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Abstract— The emergence of deep learning has consid-
erably advanced the state-of-the-art in cardiac magnetic
resonance (CMR) segmentation. Many techniques have
been proposed over the last few years, bringing the ac-
curacy of automated segmentation close to human per-
formance. However, these models have been all too often
trained and validated using cardiac imaging samples from
single clinical centres or homogeneous imaging protocols.
This has prevented the development and validation of
models that are generalizable across different clinical cen-
tres, imaging conditions or scanner vendors. To promote
further research and scientific benchmarking in the field
of generalizable deep learning for cardiac segmentation,
this paper presents the results of the Multi-Centre, Multi-
Vendor and Multi-Disease Cardiac Segmentation (M&Ms)
Challenge, which was recently organized as part of the
MICCAI 2020 Conference. A total of 14 teams submitted
different solutions to the problem, combining various base-
line models, data augmentation strategies, and domain
adaptation techniques. The obtained results indicate the
importance of intensity-driven data augmentation, as well
as the need for further research to improve generalizability
towards unseen scanner vendors or new imaging proto-
cols. Furthermore, we present a nhew resource of 375 het-
erogeneous CMR datasets acquired by using four different
scanner vendors in six hospitals and three different coun-
tries (Spain, Canada and Germany), which we provide as
open-access for the community to enable future research
in the field.

Index Terms— Cardiovascular magnetic resonance, im-
age segmentation, deep learning, generalizability, data aug-
mentation, domain adaption, public dataset.
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[. INTRODUCTION

CCURATE segmentation of cardiovascular magnetic res-
onance (CMR) images is an important pre-requisite in
clinical practice to reliably diagnose and assess a number of
major cardiovascular diseases [1], [2]. Currently, the process
typically requires the clinician to provide a significant amount
of manual input and correction to accurately and consistently
annotate the cardiac boundaries across all image slices and
cardiac phases. The automation of such a tedious and time-
consuming task has been pursued for a long time by using
multiple approaches, such as statistical shape models [3] or
cardiac atlases [4]. In the last few years, the advent of the deep
learning paradigm has motivated the development of many
neural network based techniques for improved CMR segmen-
tation, as listed in a recent review [5]. However, most of these
techniques have been all too often trained and evaluated using
cardiac imaging samples collected from single clinical centres
using similar imaging protocols. While these works have
advanced the state-of-the-art in deep learning based cardiac
image segmentation, their high performances were reported on
samples with relatively homogeneous imaging characteristics.
As an example, the CMR datasets from the Automated
Cardiac Diagnosis Challenge (ACDC) dataset [6] have been
extensively used to build and test new implementations of
deep neural networks for cardiac image segmentation. The
top performing technique in the ACDC challenge, proposed
by Isensee et al. [7], obtained a very high segmentation
accuracy for both the left and right ventricles. However, the
ACDC datasets were compiled from 150 subjects scanned
at a single clinical centre using the same imaging protocol,
which limits the ability of the researchers to develop and test
models that can generalize suitably across multiple centres
and scanner vendors. Other researchers attempted to encode
higher variability by building and testing their models based
on much larger datasets obtained from the UK Biobank [8].
For instance, Bai et al. [9] implemented a fully convolutional
network that achieved highly accurate results on this large
dataset (over 4,875 cases), but the authors concluded that their
model might not generalize well to other vendor or sequence
datasets.

Some researchers proposed to improve CMR segmentation
by training neural networks with images from multiple cohorts
[10], [11], but these works do not include methods for address-
ing domain shifts between training and new unseen cohorts.
Other works used data augmentation on models built from
single cohorts such as the ACDC [12] or the UK Biobank [13],
then tested their techniques on other existing public cohorts,
including the Sunnybrook Cardiac Data [14], LV Segmentation
Challenge Dataset (LVSC) [15] or RV Segmentation Challenge
Dataset (RVSC) [16]. However, these studies are limited by
the fact that these different CMR cohorts have been annotated
with distinct standard operating procedures (SOPs), which
makes it difficult to draw conclusions from the multi-cohort
comparative results. Furthermore, such an approach requires a
large training dataset from the single centre to model high
variability across subjects. Another multi-centre and multi-
vendor study conducted by Tao et al. [11] relied solely on

private data, which makes it difficult to replicate the results
and perform community-driven benchmarking. While these
recent works confirmed the difficulties encountered by deep
learning models to generalize beyond the training samples,
they also support the need for well-defined heterogeneous
public datasets that can be used by the community to improve
model generalizability through scientific benchmarking.

