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The Hodge Numbers of Divisors of Calabi-Yau Threefold
Hypersurfaces

Andreas P. Braun, Cody Long, Liam McAllister,* Michael Stillman, and Benjamin Sung

We prove a formula for the Hodge numbers of square-free divisors of
Calabi-Yau threefold hypersurfaces in toric varieties. Euclidean branes
wrapping divisors a ect the vacuum structure of Calabi-Yau compactificationsff
of type IIB string theory, M-theory, and F-theory. Determining the
nonperturbative couplings due to Euclidean branes on a divisor D requires
counting fermion zero modes, which depend on the Hodge numbers hi( D).
Suppose that X is a smooth Calabi-Yau threefold hypersurface in a toric variety
V, and let D be the restriction to X of a square-free divisor of V. We give a
formula for hi( D) in terms of combinatorial data. Moreover, we construct a
CW complex𝒫D such that hi( D) = hi(𝒫D). We describe an e cient algorithmffi
that makes possible for the first time the computation of sheaf cohomology
for such divisors at large h1,1. As an illustration we compute the Hodge
numbers of a class of divisors in a threefold with h1,1 = 491. Our results are a
step toward a systematic computation of Euclidean brane superpotentials in
Calabi-Yau hypersurfaces.

1. Introduction

Compactifications of type IIB string theory on orientifolds of
Calabi-Yau threefolds,and of F-theory on Calabi-Yau fourfolds,
provide important classes of four-dimensional effective theories
with  = 1 supersymmetry. The vacuum structure of these the-
ories depends on the potential for the Kähler moduli, which
parameterize the sizes of holomorphic submanifolds in the
Calabi-Yau manifold. In particular, in lieu of a potential for
the Kähler moduli, positive vacuum energy in four dimensions
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induces an instability of the overall vol-
ume of the compactification,and there-
fore realistic particle physics and cosmol-
ogy require a computation of the Kähler
moduli potential.

In principle a minimum of the Kähler
moduli potential could be created by
competition among purely perturbative
corrections to the leading-order Kähler
potential. However,at present the best-
understood constructions of metastable
vacua require contributions to the su-
perpotential for the Kähler moduli. [ 1–3 ]

Because of the non-renormalization
theorem, such terms are necessarily
nonperturbative, resulting from Eu-
clidean branes wrapping cycles — in
fact, divisors — in the compact space.1

An important goal is to determine
which divisors in a Calabi-Yau three-
fold or fourfold support nonperturba-
tive superpotential terms from Euclidean

branes. Witten has shown [ 4 ] that Euclidean M5-branes on a
smooth effective vertical divisor D of a smooth Calabi-Yau four-
fold Y give a nonvanishing contribution to the superpotential
whenever D is rigid, meaning that the Hodge numbers h0,i(D) =
hi(D,  D) = hi( D) obey

h0,0(D) =1, h0,1(D) = 0, h0,2(D) =0, h0,3(D) =0, (1.1)

which we abbreviate as h∙( D) = (1, 0, 0, 0). Rigidity corresponds
to the absence of massless bosonic deformations,and implies
that the only zero modes of the Dirac operator on the M5-brane
are the two universal Goldstino modes that result from the super-
symmetries broken by the M5-brane.In more general circum-
stances — when either D or Y is singular,when fluxes are in-
cluded on D or in Y, or when D is a divisor of a Calabi-Yau three-
fold — the conditions for a nonperturbative superpotential are
more subtle, but the Hodge numbers are still essential data.

For this reason, a long-term aim is to compute the Hodge
numbers of effective divisors D of Calabi-Yau manifolds X . This
is most manageable in the case of smooth Calabi-Yau hypersur-
faces in toric varieties: for many years there have been computa-
tional algorithms and implementations for computing sheaf co-
homology of coherent sheaves on toric varieties,[ 5–7 ]and there are

1 Strong gauge dynamics in four dimensions, arising on seven-branes
wrapping four-cycles in the compact space, is an alternative. The ge-
ometric requirements on such cycles closely parallel those in the Eu-
clidean brane case, and we will refer only to the latter in this work.
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faster implementations for computing sheaf cohomology of line
bundles on toric varieties.[ 8,9 ]Unfortunately, all of these imple-
mentations fail to finish for even very modest sizes of h1,1(X ),
say for h1,1(X )≳ 10−20. A key open problem in computational
algebraic geometry is to find algorithms that work for effective
divisors or coherent sheaves on allCalabi-Yau threefold hyper-
surfaces arising from the Kreuzer-Skarke database[ 10 ]of four-
dimensional reflexive polytopes, as well as for Calabi-Yau fourfold
hypersurfaces in toric varieties.

We will not arrive at a fully general answer. However, in the im-
portant special case in which X is a smooth Calabi-Yau threefold
hypersurface in a toric variety V, and D is the restriction to X of a
square-free effective divisor̂D on V, we will establish a formula
for hi( D) in terms of the combinatorial data of V. This formula,
given in Theorem 3, is our main result. As we will see,Theo-
rem 3 allows one to read off the Hodge numbers of many divi-
sors by inspection, and moreover it is straightforward to turn this
formula into an algorithm that computes the Hodge numbers of
any square-free divisor of any X arising from the Kreuzer-Skarke
database.[ 11 ]

The principal tools in our proof are stratification; the hyperco-
homology spectral sequence of the Mayor-Vietoris complex (3.2);
and a correspondence that we establish between square-free divi-
sors of a Calabi-Yau hypersurface and CW complexes constructed
on a triangulation of the associated reflexive polytopeΔ◦. Let us
briefly summarize these results.Stratification is the decompo-
sition of an n-dimensional toric variety V into tori, and leads
to the extremely simple expressions (2.9) for the Hodge num-
bers h0,i of particular subvarieties of a Calabi-Yau hypersurface
X ⊂V. Among these subvarieties are prime toric divisors Di ,
i =1,… h1,1(X )+ 4, each of which corresponds to a lattice point
of a reflexive polytopeΔ◦, as we review in §2. The Hodge num-
bers h∙( Di

) and the intersections of the prime toric divisors Di
are fully specified by elementary combinatorial data: namely, by
the simplicial complex corresponding to a triangulation ofΔ◦,
together with the number of lattice points interior to each face
of Δ .

A square-free divisorD is the union of a collection of dis-
tinct prime toric divisors, D=

∑ Di . In order to compute hi( D),
one can appropriately combine the data characterizing the con-
stituent prime toric divisors Di ⊂D. To achieve this, we establish
(in Appendix A) that the Mayer-Vietoris sheaf sequence associ-
ated to D is exact,and we then examine the corresponding hy-
percohomology spectral sequence. Formally, these methods are
already sufficient to derive an expression for hi( D), but we find
it valuable to carry out the computation, and to express the result,
in terms of a particular CW complex𝒫 that encodes the data of

andΔ . The construction of𝒫 amounts to attaching cells to each
j-faceΘ◦of Δ◦, in a manner determined by the number of lattice
points in the relative interior of the dual faceΘ ⊂ Δ. A square-
free divisor D naturally determines a subcomplex𝒫D ⊂ 𝒫, and
via the hypercohomology spectral sequence we are able to relate
the sheaf cohomology of D to the cellular homology of the CW
complex𝒫D. In particular, we show that hi( D) =hi(𝒫D), proving
the theorem.

A subtlety in applying our results to compute Euclidean brane
superpotentials is that any nontrivial sum D =

∑ Di of prime
toric divisors D i that is rigid is necessarily reducible, and in-
volves normal crossing singularities where the Di intersect. Nor-

mal crossing singularities present no obstacle to defining and
computing hi( D), but they do complicate the connection be-
tween hi( D) and the number of fermion zero modes: new zero
modes can appear at the intersection loci. Thus, the Hodge num-
bers hi( D) that we compute here mark a significant step toward
computing the superpotential, but do not provide a final answer.
Systematically counting the fermion zero modes associated to
normal crossing singularities,along the lines of [12–14],is an
important problem for the future.[ 15 ]

The organization of this paper is as follows. In §2 we set no-
tation and recall elementary properties of Calabi-Yau hypersur-
faces in toric varieties. Then, given any square-free divisor D in
a Calabi-Yau threefold hypersurface, we define a corresponding
Δ -complexℛD and a CW complex 𝒫D, which are constructed
so that their homology encodes the sheaf cohomology of D.
In §3 we prove our main result,Theorem 3,which asserts that
hi( D) = hi(𝒫D). In §4 we illustrate our findings in the example
of a Calabi-Yau threefold with h1,1 = 491. We conclude in §5. Ap-
pendix A defines Mayer-Vietoris complexes and proves some rel-
evant properties. In Appendix B we review key results from strat-
ification. In Appendix C we directly compute h2( D) by counting
lattice points in dual faces,for the special case where D is re-
stricted to a single 2-face ofΔ◦.

Note added:after this work was completed and posted as a
preprint, we became aware of [16], which arrives at results that
have some overlap with ours, in the special case that the CW com-
plex𝒫 is in fact a simplicial complex.

2. Notation and Preliminaries

2.1. Polytopes and Toric Varieties

In this paper we consider Calabi-Yau threefold hypersurfaces X
in simplicial toric varieties V , as studied by Batyrev in [17] (see
also Appendix B for a review). Such Calabi-Yau threefolds are con-
structed from pairs (Δ ,Δ◦) of four-dimensional polytopes with
vertices inℤ4, obeying

⟨Δ ,Δ◦⟩ ≥ −1. (2.1)

A pair of d-dimensional lattice polytopes obeying (2.1) is called a
reflexive pair. In each dimension, there are only a finite number
of reflexive pairs, up to equivalence, and those in dimension d≤4
have all been enumerated.[10,18–20]

Given a four-dimensional reflexive polytopeΔ◦, we choose a
fine star regular2 triangulation ̂ of Δ◦. Since each simplex in̂
contains the origin, this triangulation determines a fanΣ, and
V := ℙΣ is the corresponding simplicial toric variety. If F is a
generic linear combination of the monomials in the Cox ring of
V that correspond to the lattice points of the polytopeΔ , then
X := {F =0} ⊂V is a smooth Calabi-Yau threefold hypersurface

2 Fine means that the triangulation uses all the lattice points ofΔ◦. A
triangulation is star if the origin, which is the unique interior point
of a reflexive polytopeΔ◦, is contained in every four-dimensional sim-
plex of ̂ . Regularity is a condition that ensures that V, and hence X ,
is projective.

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (2 of 30)



www.advancedsciencenews.com www.fp-journal.org

in V. [ 17 ]The toric variety V in general has pointlike orbifold sin-
gularities, but for generic F, X does not intersect these points,
and is smooth.

We denote the set of faces ofΔ◦ by  , the set of faces of di-
mension at most j by (≤ j), and the sets of vertices, edges, and
2-faces by (0),  (1), and (2), respectively. For each faceΘ◦ in
 , there is a unique faceΘ of Δ defined by

⟨Θ◦,Θ⟩ = −1. (2.2)

Given any faceΘ ⊂ Δ, we denote by𝓁∗(Θ) the number of lattice
points in the relative interior ofΘ. Given a faceΘ◦of Δ◦, we de-
fine its genus g(Θ◦) by

g(Θ◦) := 𝓁∗(Θ), (2.3)

i.e. we define the genus ofΘ◦ to be the number of interior lattice
points of its dual face.

If 𝜎 ∈̂ is a simplex,we define the corresponding minimal
face,minface(𝜎), to be the lowest-dimensionalface of Δ◦ con-
taining all of the lattice points {pI ∣ I ∈ 𝜎}. We define

𝜇(𝜎) :=dim minface(𝜎) (2.4)

and

g(𝜎) := g(minface(𝜎)). (2.5)

2.2. The Picard Group of X

For each nonzero lattice point pI on Δ◦ there is an associated ray
of the fanΣ and a corresponding homogeneous coordinate zI of
the toric variety V. We may hence associate the toric divisorD̂I

given by {zI =0} with the point pI . This notion can be extended
to each d-simplex𝜎 of the triangulation ̂ by associating𝜎 with
the subvariety V𝜎 := {z I = 0∀pI ∈ 𝜎}. Let X𝜎 :=V𝜎 ∩X be the in-
tersection of V𝜎 with the Calabi-Yau hypersurface X . This inter-
section is nonzero if and only if the simplex𝜎 is contained in a
2-face ofΔ◦. It is therefore useful to define

 := {𝜎 ∈̂ ∣ 𝜇(𝜎) ≤ 2}, (2.6)

which omits simplices of̂ that pass through facets (3-faces) of
Δ◦, and so correspond to varieties that do not intersect a generic
Calabi-Yau hypersurface X . In a slight abuse of language, we refer
to  as a triangulation.

The Hodge numbers of subvarieties X𝜎 ⊂X are given by rather
simple formulae.[21–23] For the divisor DI of X associated with a
lattice point𝜎 =pI ∈  we find (see Appendix B)

h∙( DI
) =
⎧
⎪
⎨
⎪⎩

1, 0, g(𝜎)
1, g(𝜎), 0

1+ g(𝜎), 0, 0

⎫
⎪
⎬
⎪⎭

for 𝜇(𝜎) =
⎧
⎪
⎨
⎪⎩

0
1
2
. (2.7)

In particular, divisors associated with points interior to 2-faces
Θ◦with g(Θ◦) > 0 are reducible. A 1-simplex𝜎 of  connecting a

pair of lattice points pI and pJ in  corresponds to the intersection
CIJ :=DI ∩DJ, with Hodge numbers

h∙( C) =
{

1, g(𝜎)
1+ g(𝜎), 0

}

for 𝜇(𝜎) =
{

1
2 . (2.8)

That is, a curve C associated with a 1-simplex𝜎 interior to a 1-face
Θ◦ is irreducible, of genus g(Θ◦). A curve C associated with a 1-
simplex 𝜎 interior to a 2-faceΘ◦ is a union of g(Θ◦) + 1 disjoint
ℙ1s. A 2-simplex𝜎 of  containing three lattice points pI , pJ, pK

corresponds to the intersection of three divisors, and the corre-
sponding X𝜎 consists of 1+ g(𝜎) points.

The above results can be summarized as

h0,i(X𝜎) = 𝛿i,0 + 𝛿i,2−𝜇(𝜎)g(𝜎). (2.9)

This result easily generalizes to arbitrary dimension: see
Appendix B.7. Moreover, in Appendix B.6 we give similar, albeit
slightly more complicated and triangulation-dependent, formu-
lae for the Hodge numbers h1,1(X𝜎).

As shown in [17], the Hodge numbers of a Calabi-Yau hyper-
surface X obey simple combinatorial relations as well. In partic-
ular, the rank of the Picard group of X satisfies

h1,1(X )=
∑

Θ◦∈ (≤2)
𝓁∗(Θ◦) −4+

∑

Θ◦∈ (2)
𝓁∗(Θ◦)𝓁∗(Θ) (2.10)

We can identify N :=h1,1(X )+ 4 divisors that obey four linear re-
lations, and that generate the Picard group of X . First of all, the
K ≤N divisors of X associated with lattice points in (≤1) are
irreducible. However,the divisor associated with a lattice point
pr interior to a 2-face Θ◦ has 1+ g(Θ◦) irreducible, connected
components, which we denote D𝛼r , 𝛼 ∈{0,… , g(Θ◦)}. The N ir-
reducible divisors

{D1,… DK , D0
K+1

,… , Dg(pK+1)
K+1

, D0
K+2

,…} (2.11)

then generate the Picard group of X .These can be written col-
lectively as {D𝛼I } with 𝛼 ∈{0,… , 𝛿𝜇(pI ),2 g(pI )}, but we will reindex
them as as

Di ∈ {D1,… , DN} .

We refer to the Di as prime toric divisors, even though the D𝛼
r

do not all descend from prime toric divisors on V unless X is
favorable, i.e. unless g(Θ)g(Θ◦) =0∀ Θ◦∈  (2). By (2.7), a prime
toric divisor Di associated with a lattice point𝜎 has

h∙( Di
) =
⎧
⎪
⎨
⎪⎩

1, 0, g(𝜎)
1, g(𝜎), 0
1, 0, 0

⎫
⎪
⎬
⎪⎭

for 𝜇(𝜎) =
⎧
⎪
⎨
⎪⎩

0
1
2
. (2.12)

For any subset G⊆ {1,… , N}, there is an associated divisor D
(possibly reducible) defined by

D =
∑

i∈G

Di . (2.13)

We call such a D a square-free divisor. The main purpose of this
work is to analyze square-free divisors.

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (3 of 30)



www.advancedsciencenews.com www.fp-journal.org

2.3. The Ravioli Complexℛ

Every d-simplex of contained in the relative interior of a face
Θ◦∈  (j) for j ≤2 gives rise to a closed subvariety X𝜎 ⊂X ,of
complex dimension 2−d. When j ≤1, the simplices in  cor-
respond to irreducible subvarieties of X . However, for j =2,
i.e. when 𝜎 ∈  is in the interior of a 2-faceΘ◦ of Δ◦, the sim-
plex 𝜎 corresponds to a subvariety of X that has 1+ g(Θ◦) con-
nected (and irreducible) components,which we denote by X𝛼

𝜎 ,
for 𝛼 =0,… , g(𝜎).

The intersection structure of the X𝜎 is determined byΔ and
by the triangulation  of Δ◦. For each 2-faceΘ◦ of Δ◦, we can
choose an ordering of𝛼 =0,… , g(𝜎) such that for any𝜎, 𝜆 ∈ 
with minface(𝜎) =minface(𝜆) = Θ◦, we have

X𝛼
𝜎 ∩X𝛽

𝜆 =

{
𝛿𝛼𝛽 X𝛼

𝜎∪𝜆 if 𝜎 ∪ 𝜆 ∈ ,
∅ if 𝜎 ∪ 𝜆 ∉  .

(2.14)

Next, for each𝜏 ∈  with 𝜇(𝜏) ≤ 1, the intersection structure
with the X𝛼

𝜎 can be written as

X𝜏 ∩X𝛼
𝜎 =

{
X𝛼

𝜏∪𝜎 if 𝜏 ∪ 𝜎 ∈ ,
∅ if 𝜏 ∪ 𝜎 ∉  .

