closed subvariety as- Y1 <> Y =<¢ & ¢ G ¢ > £¥(v) =0
sociated with each 2-simplex consists &f*(f °) + 1 points. This o V' =<C, G CCCC>  £Yv) =54
implies that any two (three) divisors associated with points inte- 2 2TV E 2/~ (B.80)
rior to f with a nonzero intersection will intersect in a collection v, < V§ =<C, G, G, (5 ‘E S f*(vg) =22 '
of £*(f°) + 1 disjoint P*'s (points). °
B.6.4. An Example: Let us consider a (slightly) nontrivial ex- vV, < V, =<C,, ¢, G, G, ¢ > (v, =4
ample to see the above machinery at work. Consider a reflexive i o .
polytopeA ° with vertices Vs = V=<G&G4G> £(v) =1
Vo =[-1,-3,-9,-14] The edges ofs ° and their dual 2-faces on are
v, =[0,-2,-6,-9] G=<Vyp Y > (g)=0 <€ =<C,C. C>,%g) =0
V2 = [Oy Oy Oy ]1 (B78) e1 :<V0y \/2 > f*(el) =0 PN e1c :<C;, C;y %J > f*(e]) =7
3 =1[0,0,1D §=<Vp%> rHe)=1 <€ =<C,¢1,¢>¢%g) =0
v, =00,1,0D & =<V %> /Ye)=0 <& =<C,C.C>/%e) =4
v:=[1,0,0D g=<Vp > ¢(g)=0 <€ =<C, G C>r*g) =0
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g =<V %> (f@)=0 €& =<C.G G C>rYa) =108
&=<%%> £'(g)=0 < § =<G G G>7"e) =1
Go<vil>  rle)=2 € =<Gigq>ce) =0
Ge<hi>  C@=0 g =<GgGgxra) =27
Ge<wl>  @=0 g  =<GGgrrla) =13
Eo=<Vp > (e =0 <« € =<C. G G > 7*ep =1
ey=<Vp %> e)=0 <€, =<Cp G §> 7 en) =0
Ca=<Wr %> er)=0 <& =<Cp & G> ") =7
Gy =<Vy Y5 > '(eg) =0« € =<C G G > (ea) =4
(B.81)

and finally the 2-faces on ° and their dual edges o\ together
with their numbers of interior points are

=<V %>  )=0 <f =<Gg>rih) =2
fl=<Vp ¥ 4>  £f)=0 o f° =<c,e>7¢%f) =0
fo=<Vp > ¢4f)=0 o f =<c.¢>7r%f) =0
fy=<Vy V4 > ¢*(f) =0 > f3"’ =<C G > £*(f) =8
fi=<Vp V%> £(()=0 ol =< Csrif) =0
=<V %> C)=0 o =<C gl =2
=<Vi % %>  £)=1 ol =< C>r) =0
fi=<Vyp %Y > £(F)=0 o f =<Cg>r%f) =1
fo=<Vp V> £(f)=0 < f° =<C¢>r%f) =27
fo=<Vp ¥ >  £f)=0 < f5 =<C.¢>z¢%f) =0
fo=<Vy V%> () =0 ol =<Gg>rif) =2
fu=<Vp %>  4f)=0 o f =<G¢>rrfy) =2
fo=<Va %> ¢4f)=0 < f; =<C. G >7%(f) =1
fla=<Vi % %>  i(f)=0 < f =<C.g>r'fy) =0
fa=<Vp %% > 4f)=0 o f =<G¢>rrf,) =8
(B.82)

The Hodge numbers of the corresponding mirror pair of
Calabi-Yau threefolds Z and can be quickly found with these
numbers by evaluating (B.56) and (B.58)

h'(z) =h*'2) =6
B.83
A2y =h?Y(z) =228 (5.89)

www.fp-journal.org

the divisors O that correspond to the lattice points;, i=1...7
sitting on this face. They are

y =[0,-2,-6,-9] =V,

v, =[0,-2, —4, 6]

v =0, 02, -3]

% =001,00 =V (B.84)
v =[0,-1,-3, —4]

v =[0, 0~1,—1]