In this context, the Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Segmentation (M&Ms) Challenge was pro-
posed and organized as part of the Statistical Atlases and
Computational Modelling of the Heart (STACOM) Workshop,
held in conjunction with the MICCAI 2020 Conference. The
M&Ms challenge was set up as part of the euCanSHare inter-
national project!, which is aimed at developing interoperable
data sharing and analytics solutions for multi-centre cardiovas-
cular research data. Together with clinical collaborators from
six different hospitals in Spain, Canada and Germany, a public
CMR dataset was established from 375 participants, scanned
with four different scanners (Siemens, Philips, General Electric
(GE) and Canon) and annotated using a consistent contouring
SOP across centres.

To our knowledge, this dataset is the most diverse resource
of CMR studies, which is provided as open-access” to promote
further research and scientific benchmarking in the devel-
opment and evaluation of future generalizable deep learning
models in cardiac image segmentation. In this paper, we also
present and discuss the results of the M&Ms challenge in
detail, to which a total of 14 international teams submitted
a range of solutions, including different strategies of transfer
learning, domain adaptation and data augmentation, to accom-
modate for the differences in scanner vendors and imaging
protocols. The obtained results show the extent of the problem,
the promise of the proposed solutions, as well as the need for
further research to build fully generalizable tools that can be
translated reliably and deployed in routine clinical practice
across the globe.

Il. CHALLENGE FRAMEWORK
A. Data preparation

TABLE |
INFORMATION FROM CENTRES INCLUDED IN THIS WORK.

Name City Country
1 Hospital Vall d’Hebron Barcelona  Spain
2 Clinica Sagrada Familia Barcelona  Spain
3 Universititsklinikum Hamburg-Eppendorf =~ Hamburg Germany
4 Hospital Universitari Dexeus Barcelona  Spain
5 Clinica Creu Blanca Barcelona  Spain
6 McGill University Health Centre Montreal Canada

A total of six clinical centres from Spain, Canada and
Germany (numbered 1 to 6 in this work) contributed to this
challenge by providing a different number of CMR studies
from different scanner vendors, as detailed in Table I. In
total, 375 studies were included in this challenge. The subjects
considered for this multi-disease study were selected among

'euCanSHare project website: www.eucanshare.eu
2The dataset is publicly available at www.ub.edu/mnms
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(C) General Electric

(D) Canon

Fig. 1. Visual appearance of a CMR short axis middle slice for
anatomically similar subjects in the four different vendors considered.

TABLE Il
DISTRIBUTION OF THE MOST FREQUENT PATHOLOGIES AND HEALTHY
VOLUNTEERS BETWEEN CENTRES. THE ABBREVIATIONS CORRESPOND
TO HYPERTROPHIC CARDIOMYOPATHY (HCM), DILATED
CARDIOMYOPATHY (DCM), HYPERTENSIVE HEART DISEASE (HHD),
ABNORMAL RIGHT VENTRICLE (ARV), ATHLETE HEART SYNDROME
(AHS), ISCHEMIC HEART DISEASE (IHD) AND LEFT VENTRICLE
NON-COMPACTION (LVNC).

Centre 1 2 3 4 5 6
Pathology

Healthy vol. 22 33 32
HCM 25 37 14

DCM 37 - 5

HHD - 4 -

ARV 12 - -

AHS - - -

IHD - - -

LVNC - - -
Other - - -

[\
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groups of various cardiovascular diseases, such as hypertrophic
cardiomyopathy, dilated cardiomyopathy, coronary heart dis-
ease, abnormal right ventricle, myocarditis and ischemic car-
diomyopathy as well as healthy volunteers (see Table II for
more details on the distribution of these cases). The specific
scanner manufacturers are: 1) Siemens (Siemens Healthineers,
Germany), 2) Philips (Philips Healthcare, Netherlands), 3)
General Electric (GE, GE Healthcare, USA) and 4) Canon
(Canon Inc., Japan). These four manufacturers were coded as
A, B, C and D during the challenge, respectively. The CMR
images derived from these four vendors are illustrated in Fig.
1. More specific details on the studies are given in Table III.