(2.15)

Finally, for𝜏, 𝜔 ∈ , with 𝜇(𝜏) ≤1 and𝜇(𝜔) ≤1, we have:

X𝜏 ∩X𝜔 =

{
X𝜏∪𝜔 if 𝜏 ∪ 𝜔 ∈ ,

∅ if 𝜏 ∪ 𝜔 ∉  .
(2.16)

In the special case of (2.16) in which𝜏 ∪ 𝜔 ∈ with minface(𝜏 ∪
𝜔) = Θ◦∈  (2), we can write (2.16) as

X𝜏 ∩X𝜔 =

g(Θ◦)⋃

𝛼=0

X𝛼
𝜏∪𝜔 . (2.17)

We will now define a complex, called the ravioli complexℛ,
that accounts for the intersection structure (2.14)-(2.17).Recall
that the simplices in  correspond to subvarieties in X ,which
are possibly disconnected and reducible. The cells inℛ will cor-
respond to the connected, irreducible components of the subva-
rieties in X encoded by . The ravioli complex is defined by

ℛ =
{

X𝛼
𝜎
|
|
|
𝜎 ∈ , 𝜇(𝜎) =2, 0≤ 𝛼 ≤g(𝜎)

}

∪
{

X𝜏
|
|
|
𝜏 ∈ , 𝜇(𝜏) ≤1

}
, (2.18)

which as a set consists of the irreducible connected components
of intersections of the Di . The elements ofℛ that have dimen-
sion 2− i in X are called i-cells. For those X such that3 g(Θ◦) =
0 ∀ Θ◦∈  (2), ℛ is the simplicial complex  . In the general
case,the i-cells of ℛ are the same as the i-simplices of , ex-
cept that each simplex𝜎 in the interior of any two-dimensional
faceΘ◦∈  (2) of Δ◦ is replaced by 1+ g(Θ◦) disjoint copies of

3 Notice that even in the case where X is favorable, i.e. obeying
g(Θ)g(Θ◦) = 0∀ Θ◦∈  (2),ℛ is not necessarily equal to .

Figure 1.The simplicial complex defined by a triangulation, the corre-
sponding ravioli complexℛ, and the subcomplexℛD ⊂ ℛassociated to
a divisor D. The upper figure shows two adjacent two-dimensional faces,
separated by a thick line, and a triangulation. The middle figure shows the
associated ravioli complex in case the genus of the face on the left is zero
and the genus of the face on the right is one, so thatℛ has two sheets
over the right face. The lower figure showsℛD for D the union of the four
irreducible divisors Di associated with the points pi colored in red.

Figure 2.The ravioli complex over a 2-face.

itself, after which the (1-cell) boundaries of the 1+ g(Θ◦) disjoint
copies ∣Θ◦ of are identified with each other.

In general ℛ is not a simplicial complex,but instead a Δ -
complex:4 the 1-cells and 2-cells are not necessarily uniquely
specified by the 0-cells that contain them (in X ). The homology
and cohomology complexes ofℛ are readily obtained,and the
fact that ℛ is not always a simplicial complex does not present
difficulties for computation or visualization. The origin of the
name should be clear from Figures 1 and 2.

We can now associate aΔ -complexℛD ⊆ ℛto any square-free
divisor D as follows. The points ofℛD are the points (0-cells) pi in
ℛ corresponding to the divisors appearing in (2.13). Some pairs
(triples) of the pi may in general be connected by 1-cells (2-cells)

4 The termΔ -complex is standard in topology, and the symbolΔ appear-
ing in the name should not be confused with the polytopeΔ . See [24]
for background onΔ -complexes and CW complexes.
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of the complexℛ. The pi , together with the set of all 1-cells and
2-cells connecting them, therefore define a unique subcomplex
ℛD ⊆ ℛ. An example is shown in the bottom image in Figure 1.
The points inℛD correspond to codimension-one subvarieties in
X , while the higher-dimensional cells inℛD encode intersections
among the prime toric divisors. One-cells inℛD correspond to
the intersections of pairs of divisors in X , which are irreducible
curves in X , and 2-cells inℛD correspond to triple intersections
of divisors in X . Note that a 2-cell inℛD always corresponds to a
single point on X .

2.4. The Pu  Complexff 𝒫

Let us briefly recapitulate. By (2.9), the sheaf cohomology of
prime toric divisors and their intersections is fully specified once
one knows the simplicial complex determined by the triangula-
tion  , together with the genera g(Θ◦) of the facesΘ◦∈  (≤2).
For Θ◦ a 2-face,the number g(Θ◦) records the extent to which
subvarieties corresponding to simplices contained inΘ◦ are re-
ducible. By promoting the simplicial complex to theΔ -complex
ℛ, we have encoded the information about reducibility directly
in the complexℛ. Heuristically, viewed as sets of data about sub-
varieties,

ℛ ↔
{
 ,

{
g(Θ◦)|Θ◦∈  (2)

} }
. (2.19)

The next step is to account for the data of {g(Θ◦)|Θ◦∈  (≤1)}.
In close analogy to the promotion → ℛ , we now define a CW
complex5 𝒫 that encodes this data. Heuristically,

𝒫 ↔
{
 ,

{
g(Θ◦)|Θ◦∈  (≤2)

} }
, (2.20)

which is made precise by the following:

Definition 1.The pu complexff 𝒫 is a CW complex constructed
from the ravioli complexℛ as follows.For each vertex v and edge
e in ℛ, we have naturalinclusions v←→ S2 and e←→ S2, where the
latter inclusion induces a cellular structure on S2 with an S1 attached

to each interior 0-cell. These induce the inclusions iv : v←→
g(v)⋁

i=1
S2 and

ie : e←→ 𝒳 where𝒳 is defined by the following pushout diagram:

Then𝒫 is defined by the following pushout diagram:

5 The property of CW complexes that is relevant here is that a 2-cell or
1-cell 𝜎 can be attached to the complex by a map that identifies the
boundary𝜕𝜎 with a 0-cell in the complex.

The CW complex𝒫D associated to a divisor D is the sub-complex of
𝒫 corresponding to the image ofℛD under the morphism𝜑.

In other words, to construct 𝒫D, we attach a bouquet of g(v)
two-spheres to each vertex v∈ G, a bouquet of g(p) circles to each
point p∈ G interior to an edge, and a bouquet of cylinders S1 ×I
to each connected component ofℛD restricted to e. These spaces
are glued together along their common points: in particular, the
g(e) cylinders over a complete edge e⊂ ℛD are pinched down
into the two vertices bounding e, forming a collection of g(e) two-
dimensional voids.

We will find it useful to divide the puff complex into layers:

Definition 2.For 0≤ j ≤2, the jth layer𝒫(j) of the pu  complexff 𝒫 is
the subset of𝒫 resulting from replacing points interior to each (2− j)-
faceΘ◦ of Δ◦ with g(Θ◦) j-spheres,replacing 1-simplices interior to
Θ◦with g(Θ◦) cylinders Sj ×I, etc., as in Definition 1. In particular,
𝒫(0) = ℛ.

Figure 3 contains a sketch of the different layers of the puff
complex for a simple example.

The homology of 𝒫D is readily obtained.Distinct connected
components of𝒫D can be examined separately, so we may take
h0(𝒫D) =1 without loss of generality.Contributions to h1(𝒫D)
come from

(a) One-cycles inℛD.
(b) For each edge e⊂ Δ◦, a bouquet of g(p) cylinders over each

connected component ofℛD
|
|
|e

that is strictly interior to e.

Contributions to h2(𝒫D) come from

(c) Two-cycles inℛD.
(d) The bouquet of g(e) pinched cylinders over each edge e such

that ℛD
|
|
|e
= e.

(e) The bouquet of g(v) two-spheres over each vertex v,i.e. the
layer𝒫(2).

We will prove in §3.1 that these classes ofcontributions are
in one-to-one correspondence with classes of contributions in
the hypercohomology spectralsequence that computes the co-
homology of  D. In other words, the homology of the CW
complex 𝒫D encodes the cohomology of  D. As we will see,
this correspondencehas both computational and heuristic
utility.

3. Spectral Sequence Computation of Hodge
Numbers

In this section we will prove our principal result:

Theorem 3.Let D=
∑

i∈G Di , with G ⊆ {1,… , N}, be a square-
free divisor, as defined above. Denote by𝒫 and𝒫D the pu  complexff
and the associated subcomplex determined by D, respectively. Then the
Hodge numbers hi( D) are given by

hi( D) =hi(𝒫D). (3.1)

In the rest of this section, we prove Theorem 3. Our method is
based on examining a hypercohomology spectral sequence. We
use stratification to identify the E2 page of that sequence,and
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Figure 3.The layers of the pu  complex for a single face. The lower row shows the three layers offf 𝒫 for the triangulated face at the top of the figure. In

this example, the genera of the various faces are such that g(Θ◦[2]) = 1, g(Θ◦[1]
i

) = (2, 1, 0) and g(Θ◦[0]
i

) = (1, 3, 0).

then we use a somewhat indirect argument to show that the dif-
ferentials on the E2 page are all zero.

3.1. Hypercohomology Spectral Sequence

To start, let {D1,… , DN} be the prime toric divisors, as defined in
§2. Given a square-free toric divisor in X ,

D :=
∑

i∈G

Di ,

we will compute the cohomology h∙( D). Suppose that we have
indexed the Di so that D=

∑ r
i=1

Di , for some r≤N.
The set of divisors {D1,… , Dr} is dimensionally transverse on

a smooth variety,and so by Proposition A6 of Appendix A,the
generalized Mayer-Vietoris sequence

0 ←→ D ←→

r
⨁

i=1
 Di

←→
⨁

i< j

 Dij
←→

⨁

i< j<k

 Dijk
←→0 (3.2)

is an exact sequence of sheaves. The hypercohomology spectral
sequence of this complex will allow us to compute the cohomol-
ogy of D.

Define

F0 :=
r

⨁

i=1
 Di

,

F1 :=
⨁

i< j

 Dij
,

F2 :=
⨁

i< j<k

 Dijk
. (3.3)

The complex of sheaves (3.2) gives rise to a hypercohomology
spectral sequence Erp,q(D) with differentials denoted by

𝛿r
p,q→p′,q′ : Er

p,q(D) ←→Er
p′ ,q′ (D)

where p′ =p+ r and q′ =q− r + 1. The first page of this spectral
sequence is

These are indexed such that E1
p,q(D) =H q(Fp), and e.g.

𝛿1
0,1→1,1 = 𝛼.

The second page, E2(D) reads

where𝜁 := 𝛿20,1→2,0 is the only nonzero differential on this page.
The third and final page reads

On this page, the differential𝛿3 is zero.
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www.advancedsciencenews.com www.fp-journal.org

The hypercohomology spectral sequence converges to the co-
homology of D, meaning that

dim H0( D) =dim ker𝛽 (3.4)

dim H1( D) =dim ker𝜁 +dim(ker 𝛾∕ Im 𝛽) (3.5)

dim H2( D) =dim H2(F0) + dim coker𝛼 +dim coker𝜁 (3.6)

In the special case that𝜁 is the zero map, we have the simplifica-
tions

dim H1( D) =dim ker𝛼 +dim(ker 𝛾∕ Im 𝛽) (3.7)

dim H2( D) =dim H2(F0) + dim coker𝛼 +dim coker𝛾 (3.8)

If the dependence on a divisor is understood, we denote the maps
𝛼, 𝛽, 𝛾 , 𝜁 , while if a divisor D is specified, we write𝛼(D), etc.

3.2. Cohomology from Stratification

We now use stratification to compute the cohomology organized
by the spectral sequence given above.

Proposition 4.Row 0 of page 1 of the hypercohomology spectral se-
quence has cohomology equalto that of the ravioli complexℛD =

𝒫(0)
D

, that is:

dim ker𝛽 =dim H0(ℛD) (3.9)

dim(ker 𝛾∕ Im 𝛽) = dim H1(ℛD) (3.10)

dim coker𝛾 =dim H2(ℛD) (3.11)

Note: this can be written more succinctly in the form

dim E2
p,0(D) =dim Hp(𝒫(0)

D ), (3.12)

for all p, even though dim E2
p,0(D) can only be nonzero for p=0, 1,

or 2.

Proof.We will identify row 0 of page 1 of the spectral sequence
with the cohomology complex of the complexℛD. In the follow-
ing, we will takeℛD(k) to be the set of k-faces ofℛD. In particular,
ℛD(0) is the set of 0-dimensional faces (i.e. the Di), ℛD(1) is the
set of 1-dimensional faces, i.e. one for each connected component
of a Di ∩Dj. The same connected component C cannot occur for
two different such intersections, as otherwise the component C
would be contained in the intersection of three or four of the Di ,
which cannot happen since the Di are dimensionally transverse.
Finally,ℛD(2) corresponds to the points in each of the triple in-
tersections of three divisors, Di ∩Dj ∩Dk. Again, each point can
only appear in one such intersection. Notice thatℛD is a Delta
complex whose cohomology sequence is

0 ←→

r
⨁

i=1
ℂeDi

𝛿0
←→

⨁

C∈ℛD(1)
ℂeC

𝛿1
←→

⨁

P∈ℛD (2)
ℂeP ←→0 (3.13)

where the maps 𝛿a are as follows:if C is a connected compo-
nent of D i ∩Dj , for i < j, (𝛿0(eDi

))C = −1 and (𝛿0(eDj
))C =1, and

all other components are zero. If C is an irreducible component
of Di ∩Dj, and if P is a point of the intersection Di ∩Dj ∩Dk, (for
i < j), then

(𝛿1(eC))P = sign(i, j, k).

Now consider the complex of row 0 in page 1 of the
spectral sequence.We see that H 0(F0) =

⨁ r
i=1 ℂ

eDi
, H 0(F1) =⨁

C∈ℛD(1)ℂ
eC, and H0(F2) =

⨁
P∈ℛD(2)ℂ

eP, i.e. the complex

0 ←←←←←←←←←←←←←←←←←←←←←←←→ H 0(F0)
𝛽

←←←←←←←←←←←←←←←←←←←←←←←←←←←→ H 0(F1)
𝛾

←←←←←←←←←←←←←←←←←←←←←←←←←←→ H 0(F2) ←←←←←←←←←←←←←←←←←←←←←←←→ 0

and the complex (3.13) have the same terms. Under this identi-
fication, it is easy to see that the maps are identical too,as the
morphisms 𝛽 and 𝛾 are canonically induced by the generalized
Mayer-Vietoris complex. □

Proposition 4 generalizes to all rows of the second page:

Proposition 5.For all p and q,

dim E2
p,q(D) =dim Hp+q(𝒫(q)

D ).

Proof.We have already established the case q= 0. For q=2, we
note that stratification gives h2( Di

) = 0, unless Di corresponds
to a vertex ofΔ◦having positive genus g(v). Summing these gives

dim H2(F0) =
∑

v∈ (0)
v∈D

g(v), (3.14)

proving Proposition 5 for q=2.
The case q=1 can be established by noting that row 1 of page

1 of the spectral sequence,because of stratification,breaks up
into a direct sum of complexes, summed over all edges e inΔ◦

intersecting D:

⨁

e∈ (1)
ℂg(e)⊗

(

0 ←→
⨁

𝜏∈ D∩e(0),𝜏∉𝜕e

ℂ ←→
⨁

𝜏∈ D∩e(1)
ℂ ←→0

)

(3.15)

The complex in parentheses is simply the relative cochain com-
plex for the pair (  D∩e,  D∩𝜕e). Note that because e is an edge,
( D∩e,  D∩𝜕e) = (ℛD∩e, ℛD∩𝜕e).

Therefore the p-th cohomology (for p = 0, 1) of the di-
rect sum of complexes (3.15) is the relative cohomol-
ogy

⨁
eℂ

g(e)⊗ H p(ℛD∩e, ℛD∩𝜕e), which is the same as
⨁

eℂ
g(e)⊗ H p(ℛD∩e, ℛD∩𝜕e), which by the definition of 𝒫

equals Hp+1(𝒫
(1)

D ). □

Corollary 6.Given a square-free divisor D, if𝜁(D) = 𝛿20,1→2,0(D) then

𝜁(D) =0 ⇐⇒ dim H i( D) = dim H i(𝒫D) for all i (3.16)

⇐⇒ dim H1( D) =dim H1(𝒫D) (3.17)

⇐⇒ dim H2( D) =dim H2(𝒫D) . (3.18)
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3.3. Proof that𝜻 =0

In this section we will prove the following, which also, by Corol-
lary 6, proves Theorem 3.

Lemma 7.If D corresponds to a square-free divisor on X , then the
map

𝜁(D) = 𝛿20,1→2,0(D)

is the zero map.

We prove this result by first splitting D =A + B1 + ⋯ +Bm,
where A and the Bi are all square-free divisors having disjoint
support. Consider the subgraph D(≤1). Suppose that this graph
has m components each of which is contained in the strict inte-
rior of an edge ofΔ◦. Let Bi be the sum of the divisors correspond-
ing to the lattice points in the ith component. Let A be the sum
of the rest of the divisors. Define Aj :=A +

∑ j
i=1

Bi , with A0 =A
and Am

=D.

Lemma 8.The map𝜁(A) is zero, and so dim Hi( A) = dim H i(𝒫A).

Proof.The map is zero, because its domain, E2
0,1(A), which has

dimension dim H1(𝒫
(1)

A ), is zero by construction. □

Lemma 9.dim H2( Bi
) = 0.

Proof. If the given component Bi consists of divisors associ-
ated to lattice points interior to an edge of genus g, then h∙( Bi

) =
(1, g, 0). □

Lemma 10.Fix an integer 1≤ i ≤m, and let C :=Ai−1 ∩Bi . Then
C is a curve whose irreducible components are allℙ1’s, two intersect
in at most one point, and H1( C) =0.

Proof. C :=Ai−1 ∩Bi is a collection of rational curves C=

∪M CM . As a complex, C corresponds to a collection of 1-simplices
𝜎M , each with one end inℛBi

, and the other end in an edge not
containingℛBi

, in a 2-face, or in a vertex. Two curves CM and CN

intersect if and only if𝜎M and𝜎N share a 2-simplex𝜎M,N .
Now notice that h1( C) ≠0 is possible only if the CM intersect

in such a way as to form a nontrivial loop. But this would require
a closed loop in which three or more 1-simplices𝜎1,… , 𝜎K are
connected by 2-simplices𝜎1,2,… , 𝜎K−1,K

, 𝜎K,1. However, because
ℛBi

is in the strict interior of an edge, no such loop can be formed.
Thus, h1( C) =0. □

Lemma 11.dim H2( A) =dim H2( D).

Proof. We prove this by induction. Consider Ai =Ai−1 + Bi ,
where A0 =A. We use induction to show that dim H2( A) =
dim H2( Ai ), for i = 0,… , m. The statement is trivial for i =0,
and for i > 0, we use the long exact sequence associated to the
Mayer-Vietoris sequence

0 ←→ Ai ←→ Ai−1 ⊕  Bi
←→ C ←→0.

combined with Lemmas 9 and 10.One obtains that H2( Ai ) =
H 2( Ai−1). □

Lemma 12.dim H2(𝒫A) =dim H2(𝒫D).