% =[0,001 =V

As remarked above, some of the Hodge numbers will depend on
the triangulation. Let us choose the triangulation shown in the
upper left of Figure B.4. The divisors D D, and D, correspond

to vertices, so that we concludéhvanishes for all three and

h29Dy) = £(v}) =0
h2%p,) = £(v;) =4 (B.85)

ho(D,) = ¢£(v;) =54

no matter which triangulation is chosen. Let us now compute
the Hodge numbers A for the triangulation in the upper left of
Figure B.4, for which we have to evaluate

MAD) = B+ £(2v) —42*(v) — A\V)+ £ (V)
+ 1+Z (z,”*(f“)+1)z 1 (B.86)

e fov t oy

Note that there are no other 1-faces excemte g, both of which
are on £, with interior points, and that all faces of * are simpli-
cial. Hence there can be no other 1-simplices except the ones in
fs, shown in Figure B.4, which containy, 1, or 1, and are inte-
rior to a 2-face. Furthermore;*(f;") = 0. The number of edges e
containing each of the three vertices in questions is found from
(B.81).

#eov, =5
#eov, =5 (B.87)
# oV, =5

We finally find that

h'(D;)=1+5+0=6
YD) =77+5+1=83 (B.88)

MY(D,) =398+ 5+ 1 =404

There is a single 2-facgtiiat requires triangulation. This face, Only the last number depends on the triangulation chosen.
with its integral points and its bounding edges, as well as its trian- Let us now investigate the points interior to 1-faces e Here
gulations, is shown in Figure B.4. Let us discuss the topology ##%D;) = 0 for all cases. We start with ywhich is contained in
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V7 V7
Vs Vs
V7 V7
Vg Vg
V7
Vs
V1 V2 V3 V4

Figure B.4.The only nontrivial 2-facg;of A ° along with its five possible triangulations.

€,. We hence learn from (B.81) that%Ds) = 0. For A, we have
to evaluate

2 .
2+ 7 (14 £(F) - (B.89)

foce

In the triangulation we are considering, there are three 1-
simplices contained infwhich each contribute 1 (as*(f °) = 0)
to h"1. For each 2-face apart formyf there can only be a single
1-simplex containingws;, so that we conclude

h'(Dg) = 4. (B.90)

As described in generalabove,this means we should think of
D, as a fibration of aP' over anotherP’ for which the fiber de-
generates into a union of three P's over a single point in the
base.

Fortschr. Phys. 2020, 68, 2000087
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The other two pointsi, and 14 interior to edges are contained
in the same edge,eso that
h'p,) =h'(D,) = ¢(e) =0. (B.91)
For the triangulation choseny, only connects to a single vertex
inside f, whereasi; connects to two, hence
h'(D,) =2 h'(D,) = 3. (B.92)

Finally, there isi;. As it is interior to a 2-face, itisa £ (f;) +
1 =1 copies of a toric variety This toric variety can be directly
read off from the star fan to be the Hirzebruch surfagéefor the
triangulation chosen. Hence
h'%(Dg) = h*%(Dg) =0 h'(Dg) =2. (B.93)

A similar discussion can now easily be made for other
triangulations. We can e.g. consider a flop taking us from the tri-
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angulation on the upper left to the one on the upper right. This
will decrease the h' of D, and D; by one, whereas the'H of D
and D, are increased by one.

B.7. Hodge Number$%of Toric Divisors of Calabi-Yau n-Folds

For Calabi-Yau manifolds of higher dimension than 3, the same ™ ) s 2
technique as used above can be used to find topological data offimensional simplices, which are n —

toric divisors restricted to a Calabi-Yau hypersurfacélVhereas
Hodge numbers such as'A(D;) will depend on the triangulation,
one can derive a remarkably simple formula for the Hodge nu
bers A°. For a smooth Calabi-Yau--fold associated with a pair
of n-dimensional reflexive polytopes’; A and a lattice pointin
the relative interior of a fac® 1" of dimension n—d, the asso-
ciated divisorD is such that
WD) = g4, 27O, (B.94)
where d> 2. Here 0l " js the face ofA dual to the face® -
containing 1p. Furthermore, h°9(D) = 1 holds for d > 2, as all

www.fp-journal.org

o contribute. OnA, this can be expressed by saying that only
faces@'-K of @M contribute. For each such facethe toric
strata €*) in each term originate from various simplices of the
triangulation on the faces© 1K dual to ' that contain
the point 1y. In particular, a €*)"~%** originates from the point
1 itself, a €)% originates from every 1-simplex in the in-
terior of © 1%k containing 15, and so on. Finally, the highest-
d+ k-dimensional, give
rise to points in the above expression.