Every CMR study was annotated manually by an expert
clinician from the centre of origin, with experiences ranging
from 3 to more than 10 years. Following the clinical protocol,
short-axis views were annotated at the end-diastolic (ED) and
end-systolic (ES) phases, as they correspond to the phases
used to compute the relevant clinical biomarkers for cardiac

diagnosis and follow-up. Three main regions were considered:
the left and right ventricle (LV and RV, respectively) cavities
and the left ventricle myocardium (MYO). In order to reduce
the inter-observer and inter-centre variability in the contours,
in particular at the apical and basal regions, a detailed revi-
sion of the provided segmentations was performed by four
researchers in pairs. They applied the same SOP across all
CMR datasets to obtain the final ground truth. To generate
consistent annotations for the research community, we chose to
apply the SOP that was already used by the ACDC challenge,
as follows:

a) The LV and RV cavities must be completely covered,
including the papillary muscles.
b) No interpolation of the MYO boundaries must be per-
formed at the basal region.
¢) The RV must have a larger surface at the ED time-frame
compared to ES.
d) The RV does not include the pulmonary artery.
Clinical delineations as well as later corrections were per-
formed using CVI42 software (Circle Cardiovascular Imaging
Inc., Calgary, Alberta, Canada). All studies were provided
in DICOM format and contours were extracted in cvi42
workspace format (.cvi42ws). An in-house software was then
used to extract the contours and transform the images into
the NIFTI format, representing the final files delivered to the
challenge participants.

B. Model training
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Fig. 2. Degree of generalizability of models trained from the four

vendors. Four 2D UNet models [17] were trained with datasets from the
four vendors separately (rows) and subsequently tested their segmenta-
tion performance on datasets from all vendors (columns). The heatmap
shows the Dice similarity coefficient, with a color scale that goes from
blue (good generalizability) to red (poor generalizability). The results
are the average of 5 models cross-validated on subsets of 30 training
subjects.

The 375 CMR studies were divided into three sets, namely
training, validation and testing, as detailed in Table IV. To de-
cide on a particular subdivision, we first estimated the degree
of generalizability of models trained from the four vendors,
as shown in Figure 2. We have thus decided to combine the
datasets from vendors A, which generalize relatively well, with
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TABLE Ill
AVERAGE SPECIFICATIONS FOR THE IMAGES ACQUIRED IN THE DIFFERENT CENTRES.
Field In-plane Slice Number  Number of
Centre  Vendor Model strength (T)  resolution (mm) thickness (mm) of slices time frames
1 Siemens ~MAGNETOM Avanto 1.5 1.32 9.2 12 25
2 Philips Achieva 1.5 1.20 9.9 10 30
3 Philips Achieva 1.5 1.45 9.9 11 26
4 GE Signa Excite 1.5 1.36 10 12 25
5 Canon Vantage Orian 1.5 0.85 10 13 29
6 Siemens MAGNETOM Skyra 3.0 0.98 9.7 12 29
TABLE IV libraries. The necessary computing power was sponsored by

NUMBER OF STUDIES FOR EACH STEP OF THE CHALLENGE PRESENTED
BY CENTRE AND SCANNER VENDOR.

Siemens Philips GE Canon Total
Label A B C D
Centres 1 6 2 3 4 5
Training 75 0 50 25 25 0 175
Validation 5 5 5 5 10 10 40
Testing 16 24 19 21 40 40 160
Overall 9% 29 74 51 75 50 375

datasets from B, which generalize poorly to new vendors, as
training datasets. The participants received the 175 training
cases on 1st May 2020, including 75 annotated CMRs from
vendor A, 75 annotated CMRs from vendor B, 25 CMRs from
vendor C but without any annotations (only the raw images)
and no datasets from vendor D, in order to test generalizability
to different situations (e.g. image protocol included or not
included in the training). Note that in the case of vendor A,
the 75 CMRs were included from centre 1 but none from
centre 6, to test generalizability across vendors but also across
centres for the same vendors. Regarding vendor B, we included
more training datasets from centre 2 (50 cases) than from
centre 3 (25 cases) to assess the impact of imbalanced training
data and fairness in multi-centre cardiac image segmentation.
For optimizing the models, the participants were allowed to
remotely validate against 40 additional CMRs, i.e. 10 from
each of the four vendors. A maximum of 7 submissions were
allowed per team during the validation process. Note that
during training, it was not allowed to use any external datasets
or pre-trained models, to enable a fair comparison between the
proposed solutions.

C. Model evaluation

The testing period for the challenge started on 8th June
2020 and concluded on 15th July 2020. The participants had
to evaluate their models remotely to ensure the unseen datasets
were totally hidden from the segmentation methods. As such,
for example, the participants had no prior information on the
images provided by vendor D. In order to evaluate the models,
the participants were asked to build a Singularity image® and
share it with the organizers via a MEGA* folder shared by the
organizers or by any other secure cloud storage service. This
Singularity image allows its execution on a similar architecture
machine without the need to install all the diversity of used

3https://sylabs.io
“https://mega.nz

NVIDIA, who provided the organizers with access to an
NVIDIA V100 GPU card with 16GB of memory, as well as
the Barcelona Supercomputing Center (BSC) who provided
access to two K80 NVIDIA GPU cards.