Proof. There are four cases where an element of H2 can ap-
pear: D contains a vertex of genus> 0, D contains an entire edge

of genus> 0, D contains at least two full sheets over a 2-face, and
finally, D contains a collection of full 2-faces that contain a void.
Since by definition, not all of the lattice points of the edge con-
taining Bi are in D, and Bi contains no vertices,𝒫A and𝒫D must
have the same H2. □

Proof of Lemma 7, and therefore also the proof of Theorem 3.Lem-
mas 8, 11, and 12 imply that

dim H2(𝒫D) = dim H2(𝒫A) =dim H2( A) =dim H2( D),

and so by Corollary 6, we have 𝜁(D) =0, proving the
theorem. □

3.4. Generalization to Calabi-Yau n-Folds

Most aspects of the computation above generalize immediately
to Calabi-Yau n-folds.

Definition 13.Let V be a simplicial toric variety of dimension n+ 1,
and let X be a smooth Calabi-Yau n-fold hypersurface in V, with Nn :=
h1,1(X )+ n + 1. Let D=

∑
i∈G Di , with G⊆ {1,… , Nn}, be a square-

free divisor. The construction of Definition 1 generalizes to any n≥

3, and we denote by𝒫 and 𝒫D the pu  complex and the associatedff
subcomplex determined by D, respectively.

We note that the constructions of𝒫 and 𝒫D are immediate
because our results on the stratification of subvarieties X𝜎 ⊂X
apply for any n.

Next, the Mayer-Vietoris sequence generalizing (3.2) contains
n + 1 nonzero terms. The resulting hypercohomology spectral se-
quence again converges to the cohomology of D, and it is easy
to see that row zero of page one of the hypercohomology spectral
sequence again has cohomology equal to that ofℛD. Moreover,
Proposition 5 holds for arbitrary n.[ 15 ]However, for n> 3 there
are more diagonal maps, generalizing𝜁 .

If for every n the diagonal maps were shown to be identically
zero, as we have proved in the case n=3, then we would have
hi( D) = hi(𝒫D) for all n. However, examining the diagonal maps
directly in the same manner as done for𝜁 in §3.3 would be some-
what involved. We defer a proper analysis of these maps to [15],
and state here only the following:

Conjecture 14.Let V, X , D, and𝒫D be as in Definition 13, and set
n = 4. For each such D there exists k(D)∈ ℤ≥0 such that

h∙( D) = h
∙(𝒫D)− (0, k(D), k(D), 0). (3.19)

We show in [15] that k(D) =0 for all D except those obeying a
rather restrictive condition.

4. Interpretation and an Example

We will now briefly discuss the interpretation of our result, and
then illustrate the utility of our formula in an example.

4.1. Contractible Graphs

Equation 3.1 depends on only certain topologicalproperties of
the complex𝒫D, and so two complexes that correspond to divi-
sors that are related to one another by deformations that preserve
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D1

D2

D3

D2 → D1

D1 D3

D3 → D1

D1

Figure 4.Example of contraction for a graph D=D1 + D2 + D3, where the Di correspond to points interior to a 2-face. First D2 is removed, and then
D3 is removed.

these topological properties will have identical Hodge numbers.
This leads to a useful tool in enumerating certain divisors, as we
now explain.

Given a triangulation and the associated simplicial complex
 , a square-free divisor D determines a unique simplicial com-
plex  D ⊂  , as well as a corresponding CW complex𝒫D ⊂ 𝒫.
The number  of distinct square-free divisors of a given puff
complex𝒫 that corresponds to a Calabi-Yau hypersurface X is
2h1,1(X )+4. Thus, the task of working out the Hodge numbers of all
possible square-free divisors appears formidable for large h1,1(X ).
Fortunately,as we will now explain, Theorem 3 implies that
square-free divisors fall into equivalence classes.

Suppose that we begin with a set of lattice points G1 ⊂

{1,… , N}, which define a square-free divisor D1 and a CW com-
plex 𝒫G1

. Now let us add or remove one lattice point from
G1, so that G1 is changed to some G2 ⊂ {1,… , N}. This oper-
ation uniquely defines a new square-free divisor D2 and a new
CW complex 𝒫G2

. By Equation (3.1), if h i(𝒫G1
) = hi(𝒫G2

) then
hi( D1

) =hi( D2
).

We define a single contraction to be the operation of changing
D1 → D2 by adding or removing a lattice point, as specified above,
in such a way that hi(𝒫D1

) =hi(𝒫D2
). We define a contraction to

be an arbitrary composition of single contractions. Contraction is
an equivalence relation on square-free divisors, and all members
of a contraction equivalence class have the same Hodge num-
bers.However,two divisors with the same Hodge numbers do
not necessarily belong to the same contraction equivalence class.

As an example consider the complex in Figure 4, with associ-
ated divisor D=D1 + D2 + D3, where the Di correspond to the
points pi . Equation 3.1 gives h∙( D) = (1+ g(f ), 0, 0), where fis
the 2-face containing G. We can perform a contraction by, for ex-
ample, first deleting p2, and then deleting p3, as in Figure 4. We
will present a more involved example in §4.2.

4.2. Example with h1,1 = 491

As a demonstration of the utility of Theorem 3 we will now calcu-
late the Hodge numbers of some nontrivial divisors in a Calabi-
Yau hypersurface X in a toric variety corresponding to a fine, star,
regular triangulation of the largest polytopeΔ◦

L in the Kreuzer-
Skarke database.[ 10 ]In this example,Δ◦

L is the convex hull of the
columns of

B =

⎛
⎜
⎜
⎜
⎜⎝

−1 −1 −1 −1 1
−1 −1 −1 2 −1
−1 −1 6 −1 −1
−1 83 −1 −1 −1

⎞
⎟
⎟
⎟
⎟⎠

(4.1)

Table 1. The genera of all vertices, edges, and faces inΔ◦
L.

dim face # int pts genus

0 0 1 0

0 1 1 0

0 2 1 1

0 3 1 3

0 4 1 6

1 0,1 83 0

1 0,2 6 0

1 0,3 2 0

1 0,4 1 0

1 1,2 6 0

1 1,3 2 0

1 1,4 1 0

1 2,3 0 1

1 2,4 0 2

1 3,4 0 6

2 0,1,2 246 0

2 0,1,3 82 0

2 0,1,4 41 0

2 0,2,3 6 0

2 0,2,4 3 0

2 0,3,4 1 0

2 1,2,3 6 0

2 1,2,4 3 0

2 1,3,4 1 0

2 2,3,4 0 1

There are 679 nonzero lattice points in Δ◦, but 184 of these
are interior to 3-faces,and therefore do not intersect X .X has
h1,1(X )= 491, with 495 toric divisors. The face structure is very
simple:Δ◦

L is a 4-simplex, with vertices indexed by {0,1,2,3,4}, cor-
responding to the columns of B. There are 5 vertices, 10 edges,
and 10 triangles inΔ◦

L, before triangulation. The genera of all the
faces are given in Table 1.

Consider the largest 2-face f𝓁 in Δ◦
L, which is a triangle with ver-

tices labeled by {0, 1, 2}. This face has 344 lattice points, as shown
in Figure 5. All (sub)faces except vertex 2 have genus 0, and so the
puff complex𝒫 restricted to f𝓁 is simply  restricted to f𝓁, with a
single S2 cell attached to vertex 2. If we choose, excluding point 2,
a set of points on f𝓁 whose corresponding complex is connected
and has no cycles, then the corresponding divisor will be rigid.
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Figure 5.The largest 2-face f𝓁 in the largest four-dimensional reflexive
polytopeΔ◦

L, with a ‘banded’ complex show in red. The Hodge numbers
of the corresponding divisor D are easily read o  asff  h∙( D) = (1, 9, 1).

The divisor corresponding to the entire face has Hodge numbers
(1,0,1).The divisor corresponding to the line connecting 2 to 4
has Hodge numbers (1,0,9). As a more nontrivial example we can
form simplicial complexes with cycles on f𝓁 andΔ◦

L. The complex
defined by taking all the boundary points of f𝓁, and none of the
interior points, defines a divisor with Hodge numbers (1,1,1). In
Figure 5 we show a triangulation6 of f𝓁, and a choice of a more
complicated subcomplex containing cycles. Theorem 3 allows us
to easily read off the Hodge numbers of the corresponding divi-
sor D as h∙( D) = (1, 9, 1).

As a further example of contraction,one can consider com-
plexes that are not just restricted to a single 2-face,as depicted
in Figure 6.Here we show a facet ofΔ◦

L defined by the points
{0, 1, 2, 3},with severalcomplexes drawn on it.The red points
indicate lattice points included in the complex, and the red lines
cycle-free paths that may include additionallattice points. The
red triangles indicate entire faces that are included in the com-
plex. Note that the point 1, corresponding to (−1,−1,−1, 83),
has been scaled in,for visualization purposes.In complex (d)
we have included the entire boundary of the facet.From Theo-
rem 3 we can immediately read off the Hodge numbers of the

6 This triangulation of f𝓁 is for illustrative purposes; the triangulation we
have obtained from a regular triangulation ofΔ◦

L is difficult to render.

corresponding divisors as h∙( Da
) = (1, 0, 0),h∙( Db

) = (1, 1, 3),
h∙( Dc

) = (1, 0, 5), and h∙( Dd
) = (1, 0, 6).

5. Conclusions

In this work we have computed the Hodge numbers hi( D) of
square-free divisors D of Calabi-Yau threefold hypersurfaces in
toric varieties.Given the data of a simplicial complex  corre-
sponding to a triangulation of a four-dimensional reflexive poly-
topeΔ◦, we constructed a CW complex𝒫 that simultaneously
encodes data aboutΔ◦and its dualΔ . The construction of𝒫 in-
volves attaching certain cells to in a manner determined by
Δ . The specification of a square-free divisor D determines a sub-
complex𝒫D, as well as an exact Mayer-Vietoris sheaf sequence.
By examining the corresponding hypercohomology spectral se-
quence, we proved that hi( D) =hi(𝒫D). Here the left-hand side
is manifestly the dimension of a sheaf cohomology group,but
the right-hand side is the dimension of a simplicial (or cellular)
homology group.

Our results are a step forward in the study of divisors in Calabi-
Yau hypersurfaces. Theorem 3 permits extremely efficient com-
putation of the Hodge numbers of square-free divisors in three-
folds, even for h1,1 ≫1. Conjecture 14 extends these methods to
fourfolds, enlarging the range of divisors with computable Hodge
numbers.[ 15 ]

The ultimate goal of this work was to determine which effec-
tive divisors D of a Calabi-Yau hypersurface support Euclidean
brane superpotentialterms. Theorem 3 represents significant
progress toward this goal,but further advances will be neces-
sary to give a completely generalanswer.First of all, although
the Hodge numbers hi( D) provide essential information about
the number of fermion zero modes of a Euclidean brane on
D, when D is not smooth there can be additional zero modes
associated to singular loci.The only smooth, rigid, square-free
divisors are the prime toric divisors D i themselves;a nontriv-
ial square-free divisor that is rigid necessarily involves normal
crossing singularities where the components Di intersect.One
should therefore ask how to count fermion zero modes on a divi-
sor with normal crossings. In some cases, normal crossings can
be shown to yield no new fermion zero modes,so that rigidity
is a sufficient condition for a superpotential.[ 15 ]Moreover, there
exist nontrivial smooth square-free divisors D with Hodge num-
bers h∙( D) = (1, 0, n), with n> 0. In a suitably magnetized Eu-
clidean D3-brane wrapping such a divisor, worldvolume flux can
lift the zero modes counted by h2( D), and so lead to a super-
potential term, even though D is not rigid. Finally,Donagi and
Wijnholt have proposed that in general the fermion zero modes
can be counted by the logarithmic cohomology of D, h∙

log( D).[ 12 ]

Verifying and applying this idea is a natural task for the
future.

There are many possible extensions of this work. The effects of
worldvolume flux could plausibly be incorporated along the lines
of [25], but including the effects of bulk fluxes appears more chal-
lenging. A further step would be to compute the Hodge num-
bers of effective divisors that are not square-free.Advances in
these directions would allow for a truly systematic computation
of the nonperturbative superpotential for the Kähler moduli in
compactifications on Calabi-Yau hypersurfaces.
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Figure 6.A facet ofΔ◦

L defined by the points {0, 1, 2, 3}, with several complexes drawn on it. The red points indicate lattice points included in the complex,
and the red lines cycle-less paths that may include additional lattice points. The red triangles indicate entire faces that are included in the complex. Note
that the point 1, corresponding to (−1,−1,−1, 83), has been scaled in, for visualization purposes. In complex (d) we have included the entire boundary
of the facet. From Theorem 3 the Hodge numbers of the corresponding divisors are h∙( Da

) = (1, 0, 0),h∙( Db
) = (1, 1, 3),h∙( Dc

) = (1, 0, 5),and
h∙( Dd

) = (1, 0, 6).

Appendix A: Mayer-Vietoris Complexes

In this section we establish the exactness of the generalized
Mayer-Vietoris sequence,and we give related background on
spectral sequences.

Given closed subvarieties (or subschemes) D and E of a variety
(or scheme) X , the Mayer-Vietoris complex is

0 ←→ D∪E ←→ D ⊕  E ←→ D∩E ←→0 (A.1)

This is always an exact sequence,and one can view it as an
inclusion-exclusion sequence.If I and J are ideals in a ring R,
then we have the related exact sequences:

0 ←→R∕ I ∩J←→R∕ I ⊕ R∕ J←→R∕ (I + J)←→0 (A.2)

and

0 ←→I ∩J←→I ⊕ J←→I + J←→0. (A.3)

There are well-known generalizations of these sequences to the
cases where there are more than two subvarieties, ideals, or quo-
tients, but at this level of generality the resulting Mayer-Vietoris
sequence is often not exact. We will now prove exactness for sev-
eral cases of interest in this paper.

We start with the case of ideals. Suppose that I1,… , In ⊂R are
ideals in a ring R. Define the Mayer-Vietoris ideal sequence, M=

𝕄(I1,… , In), to be the cochain complex

0 ←→(I1 ∩ ⋯ ∩In) ←→M0 ←→M1 ←→ ⋯ ←→Mn−1 ←→0, (A.4)

where

Mp :=
⨁

1≤i0<⋯< ip≤n

(I i0
+ ⋯ +I ip)

and the differential dp : Mp
←→Mp+1 is defined by

(dp(𝜙))i0…ip+1
=

p+1∑

j=0
(−1)j𝜙i0…î j…ip+1

One checks immediately that ker(d0) = I 1 ∩ ⋯ ∩In, and that the
sequence (A.4) is in fact a complex. Notice that if Ii =R for all i,
then 𝕄(R,… , R) is the (reduced) cochain complex of an (n−1)-
simplex, and so is exact.

The Mayer-Vietoris quotient complex,𝕄(R∕ I1,… , R∕ I n) is the
cochain complex defined in a completely analogous manner:

0 ←→R∕ (I1 ∩ ⋯ ∩I n) ←→N0 ←→N1 ←→ ⋯ ←→Nn−1 ←→0, (A.5)

where

Np :=
⨁

1≤i0<⋯< ip≤n

R∕ (I i0
+ ⋯ +I ip)

and the differential (dN)p : Np ←→Np+1 is defined by the natural
quotient maps

((dN)p(𝜙))i0…ip+1
=

p+1∑

j=0
(−1)j𝜙i0… î j…ip+1

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (11 of 30)
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Again, one checks that (A.5) is a complex,and that ker(dN)0 =
R∕ (I1 ∩ ⋯ ∩In). There is an exact sequence of complexes

0 ←→ 𝕄(I1,… , In) ←→ 𝕄(R,… , R)←→ 𝕄(R∕ I1,… , R∕ I n) ←→0,

and coupled with the exactness of the middle complex, the com-
plex𝕄(I1,… , In) is exact precisely when𝕄(R∕ I 1,… , R∕ I n) is ex-
act.

Finally, given closed subvarieties (or subschemes) D :=D1 ∪

… ∪Dn of a variety (or scheme) X , we define the Mayer-Vietoris
sheaf sequence𝕄(D1,… , Dn) in parallel to the above, taking

𝕄(D1,… , Dn)p :=
⨁

1≤i0< i1<⋯< ip≤n

 Di0∩
Di1∩⋯∩Dip

.

Define maps dp : 𝕄(D1,… Dn)p ←→ 𝕄(D1,… , Dn)p+1 in the same
manner as for quotients of ideals above. The resulting complex
𝕄(D1,… , Dn) has the form

0 ←→ D ←→

n
⨁

i=1
 Di

←→
⨁

i< j

 Di∩Dj
←→ … ←→ D1∩D2∩⋯∩Dn

←→0.

(A.6)

A.1. Distributive Lattices of Ideals and Mayer-Vietoris Complexes of
Ideals

The relationship between distributive lattices of ideals and the
exactness of Mayer-Vietoris ideal sequences was explained in [26].
In this section, we summarize their results, and then show that
several sets of ideals of interest form distributive lattices, so that
their Mayer-Vietoris sequences are exact. This is the key technical
fact that will allow us to show in §A.2 that certain Mayer-Vietoris
complexes of sheaves are exact.

Fix a (commutative) ring R and ideals J 1,… , Jr of R. This
set of ideals generates a lattice ofideals:the join of two ideals
is their sum, and the meet of two ideals is their intersection.
The smallest set of ideals that contains J1,… , Jr and is closed
under these two operations is the lattice of ideals generated
by J1,… , Jr .

This lattice of ideals is called distributive if for every three ideals
L1, L2, L3 in the lattice, one has

L1 ∩(L2 + L3) = (L1 ∩L2) + (L1 ∩L3).

Equivalently, the lattice is distributive if and only if for every three
ideals L1, L2, L3 in the lattice, one has

L1 + (L2 ∩L3) = (L1 + L2) ∩(L1 + L3).

The importance of this notion is the following useful charac-
terization due to Maszczyk.

Theorem A.1 (Maszczyk[ 26 ]). For a set of ideals J1,… , Jn of a ring
R, the following are equivalent:

(a) The lattice of ideals generated by J1,… , Jn is distributive.
(b) 𝕄(J1,… , Jn) is exact, and hence so is𝕄(R∕ J1,… , R∕ Jn).

The following is a typical distributive lattice of ideals:

Example A.2.Let S= ℂ[x1,… , xn] be a polynomial ring over a field
𝔽 . Then the lattice of ideals generated by {(x1),… , (xn)} is the set of
square-free monomial ideals of S. This is a distributive lattice of ideals.