Our main tool in deriving (B.94) will be (B.35). Only the strata

m-Z e« can potentially contribute tdh as @) =0fori>0.

Hence we will only need to evaluate'€(©~'4) and &° of the
sum over simplices on the right-hand side of (B.96).

The first conclusion that can be drawn directly from (B.35) is
that H°(D) = 0 whenever & d —2. In this case, none of the strata
Z@[,ka, can contribute, as we would need to count points in faces
of dimension i + 1 in the face Zy. 14, but even for k=0, there
are no such faces. The geometric reason for this is that any di-
visor associated with a point, inside a face of dimension n- d
should be thought of as an exceptional divisor originating from

such divisors are connected. Formula (B.94), which we will provthe resolution discussed in §B.3. Correspondingly, each such di-

in the following, is the central result of this section. Note that

visor is a fibration of a toric variety of dimension n—d (which

(B.94) reduces to the corresponding relations derived above fordegenerates over various subloci) over an irreducible manifold

Calabi-Yau threefolds (where & 4). In the threefold case divi-
sors associated with vertices (¢ 4) only have a non-vanishing
h20 and divisors associated with points interior to edges &i3)
only have a non-vanishing'A.

of dimension d—2. Hence the highest possible i for whict%s
nonzero is d— 2, as already established.

Indeed, we do get a nonzero contribution wheneverid — 2.
In this case, only the stratum Z,. (i.e. k= 0) contributes and

Let us assume that we are given a pair of reflexive polytopes we find

A% A and a triangulation giving rise to a smooth projective toric
variety'® Py. Let D be the toric divisor associated with a lattice
point 15 contained in the relative interior of a face® 1"~ of di-

mension n—d. We are interested in the Hodge numbers of a di-

visor D =D nZ. Any toric divisor D is composed of the strata
associated with all cones that contain the ray ougr As before,

€0 = (—1)y27*(@4 M) xé’vo( > (C*)’strata) (B.97)

The sum on the right hand side runs over all of the simplices
on @19 that contain 1p, including 15 itself, and the sign alter-

these descend to a subset of the strata of Z and we can sum thélates according to the dimension of the simplex in question as

Hodge-Deligne numbers & to find the Hodge numbers oD.
We first note that the cases & 1 and d= 2 are trivial. In the

Y€)= (-1Y.
If we neglect 1, the remaining simplices are arranged such

first case, c= 1, D does not give rise to any divisor on Z, while inthat they form an n —d — 1-dimensional polyhedron. It can be

the second case, @ 2, the face® 1" js dual to a face of dimen-
sion n—(n—2)—1 =1, denoted byd!", and it enjoys a stratifi-
cation of the form

]

D=2, x [strata of the form€*Y (B.95)

so that such divisors have % = #(0") + 1 disconnected com-

ponents which are all smooth toric varieties. Hence the only non-

trivial Hodge numbers of such divisors aré’/fD).

We hence assumex 2 in the following. Let us start by writing
down the stratification of an arbitrary divisor of Z descending
from a toric divisor. It is given by

]

)
D= lk@'[n—mk];ngw—k] X [Pt, + e @*)n’d"k, (B.96)

As usual, @19+, @~k are a pair of dual faces. For a divisor

inside a face® 1", only strata on neighboring faces containing

0 More generally,it is enough to for the singularities of Py to miss a
generic Calabi-Yau hypersurface, i.e. the only cone<df lattice vol-
ume > 1 are sitting inside faces of maximal dimension of °.

Fortschr. Phys. 2020, 68, 2000087
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found by intersecting the various simplices with ann —d —1-
sphere or® 1"~ centered atp. Here, 1-simplices in the alternat-
ing sum, which contributeﬂ)”*d*1 above, correspond to vertices
of the polyhedon. As this polyhedron is topologically a sphere we
can write

( )
€90 > (C*)’strata = (_1)”fdf1l(gbdf1)+ (_1)n,d —1

(B.98)

where 1p contributes the second term. A3 is a smooth compact
manifold we can useH(D) = (—1)€°(D), so that we have shown
the case i=d —2 of (B.94).