In order to assess the quality of the automatically segmented
masks P with respect to the ground truth G, four measures
were proposed, namely:

(1) Dice similarity coefficient (DSC):

2|P NG|
DSC(P,G)= ——— (1)
[Pl +1G]
that measures the degree of overlapping of two volumes.
(i1) Jaccard index (JI):
PNG PNG
Jipcy = P0G IPNG @)

~ |PUG| |P|+|G|—|PNG|

that measures overlapping as well but is more sensitive to
results with average performance.
(iii) Average symmetric surface distance (ASSD):

L[S ap.o)+ Y dP)

ASSD(P,G) =
PO = e | & 2

d(p,G) := inf d(p, 3
(p,G) = inf d(p,g) 3)

that measures the average distance between the two volumes.
(iv) Hausdorff distance (HD):

HD(P,G) = max{sup d(p,G), sup d(g,P)} 4
peP geG
that measures the largest disagreement between the volumes
and it is useful for identifying small outliers. All these metrics
were computed using the public library medpy”.

These metrics were computed for the three target labels:
LV, RV, and MYO, resulting in a total of 12 measures. In case
one participant had a prediction missing for a specific subject,
a value of zero was assumed for DSC and JI and maximum
values of 150 and 50 milimetres were assumed for HD and
ASSD, respectively, based on the worst results obtained by
the participating methods. Any value above the thresholds on
surface distances was set to the maximum value.

To obtain the final ranking for each team, a weighted
average was computed giving a greater importance to the
unlabelled and unseen scanner vendors. Therefore, if v4 and
vp are defined as the labelled vendors, v, the unlabelled one

Shttps://github.com/loli/medpy
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and vp, the unseen one, the weighted sum for a metric M is
obtained as follows:

1 1 1 1
M == 6M’UA + EM'UB + ngc + gM»UD (5)
Then, a min-max normalization was applied across participants
for each measure and a final average over the normalized
metrics yielded the performance (P) ranging from O to 1, being
1 the value that a team would obtain if it had the best results

for every metric.

[1l. PARTICIPATING METHODS

In total, 80 teams registered to download the M&Ms training
dataset, 16 submitted a solution for the final testing phase
and 14 teams submitted their methodology as a paper to the
STACOM Workshop (see Table V for details on these teams).
All participants used deep learning as their segmentation
approach. Table VI summarizes the main characteristics of
the submitted techniques, including the backbone architectures
and domain adaptation strategies, which are described in more
detail in the following subsections. Furthermore, details on
the hardware used during training and the times that each
method took for training and inference as well as the number
of parameters for each model are presented in Table VIIL.

A. Backbone architectures

There is a degree of variability in the backbone architectures
used between the different participants, as shown in Table
VI. Four teams used the nnUNet [33] (which includes UNet
architectures in 2D and 3D as well as a cascaded UNet) as their
baseline segmentation model (P1-P3 & P9). Four participants
used a traditional UNet [17] (P6, P10, P13, P14), while other
variants of UNets were adopted by the rest of the teams. In
particular, UNets combined with residual connections were
applied by three teams (P4, P8, P11), with P8 preferring
a residual UNet with dilated convolutions (DRUNet) [34].
P5 proposed the use of an attention UNet [35], while P7
developed a modified UNet based on multi-gate and dilated
inception blocks to extract multi-scale features. Lastly, one
team (P12) proposed a modified Spatial Decomposition Net-
work (SDN) [36] with an AdaIN [37] decoder.

As pre-processing techniques, all models that provided
detailed information about this step performed either image
normalization to a unit Gaussian distribution or pixel value
rescaling to the range [0,1] (only P6 chose the range [0,255]
instead). With regards to image resolution, images were re-
sized based on target size or pixel resolution values in 10
out of 14 methods, while the other methods preferred to keep
the original image resolution (P4, P7, P8, P11). In order
to obtain squared images, cropping and zero padding were
used depending on the desired image size for each case.
Additionally, some methods applied intensity clipping between
varying ranges to get rid of bright artifacts (P5, P6, P11).
Finally, P8 was the only method to apply also a non-local
means denoising filter prior to the training process.

Guassian noise

Contrast enhancement

Brightness enhancement Blurring

Fig. 3. The effect of data augmentation on a single CMR slice. In the
top row, the original image and spatial augmentations are shown. In the
bottom row, intensity-based augmentations.