A square-free monomial ideal M⊂ 𝔽[x1,… , xn] has a unique
description as an irredundant intersection of monomialprime
ideals

M =
⋂

𝛼∈Λ
⟨xi ∣ i ∈ 𝛼⟩,

where the intersection is over a uniquely defined set of subsets
of [1..n]. The ideals in the intersection are the minimal primes of
M.

A key example is a generalization of this to the case where F=

{f1,… , fn} ⊂R is a regular sequence.We will only consider the
case where R is a local ring, or a graded ring, and in these cases
any permutation of the fi remains a regular sequence.

Given F= {f1,… , fn} ⊂R, define a map𝜙 : ℤ[x1,… , xn] ←→R,
where𝜙(xi) = fi . In this section, we call an ideal I⊂R an F-square-
free ideal if there is a square-free monomial ideal M such that I is
generated by𝜙(M), i.e., I is generated by square-free products of
the fi . We will say that I is an F-square-free monomial ideal if it is
F-square-free, and I can be written as the intersection

I =
⋂

𝛼∈Λ
⟨fi ∣ i ∈ 𝛼⟩,

where

M =
⋂

𝛼∈Λ
⟨xi ∣ i ∈ 𝛼⟩.

Theorem A.3.Let F= {f1,… , fn} be a regular sequence in the max-
imal ideal of a local ring R.

(a) The lattice of ideals generated by (f1),… , (fn) is exactly the set of
F-square-free ideals.

(b) This lattice of ideals is distributive.

This follows from the following more precise lemma,which
we prove by induction on n.

Lemma A.4.Let F= {f1,… , fn} be a regular sequence.Let F′ :=
{f1,… , fn−1}. The following statements hold.

(a) If J is an F′-square-free ideal, then (J : fn) = J.
(b) If I i , Ji are F′-square-free ideals,then L1 = I 1fn + I 2 and L2 =

J1fn + J2 obey

L1 ∩L2 = (I1 ∩J1 + I1 ∩J2 + I 2 ∩J1)fn + I2 ∩J2.

(c) If I and J are F′-square-free ideals, then

((fn) + I) ∩((fn) + J)= ((fn) + (I ∩J)).

(d) If I and J are F′-square-free ideals, then

(Ifn + J) : fn = I + J.

(e) Every F-square-free ideal is an F-square-free monomial ideal.
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(f) If L1 and L2 are F-square-free ideals,then L1 ∩L2 is also F-
square-free.

(g) If L1, L2, L3 are F-square-free ideals, then

L1 ∩(L2 + L3) = L1 ∩L2 + L1 ∩L3.

Proof. We prove this by induction. The case n= 2 is immedi-
ate. Suppose the statements are true for a number of elements of
F less than n.

(a) By part (e) in the induction hypothesis,

J=
⋂

𝛼∈Λ
⟨fi ∣ i ∈ 𝛼⟩,

where all the fi that appear have i< n. Then J : fn is the inter-
section of

⟨fi ∣ i ∈ 𝛼⟩ : fn = ⟨fi ∣ i ∈ 𝛼⟩,

whose intersection is again J.
(b) The right hand side is clearly contained in the left hand side,

so let𝛾 = 𝛼1fn + 𝛼2 = 𝛽1fn + 𝛽2 ∈ L1 ∩L2. One shows that𝛾 is
contained in the right hand side (where𝛼1 ∈ I1, 𝛼2 ∈ I2, 𝛽1 ∈
J1, 𝛽2 ∈ J2). Thus, (𝛼1 − 𝛽1)fn = 𝛽2 − 𝛼2 ∈ I2 + J2. Therefore,
by part (a),since I2 + J2 is F′-square-free,𝛼1 − 𝛽1 ∈ I 2 + J2.
Therefore, there exists 𝛿1 ∈ I2, 𝛿2 ∈ J2 such that 𝛼1 − 𝛽1 =
𝛿1 − 𝛿2. Now plug this back into the formula for𝛾 to get𝛿1fn +
𝛼2 = 𝛿2fn + 𝛽2 ∈ I2 ∩J2. Since this is already in the right hand
side, we can subtract it from 𝛾, obtaining an element 𝛾 ′ =

(𝛼1 − 𝛿1)fn = (𝛽1 − 𝛿2)fn that is in the right hand side precisely
when 𝛾 is. Since fn is a nonzero divisor, 𝛼1 − 𝛿1 = 𝛽1 − 𝛿2,
so 𝛾 ′ ∈ ((I1 + I2) ∩(J1 + J2))fn. Combining this with the in-
duction hypothesis of part(g),we have that (I1 + I 2) ∩(J1 +
J2) = I1 ∩J1 + I1 ∩J2 + I2 ∩J1 + I2 ∩J2, and therefore𝛾 ′, and
hence𝛾, is contained in the right hand side.

(c) This follows immediately from (b), by taking I1 = J1 =R.
(d) This follows immediately from (b): (Ifn + J)∩(fn) = (I + J)fn,

and so (Ifn + J) : fn = I + J.
(e) For any ideal I, and f∈ R, such that I : f2 = I : f , we always

have I= (I : f )∩((f )+ I). Let L= Ifn + J be an F-square-free
ideal. If I = 0, then the inductive hypothesis gives that L= J
is F′-square-free monomial, and is therefore F-square-free. If
instead, fn ∈ L, then the induction hypothesis gives a decom-
position for J, and part (c) gives the required decomposition
for L. Otherwise, by part (d) we have L= (I + J)∩((fn) + J).
Both of these have decompositions, by (e) (for n−1) and (c),
and putting them together gives a decomposition for L.

(f ) This follows immediately from (b) and the inductive hypoth-
esis for (f ).

(g) This follows immediately from part (b).

□

Proofof Theorem A.1.The set of F-square-free ideals is plainly
closed under addition of ideals. By Lemma A.4(b), the lattice
of ideals generated by (f1),… , (fn) contains the set of F-square-
free ideals. Also by Lemma A4(f ), the set of F-square-free ideals
is closed under intersection,and so the lattice of ideals gener-

ated by (f1),… , (fn) is the set of F-square-free ideals.Finally, by
Lemma A4(g), the lattice is distributive. □

A.2. Mayer-Vietoris Sequences Corresponding to Divisors and Curves

Recall that D⊂X is called a prime divisor on X if it is irreducible
and codimension one in X.

Proposition A.5.If X is a simplicialtoric variety,and D1,… , Dr
are prime torus-invariant Weil divisors on X , then the Mayer-Vietoris
sheaf sequence𝕄(D1,… , Dr) is an exact sequence of X-modules.

Proof. Let S= ℂ[x1,… , xN ] be the Cox ring of X , where Di

corresponds to the ring variable xi , for 1 ≤ i ≤ r. Consider the
Mayer-Vietoris ideal sequence𝕄(x1,… , xr). This is exact, as
the x i generate a distributive lattice,and so 𝕄(S∕ x1,… , S∕ xr )
is also exact. Sheafification of this exact sequence of graded
S-modules remains exact, but this sheafification is precisely
𝕄(D1,… , Dr ). □

Proposition A.6.If X is a smooth variety, and D1,… , Dr are e ec-ff
tive divisors, such that the intersection of each set of n of these is either
empty, or has codimension n in X , then the Mayer-Vietoris sheaf se-
quence𝕄(D1,… , Dr ) is an exact sequence of X-modules.

Proof. We prove exactness locally. Let p∈ X be a point. Sup-
pose that the set of Di that pass through p is {D1,… , Dn}. Local-
izing the Mayer-Vietoris sheaf complex at p results in the com-
plex 𝕄(R∕ f1,… , R∕ fn), where R= X,p, and the Cartier divisor
Di is defined locally in this ring by fi . Note that,by hypothesis,
the elements f1,… , fn form a regular sequence in the maximal
ideal of R. Therefore, Theorem A3 shows that𝕄(f1,… , fn) is ex-
act. This implies that 𝕄(R∕ f1,… , R∕ fn) is also exact,which im-
plies that the original complex is exact at each p∈ X , proving the
proposition. □

Notice that this proof can be generalized to the case when X is
equidimensional, not necessarily smooth, and the Di are Cartier
divisors with the given intersection properties.

There also exists a corresponding exact sequence in the case
of curves simply using the corresponding normalization without
necessitating the above technology.

Lemma A.7.Suppose X isa smooth,projective variety and as-
sume that C1,… , Cr are smooth, irreducible curves on X , and that
the corresponding closed subscheme C≔ C1 ∪ … ∪Cr is a nodal, re-
ducible curve with components Ci . Then the Mayer-Vietoris sequence
𝕄(C1,… , Cr ) is an exact sequence of X-modules.

Proof. By hypothesis, the normalization f : C̃ → C is the
scheme corresponding to the disjoint union of the smooth,ir-
reducible components Ci . Thus, the normalization induces the
following short exact sequence

 C ←→ f
∗

⨁

i

 Ci
↠ f

∗

⨁

i

 Ci
∕ C, (A.7)

where the quotient sheaf is a torsion sheaf with support pre-
cisely on the nodes of C. By considering the sequence locally at
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the nodes,we thus obtain the following exact sequence of C-
modules

 C ←→ f
∗

⨁

i

 Ci
↠ g

∗

⨁

j

 pj
, (A.8)

where g is the natural closed immersion and pj correspond to the
nodes of C. Higher direct images of closed immersions vanish
and hence we obtain an exact sequence of X-modules yielding
exactness of𝕄(C1,… , Cr ). □

A.3. Background on Spectral Sequences

We will now highlight the essential aspects of hypercohomology
spectral sequences needed to follow the computation of h∙( D).
We begin by describing the basic usage of the two spectralse-
quences corresponding to a double complex.Instead of going
into detail about filtrations, we assume that the entries of the
second and subsequent pages of the spectral sequence are finite-
dimensional vector spaces.We are describing “first quadrant”
spectral sequences,as that is what we need for hypercohomol-
ogy.

We start with a bounded double complex of vector spaces,
C = {Cp,q, dh, dv}, i.e. a collection of vector spaces Cp,q, where
Cp,q

=0 outside of the box 0≤p ≤M, 0 ≤q≤M, for some M,
horizontal differentials d

p,q
h : Cp,q

←→Cp+1,q, and vertical differen-
tials d

p,q
v : Cp,q

←→Cp,q+1 satisfying d2
h =d2

v = 0, and the compati-
bility condition that they anticommute: dhdv = −dvdh. More gen-
erally, we could allow Cp,q to be modules, or objects in some
Abelian category,and the maps would then be morphisms in
this category.

There are two spectral sequences corresponding to C,′Ep,q
r and

′′Ep,q
r . We will describe the first,from which the second is eas-

ily obtained. A spectral sequence is a set of pages E
p,q
r , for r =

0, 1, 2,…. Each page is a two-dimensional array of vector spaces
Ep,q

r , for 0 ≤ p, q≤M, together with a map dr . The zeroth page,
E0, starts with Cp,q in the (p, q) spot, and the map is the vertical
differential dp,q

0 :=dp,q
v : Cp,q

←→Cp,q+1. The differential dr at each
step satisfies the equation d2

r = 0, and maps

dp,q
r : Ep,q

r ←→Ep+r,q−r+1
r .

The first page is obtained from the zeroth page by setting

Ep,q

1 := ker dp,q

0 ∕ Im(dp,q−1
0 ).

The differential d1 is simply the horizontal map

dp,q

1 : Ep,q

1 ←→Ep+1,q
1

induced by the horizontal differential on C. In general, given the
r-th page of the spectral sequence, the (r+ 1)-st page is the array

Ep,q
r+1 := ker dp,q

r ∕ Im(dp−r,q+r−1
r ) .

By iterating this procedure, the spectral sequence eventually con-
verges when all terms on the page stabilize. For a first quadrant

spectral sequence, the spectral sequence converges to the coho-
mology of the total complex

Ep,q

2 ⇒ H p+q(Tot(C))

where the total complex is a complex with the n-th term defined
by

Tot(C)n =
⨁

p+q=n

Cp,q

with the natural differential defined by d= dv + dh.

A.4. The Hypercohomology Spectral Sequence

We now explain the utility of the spectral sequence discussed
above in computing sheaf cohomology. Let us fix a smooth com-
plex projective variety X and closed subvarieties D1,… , Dn. We
assume that the intersection of each set of k of the Di is either
empty, or has codimension k in X, so that by Proposition A6 the
corresponding Mayer-Vietoris sheaf sequence𝕄(D1,… , Dn) is an
exact sequence.

Let { D} denote a complex localized in degree 0 with the term
 D and let {

⨁ n
i=1  Di

←→ ⋯ ←→ D1∩⋯∩Dn
} denote the correspond-

ing complex beginning in degree 0. These complexes are quasi-
isomorphic and hence, as objects in the bounded derived category
Db(X ), they are isomorphic. We have the natural global sections
functor Γ : Qcoh(X)→ Vec(ℂ), and by deriving on the right and
restricting to the full subcategory of bounded complexes of qua-
sicoherent sheaves with coherent cohomology, we obtain the in-
duced derived functor RΓ : Db(X )→ Db(Vec(ℂ)). For a given com-
plex of coherent sheaves ∙, we then compute the hypercohomol-
ogy groups,or higher derived functors, by taking cohomology,
namely Hi(X, ∙) =H iRΓ( ∙).

In order to compute the hypercohomology groups of a complex
 ∙, we take a quasi-isomorphic complex of injective objects given
by f :  ∙→  ∙ and compute the cohomology Hi(Γ( ∙)). Such a
complex is often constructed as the total complex of the Cartan-
Eilenberg resolution ∙,∙of  ∙where existence is proved by ap-
plying the horseshoe lemma. In particular, the hypercohomology
ℍ( ∙) is independent of the resolution. However, in practice, in-
jective resolutions are usually hard to find explicitly, and so one
often resorts to taking acyclic resolutions.

We wish to compute

H i(D,  D) = ℍ
i

(

X,

{ n
⨁

i=1
 Di

←→ … ←→ D1∩⋯∩Dn

})

(A.9)

In the general situation, given a scheme (X, X), and given a
bounded-below complex ∙of  X-modules, we have the follow-
ing computational tool:

Lemma A.8.There exists a spectral sequence with

Ep,q

2 =H p
(

H q(X, ∙)
)

converging toℍp+q(X, ∙).
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Appendix B: Stratification of Toric Hypersurfaces
and Hodge Numbers of Strata

In this appendix we will review a number of results about the
stratification of toric varieties and the associated stratification of
hypersurfaces.In particular, we will review how the algorithm
of [27] can be used to conveniently read off the Hodge numbers of
toric strata. Although all of these techniques are in principle well-
known, a succinct exposition, especially in the physics literature,
is lacking. We refer the reader to [28–30] for an introduction to
toric geometry. The original reference for how to compute Hodge
numbers of toric strata for hypersurfaces is [27]; see [17, 21, 22]
for a number of applications close to physics.

B.1. Toric Varieties and Stratification

By definition, a toric variety V is characterized as containing an
open dense algebraic torus, (ℂ∗)n, the action of which (on itself )
extends to the whole variety. One can think of an n-dimensional
toric variety as a (partial) compactification of (ℂ∗)n in which var-
ious lower-dimensionalalgebraic tori are added.These can be
thought of as ‘limits’ of the original (ℂ∗)n, so that the action of
(ℂ∗)n on itself extends naturally to the whole variety.

This structure can be summarized by a combinatorial object
called a fan.A fan Σ is a collection of strongly convex rational
polyhedral cones such that the face of every cone counts as a cone
in the fan and two cones only intersect along a face of each. Here,
strong convexity demands that no subspace (except the origin) of
the ambient vector space is contained in any cone. One can think
of each cone as being spanned by a finite number of rays with
primitive generators vi that are elements of a lattice N.Finally,
we (mostly) make the further assumption that every cone is sim-
plicial, i.e. any d-dimensional cone is spanned by d rays. In this
case the associated toric variety has at most orbifold singularities
and is factorial.

Let us label the (generators of the) rays ofΣ by vi , with the index
i running from 1 to r. The toric varietyℙΣ associated with the fan
Σ can then be described in analogy to complex projective space
by associating a homogeneous coordinate zi to each ray of the fan
and forming the quotient

ℙΣ =
ℂ

r
−SR
G . (B.1)

This data is encoded in the fan as follows. First, the exceptional
set or Stanley Reisner ideal,SR corresponds to all collections
{vi|i ∈ I} for which the cones vi do not share a common higher-
dimensional cone. Wheneve this is the case, the set SR contains
the subspace ofℂr in which the associated collection of coordi-
nates {zi|i ∈ I} vanishes simultaneously. The Abelian group G is
given as the kernel of the homomorphism

zi → tk =
∏

j

z⟨
ek,vj⟩

j (B.2)

where the ek form a basis of the lattice M. Note that this implies
that whenever there is a linear relation
∑

i

aivi =0, (B.3)

there is an associated one-parameter subgroupℂ∗∈ G which
acts as

(z1,… , zr) ∼ (𝜆a1z1,… , 𝜆ar zr ) (B.4)

for 𝜆 ∈ ℂ∗. In most cases of interest,G can be completely de-
scribed through relations like this.In general, however, G may
contain discrete factors. Note that the above discussion implies
that the (complex) dimension of V equals the (real) dimension
of N. In the following, we also use the notationℙΣ to denote the
toric variety determined by the fanΣ.

For all zi ≠0, the coordinates tk defined in (B.2) parameter-
ize the open dense (ℂ∗)n giving the toric variety its name.The
strata that are added to turn (ℂ∗)n into a nontrivial toric variety
are encoded in the fan as follows. We first associate the unique
zero-dimensional cone𝜎[0], i.e. the origin, ofΣ with (ℂ∗)n. Each
d-dimensional cone𝜎[d]

i is naturally associated with the homoge-
neous coordinates zi corresponding to its generating rays. Choos-
ing the basis ek in (B.2) from lattice vectors contained in the dual
cone

⟨ ̌𝜎, 𝜎⟩ ≥0, (B.5)

which sits in𝜎̌ ∈M ⊗ ℝ, where M is the dual lattice to N, we may
take a limit of (B.2) where we set the zi =0 for all vi generating
𝜎. As a d-dimensional cone𝜎[d] has d generators,this lands us
on an n −d-dimensionalalgebraic torus T𝜎[d] ≃ (ℂ∗)n−d and the
definition of a fan ensures that all of these strata are consistently
sewn together.