We now proceed to show thafh= 0 for all 0< i < d —2. De-
pending on i, a number of strata Z g, from (B.96) contribute.
Starting again from (B.96), we can write

%Dy = e'vo(Z (_)[d,w,k])

k@ °In-0+k1 5,

XEOvO(Z [pt + oo ({:*)nfm.k]) . (ng)

© 2020 Wiley-VCH GmbH
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For every term in the above sum over k, we have to find the al- Appendix C: Computation ofdr a Divisor
ternating sum of all of the simplices containing 1» on the face gn a 2-Face

© 1% dual to©"H to evaluate the varioud& For k=0, we
have already found that this sum simply gives 1 by relating it to In this appendix we give an alternative computation 3{/hp) in

the Euler characteristic_ of a sphereFor highgr values of k,V\{e a special case (defined below). We will compée 4) directly in
Cin esstﬁntlalg usea sm;(ﬂsr argulment.gntﬂﬁ ga?e, t:i pmﬂt terms of a counting of lattice points ia, arriving at a result that
sits on the codimension-k hyperplane o elined by €+ 5incides with Theorem 3 in this subcase. This computation pro-

4n-d] An-0+K] i
face ®, Furthermor.e,the.face(a ! will be bounded by vides an alternative perspective to that of the spectral sequence in
other hyperplanes of dimension greater than or equal to #-d, §3.1

so that the set of all simplices or® "%k connecting to 1y will
correspond to a triangulation of an open subset of a sphere of
dimension n—d+ K —1. This has Euler characteristic 1 in even
and —1 in odd dimensions. To fix the sign, note that points on
this sphere correspond again to 1-simplices, which in turn have ) . .
a factor of (-1)""**~"in the sum. As such points contribute 1 in We begin by as'sembllng some elementary resg|t§ aboutdivi-
the computation of the Euler characteristic, the contribution of sors anq Calapl-Yau_ hyp.ell'surfalces ”? torlc_varletlesLet V be
the sum over simplices to% is always equal to 1. a four-dimensional simplicial toric variety,with X a Calabi-Yau

C.1. Preliminaries

Using (B.35), we are hence led to hypersurface in V, and let D denote a divisor in V. We write
D = D N X .
e%(p) = z éro(Z(_)[d,1,k]) Proposition CSE/7e duality gives
k@ n-d+k 5, _ _
)y FOIPEED) . W v(=D) =" (D -X)) (C.1)
= (1) ey, (B.100)
k@In-0K o, Qli+1] cEld-1-K on V, and
Note that each face containingsp appears multiple times and H([ x(-D)) =h*( x(D)) (C.2)

with alternating signs in the above expressionln particular, a
single faced!* I can appear multiple times in a single term in the 07 X-

: . " )
sum over k. Let us cons_lder a smglt_e such fa¢e and find how Let us now assum® is effective. We then havg(i[l v(-D)) =0,
often it appears with which signs. First, note that we may equally p D_ _ , _2p
well phrase the problem in terms of faces of °. Given the face and so H( V_( X))=0. Using also that X= " wher? the
© 1 containing 1, and the fac® "2 dual to@l* 1], the factor i are effective, we haVé(_hV(D —X))=0, and so H v(-D)) =
multiplying #*(@t*") for a fixed face of dimension [~ 1] in the 0. In addition because D is effective we halg (—D)) =0 and

above sum is then simply so ([ x(D)) =0.
Because V is a toric fourfold, we have the relation

) d—1—k
(1) . (B.101)  h(v,[ v)=(1,0,0,0,0) (C.3)

k,@ In-dl c@In-9+K c@In--2]
Using Serre duality (as in [28]) in the long exact sequence in co-