B. Data augmentation

All participants in the challenge (except P11) used some
form of data augmentation to enhance their models. Specifi-
cally, two families of data augmentations were considered: (1)
spatial transformations to increase sample size through rota-
tion, flipping, scaling or deformation of the original images;
(2) intensity-driven techniques, which maintain the spatial
configuration of the anatomical structures but modify their
image appearance. The second type of augmentation seems
particularly relevant for the M&Ms as it may increase the
variability in image appearance, with the hypothesis that this
may lead to improved adaptation to varying imaging protocols
and scanner vendors. Two teams performed data augmen-
tation using only spatial transformations (P4, P6). Eleven
teams additionally implemented intensity-based transforma-
tions using one of two main approaches: (i) standard image
transformations such as histogram matching, blurring, change
in brightness, gamma and contrast, or addition of Gaussian
noise (P1-P3, P7-P8, P10, P13) (see 3 for a visualization
of a subset of these transformations on a training slice);
(i1) advanced image synthesis by using generative adversarial
networks (GANs) (P5, P8, P14) or variational auto-encoders
(VAE) (P12). For the latter one, the generation of synthetic
images for the unseen vendor D is not feasible since it was
not included in the training. Note that the majority of the
teams participating in the challenge (10 out of 14) relied solely
on data augmentation of the training sample to address the
domain-shift problem posed by the M&Ms challenge.

Additionally, some teams (P1-P3, P9, P13) applied test-
time augmentation techniques, which consist of passing to the
model two or more transformed versions of the same inference
image to obtain several predictions. These predictions are then
combined to obtain one final outcome, usually by averaging
them. This method has been shown to improve the final per-
formance in small data size scenarios and a net improvement
with a scale effect that depends on the model architecture [38].

C. Domain adaptation

Of all participants, only three teams (P4, P6, P10) imple-
mented a method to explicitly address the differences in the
image distributions between the unseen and trained vendors.
At training, P4 constructed a classifier to distinguish between
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TABLE V
LIST AND DETAILS OF THE PARTICIPATING TEAMS IN THE CHALLENGE.

Team  Institution Location Name during challenge  Reference
P1 German Cancer Research Center (DKFZ) Heidelberg, Germany ~ Mountain goat [18]
P2 Chinese Academy of Sciences Beijing, China Dugong [19]
P3 Nanjing University of Science and Technology = Nanjing, China Opossum [20]
P4 Universitat Politecnica de Valencia Valéncia, Spain Ox [21]
P5 University of California Berkeley, USA Monkey [22]
P6 University of Oxford Oxford, UK Donkey [23]
P7 Nile University Cairo, Egypt Porpoise [24]
P8 Technical University of Munich Munich, Germany Owl [25]
P9 Aristra GmbH Berlin, Germany Lovebird [26]
P10 King’s College London London, UK Mandrill [27]
P11 University of Alberta Edmonton, Canada Muskox [28]
P12 University of Edinburgh Edinburgh, UK Springbok [29]
P13 Shenzhen University Shenzhen, China Seagull [30]
P14 Fudan University Shanghai, China Steer [31]

TABLE VI
CHARACTERISTICS OF PARTICIPATING MODELS. ABBR: ROTATIONS (R), FLIPPING (F), SCALING (S), DEFORMATIONS (D), HISTOGRAM MATCHING
(HM), GAUSSIAN NOISE (GN), BRIGHTNESS (B), GAMMA (G), TEST TIME AUGMENTATION (TTA).

Backbone . . Da‘ta augmentation . Domain
Method architecture Spatial augmentations Intensity-based augmentations TTA adatation
R (®) F S D | HM GN B G Synthesis Others P
P1 nnUNet +180 v v Y v v v contrast v No
P2 nnUNet +180 v Vv Y v v label propagation v No
P3 nnUNet +180 v v v v v v No
P4 UNet (ResNet-34) +45 v v translations Yes
P5 Attention UNet +10 v CycleGAN low-level frequency No
P6 UNet+DA+DUNN +180 Vv translations Yes
pP7 UNet +15 v v v No
P8 DRUNet +15 v oV v v CycleGAN blurring No
P9 nnUNet +180 Vv v v No
P10 UNet +22.5 v v v v translations Yes
P11 UNet++ (ResNet101) No
P12 SDNet v VAE No
P13 UNet +90 v v WaveCT-AIN [32] contrast v No
P14 UNet CycleGAN No
scanner vendors and used it to modify the training images TABLE VII

TRAINING AND INFERENCE TIME, AND HARDWARE USED, FOR ALL
PARTICIPATING METHODS. H, M, S AND MIL. STAND FOR HOURS,
MINUTES, SECONDS AND MILLIONS, RESPECTIVELY.