Denoting the set of d-dimensional cones by

Σ(d)= {𝜎[d]
k }, (B.6)

we can hence stratify any toric variety according to the data of our
fan as

ℙΣ =
∐

d

∐

𝜎[d]
k ∈Σ(d)

T
𝜎[d]

k
=
∐

d

∐

𝜎[d]
k ∈Σ(d)

(ℂ∗)n−d
. (B.7)

In terms of the homogenous coordinates zi , the stratum of each
cone𝜎 is described by setting

{z i = 0 ∀vi ∈ 𝜎} and {z i ≠0 ∀vi ∉ 𝜎} . (B.8)

Let us discuss some examples.The fan corresponding toℙ1

lives inℝ and is composed of three cones: the origin, a ray gen-
erated by 1 and a ray generated by−1. We recover the standard
presentation from (B.1) as

ℙ1 =
(z1, z2) − {(0, 0)}

(z1, z2) ∼ (𝜆z1, 𝜆z2)
. (B.9)

The open denseℂ∗ can be described by the coordinate z1∕ z2, or
equivalently by z2∕ z1, and the strata corresponding to the two
one-dimensional cones are simply given by z1 =0 and z2 =0, re-
spectively. We hence recover the description ofℙ as the Riemann
sphere, i.e. adding the point at infinity toℂ.
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Figure B.1.The fan of ℙ2 contains a zero-dimensionalcone, three rays
(one-dimensional cones) and three two-dimensional cones.

The fan corresponding toℙ2 is shown in Figure B.1.Again,
(B.1) gives the standard presentation as

ℙ2 =
(z1, z2, z3)− {(0, 0, 0)}

(z1, z2, z3) ∼ (𝜆z1, 𝜆z2, 𝜆z3)
. (B.10)

From the fan, we can directly read off the stratification data (B.7),
which becomes

ℙ2 = (ℂ∗)2
∐

i=1..3
ℂ∗

∐

k=1..3

pt. (B.11)

In the bulk of this paper we are not interested in the geome-
try of toric varieties per se, but rather in the geometry of algebraic
subvarieties. In the simplest setting, such an algebraic subvariety
Z is given as the vanishing locus of a section of a line bundleon
V. For such an algebraic subvariety Z, one easily obtains a strati-
fication of Z from that of V if all toric strata meet Z transversely.
In this case we can define an n−d−1-dimensional stratum

Z𝜎[d] =Z ∩T𝜎[d] (B.12)

for every d-dimensional cone𝜎[d] ∈ Σ. The stratification of the hy-
persurface Z is then simply

Z =
∐

d

∐

𝜎[d]
k ∈Σ(d)

Z
𝜎[d]

k
. (B.13)

Let us illustrate this in the simple example of hypersurface of
degree k inℙ2, i.e. we consider the vanishing locus of a homoge-
neous polynomial Pk(z1, z2, z3) of degree k in the homogeneous
coordinates ofℙ2. Call the resulting curve Ck. By adjunction one
finds that such a hypersurface is a Riemann surface of genus

g(k)=
(k−1)(k−2)

2
. (B.14)

Let us now see how Ck is stratified using (B.13). First consider the
lowest dimensional strata ofℙ2, which correspond to the highest-
dimensional cones. Each of the three two-dimensional cones of
the fan ofℙ2 corresponds to a point onℙ2 that is defined by set-
ting two of the three homogeneous coordinates to zero. For a suf-
ficiently generic polynomial Pk, such points will never lie on Z,
so that these strata do not contribute to Z (indeed they are sup-
posed to be 2−2−1 = −1-dimensional).For each of the three
one-dimensionalcones in the fan of ℙ2, there is a stratum ℂ∗

obtained by setting one of the three homogeneous coordinates
to zero while forbidding the remaining two from vanishing. In-
tersecting this with Pk =0 we find that Z𝜎[1] consists of k points
for every one-dimensionalcone 𝜎[1]. Finally, the complex one-
dimensional stratum Z𝜎[0] is a Riemann surface of genus g(k) with
3⋅k points excised. Below, we will show how to reproduce these
numbers combinatorially by using the Newton polytope of Pk.

B.2. Toric Varieties and Divisors from Polytopes

In order to describe how to determine the geometry of strata Z𝜎[d]

combinatorially, we need to present the situation of interest from
a slightly different perspective. Note first that the data defining
the topology of Z consists of the toric variety V (or, equivalently,
the fanΣ) and a line bundleon V. We can write the divisor class
D of  in terms of the toric divisors Di corresponding to rays of
Σ as

D = c1() =
∑

i

aiDi . (B.15)

The group of holomorphic sections of is then given by a poly-
topeΔ , known as the Newton polytope, defined by

PD = {m ∈ M | ⟨m, vi⟩ ≥ −ai ∀vi} . (B.16)

More explicitly, we may use the monomials

p(m)=
∏

i

z⟨m,vi ⟩+ai

i (B.17)

as a basis for the group of sections. This provides a convenient
way to find the zeroth cohomology group (which is in fact the
only non-vanishing one) of a divisor D (line bundle), as this
counts global holomorphic sections of:

h0(ℙΣ
,  ℙΣ

(D)) = |PD ∩M|. (B.18)

Interestingly,Δ determines both the line bundle and (a blow-
down of ) the toric variety V. To any polytopeΔ in the M-lattice,
we can associate its normal fanΣn(Δ ), which then gives rise to a
toric varietyℙΣn(Δ ) along with a divisor D. This works as follows.
To every faceΘ[k] of the polytopeΔ , we associate a cone

𝜎̌n(Θ[k]) =
⋃

r≥0

r ⋅(pΔ −p
Θ[k]) (B.19)

where pΔ is any point lying inside Δ and p[k]
Θ

is any point ly-
ing inside Θ[k]. The dual cones 𝜎n(Θ[k]) (defined as in (B.5))
form a complete fan that is called the normal fan Σn(Δ ) of Δ .
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www.advancedsciencenews.com www.fp-journal.org

Here, k-dimensional facesΘ[k] of Δ are associated with d=n −k-
dimensional cones𝜎n(Θ[k]). In particular, the cones of Σ(Δ ) of
highest dimension are associated with the vertices ofΔ .

On the toric varietyℙΣn(Δ ), the polytopeΔ then determines a
line bundle (Cartier divisor) via a strongly convex support func-
tion 𝜓Δ . For each cone of maximal dimension ofΣn(Δ), ΨΔ can
be described by using its dual vertex mi and setting

ΨΔ
|
|𝜎n(mi )(p)= ⟨mi , p⟩ (B.20)

for each point p in𝜎n(mi). This also determinesΨΔ for all cones
of lower dimension. The divisor

D
Δ =

∑

𝜈i∈Σn(1)

aiDi (B.21)

can then be determined from

ΨΔ
|
|𝜎n(mi )(𝜈i) = −ai ∀𝜈i ∈ 𝜎n(mi) . (B.22)

With the numbers ai we can recover a basis for the sections of the
line bundlevia (B.17).

The above relations can be used to associate a cone-wise linear
support function ΨD to any divisor D. If the line bundle associ-
ated to D is ample,ΨD is strongly convex (i.e.it is convex and
different for each cone of maximal dimension). A toric variety is
projective iff its fan is the normal fan of a lattice polytope.[ 31 ]

Let us come back to the example ofℙ2 and a hypersurface Ck
determined by Pk =0. We may write

[Pk] = kD3. (B.23)

in terms of toric divisors, so that a1 =a2 = 0 and a3 = k. As
shown in Figure B.1, the one-dimensional cones ofΣ are gener-
ated by the vectors v1 = (1, 0),v2 = (0, 1),v3 = (−1,−1). The New-
ton polytopeΔ k corresponding to Pk = 0 has vertices

(k, 0), (0, k), (0, 0) (B.24)

and its integral points correspond to all monomials of homogene-
ity degree k by using (B.17). In particular

p((k, 0))= z⟨(k,0),(1,0)⟩
1

z⟨(k,0),(0,1)⟩
2

z⟨(k,0),(−1,−1)⟩+ k

3 = zk
1
,

p((0, k))= zk
2
, p((0, 0))= zk

3. (B.25)

B.3. Resolution of Singularities

As there is a one-to-one correspondence between faces ofΔ and
cones ofΣn(Δ ), we may write the stratification (B.13) in terms of
faces ofΔ instead of cones ofΣn(Δ ):

Z =
∐

k

∐

Θ
[k]
i

Z
Θ

[k]
i
. (B.26)

As faces of dimension k correspond to cones of dimension d=
n −k, the dimension of these strata is n −d−1 = k−1. Note
that Δ counts as a face of itself, which corresponds to the zero-
dimensional cone ofΣn(Δ ). We will discuss in Appendix B.4 how

to determine the topology of the strata Z
Θ

[k]
i

appearing above from
the Newton polytope.

What we have ignored so far, however, is that the normal fan
Σn(Δ ) in most cases (contrary to our simple example) does not
give rise to a smooth toric variety. In fact, the fanΣn(Δ) does not
even need to be simplicial.7 We are hence interested in a refine-
ment Σ of the fan Σn(Δ) in order to resolve the hypersurface Z.
Fortunately, this process results in only minor modifications of
the stratification (B.26) above. In a slight abuse of notation, we
will use the same letter Z also for the resolved hypersurface. Un-
der a refinement𝜋 : Σ → Σ(Δ ), the stratification associated with
faces ofΔ becomes:

Z =Z
Δ

∐

i

Z
Θ

[n−1]
i

∐

k≥2

∐

l

E
Θ

[n−k]
l

×Z
Θ

[n−k]
l

. (B.27)

Here EΘ[n−k] is the exceptional set of the refinement of the cone in
Σ(Δ ) associated with the faceΘ[n−k],

E
Θ[n−k] =

n−k−1∐

i=0
(ℂ∗)i . (B.28)

For every l-dimensionalcone in 𝜋−1(𝜎), where 𝜎 ∈ Σ(Δ ) is the
cone in the normal fan associated with the faceΘ[n−k], there is a
corresponding stratum (ℂ∗)k−l in EΘ[n−k].

B.4. Computing Hodge-Deligne Numbers of Strata

In order to compute the Hodge numbers of toric hypersurfaces
and, more generally, toric strata in such hypersurfaces, we need
to introduce a further piece of machinery. The strata appearing
in the stratification (B.27) naturally carry a mixed Hodge struc-
ture. In very simple terms, this means that the Hodge-Deligne
numbers

hp,q(H k(X,ℂ)) (B.29)

can be nonzero even when p + q≠ k, see e.g. [32,33] for a
proper introduction.

These data can be packed into the numbers (which we will also
call Hodge-Deligne numbers in the following)

ep,q(X )=
∑

k

(−1)khp,q(H k(X,ℂ)), (B.30)

which are convenient for a number of reasons. First of all, in case
these is a pure Hodge structure, they agree (up to a sign) with the
usual Hodge numbers. Secondly, they behave in the same way as
the topological Euler characteristic under unions and products of
spaces

ep,q(X1 ⨿ X2) = ep,q(X1) + ep,q(X2) (B.31)

ep,q(X1 ×X2) =
∑

p1+p2=p
q1+q2=q

ep1,q1(X1) ⋅ep2,q2(X2). (B.32)

7 A fan is simplicial if all of its d-dimensional cones are generated by d
rays. Fans that are not simplicial give rise to toric varieties with singu-
larities that are more general than orbifold singularities. In particular,
not every Weil divisor isℚ-Cartier for such varieties.
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Hence knowing the numbers ep,q(ZΘ[k]) (and of (ℂ∗)n) is suf-
ficient to compute the Hodge numbers of a toric hypersurface.
This information has been supplied (in the form of an algorithm)
in the work of [27]. Before reviewing their algorithm, let us first
discuss toric varieties themselves to illustrate the method.We
have that

ep,q((ℂ∗)n) = 𝛿p,q(−1)n+p
(

n
p

)

. (B.33)

For a smooth toric variety V, we hence see that hp,0 =0 for p> 0.
A direct consequence of this formula combined with the strat-
ification of a toric variety read off from its fan is the standard
formula [31] for the nontrivial Hodge numbers of a smooth n-
dimensional toric variety. Letting|Σ(l)| denote the number of l-
dimensional cones inΣ we can write

hp,p(ℙΣ) =
n
∑

k=0
(−1)p+k

(
k
p

)

|Σ(n−k)| . (B.34)

For the smooth hypersurface strata ZΘ[k], the following rela-
tions, shown in [27], allow to compute the Hodge-Deligne num-
bers. First we have that for p> 0

ep,0(ZΘ[k]) = (−1)k−1
∑

Θ[p+1]≤Θ[k]

𝓁∗(Θ[p+1]) (B.35)

where𝓁∗(Θ[p+1]) counts the number of lattice points in the relative
interior of Θ[p+1] and the sum runs over all facesΘ[p+1] of dimen-
sion p+ 1 contained in the faceΘ[k]. Note that this sum only has
one term for p+ 1 = k which corresponds to the faceΘ[k] itself.

The remaining Hodge-Deligne numbers satisfy the ‘sum rule’

(−1)k−1
∑

q

ep,q(ZΘ[k]) = (−1)p
(

k
p+ 1

)

+ 𝜑k−p(Θ[k]), (B.36)

where the function𝜑n(Θ[k]) is defined by

𝜑n(Θ[k]) :=
n
∑

j=1
(−1)n+ j

(
k + 1
n − j

)

𝓁∗(jΘ). (B.37)

Here jΘ denotes the polytope that is found by scaling the faceΘ

by j.
For a face of dimension k≥4 there is the simple formula

ek−2,1(Z [k]
Θ

) = (−1)k−1

(

𝜑2(Θ[k])−
∑

Θ[k−1]≤Θ[k]

𝜑1(Θ[k−1])

)

. (B.38)

Finally, for higher Hodge numbers, p+ q≥n, one has

ep,q(ZΘ[n]) = 𝛿p,q(−1)n+p+1
(

n
p+ 1

)

. (B.39)

By subsequent application of these formulae,one can derive
combinatorial formulae for the Hodge-Deligne numbers of strata
Z
Θ[k] for arbitrarily high k. It is convenient to use𝓁n(Θ) to denote

the number of points on the n-skeleton ofΘ. Let us derive the
Hodge-Deligne numbers ep,q of strata ZΘ[k] for k ≤ 3. First,

e0,0(ZΘ[k]) = (−1)k−1(𝓁1(Θ[k])−1
)
, (B.40)

so that e0,0(ZΘ[1]) = 𝓁∗(Θ[1]) + 1, i.e. the stratum ZΘ[1] consists of
𝓁∗(Θ[1]) + 1 points. Hence

ep,q(ZΘ[1]) =
0 0

𝓁∗(Θ[1]) + 1 0 (B.41)

For Z
Θ[2], we immediately find e 1,1(ZΘ[2]) =1. Furthermore,

e1,0(ZΘ[2]) = −𝓁∗(Θ[2]), and we can write

ep,q(ZΘ[2]) =
−𝓁∗(Θ[2]) 1

1− 𝓁1(Θ[2]) −𝓁∗(Θ[2])
(B.42)

Similarly, we find for ZΘ[3] that

𝓁∗(Θ[3]) 0 1

𝓁2(Θ[3]) − 𝓁1(Θ[3]) −3+ 𝓁∗(2Θ[3]) −4𝓁∗(Θ[3]) − 𝓁2(Θ[3]) + 𝓁1(Θ[3]) 0

𝓁1(Θ[3]) −1 𝓁2(Θ[3]) − 𝓁1(Θ[3]) 𝓁∗(Θ[3])

(B.43)

and for ZΘ[4]

e0,0(ZΘ[4]) =1− 𝓁1(Θ[4])

e1,0(ZΘ[4]) = −𝓁2(Θ[4]) + 𝓁1(Θ[4])

e2,0(ZΘ[4]) = −𝓁3(Θ[4]) + 𝓁2(Θ[4])

e2,1(ZΘ[4]) = 𝓁3(Θ[4])− 𝓁2(Θ[4]) − 𝜑2(Θ[4])

e2,2(ZΘ[4]) = −4.

(B.44)

Let us return to the example of a degree k hypersurface inℙ2.
The stratification ofℙ2 has already been discussed in §B.1,see
(B.11), and its Newton polytopeΔ k is given in (B.24). The open
dense torus (ℂ∗)2 in ℙ2 gives rise to an open dense subset of
Ck, i.e. a Riemann surface with a number of points excised. Its
Hodge-Deligne numbers are given by

ep,q(ZΔ k
) = −𝓁∗(Δk) 1

1− 𝓁1(Δ k) −𝓁∗(Δ k)

=
−(k−1)(k−2)∕ 2 1

1−3k −(k−1)(k−2)∕ 2

(B.45)

The stratum associated with each of the three 1-facesΘ[1] of Δ k

consists of

1+ 𝓁∗(Θ[1]) = k (B.46)

points. We hence recover the results derived in §B.1 for this ex-
ample.
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B.5. Calabi-Yau Hypersurfaces and Reflexive Polytopes

Let us now come back to our prime interest, which is in Calabi-
Yau manifolds. We assume that the dimension of the vector space
N ⊗ ℝcontaining the fanΣ is n, so that we get an n-dimensional
toric varietyℙΣ in which we want to embedd a Calabi-Yau hyper-
surface of dimension n−1.

In order for a hypersurface to be Calabi-Yau, its defining poly-
nomial must be a section of the anticanonical bundle−K

ℙΣ
. The

corresponding divisor is hence given by

D
−K = c1(ℙΣ) =

∑

𝜈i∈Σ(1)

Di . (B.47)

In the notation of (B.2), we hence have ai =1 for all i and we
can identify sections of−K

ℙΣ
with the set of lattice points on the

polytope

Δ ≡{m ∈ M|⟨m,𝜈⟩ ≥ −1 ∀𝜈 ∈ Σ(1)} ⊂M ⊗ ℝ. (B.48)

A general section of −K
ℙΣ

, the zero locus of which defines a
Calabi-Yau hypersurface, is then given by

∑

m

𝛼m p(m)=
∑

m∈Δ

∏

𝜈i∈Σ(1)
𝛼mz⟨m,𝜈i ⟩+1

i (B.49)

for complex constants𝛼m.
In general, the vertices of the polytopeΔ are not lattice points

of M and we are not guaranteed that a generic section of−K
ℙΣ

defines a smooth (or even irreducible) Calabi-Yau hypersurface.
If all of the vertices ofΔ are contained in M (in which case we
will call Δ a lattice polytope), it follows that the vertices𝜈i are all
sitting on a lattice polytopeΔ◦, defined by

⟨Δ ,Δ◦⟩ ≥ −1. (B.50)

Δ◦ is called the polar dual ofΔ , andΔ andΔ◦are called a reflex-
ive pair[ 17 ]if they are both lattice polytopes. Any lattice polytope
whose polar dualis also a lattice polytope is called reflexive.A
necessary condition for reflexivity is that the origin is the unique
interior point of the polytope in question.