The contribution proportional te*(©[*"), the dual face of which homology induced by the Koszul sequence

is -2 is hence given by counting all & d + k-dimensional

faces containing®¥"- and contained in © -2, To compute 02 [v(=X)2> [v > [ x>0, (C4)
this quantity, we again interpret this as an Euler characteristic of

a topological space as followsConsider a sphere of dimension ©one immediately finds that the Hodge numbers(X, [ x) obey
n—i—-2—(n-—d)—1=d-i -3 centered atp and orthogonal

to the face® -9 All the faces contributing to the sum above, ex{?(X,[ x) =(1, 0, 0, 1) (C.5)
cept® 1"~ jtself, will give rise to a decomposition of one closed

half of this sphere, which has Euler characteristie1 in any di-  Similarly, we can establish:

mension. The contribution of the highest-dimensional stratum Proposition G2/ a space S, defifigs) = H(S) for i> 0, and

on this half-sphere has & @ —i —2, so that it contributes{1) >~ -YOPOSI% ) ) s
to the alternating sum in (B.101). As its dimension is-d — 3, it f(S) =1"(S)~1. Then the following relations hold, fox0 < 3

contributes (—1)"~2 to the Euler characteristic, so that the sum

in (B.101), still neglecting the fa@s!", is (-1)". The fac® " . » . i
contributes (1), so that these two terms always cancel and th’é(D’[ o) =M ([ v(=D) =P ([ v(P - X)) (C.6)
sum (B.101) vanishes for any pair of face® 1"~ and @ "' 21,

Hence the sum (B.100) vanishes excepivhen d =i -2, when We consider the Koszul sequence 8r = v, which reads
only one term in (B.101) contributes. This completes the proof A
of (B.94). 0> [v(-D)=»[v=>[p~0. (C.7)
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This induces the long exact sequence in cohomology This follows from the spectral sequence associated to the gen-
eralized Mayer-Vietoris sequence on V given in Proposition A5

0 —— H°(Oy(-D)) —— H°(Oy) — H°(Op) of Appendix A.

! D D be a face-limited divisor in V , ancHéd X
HY(Oy(~D)) —— H'(Oy) —— HY(05) Corollary Cl8! P

(//D be the corresponding face-limited divisor in X . Then

IO PO MO o -0
H*(Oy(=D)) —— H*(Oy) —— H*(Op) This follows from (C.13), becausé(h ) = 0 for a divisor on a
// single 2-face.

H4(OV(—D)) - H4(OV) 0 We can now relate sections on X to sections on V:

(C.14)

Lemma C.9¢tD be a face-limited divisor in V , and lelbn X
be the corresponding face-limited divisor in X . Pipen k(D)) =

MWL v(D)).

Applying (C.3) leads to the first equality in (C.6). The second
equality then follows from (C.1).

Corollary C/8D = X we have )
We tensor the Koszul sequence from V to X witiD), which

WD, [ p) =h( v(D -Xx))=0, (C.8) reads
while ifD = X we have 02 [v(D-X)> [v(D)= [x(D)~ 0.
mO,[ p) =h( (O —Xx))=1. (C.9) A general square-free divisd@ on V is written asD = > ab,,

here theD; are the toric divisors and ac {0, 1}. Because X=
In close parallel to Proposition C2, we can show the following: D; and the D; are effective,we have that B( V(D -X))=0.

Proposition Cle following relations hold, for < 2: Therefore, to show that A(X,[ x(D)) =h°(V,[ (D)), we need to
_ show that A([ (D — X ))=0. By Serre duality, equation (C.1), we
N(D,[ p) =h*(X,[ x(D)). (C.10) can equivalently show that}{ ,(—D)) = 0. Consider the Koszul

sequence from V tcD,
We consider the Koszul sequence for ©X, which reads

0 [x(-D)> [x> [5 0. cany 02 LD Ly lo0. (C.19)

Applying (C.5) and (C.2) to the long exact sequence in cohomoIfL:ztng (C.3)in the long exact sequence induced by (C.15), we find
ogy induced by (C.11) yields (C.10).
In particular, we have h2(D,[ ) =0= h3( ,(-D)) =0. (C.16)
Corollary C.5.
The lemma follows upon using (C.14).
h2(D,[ p) =h°(X,[ x(D))—1. (C.12) We have thus proved:

Corollary C.10¢tD be a face-limited divisor in Vand let D =

D n X be the corresponding face-limited divisor in X . Then
C.2. Relating*to Toric Data n P g

2 — ho A
We now state the condition that defines the special case treatecf7 (D.[ o) =M(V.[ v(D) —1. (CA7)
in this appendix.