(through error propagation) until the classifier could not dis-
tinguish between the domain. In other words, this method
resulted in training images and a trained model that are less

dependent on the specific vendors. P6 and P10 proposed to Team  Training  Inference  Model para- (NVIDIA)
train two models simultaneously with shared features, one time time (s)  meters (Mil.) i
f . d f lassificati h th h P1 60 h 26 30 Titan XP
or segmentation and one for classification, such that the P2 48 h 48 30 Tesla V100
classification loss is high while the segmentation loss is low, P3 96-120 h n/a 30 Tesla V100
generating features that are robust to vendor-specific variations P4 6 h 0.35 36 RTX 2080
. . P5 11h 10.4 33 GTX 1080 Ti
as well as optimal for segmentation. P6 15 mlepoch 10 28 Tesla V100
P7 8h 0.0022 6 GTX 1080 Ti
IV. RESULTS P8 8h 10 9 Titan V 12GB
. P9 96 h 1.2 30 GTX 1080 Ti
As shown in Table IV, a balanc.ed dataset across the four P10 10h 1 4 Tesla K20
vendors was prepared for evaluating the final submissions P11 11h 4.48 38 Tesla P100 12GB
(40 CMRs per vendor, total 160 datasets). In this section, P12 34h 0.014 18 GTX 1080 Ti
) the obtained It (1) t 2 P P13 3h 0.087 20 GTX 2080 Ti
we analyze the obtained results per eam, vendor, P14 Wa 15 4 Titan X GPU

(3) clinical center, and (4) show some qualitative results.
For analysing the obtained results, we also implemented two
baseline models to better appreciate the added value of the
data augmentation and domain adaptation techniques used in
this challenge:

B1: A 2D UNet without any data augmentation as described

B2: The nnUNet pipeline, with a 2D UNet module and de-
fault parameters as given in [33] (the best fold according
to the validation set was selected).

in the original reference [17], trained with weighted
cross entropy loss.

In particular, B2 differed from those in P1-P3 in that it
only included one architecture type [2D UNet] and £180
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Fig. 4. Weighted average DSC and HD for all participating methods, according to equation (5).

degrees rotations, flippings, scalings, deformations, gamma
transformations and test-time augmentation as data augmen-
tation. In contrast, P1, P2 and P3 methods included further
augmentation techniques such as histogram matching, noise
addition, brightness modification, contrast modification and
pseudo-label generation by label propagation in time space.

A. Analysis per team

Fig. 4 displays the results of the challenge for all partici-
pants and according to two evaluation metrics (DSC and HD).
It can be seen that the curves are flat for about half of the
participating teams, which indicates comparable performances
overall. Note that these methods (P1 to P7) are also the
ones that performed better than the baseline methods and we
hypothesize that the other models (P8 to P14) suffered from
some form of over-fitting (see also the shapes of the curves in
Fig. 4). Team P1 provided the most consistent results across
all metrics. However, the difference with respect to other
teams was relatively small and in many cases not statistically
significant, as presented in Table VIII. The three best perform-
ing teams, P1 to P3, used nnUNet as the baseline pipeline,
as well as standard intensity-based data augmentation (e.g.
blurring, noise addition, histogram matching), but no domain
adaptation, showing a significative improvement with respect
to the standard nnUNet implementation B2. For a similar
performance, P5 used an Attention UNet as the backbone
architecture and CycleGANs for data augmentation through
image synthesis. P4 and P6 also obtained similar performances
overall, but implemented instead domain adaptation methods
and no image-driven data augmentation.

Fig. 5 displays the average DSC for all participating teams
organised this time per pathology, showing better segmentation
performance for healthy cases and dilated cardiomyopathy
(DCM), followed by hypertrophic cardiomyopathy (HCM) and
other pathologies. It can be seen that the performances of
the 14 techniques relative to each other do not change when
analysed per pathology.

B. Analysis per vendor

Fig. 6 summarizes the segmentation results for all teams
for each vendor separately (A, B, C & D). It can be seen that
overall, the differences in the segmentation errors between the
vendors are reduced with respect to the results obtained by the
two baseline methods as detailed in Table IX. Specifically, it
can be seen that for the baseline methods there is a loss of
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Fig. 5. Average DSC for all participants for the most common patholo-
gies in the dataset. HCM and DCM stand for hypertrophic and dilated
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Fig. 6. Boxplots with vendor-wise results for DSC and HD when all
participants predictions are considered. Vendors are presented in order:
Siemens (A), Philips (B), GE (C) and Canon (D).

accuracy of up to -6% in the segmentation of images from
vendors C and D compared to A and B. However, this loss
is reduced, for example, to -1.5% for P1 (e.g. from DSC =
0.92 for vendor A to 0.90 in vendor C and D, for the LV),
-2.1% for P2 (e.g. from DSC = 0.87 in vendor B to 0.82
in vendor D, for the RV), and almost to 0% for P7. This
indicates that while there is a need for further research to
bring segmentation accuracy in unseen and unlabelled vendors
at the same level of the one obtained in trained vendors, data
augmentation and data adaptation enable to close the gap and
improve the generalizability of deep learning models.