Repeating the construction of §B.2, Calabi-Yau hypersurfaces
in toric varieties are naturally constructed from reflexive pairs of
lattice polytopesΔ ,Δ◦. Starting from a lattice polytopeΔ , we may
construct its normal fanΣn(Δ). In the case of a reflexive pair, this
is equal to the fan over the faces ofΔ◦. Of course, such a fan does
not in general define a smooth toric variety.In fact, the cones
need not even be simplicial.However,there is a natural maxi-
mal projective crepant partial (MPCP) desingularization that can
be found as follows. Using (B.49), it follows that any refinement
of the fan Σn(Δ) that only introduces rays generated by lattice
points 𝜈 on Δ◦ is crepant, i.e. preserves the Calabi-Yau property.
We may hence find a MPCP desingularization by a fan refine-
mentΣ → Σn(Δ) for which all lattice points𝜈i onΔ◦are employed
and for whichℙΣ is a projective toric variety. This is equivalent to
finding a fine regular star triangulation T ofΔ . Here, fine means
that all lattice points ofΔ◦ are used,and star means that every

simplex contains the origin as a vertex.8 Projectivity of a toric va-
riety is equivalent to its fan being the normal fan of a lattice poly-
tope. While the toric varietyℙΣn(Δ ) is projective by construction,
this is not necessarily true for a refinementΣ → Σn(Δ ). Triangu-
lations T for which the associated fanΣ(T) is the normal fan of
a polytope are called regular (or projective,coherent) in the lit-
erature, see [34] for more details. Finally, a fine triangulation is
in general not sufficient to completely resolve9 all singularities
of ℙΣn(Δ ) meeting a generic Calabi-Yau hypersurface of dimen-
sion≥ 4.[ 17 ]The reason for this is that having a fine triangulation
of a 2-face of a reflexive polytope implies that the correspond-
ing cones do not lead to any singularities. The first dimension in
which singularities can persist even for fine triangulations of a
reflexive polytope is n=5, i.e. Calabi-Yau fourfolds. For Calabi-
Yau threefolds we are considering four-dimensionalpolytopes.
Here, simplices in 3-faces can lead to pointlike singularities of
the ambient toric variety even for fine triangulations, but these
do not meet a generic Calabi-Yau hypersurface. In contrast, the
four-dimensional cones associated with three-simplices for five-
dimensional polytopes lead to singularities along curves which
may meet a generic Calabi-Yau fourfold hypersurface.

For a pair of n-dimensional reflexive polytopes, there is a one-
to-one correspondence between the facesΘ[k] of Δ and the faces
Θ◦[n−k−1] of Δ◦defined by

⟨Θ[k],Θ◦[n−k−1]⟩ = −1. (B.51)

Under the resolution induced by the refinementΣ → Σn(Δ ), the
stratum Z [k]

Θ
of a Calabi-Yau hypersurface,which corresponds

to a (k −1)-dimensional subvariety of Z before resolution, is
changed according to the new simplices introduced in the dual
faceΘ◦[n−k−1]. A simplex of dimension l (a cone of dimension
l + 1) corresponds to a subvariety of Z of dimension n− l −2.
Hence a simplex of dimension l that is contained in the interior
of a faceΘ◦[n−k−1] corresponds to a subvariety of the form

Z
Θ[k] ×(ℂ∗)n−l−k−1. (B.52)

Note that verticesΘ[0] of Δ , which are dual to the facesΘ◦[n−1]

of maximal dimension, correspond to−1-dimensional varieties,
i.e. they do not contribute in the stratification of Z. This persists
after the resolutionΣ → Σn(Δ ). A simple intersection argument
shows that none of the divisors corresponding to points 𝜈 in-
terior to a face of maximal dimension (and hence none of the
other strata corresponding to simplices interior to a face of maxi-
mal dimension) intersect a smooth Calabi-Yau hypersurface. For
any face of maximal dimension (also called a facet)Θ◦[n−1] we
can find a normal vector n (this is the dual vertexΘ[0]) such that
⟨n,Θ◦[n−1]⟩ = −1. This means that there is a linear relation of the
form
∑

𝜈i∈Θ◦[n−1]

Di +
∑

𝜈j∉Θ◦[n−1]

ajDj = 0, (B.53)

8 The simplices of the triangulations are hence the cones of the fanΣ, cut
off at the surface ofΔ◦. Note that one may start from any triangulation
T of Δ◦, restrict it to a triangulation T𝜕Δ◦ of the faces ofΔ◦and then
simply construct the cones over T𝜕Δ◦.

9 Of course, we can always find non-crepant resolutions by introducing
rays generated by lattice points outside ofΔ◦.
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for some integers aj. Let us now assume we have refinedΣ such
that there is a point𝜈p interior to the facetΘ◦[n−1]. The associated
divisor Dp can only have a nonzero intersection with divisors Dk

for which 𝜈k also lies inΘ◦[n−1], as all others necessarily lie in dif-
ferent cones of the fanΣ. This means that the above relation im-
plies

Dp ⋅
∑

𝜈i∈Θ◦[n−1]

Di = 0, (B.54)

where we sum over all toric divisors coming from points on
Θ◦[n−1]. The Calabi-Yau hypersurface is given as the zero locus of
a section of−K

ℙ
n
Σ
=
∑

j Dj , where we sum over all toric divisors.
We now find

Dp ⋅
∑

j

Dj =Dp ⋅
∑

𝜈i∈Θ◦[n−1]

Di =0, (B.55)

by using the same argument again.Hence Dp does not meet a
generic Calabi-Yau hypersurface. Correspondingly, a refinement
ofΣ introducing 𝜈p does not have any influence on Z. As the strata
corresponding to simplices of dimension≥1 interior to Θ◦[n−1]

can be thought of as (an open subset of ) intersections of divisors,
at least one of which corresponds to an interior point ofΘ◦[n−1],
none of the simplices interior to a face of maximal dimension
gives rise to any subvariety ofℙΣ meeting Z. Correspondingly,
such strata do not appear in the stratification of Z. The fact that all
simplices contained in faces of maximal dimension ofΔ◦do not
contribute to Calabi-Yau hypersurfaces means that we can ignore
such faces when constructing a triangulation ofΔ◦.

Using the methods explained above,one can derive combi-
natorial formulas for the Hodge numbers of toric Calabi-Yau
hypersurfaces[ 17 ]that do not depend on the specific triangula-
tion chosen.For a Calabi-Yau hypersurface of dimension n−1
which is embedded in a toric variety of dimension n we have to
consider a pair of reflexive polytopes of dimension n and stratifi-
cation gives

h1,1(Z) = 𝓁(Δ◦)− (n+ 1)−
∑

Θ◦[n−1]

𝓁∗(Θ◦[n−1])

+
∑

(Θ◦[n−2],Θ[1])

𝓁∗(Θ◦[n−2])𝓁∗(Θ[1]) (B.56)

hn−2,1(Z) = 𝓁(Δ )− (n + 1)−
∑

Θ[n−1]

𝓁∗(Θ[n−1])

+
∑

(Θ[n−2],Θ◦[1])

𝓁∗(Θ[n−2])𝓁∗(Θ◦[1]) (B.57)

hm,1(Z) =
∑

(Θ◦[n−m−1],Θ[m])

𝓁∗(Θ◦[n−m−1])𝓁∗(Θ[m]) for n −2 > m > 1.

(B.58)

Note that these numbers only make sense for a smooth Calabi-
Yau hypersurface, which is only guaranteed without further in-
vestigation for Calabi-Yau hypersurfaces of dimension≤3.

Although the above formulas for h1,1(Z) and hn−2,1(Z) are
derived using the stratification technique of [27], they have

a straightforward explanation. In particular, the formula for
hn−2,1(Z) counts the number of complex structure deformations
by counting the number of monomial deformations appearing in
the defining equation and subtracting the dimension of the auto-
morphism group ofℙΣ. Finally, the last term in (B.57) corrects for
the fact that not all deformations are realized as polynomial de-
formations. Similarly, the formula for h1,1(Z) counts the number
of inequivalent divisors ofℙΣ that meet Z, with a correction term
taking into account that some divisors ofℙΣ become reducible
on Z.

As is apparent from the above formulae, exchanging the roles
of Δ and Δ◦ exchanges h1,1(Z) ↔ h2,1(Z). This is how mirror
symmetry is realized for toric Calabi-Yau hypersurfaces.

B.6. Topology of Subvarieties of Calabi-Yau Threefolds

In this section we describe the topology of subvarieties of Calabi-
Yau hypersurfaces in toric varieties that are obtained by restrict-
ing toric subvarieties of the ambient space. For ease of notation
we restrict to the case n=4, i.e. Calabi-Yau threefolds, but a simi-
lar analysis may be carried out in higher dimensions. As we have
already explained, we only need to consider simplices on the 2-
skeleton ofΔ◦, as strata ofℙΣ associated with simplices interior
to 3-faces ofΔ◦ do not meet a smooth Calabi-Yau hypersurface.
Each l-simplex of a triangulation T ofΔ◦corresponds to a l+ 1-
dimensional cone in the fan Σ and hence to an open stratum
(ℂ∗)4−(l+1) in ℙΣ. Depending on the location of the simplex on
Δ◦, the defining equation of the Calabi-Yau hypersurface will only
constrain some of theℂ∗ factors, while others will lie entirely in
the Calabi-Yau hypersurface.The reason for this is in the reso-
lution processΣ → Σn(Δ ). If we work with the singular varieties
determined byΣn(Δ), every k-dimensional faceΘ◦[k] of Δ◦ gives
rise to a stratum ZΘ[4−k−1] of dimension 2−k. This stratum is given
as a hypersurface in (ℂ∗)3−k. The resolution processΣ → Σn(Δ ),
described in Appendix B.3, yields

Z
Θ[4−k−1] → Z

Θ[4−k−1] ×E
Θ[4−k−1]. (B.59)

The factor EΘ[4−k−1] is determined by the simplices contained in the
relative interior of the faceΘ◦[k]. Every l-simplex contained in the
relative interior of a k-dimensional faceΘ◦[k] contributes a (ℂ∗)k−l

to EΘ[4−k−1], and hence it contributes a stratum

Z
Θ[4−k−1] ×(ℂ∗)k−l (B.60)

to Z. Note that the factor ZΘ[3−k] is common to all of the strata
originating from simplices contained in a chosen face. For a
Calabi-Yau threefold,this correspondence is such that ZΘ is a
two-dimensionalvariety for vertices,a curve for strata interior
to 2-faces and a collection of points for strata interior to two-
dimensional faces.

The closed subvarieties ofℙΣ, and hence of Z, associated with
a simplex t are found by collecting all lower-dimensionalsim-
plices u attached to t (i.e.t ⊂ 𝜕u) and taking the disjoint union
of the associated strata. As the Hodge-Deligne numbers ep,q are
additive, this provides an efficient way to find the Hodge num-
bers of the associated subvariety. Again, we may neglect all sim-
plices that are contained in the relative interior of faces of max-
imal dimension (three in this case) as these do not contribute
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any strata to a Calabi-Yau hypersurface. In the following, we will
explicitly write down the resulting stratifications of various sub-
varieties and compute their Hodge numbers.

At this point, we will adopt a different notation than in the
rest of this appendix. As in the main text of the paper, we focus
on threefolds, and so only need to distinguish vertices, edges, 2-
faces, and 3-faces (facets) ofΔ◦, which we denote by v, e, fand c,
respectively. These are dual to 3-faces, 2-faces, edges and vertices
on the M-lattice polytopeΔ , which are consequently denoted by
v◦, e◦, f◦and c◦. We hope this does not confuse the reader.

B.6.1. Vertices:Let us consider a divisor Di for which the as-
sociated lattice point𝜈i = v is a vertex. The vertex has a dual face
v◦ on Δ that contributes an open two-dimensional stratum Zv◦.
Furthermore, there will be 1-simplices contained in edges e (dual
to faces e◦) ending on v contributing Ze◦ as well as 1-simplices on
2-faces f(dual to 1-faces f◦) contributing Zf ◦ × ℂ∗. Finally there
are 2-simplices on faces f(dual to 1-faces f◦) contributing Z f ◦.
Hence such divisors contain the irreducible hypersurface Zv◦ as
an open dense set that is compactified by the other strata. Note
that Zf ◦ is just a collection of𝓁∗(f ◦) + 1 points.

Collecting all of these strata we find the stratification of Di to
be

Di =Zv◦ ⨿e≥v Ze◦ ×(pt) ⨿ f ≥v Z◦
f ×

( ∑
ℂ∗⨿

∑
pt
)
. (B.61)

With the stratification (B.61) at hand, we can start computing
the Hodge numbers.For h1,0(Di), only the first two strata con-
tribute and we find

h1,0(Di) = −e1,0(Di)

= −

(

e1,0(Zv◦) +
∑

e⊃v

e1,0(Ze◦)

)

= −

(
∑

e⊃v

𝓁∗(e◦) −
∑

e⊃v

𝓁∗(e◦)

)

= 0

(B.62)

For h2,0(Di), only the first stratum in (B.61) contributes and we
find

h2,0(Di) = e2,0(Zv◦) = 𝓁∗(Zv◦). (B.63)

Finally, we can compute h1,1(Di). Here, we find a contribution
from Z v◦, computed in (B.43), as well as a contribution

∑

e⊃v

e1,1(Ze◦) =
∑

e⊃v

1 (B.64)

from any edge e emanating from the vertex v.Furthermore, 1-
simplices interior to any 2-face f (dual to f ◦) connected to the
vertex v contribute

∑

f ⊃e

e0,0(Zf ◦)×
∑

t1

e1,1(ℂ∗)

=
∑

f⊃e

(𝓁∗(f ◦) + 1)
∑

t1⊃𝜈i

1
(B.65)

Summing it all up, the result is

h1,1(Di) = −3+ 𝓁∗(2v◦)−4𝓁∗(v◦) − 𝓁2(v◦) + 𝓁1(v◦)

+
∑

e⊃v

1+
∑

f ⊃v

(𝓁∗(f ◦) + 1)
∑

t1⊃𝜈i

1 (B.66)

B.6.2. Simplices Interior to 1-Faces ofΔ◦: Let us first consider
divisors originating from points𝜈i interior to edges e ofΔ◦dual
to 2-faces e◦ of Δ . The 0-simplex corresponding to𝜈i is of the
form Z e◦ × ℂ∗, and the two 1-simplices on the edge e containing
𝜈i correspond to Ze◦. One-simplices containing𝜈i that are interior
to 2-faces f(dual to f◦) contribute𝓁∗(f ◦) + 1 points timesℂ∗and
2-simplices contribute𝓁∗(f ◦) + 1 points.

The open and dense stratum of such divisors (which origi-
nates from the simplex 𝜈i) is simply the product of a curve of
genus𝓁∗(e◦) (with 𝓁1(e◦) points excised) times aℂ∗, which gets
compactified by the remaining strata. We may think of these as
(the open dense subsets of ) the intersection of Di with ‘neigh-
boring’ divisors. The two 1-simplices along the edge e partially
compactify Ze◦ × ℂ∗ to Ze◦ × ℙ1. The remainingℂ∗’s and points
sit over the𝓁1(e◦) points excised in the open curve Ze◦. We may
hence think of such divisors as follows:they are flat fibrations
of aℙ1 over a curve of genus𝓁∗(e◦). Over𝓁1(e◦) points, the fiber
ℙ1 degenerates into a chain ofℙ1’s, as determined by number
of 1-simplices (and 2-simplices) attached to𝜈i lying on neighbor-
ing 2-faces f⊃ v. To see the details of how this works first note
that

𝓁1(e◦) =
∑

f ◦⊂e◦
𝓁∗(f ◦) + 1. (B.67)

Over each of the 𝓁∗(f ◦) + 1 points that are excised due to the
face f◦⊂e◦, we find the strata corresponding to the one-(and
two-) simplices interior to the dual face f⊃ e. Hence over𝓁∗(f ◦) +
1 points, where f◦, f are dual faces,the generic fiber ℙ1 of D i

degenerates into a number of ℙ’s equal to the number of 1-
simplices which are attached to𝜈i and interior to f . A cartoon
of this is shown in Figure B.2.

From this analysis of the fibration structure, we expect that

h1,1(Di) = 2+
∑

f ⊃e

(
𝓁∗(f ◦) + 1

)
⋅

(

−1+
∑

t1⊃𝜈i

1

)

, (B.68)

which will be confirmed by a direct computation using the strat-
ification below.

As explained above, the stratification of Di is

Di =Ze◦ ×(ℂ∗+ 2pts) ⨿ f ⊃e Zf ◦

( ∑
ℂ∗+

∑
pt
)
. (B.69)

Here, theℂ∗ multiplying Z e◦ is due to 𝜈i (k =2, l=1), whereas
the 2 points correspond to the two 1-simplices on e contain-
ing 𝜈i (k =2, l=2). Each ℂ∗ multiplying Z f ◦ corresponds to
a 1-simplex containing 𝜈i that is interior to the face f and
each pt corresponds to a 2-simplex containing𝜈i that is interior
to f .
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Figure B.2.The fibration structure of a divisor Di of Z associated with a lattice point𝜈i interior to an edge e of a four-dimensional polytope. The base is
a genus g= 𝓁∗(e◦) curve and the generic fiber is aℙ1. For each neighboring 2-face f⊃ e, there are 1+ 𝓁∗(f ◦) points over which the fiber degenerates
into as manyℙ1s as there are 1-simplices t1 on f that contain𝜈i.

Again, h0,0(Di) =1 as Di is irreducible. The computation for
h1,0 now becomes

h1,0(Di) = −e1,0(Ze◦ ⋅(ℂ∗⨿ 2pts))

= 𝓁∗(e◦) ⋅(e0,0(ℂ∗) + 2e0,0(pt))

= 𝓁∗(e◦).

(B.70)

We have h2,0(Di) = e2,0(Di) =0 as no stratum contributes. Already
for the highest stratum Ze◦, we have to count interior points to 3-
dimensional faces of e◦, of which there are none. These Hodge
numbers fit with the fibration structure discussed above.

Finally, let us compute h1,1(Di). Here we need

h1,1(Di) = e1,1(Ze◦) ⋅
(
e0,0(ℂ∗) + 2e0,0(pt)

)
+ e0,0(Ze◦) ⋅e1,1(ℂ∗)

+
∑

f ◦⊂e◦

e0,0(Zf ◦) ⋅
∑

t1⊃𝜈i

1

= 1⋅(−1+ 2)+ (1− 𝓁1(e◦))⋅1+
∑

f ◦⊂e◦
(1+ 𝓁∗(f ◦))⋅

∑

t1⊃𝜈i

1

= 2−

(
∑

f ◦⊂e◦
𝓁∗(f ◦) + 1

)

+
∑

f ◦⊂e◦
(1+ 𝓁∗(f ◦))⋅

∑

t1⊃𝜈i

1

= 2+
∑

f ◦⊂e◦
(1+ 𝓁∗(f ◦))⋅

(

−1+
∑

t1⊃𝜈i

1

)

, (B.71)

as predicted from the analysis of the fibration of Di carried
out above.