Definition C.6¢tD be a square-free divisor in V correspondingd0s computation oftior a Face-Limited Divisor
a collection of lattice points{u= A We calp face-limited if the
u, are all contained in a single 2-facd £ °. We call a divisor D in \\e are now equippgd to calculat&(B, [ p) for an arbitrary face-

X face-limited if D= D n X with D face-limited. limited divisor D =~ &D;. We first establish how to compute
i

Notice that%p, contains all the layers of the ravioli complex  h°(V,[ (D)).
over f.Thus, D corresponds not just to%p ¢ &% but also to a . . .
subcomplexi p < !. Proposition CH€1.V be a toric variety corresponding tg,ddan

We now examine the simplicial comple, associated to D.  D; be the toric divisors on V', and terz defing := =, a,D;. De-
fine the polyhedra P={m e M|R|<m, Uy > aforally e 1)

Lemma C.7etD be a face-limited divisor in V , lettbn X, and Then B(v,[ (D)) = P, NM|.

let) , be the associated simplicial complex. Then

; ] The proof is given in Proposition 4.3.2 of [28].
WO, [ p)=h(0). (C.13)
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Lemma C.12etD be a face-limited divisor in V , let D X be

www.fp-journal.org

consider the case where |, is a vertex of f. Then we need to

the corresponding face-limited divisor in X , and let v be the verticdege

the complete edges, atftbfcomplete faces includeg,ift Then

o s s s
PV vD) =1+ gv)+  gler  g(f)

v e f

(C.18)

<m' Lf+1> =4
(m, &) >0.

(C.27)
(C.28)

Equation (C.25) defines the facet pe A(3). However, any point

Proof. Sections of /(D) are coimted by lattice points m such op, the boundary of i, has a dual inA *, defined by(m, ) =
that(M. 4) > &, and soHV,[ v(D)) can be computed by count- that violates (C.28). The only points that do not violate (C.28) are

ing suitable lattice points. We consider a dividdr= _ D, speci-

1
fied by a set of pointsiue f, i € 1,..., N, where fis a 2-face. We
label the points not in the set {y} as u.. First, note that for any

those in the interior of {1, as they are dual only tq (itself, and

therefore B(V,[ v(Dy)) = 1+ g(Y.+)-
Next let ¢ , correspond to a point internal to an edge &”(1).

effective divisor the origin m= 0 corresponds to a global section. The condition (C.28) is violated unless the entire edge, including
AsD is by assumption also square-free, the additional sections §f€ vertices bounding it, is included, sin@®, Y, ;) = +implies

[ v(D) are counted by lattice points m such ttt 4) > 4, and
(M, ) >0. We will count these sections by including points in

the set {4} one by one, and checking how the number of sectionﬁo(v[

changes. In other words, leP = z D;, where j<N —1, and let
i=t

b =Lp=D4D,,
i=1
The divisor D;,, corresponds to a lattice point U;,,. Then
ho(v[ (D)) equals the number of lattice points m such that

(m oy > 4, (C.19)
(my.) = 4, (C.20)
(m, 4) >0. (C.21)

On the other hand, h°(V,[ (D)) equals the number of lattice
points m such that
myy > 4, (C.22)

(m, u) >0. (C.23)

Thus, B(V,[ v(D)) —ho(V,[ (D)) is the number of lattice points
m such that

(m uy > 4, (C.24)
my.) =4 (C.25)
(m, u) >0. (C.26)

The points m obeying (C.25) are by definition the lattice points i

the face W, of A, dual to the point ¢ ;. We need to count points

in uj, , that also satisfy (C.24) and (C.26). There are three types

of u;: vertices, points interior to edges, and points interior to f .
We will include them in the set {§ in that particular order. First

11 Because! p is by assumption contained in a single 2-face f, the last
sum in (C.18) will only have one term, but we find it useful to write
(C.18) in a form that anticipates our result for a completely general
square-free divisor.

Fortschr. Phys. 2020, 68, 2000087

that (M, U) = 4 for any u, ce. Therefore,a divisor D corre-
sponding to a complete edge e with verticesand y, has

V(D)) =1+ g() + g(w) + g(e) (C.29)

In a similar manner we find that including points y, internal to
f in the set {17} can only contribute to %if every point in the face
fis included in {u}. m|

From Corollary C10 and Lemma C12 we deduce:
Corollary C.148( D be a face-limited square-free divisor in X . Then

2 DN D Y
D, [0)=" gV)+  g(e)+ , a(f?). (C.30)
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