C. Analysis per centre

In the previous subsection, centres were combined in the
analysis despite having different machines or scanning proto-
cols. In doing so, possible variabilities between centres using
the same scanner may be overstated, making it necessary
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TABLE VI
DSC AND HD FOR THE FINAL SUBMISSIONS OF ALL PARTICIPANTS AND THE TWO BASELINE MODELS. BOLD FACE NUMBERS ARE THE BEST
RESULTS FOR EACH COLUMN AND BLUE NUMBERS ARE NON-SIGNIFICANTLY LOWER RESULTS WHEN COMPARED TO THE P1 RESULTS (P-VALUE >
0.01 FOR THE WELCH’S T-TEST). HD IS MEASURED IN MILIMETERS.

ED ES

Method LV MYO RV LV MYO RV

DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD
P1 0.939 91 0839 128 0910 11.8 | 0.886 9.1 0.867 106 0860 12.7
P2 0.938 9.3 0830 129 0909 123 | 0.880 9.5 0861 108 0850 13.0
P3 0.935 95 0825 133 0906 123 | 0875 105 0.856 11.6 0.844 13.0
P4 0939 113 0826 152 0.88 154 | 0.884 114 0856 140 0.829 16.7
P5 0931 100 0816 137 0.893 143 | 0.877 9.8 0.850 113 0827 152
P6 0927 112 0815 140 0.892 13.6 | 0.877 9.7 0.852 11.1 0834 150
P7 0933 134 0812 17.1 0.876 157 | 0.867 140 0.839 182 0815 18.1
P8 0922 155 0.809 180 0.867 16.6 | 0.857 175 0.836 172 0.802 19.1
P9 0914 121 0.768 172 0.850 175 | 0.853 12.0 0.814 152 0.794 17.0
P10 0905 136 0772 172 0.876 162 | 0.848 155 0820 17.5 0.809 19.6
P11 0913 145 0776 17.8 0791 30.7 | 0.851 13.0 0.809 145 0.732 329
P12 0.889 16.0 0.785 221 0.814 221 | 0.835 142 0.808 189 0.758 22.0
P13 0.896 157 0.761 179 0.820 21.0 | 0.772 23.0 0.721 202 0.698 295
P14 0797 219 0.668 31.6 0552 49.1 | 0.716 258 0.673 330 0.517 52.0
B1 0918 129 0.801 155 0.881 157 | 0.866 11.5 0.842 126 0.817 163
B2 0930 108 0.817 157 0.889 148 | 0.863 132 0.835 148 0.818 16.8

TABLE IX

DSC RESULTS STRATIFIED BY VENDOR AND HEART SUBSTRUCTURE. THE LAST TWO COLUMNS ARE THE AVERAGE DSC LOSS FOR VENDORS C
AND D WITH RESPECT TO THE COMBINED AVERAGE DSC RESULTS FROM VENDORS A AND B.

Method Vendor A Vendor B Vendor C Vendor D DSC % loss !)SC % loss
LV  MYO RV LV  MYO RV LV  MYO RV LV  MYO RV | for vendor C  for vendor D