Similarly, one may analyze curves C that correspond to 1-
simplices t1 interior to a 1-face e. Here, the stratification is

C =Ze◦ +
∑

f ◦⊂e◦

Z◦
f ×(pt). (B.72)

The stratum Ze◦ is a curve of genus𝓁∗(e◦) with a number of points
excised. The second term is due to the unique 2-simplex attached
to t1 on every face f⊃e,which consists of𝓁∗(f )+ 1 points for
each two-dimensionalface containing e.It supplies the points
that compactify Ze◦ to C. It follows immediately that the genus of
C is

h1,0(C) = 𝓁∗(e◦). (B.73)

This fits with the fact that the union of all strata corresponding
to simplices in the interior of e sits over the curve C, so that two
neighboring divisors Di and Dj intersect in the common base of
both their fibrations.

B.6.3. Simplices Interior to 2-Faces ofΔ◦: Again, let us first con-
sider 0-simplices𝜈i interior to a 2-face f of Δ◦. The open dense
subset of Di originating from 𝜈i is given by

Zf ◦ ×(ℂ∗)2, (B.74)

while 1-simplices (2-simplices) containing𝜈i compactify Di this
by contributing Zf ◦ × ℂ∗ and Zf ◦ ×(pts). All in all, the stratifica-
tion of Di is

Di =Zf ◦ ×

(

(ℂ∗)2 +
∑

t1⊃𝜈i

ℂ∗+
∑

t2⊃𝜈i

pt

)

. (B.75)

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (22 of 30)



www.advancedsciencenews.com www.fp-journal.org

Figure B.3.On the left hand side, the neighborhood of a lattice point𝜈i inside a 2-face fwith a triangulation. We have colored the simplices containing
𝜈i in red. These contribute to the star fan star(𝜈i) shown on the right hand side.

where t1 and t2 are simplices interior to f . As Zf ◦ is just a collec-
tion of 𝓁∗(f ◦) + 1 points, the divisors considered here are, in gen-
eral, reducible with each irreducible component being a toric va-
rietyℙstar(𝜈i ) determined by the stratification above. Starting from
the triangulation of a 2-face, we may construct the star fan w.r.t.
𝜈i to find the fan of the toric varietyℙstar(𝜈i ), see Figure B.3.

From this, it immediately follows that

h1,1(ℙstar(𝜈i )) = −2+
∑

t1⊂𝜈i

1 . (B.76)

The same result is easily recovered from the stratification (B.75):

h1,1(Di) = e0,0(Zf ◦) ×

(

e1,1((ℂ∗)2))+
∑

t1⊃𝜈i

e1,1(ℂ∗)

)

= (𝓁∗(f ◦) + 1)⋅

(

−2+
∑

t1⊂𝜈i

1

)

.

(B.77)

Similarly, the closed subvariety associated with each 1-simplex
interior to f is 𝓁∗(f ◦) + 1 times aℙ1 and the closed subvariety as-
sociated with each 2-simplex consists of𝓁∗(f ◦) + 1 points. This
implies that any two (three) divisors associated with points inte-
rior to f with a nonzero intersection will intersect in a collection
of 𝓁∗(f ◦) + 1 disjointℙs’s (points).

B.6.4. An Example: Let us consider a (slightly) nontrivial ex-
ample to see the above machinery at work. Consider a reflexive
polytopeΔ◦with vertices

v0 = [−1,−3,−9,−14]

v1 = [0,−2,−6,−9]

v2 = [0, 0, 0, 1]

v3 = [0, 0, 1, 0]

v4 = [0, 1, 0, 0]

v5 = [1, 0, 0, 0]

(B.78)

The 3-faces ofΔ◦as well as the vertices ofΔ◦spanning them,
their numbers of interior points and the dual vertices onΔ are

c0 =< v0, v1, v2, v3 > 𝓁∗(c0) = 0 ↔ c◦
0 = [0, 8,−1,−1]

c1 =< v0, v1, v2, v4 > 𝓁∗(c1) = 0 ↔ c◦
1 = [0,−1, 2,−1]

c2 =< v0, v2, v3, v4 > 𝓁∗(c2) = 0 ↔ c◦
2 = [27,−1,−1,−1]

c3 =< v1, v2, v4, v5 > 𝓁∗(c3) = 0 ↔ c◦
3 = [−1,−1, 2,−1]

c4 =< v0, v1, v3, v4, v5 > 𝓁∗(c4) = 3 ↔ c◦
4 = [−1,−1,−1, 1]

c5 =< v2, v3, v4, v5 > 𝓁∗(c5) = 0 ↔ c◦
5 = [−1,−1,−1,−1]

c6 =< v1, v2, v3, v5 > 𝓁∗(c6) = 0 ↔ c◦
6 = [−1, 8,−1,−1]

(B.79)

The 3-faces ofΔ dual to the vertices ofΔ◦are

v0 ↔ v◦
0 =< c◦

4
, c◦

1
, c◦

2
, c◦

0 > 𝓁∗(v◦0) =1

v1 ↔ v◦
1 =< c◦

4
, c◦

3
, c◦

0
, c◦

1
, c◦

6 > 𝓁∗(v◦1) =0

v2 ↔ v◦
2 =< c◦

5
, c◦

2
, c◦

0
, c◦

3
, c◦

1
, c◦

6 > 𝓁∗(v◦2) =54

v3 ↔ v◦
3 =< c◦

5
, c◦

2
, c◦

4
, c◦

0
, c◦

6 > 𝓁∗(v◦3) =22

v4 ↔ v◦
4 =< c◦

5
, c◦

2
, c◦

4
, c◦

1
, c◦

3 > 𝓁∗(v◦4) =4

v5 ↔ v◦
5 =< c◦

5
, c◦

6
, c◦

4
, c◦

3 > 𝓁∗(v◦5) =1

(B.80)

The edges ofΔ◦and their dual 2-faces onΔ are

e0 =< v0, v1 > 𝓁∗(e0) =0 ↔ e◦
0 =< c◦

4
, c◦

1
, c◦

0 > 𝓁 ∗(e0) =0

e1 =< v0, v2 > 𝓁∗(e1) =0 ↔ e◦
1 =< c◦

1
, c◦

2
, c◦

0 > 𝓁 ∗(e1) =7

e2 =< v1, v2 > 𝓁∗(e2) =1 ↔ e◦
2 =< c◦

3
, c◦

0, 1, c◦6 > 𝓁 ∗(e2) =0

e3 =< v0, v3 > 𝓁∗(e3) =0 ↔ e◦
3 =< c◦

4
, c◦

0
, c◦

2 > 𝓁 ∗(e3) =4

e4 =< v1, v3 > 𝓁∗(e4) =0 ↔ e◦
4 =< c◦

4
, c◦

6
, c◦

0 > 𝓁 ∗(e4) =0
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e5 =< v2, v3 > 𝓁∗(e5) =0 ↔ e◦
5 =< c◦

5
, c◦

2
, c◦

0
, c◦

6 > 𝓁 ∗(e5) =108

e6 =< v0, v4 > 𝓁∗(e6) =0 ↔ e◦
6 =< c◦

4
, c◦

1
, c◦

2 > 𝓁 ∗(e6) =1

e7 =< v1, v4 > 𝓁∗(e7) =2 ↔ e◦
7 =< c◦

4
, c◦

3
, c◦

1 > 𝓁 ∗(e7) =0

e8 =< v2, v4 > 𝓁∗(e8) =0 ↔ e◦
8 =< c◦

5
, c◦

2
, c◦

1
, c◦

3 > 𝓁 ∗(e8) =27

e9 =< v3, v4 > 𝓁∗(e9) =0 ↔ e◦
9 =< c◦

5
, c◦

2
, c◦

4 > 𝓁 ∗(e9) =13

e10 =< v4, v5 > 𝓁∗(e10) =0 ↔ e◦
10 =< c◦

5
, c◦

3
, c◦

4 > 𝓁 ∗(e10) =1

e11 =< v1, v5 > 𝓁∗(e11) =0 ↔ e◦
11 =< c◦

4
, c◦

3
, c◦

6 > 𝓁 ∗(e11) =0

e12 =< v2, v5 > 𝓁∗(e12) =0 ↔ e◦
12 =< c◦

5
, c◦

6
, c◦

3 > 𝓁 ∗(e12) =7

e13 =< v3, v5 > 𝓁∗(e13) =0 ↔ e◦
13 =< c◦

5
, c◦

6
, c◦

4 > 𝓁 ∗(e13) =4

(B.81)

and finally the 2-faces onΔ◦and their dual edges onΔ together
with their numbers of interior points are

f0 =< v0, v1, v2 > 𝓁∗(f0) =0 ↔ f ◦
0 =< c◦

1
, c◦

0 > 𝓁 ∗(f0) =2

f1 =< v0, v1, v3 > 𝓁∗(f1) =0 ↔ f ◦
1 =< c◦

4
, c◦

0 > 𝓁 ∗(f1) =0

f2 =< v1, v2, v3 > 𝓁∗(f2) =0 ↔ f ◦
2 =< c◦

6
, c◦

0 > 𝓁 ∗(f2) =0

f3 =< v0, v2, v3 > 𝓁∗(f3) =0 ↔ f ◦
3 =< c◦

0
, c◦

2 > 𝓁 ∗(f3) =8

f4 =< v0, v1, v4 > 𝓁∗(f4) =0 ↔ f ◦
4 =< c◦

4
, c◦

1 > 𝓁 ∗(f4) =0

f5 =< v0, v2, v4 > 𝓁∗(f5) =0 ↔ f ◦
5 =< c◦

1
, c◦

2 > 𝓁 ∗(f5) =2

f6 =< v1, v2, v4 > 𝓁∗(f6) =1 ↔ f ◦
6 =< c◦

3
, c◦

1 > 𝓁 ∗(f6) =0

f7 =< v0, v3, v4 > 𝓁∗(f7) =0 ↔ f ◦
7 =< c◦

4
, c◦

2 > 𝓁 ∗(f7) =1

f8 =< v2, v3, v4 > 𝓁∗(f8) =0 ↔ f ◦
8 =< c◦

5
, c◦

2 > 𝓁 ∗(f8) =27

f9 =< v1, v4, v5 > 𝓁∗(f9) =0 ↔ f ◦
9 =< c◦

4
, c◦

3 > 𝓁 ∗(f9) =0

f10 =< v2, v4, v5 > 𝓁∗(f10) =0 ↔ f ◦
10 =< c◦

5
, c◦

3 > 𝓁 ∗(f10) =2

f11 =< v1, v2, v5 > 𝓁∗(f11) =0 ↔ f ◦
11 =< c◦

3
, c◦

6 > 𝓁 ∗(f11) =2

f12 =< v3, v4, v5 > 𝓁∗(f12) =0 ↔ f ◦
12 =< c◦

5
, c◦

4 > 𝓁 ∗(f12) =1

f13 =< v1, v3, v5 > 𝓁∗(f13) =0 ↔ f ◦
13 =< c◦

4
, c◦

6 > 𝓁 ∗(f13) =0

f14 =< v2, v3, v5 > 𝓁∗(f14) =0 ↔ f ◦
14 =< c◦

5
, c◦

6 > 𝓁 ∗(f14) =8

(B.82)

The Hodge numbers of the corresponding mirror pair of
Calabi-Yau threefolds Z and̃Z can be quickly found with these
numbers by evaluating (B.56) and (B.58)

h1,1(Z) =h2,1(Z̃) =6

h1,1(Z̃) = h2,1(Z) =228
(B.83)

There is a single 2-face f6 that requires triangulation. This face,
with its integral points and its bounding edges, as well as its trian-
gulations, is shown in Figure B.4. Let us discuss the topology of

the divisors Di that correspond to the lattice points𝜈i , i = 1⋯7
sitting on this face. They are

𝜈1 = [0,−2,−6,−9] = v1

𝜈2 = [0,−2,−4,−6]

𝜈3 = [0, 0,−2,−3]

𝜈4 = [0, 1, 0, 0] = v4

𝜈5 = [0,−1,−3,−4]

𝜈6 = [0, 0,−1,−1]

𝜈7 = [0, 0, 0, 1] = v2

(B.84)

As remarked above, some of the Hodge numbers will depend on
the triangulation. Let us choose the triangulation shown in the
upper left of Figure B.4. The divisors D1, D4 and D7 correspond
to vertices, so that we conclude h1,0 vanishes for all three and

h2,0(D1) = 𝓁∗(v◦1) =0

h2,0(D4) = 𝓁∗(v◦4) =4

h2,0(D7) = 𝓁∗(v◦2) =54

(B.85)

no matter which triangulation is chosen. Let us now compute
the Hodge numbers h1,1 for the triangulation in the upper left of
Figure B.4, for which we have to evaluate

h1,1(Di) = −3+ 𝓁∗(2v◦) −4𝓁∗(v◦)− 𝓁2(v◦) + 𝓁1(v◦)

+
∑

e⊃v

1+
∑

f ⊃v

(𝓁∗(f ◦) + 1)
∑

t1⊃𝜈i
1 (B.86)

Note that there are no other 1-faces except e2 and e7, both of which
are on f6, with interior points, and that all faces ofΔ◦are simpli-
cial. Hence there can be no other 1-simplices except the ones in
f6, shown in Figure B.4, which contain𝜈1, 𝜈4 or 𝜈7 and are inte-
rior to a 2-face. Furthermore,𝓁∗(f ◦6 ) = 0. The number of edges ei

containing each of the three vertices in questions is found from
(B.81).

#e⊃ v1 =5

#e⊃ v4 =5

#e⊃ v2 =5

(B.87)

We finally find that

h1,1(D1) =1+ 5+ 0 = 6

h1,1(D4) =77+ 5+ 1 = 83

h1,1(D7) =398+ 5+ 1 =404

(B.88)

Only the last number depends on the triangulation chosen.
Let us now investigate the points𝜈i interior to 1-faces ei . Here

h2,0(Di) =0 for all cases. We start with v5 which is contained in

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (24 of 30)



www.advancedsciencenews.com www.fp-journal.org

ν2 ν3 ν4ν1

ν6ν5

ν7

ν2 ν3 ν4ν1

ν6ν5

ν7

ν2 ν3 ν4ν1

ν6ν5

ν7

ν2 ν3 ν4ν1

ν6ν5

ν7

ν2 ν3 ν4ν1

ν6ν5

ν7

Figure B.4.The only nontrivial 2-face f6 of Δ◦along with its five possible triangulations.

e2. We hence learn from (B.81) that h1,0(D5) =0. For h1,1, we have
to evaluate

2+
∑

f ◦⊂e◦
(1+ 𝓁∗(f ◦)) ⋅

(

−1+
∑

t1⊃𝜈i

1

)

(B.89)

In the triangulation we are considering, there are three 1-
simplices contained in f6 which each contribute 1 (as𝓁∗(f ◦) =0)
to h1,1. For each 2-face apart form f6, there can only be a single
1-simplex containing𝜈5, so that we conclude

h1,1(D5) = 4. (B.90)

As described in generalabove,this means we should think of
D5 as a fibration of aℙ1 over anotherℙ1 for which the fiber de-
generates into a union of three ℙ1s over a single point in the
base.

The other two points𝜈2 and 𝜈3 interior to edges are contained
in the same edge, e7, so that

h1,0(D2) = h1,0(D2) = 𝓁∗(e◦7) =0. (B.91)

For the triangulation chosen,𝜈2 only connects to a single vertex
inside f6, whereas𝜈3 connects to two, hence

h1,1(D2) = 2 h1,1(D3) = 3 . (B.92)

Finally, there is𝜈6. As it is interior to a 2-face, it is n= 𝓁∗(f6) +
1 =1 copies of a toric variety.This toric variety can be directly
read off from the star fan to be the Hirzebruch surface𝔽1 for the
triangulation chosen. Hence

h1,0(D6) = h2,0(D6) =0 h1,1(D6) =2. (B.93)

A similar discussion can now easily be made for other
triangulations. We can e.g. consider a flop taking us from the tri-
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angulation on the upper left to the one on the upper right. This
will decrease the h1,1 of D3 and D6 by one, whereas the h1,1 of D5
and D4 are increased by one.

B.7. Hodge Numbers hi,0 of Toric Divisors of Calabi-Yau n-Folds

For Calabi-Yau manifolds of higher dimension than 3, the same
technique as used above can be used to find topological data of
toric divisors restricted to a Calabi-Yau hypersurface.Whereas
Hodge numbers such as h1,1(Di) will depend on the triangulation,
one can derive a remarkably simple formula for the Hodge num-
bers hi,0. For a smooth Calabi-Yau n−1-fold associated with a pair
of n-dimensional reflexive polytopesΔ◦,Δ and a lattice point𝜈 in
the relative interior of a faceΘ◦[n−d] of dimension n−d, the asso-
ciated divisorD̂ is such that

hi,0(D̂) = 𝛿i,d−2 𝓁∗(Θ[d−1]), (B.94)

where d> 2. HereΘ[d−1] is the face ofΔ dual to the faceΘ◦[n−d]

containing 𝜈D. Furthermore, h0,0(D̂) =1 holds for d > 2, as all
such divisors are connected. Formula (B.94), which we will prove
in the following, is the central result of this section. Note that
(B.94) reduces to the corresponding relations derived above for
Calabi-Yau threefolds (where n= 4). In the threefold case,divi-
sors associated with vertices (d=4) only have a non-vanishing
h2,0 and divisors associated with points interior to edges (d= 3)
only have a non-vanishing h1,0.

Let us assume that we are given a pair of reflexive polytopes
Δ◦,Δ and a triangulation giving rise to a smooth projective toric
variety10 ℙΣ. Let D be the toric divisor associated with a lattice
point 𝜈D contained in the relative interior of a faceΘ◦[n−d] of di-
mension n−d. We are interested in the Hodge numbers of a di-
visor D̂ =D ∩Z. Any toric divisor D is composed of the strata
associated with all cones that contain the ray over𝜈D. As before,
these descend to a subset of the strata of Z and we can sum their
Hodge-Deligne numbers ep,q to find the Hodge numbers of̂D.

We first note that the cases d=1 and d=2 are trivial. In the
first case, d=1, D does not give rise to any divisor on Z, while in
the second case, d= 2, the faceΘ◦[n−2] is dual to a face of dimen-
sion n− (n−2)−1 =1, denoted byΘ[1], and it enjoys a stratifi-
cation of the form

D̂ =Z
Θ[1] ×

[
strata of the form(ℂ∗)i ] (B.95)

so that such divisors have h0,0 = 𝓁∗(Θ[1]) + 1 disconnected com-
ponents which are all smooth toric varieties. Hence the only non-
trivial Hodge numbers of such divisors are hi,i (D̂).

We hence assume d> 2 in the following. Let us start by writing
down the stratification of an arbitrary divisor of Z descending
from a toric divisor. It is given by

D̂ = ⨿k,Θ◦[n−d+k]⊃𝜈D
Z

Θ[d−1−k] ×
∑ [

pt. + ⋯ +(ℂ∗)n−d+k]
. (B.96)

As usual, (Θ◦[n−d+k],Θ[d−1−k]) are a pair of dual faces. For a divisor
inside a faceΘ◦[n−d], only strata on neighboring faces containing

10 More generally,it is enough to for the singularities of ℙΣ to miss a
generic Calabi-Yau hypersurface, i.e. the only cones ofΣ of lattice vol-
ume ≥ 1 are sitting inside faces of maximal dimension ofΔ◦.

Θ◦[n−d] contribute. OnΔ , this can be expressed by saying that only
facesΘ[d−1−k] of Θ[d−1] contribute. For each such face,the toric
strata (ℂ∗)l in each term originate from various simplices of the
triangulation on the facesΘ◦[n−d+k] dual to Θ[d−1−k] that contain
the point 𝜈D. In particular, a (ℂ∗)n−d+k originates from the point
𝜈D itself, a (ℂ∗)n−d+k−1 originates from every 1-simplex in the in-
terior of Θ◦[n−d+k] containing 𝜈D, and so on. Finally, the highest-
dimensional simplices, which are n −d+ k-dimensional, give
rise to points in the above expression.

Our main tool in deriving (B.94) will be (B.35). Only the strata
Z
Θ[d−1−k] can potentially contribute to hi,0, as ei,0((ℂ∗)k) = 0 for i> 0.

Hence we will only need to evaluate ei,0(Θ[d−1−k]) and e0,0 of the
sum over simplices on the right-hand side of (B.96).

The first conclusion that can be drawn directly from (B.35) is
that hi,0(D̂) =0 whenever i> d−2. In this case, none of the strata
Z
Θ[d−1−k] can contribute, as we would need to count points in faces

of dimension i + 1 in the face ZΘ[d−1−k], but even for k=0, there
are no such faces. The geometric reason for this is that any di-
visor associated with a point𝜈D inside a face of dimension n−d
should be thought of as an exceptional divisor originating from
the resolution discussed in §B.3. Correspondingly, each such di-
visor is a fibration of a toric variety of dimension n−d (which
degenerates over various subloci) over an irreducible manifold
of dimension d−2. Hence the highest possible i for which hi,0 is
nonzero is d−2, as already established.

Indeed, we do get a nonzero contribution whenever i=d−2.
In this case, only the stratum ZΘ[d−1] (i.e. k=0) contributes and
we find

ei,0 = (−1)d−2𝓁∗(Θ[d−1])×e0,0
( ∑

(ℂ∗)lstrata
)

(B.97)

The sum on the right hand side runs over all of the simplices
on Θ◦[n−d] that contain𝜈D, including 𝜈D itself, and the sign alter-
nates according to the dimension of the simplex in question as
e0,0((ℂ∗)l) = (−1)l.

If we neglect 𝜈D, the remaining simplices are arranged such
that they form an n −d−1-dimensionalpolyhedron. It can be
found by intersecting the various simplices with an n −d−1-
sphere onΘ◦[n−d] centered at𝜈D. Here, 1-simplices in the alternat-
ing sum, which contribute (−1)n−d−1 above, correspond to vertices
of the polyhedon. As this polyhedron is topologically a sphere we
can write

e0,0
( ∑

(ℂ∗)lstrata
)
= (−1)n−d−1𝜒(Sn−d−1) + (−1)n−d

=1 (B.98)

where𝜈D contributes the second term. AŝD is a smooth compact
manifold we can use h0,i(D̂) = (−1)iei,0(D̂), so that we have shown
the case i=d−2 of (B.94).

We now proceed to show that h0,i = 0 for all 0< i < d−2. De-
pending on i, a number of strata ZΘ[k] from (B.96) contribute.
Starting again from (B.96), we can write

ei,0(D̂) =
∑

k,Θ◦[n−d+k]⊇𝜈D

ei,0(Z
Θ[d−1−k]

)

×e0,0
( ∑ [

pt. + ⋯ +(ℂ∗)n−d+k]
)
. (B.99)
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For every term in the above sum over k, we have to find the al-
ternating sum of all of the simplices containing𝜈D on the face
Θ◦[n−d+k] dual toΘ[d−1−k] to evaluate the various e0,0. For k= 0, we
have already found that this sum simply gives 1 by relating it to
the Euler characteristic of a sphere.For higher values of k,we
can essentially use a similar argument. In this case, the point𝜈D

sits on the codimension-k hyperplane ofℝn−d+k defined by the
faceΘ◦[n−d]. Furthermore, the faceΘ◦[n−d+k] will be bounded by
other hyperplanes of dimension greater than or equal to n−d,
so that the set of all simplices onΘ◦[n−d+k] connecting to𝜈D will
correspond to a triangulation of an open subset of a sphere of
dimension n−d+ k−1. This has Euler characteristic 1 in even
and −1 in odd dimensions. To fix the sign,note that points on
this sphere correspond again to 1-simplices, which in turn have
a factor of (−1)n−d+k−1 in the sum. As such points contribute 1 in
the computation of the Euler characteristic, the contribution of
the sum over simplices to e0,0 is always equal to 1.

Using (B.35), we are hence led to

ei,0(D̂) =
∑

k,Θ◦[n−d+k]⊃𝜈D

ei,0(Z
Θ[d−1−k]

)

=
∑

k,Θ◦[n−d+k]⊇𝜈D

(−1)d−1−k
∑

Θ[i+1]⊆Θ[d−1−k]

𝓁∗(Θ[i+1]) . (B.100)

Note that each face containing𝜈D appears multiple times and
with alternating signs in the above expression.In particular, a
single faceΘ[i+1] can appear multiple times in a single term in the
sum over k. Let us consider a single such faceΘ[i+1] and find how
often it appears with which signs. First, note that we may equally
well phrase the problem in terms of faces ofΔ◦. Given the face
Θ◦[n−d] containing𝜈D and the faceΘ◦[n−i−2] dual toΘ[i+1], the factor
multiplying 𝓁∗(Θ[i+1]) for a fixed face of dimension [i−1] in the
above sum is then simply

∑

k,Θ◦[n−d]⊆Θ◦[n−d+k]⊆Θ◦[n−i−2]

(−1)d−1−k
. (B.101)

The contribution proportional to𝓁∗(Θ[i+1]), the dual face of which
is Θ◦[n−i−2], is hence given by counting all n−d+ k-dimensional
faces containingΘ◦[n−d] and contained in Θ◦[n−i−2]. To compute
this quantity, we again interpret this as an Euler characteristic of
a topological space as follows.Consider a sphere of dimension
n − i −2− (n−d)−1 =d− i −3 centered at𝜈D and orthogonal
to the faceΘ◦[n−d]. All the faces contributing to the sum above, ex-
ceptΘ◦[n−d] itself, will give rise to a decomposition of one closed
half of this sphere, which has Euler characteristic+1 in any di-
mension. The contribution of the highest-dimensional stratum
on this half-sphere has k=d− i −2, so that it contributes (−1)i−3

to the alternating sum in (B.101). As its dimension is d− i −3, it
contributes (−1)d−i−3 to the Euler characteristic, so that the sum
in (B.101), still neglecting the faceΘ◦[n−d], is (−1)d. The faceΘ◦[n−d]

contributes (−1)d−1, so that these two terms always cancel and the
sum (B.101) vanishes for any pair of facesΘ◦[n−d] and Θ◦[n−i−2].
Hence the sum (B.100) vanishes exceptwhen d = i −2, when
only one term in (B.101) contributes.This completes the proof
of (B.94).

Appendix C: Computation of h2 for a Divisor
on a 2-Face

In this appendix we give an alternative computation of h2( D) in
a special case (defined below). We will compute h2( D) directly in
terms of a counting of lattice points inΔ , arriving at a result that
coincides with Theorem 3 in this subcase. This computation pro-
vides an alternative perspective to that of the spectral sequence in
§3.1.

C.1. Preliminaries

We begin by assembling some elementary results aboutdivi-
sors and Calabi-Yau hypersurfaces in toric varieties.Let V be
a four-dimensional simplicial toric variety,with X a Calabi-Yau
hypersurface in V, and let D̂ denote a divisor in V. We write
D = D̂ ∩ X .

Proposition C.1.Serre duality gives

hi( V(−D̂)) =h4−i( V (D̂ −X )) (C.1)

on V, and

hi( X(−D)) =h3−i( X(D)) (C.2)

on X.

Let us now assumêD is effective. We then have h0( V (−D̂)) =0,
and so h4( V (D̂ −X ))= 0. Using also that X=

∑ D̂i , where the
D̂i are effective, we have h0( V (D̂ −X ))= 0, and so h4( V (−D̂)) =
0. In addition because D is effective we have h0( X(−D)) =0 and
so h3( X(D)) = 0.

Because V is a toric fourfold, we have the relation

h∙(V, V) = (1, 0, 0, 0, 0). (C.3)

Using Serre duality (as in [28]) in the long exact sequence in co-
homology induced by the Koszul sequence

0 →  V (−X) →  V →  X → 0, (C.4)

one immediately finds that the Hodge numbers h∙(X, X) obey

h∙(X, X) = (1, 0, 0, 1). (C.5)

Similarly, we can establish:

Proposition C.2.For a space S, defineh̃i(S) :=hi(S) for i> 0, and
h̃0(S) := h0(S)−1. Then the following relations hold, for 0≤ i ≤3:

h̃i(D̂,  D̂) = hi+1( V(−D̂)) = h3−i( V (D̂ −X )). (C.6)

We consider the Koszul sequence forD̂ ⊂V, which reads

0 →  V (−D̂) →  V →  D̂ → 0 . (C.7)

Fortschr. Phys. 2020, 68, 2000087 © 2020 Wiley-VCH GmbH2000087 (27 of 30)



www.advancedsciencenews.com www.fp-journal.org

This induces the long exact sequence in cohomology

Applying (C.3) leads to the first equality in (C.6). The second
equality then follows from (C.1).

Corollary C.3.If D̂ ≠X we have

h3(D̂,  D̂) =h0( V (D̂ −X ))=0, (C.8)

while ifD̂ =X we have

h3(D̂,  D̂) =h0( V (D̂ −X ))=1 . (C.9)

In close parallel to Proposition C2, we can show the following:

Proposition C.4.The following relations hold, for 0≤ i ≤2:

h̃i(D,  D) = h̃2−i(X, X(D)) . (C.10)

We consider the Koszul sequence for D⊂X, which reads

0 →  X(−D) →  X →  D → 0 . (C.11)

Applying (C.5) and (C.2) to the long exact sequence in cohomol-
ogy induced by (C.11) yields (C.10).

In particular, we have

Corollary C.5.

h2(D,  D) =h0(X, X(D))−1 . (C.12)

C.2. Relating h2 to Toric Data

We now state the condition that defines the special case treated
in this appendix.

Definition C.6.LetD̂ be a square-free divisor in V corresponding to

a collection of lattice points {uI } ⊂ Δ◦. We call̂D face-limited if the
uI are all contained in a single 2-face fofΔ◦. We call a divisor D in

X face-limited if D := D̂ ∩X with D̂ face-limited.

Notice thatℛD contains all the layers of the ravioli complexℛ
over f .Thus, D corresponds not just toℛD ⊂ ℛ, but also to a
subcomplex D ⊂  .

We now examine the simplicial complex D associated to D.

Lemma C.7.LetD̂ be a face-limited divisor in V , let D= D̂ ∩X, and
let  D be the associated simplicial complex. Then

hi(D̂,  D̂) =hi( D) . (C.13)

This follows from the spectral sequence associated to the gen-
eralized Mayer-Vietoris sequence on V given in Proposition A5
of Appendix A.

Corollary C.8.LetD̂ be a face-limited divisor in V , and let D= D̂ ∩X
be the corresponding face-limited divisor in X . Then

h2(D̂,  D̂) =0 . (C.14)

This follows from (C.13), because h2( D) = 0 for a divisor on a
single 2-face.

We can now relate sections on X to sections on V:

Lemma C.9.LetD̂ be a face-limited divisor in V , and let D= D̂ ∩X
be the corresponding face-limited divisor in X . Then h0(X, X(D)) =
h0(V, V (D̂)).

We tensor the Koszul sequence from V to X with (D̂), which
reads

0 →  V (D̂ −X) →  V (D̂) →  X(D) → 0 .

A general square-free divisorD̂ on V is written asD̂ =
∑ aiD̂i ,

where theD̂i are the toric divisors and ai ∈ {0, 1}. Because X=
∑ D̂i and the D̂i are effective,we have that h0( V (D̂ −X ))=0.
Therefore, to show that h0(X, X(D)) = h0(V, V (D̂)), we need to
show that h1( V(D̂ −X ))= 0. By Serre duality, equation (C.1), we
can equivalently show that h3( V (−D̂)) =0. Consider the Koszul
sequence from V tôD,

0 →  V (−D̂) →  V →  D̂ → 0 . (C.15)

Using (C.3) in the long exact sequence induced by (C.15), we find
that

h2(D̂,  D̂) =0 ⇒ h3( V (−D̂)) =0 . (C.16)

The lemma follows upon using (C.14).
We have thus proved:

Corollary C.10.Let D̂ be a face-limited divisor in V ,and let D=

D̂ ∩X be the corresponding face-limited divisor in X . Then

h2(D,  D) =h0(V, V (D̂))−1 . (C.17)

C.3. Computation of h2 for a Face-Limited Divisor

We are now equipped to calculate h2(D,  D) for an arbitrary face-
limited divisor D =

∑

i

aiDi . We first establish how to compute

h0(V, V (D)).

Proposition C.11.Let V be a toric variety corresponding to a fanΣ, let
D̂i be the toric divisors on V , and for ai ∈ ℤ, definêD :=

∑
i aiD̂i . De-

fine the polyhedra P̂D = {m ∈ M
ℝ|⟨m, ui⟩ ≥ −ai for all ui ∈ Σ(1)}.

Then h0(V, V (D̂)) = |PD̂ ∩M|.

The proof is given in Proposition 4.3.2 of [28].
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Lemma C.12.LetD̂ be a face-limited divisor in V , let D= D̂ ∩X be
the corresponding face-limited divisor in X , and let v be the vertices, e
the complete edges, and fthe complete faces included in D.11 Then

h0(V, V (D̂)) = 1+
∑

v

g(v)+
∑

e

g(e)+
∑

f

g(f ). (C.18)

Proof. Sections of V (D̂) are counted by lattice points m such
that ⟨m, ui⟩ ≥ −ai , and so h0(V, V (D̂)) can be computed by count-
ing suitable lattice points. We consider a divisorD̂ =

∑

i

D̂i speci-

fied by a set of points ui ∈ f, i ∈ 1,… , N, where f is a 2-face. We
label the points not in the set {ui} as ua. First, note that for any
effective divisor the origin m= 0⃗ corresponds to a global section.
As D̂ is by assumption also square-free, the additional sections of
 V (D̂) are counted by lattice points m such that⟨m, ui⟩ ≥ −1, and
⟨m, ua⟩ ≥0. We will count these sections by including points in
the set {ui} one by one, and checking how the number of sections

changes. In other words, let̂D =

j
∑

i=1
D̂i , where j≤N −1, and let

D̂′

=

j+1∑

i=1
D̂i = D̂ + D̂j+1.

The divisor D̂j+1 corresponds to a lattice point uj+1. Then
h0(V, V (D̂′ )) equals the number of lattice points m such that

⟨m, ui⟩ ≥ −1, (C.19)

⟨m, uj+1⟩ ≥ −1, (C.20)

⟨m, ua⟩ ≥0 . (C.21)

On the other hand, h0(V, V (D̂)) equals the number of lattice
points m such that

⟨m, ui⟩ ≥ −1, (C.22)

⟨m, ua⟩ ≥0 . (C.23)

Thus, h0(V, V (D̂′ ))−h0(V, V (D̂)) is the number of lattice points
m such that

⟨m, ui⟩ ≥ −1, (C.24)

⟨m, uj+1⟩ = −1, (C.25)

⟨m, ua⟩ ≥0 . (C.26)

The points m obeying (C.25) are by definition the lattice points in
the face u◦j+1 of Δ , dual to the point uj+1. We need to count points
in u◦

j+1 that also satisfy (C.24) and (C.26). There are three types
of ui : vertices, points interior to edges, and points interior to f .
We will include them in the set {ui} in that particular order. First

11 Because D is by assumption contained in a single 2-face f , the last
sum in (C.18) will only have one term, but we find it useful to write
(C.18) in a form that anticipates our result for a completely general
square-free divisor.

consider the case where uj+1 is a vertex of f .Then we need to
solve

⟨m, uj+1⟩ = −1 (C.27)

⟨m, ua⟩ ≥0 . (C.28)

Equation (C.25) defines the facet u◦
j+1 ∈ Δ(3). However, any point

on the boundary of u◦j+1 has a dual inΔ◦, defined by⟨m,⋅⟩ = −1,
that violates (C.28). The only points that do not violate (C.28) are
those in the interior of u◦j+1, as they are dual only to uj+1 itself, and
therefore h0(V, V (D̂0)) = 1+ g(uj+1).

Next let uj+1 correspond to a point internal to an edge e∈ Δ◦(1).
The condition (C.28) is violated unless the entire edge, including
the vertices bounding it, is included, since⟨m, uj+1⟩ = −1 implies
that ⟨m, u𝛼⟩ = −1 for any u 𝛼 ⊂ e. Therefore,a divisor D corre-
sponding to a complete edge e with vertices ua and ub has

h0(V, V (D̂)) =1+ g(vu) + g(vu) + g(e). (C.29)

In a similar manner we find that including points u𝛼 internal to
f in the set {ui} can only contribute to h2 if every point in the face
f is included in {ui}. □

From Corollary C10 and Lemma C12 we deduce:

Corollary C.13.Let D be a face-limited square-free divisor in X . Then

h2(D,  D) =
∑

v

g(v◦) +
∑

e

g(e◦) +
∑

f

g(f◦). (C.30)
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