P1 0923 0.857 0.887 | 0915 0.876 0.888 | 0.903 0.842 0.884 | 0.909 0.838 0.882 -1.7 -1.6

P2 0919 0.848 0.885 | 0916 0.872 0.887 | 0.899 0.834 0.876 | 0.903 0.827 0.871 -2.0 2.4

P3 0915 0.843 0877 | 0914 0.868 0.879 | 0.894 0.827 0.873 | 0.898 0.824 0.870 -2.0 2.1

P4 0908 0.831 0.864 | 0913 0.867 0.879 | 0.906 0.833 0.870 | 0.918 0.833 0.816 -0.9 2.4

P5 0912 0.834 0.869 | 0910 0.859 0.870 | 0.891 0.817 0.819 | 0903 0.820 0.882 -3.8 -0.8

P6 0912 0.837 0880 | 0912 0.858 0.877 | 0.893 0.816 0.861 | 0.892 0.823 0.833 -2.6 34

P7 0.891 0.804 0.820 | 0904 0.859 0.870 | 0.898 0.821 0.838 | 0.908 0.817 0.853 -0.7 +0.1

P8 0.889  0.821 0.817 | 0900 0.854 0.877 | 0.880 0.799 0.842 | 0.889 0.815 0.802 2.3 -2.9

P9 0.879 0.765 0.800 | 0.889 0.816 0.827 | 0.881 0.787 0.831 | 0.885 0.797 0.829 +0.5 +1.0

P10 0.894 0.812 0.860 | 0.887 0.822 0.841 | 0.849 0.753 0.803 | 0.877 0.796  0.865 -6.1 -0.8

P11 0.885 0.781 0.778 | 0.899 0.846 0.846 | 0.875 0.787 0.773 | 0.869 0.758  0.650 -3.3 9.8

P12 0.831 0.769 0.795 | 0909 0.860 0.867 | 0.859 0.786 0.792 | 0.847 0.771  0.690 -3.1 -8.3

P13 0.820 0.712 0.684 | 0.885 0.823 0.858 | 0.868 0.779 0.803 | 0.762 0.650 0.691 +2.5 -12.1

P14 0.805 0.668 0.492 | 0.872 0.818 0.794 | 0.822 0.740 0.703 | 0.528 0.456 0.147 +2.3 -50.9

Bl 0.908 0.834 0.861 | 0901 0.850 0.865 | 0.863 0.790 0.800 | 0.894 0.813 0.870 -6.0 -1.3

B2 0.905 0.832 0860 | 0902 0.846 0.857 | 0.890 0.806 0.836 | 0.886 0.821 0.861 -2.7 -1.3

to consider also Fig. 7, where the segmentation results are
summarized according to the six clinical centres. Here too,
it can be seen that there remains some degree of variation
in the segmentation of the CMR images from the different
centres. In more detail, there is a decrease in segmentation
accuracy between centres 1 and 6 even though their images
are from the same scanner vendor A. However, this difference
can be explained by two facts: 1) the scanners in these two
centres are different models and have different field strengths,
as shown in Table III, and 2) all the 75 datasets included during
training for vendor A were from centre 1 (Spain) and none
from centre 6 (Canada). In this case, even though the images
are from the same vendor, differences in scanner specifications
resulted in the lack of generalizability. In contrast, images from
both centres 2 and 3 were included in the training of vendor
B, which resulted in segmentation accuracies for these two
centres that are comparable. Finally, the datasets from centres

4 and 5 correspond to vendors C and D, respectively, which
were not included in the training, which explain the loss of
accuracy compared to centres 1, 2 and 3. In Fig. 8, the results
are grouped for all centres according to their inclusion (or not)
in the training. Clearly, it can be seen that the segmentation
accuracy is the highest for centres that are part of the training
together with their labels, followed by those with images but
no labels, and finally the performance is the lowest and most
variable for images from fully unseen centres. This result
confirms the need for further developments to optimize the
generalizability of deep learning solutions in future tools for
cardiac image segmentation.

D. Qualitative results

Fig. 9 presents the effect of the slice position in the
final segmentation DSC for the top three performing teams,
quantifying the loss of accuracy, especially prominent in the
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Fig. 7. Boxplots with centre-wise results for DSC and HD when all
participants predictions are considered. Same color-coding as in Fig. 6
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Fig. 8. Boxplots for DSC and HD results for centres that had labelled
samples in the training set, unlabelled samples in the training set and
no samples at all.

apical and basal slices. To illustrate this, Fig. 10 provides some
visual examples from team P1 to further show the added value
of the implemented techniques, as well as their limitations
when applied to unseen vendors. In the two examples above,
the segmentation techniques enabled to accurately identify the
cardiac boundaries even though these imaging protocols were
not included in the training set. However, in the two examples
below, despite the use of data augmentation and domain
adaptation, the models were unsuccessful in the segmentation
of these unseen cases and diverged more notably from the
ground truth in basal slices. These examples illustrate the need
for future work to further improve the generalizability of deep
learning models in cardiac image segmentation.

V. DISCUSSION

In this paper, we presented a comprehensive analysis of a
range of deep learning solutions for the automated segmen-
tation of multi-centre, multi-vendor and multi-disease CMR
datasets. Roughly speaking, the 14 participants in the chal-
lenge developed varying workflows combining a baseline neu-
ral network, intensity-based and/or spatial data augmentation,
and in some cases a data adaptation strategy. In addition
to a relatively large sample of 175 cases for training, the
authors were given a total of seven attempts for optimising
the parameters and characteristics of their models during
the validation process, to ensure an optimal design of the
solutions.

for ED slices
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Fig. 9. Boxplots for DSC results for the top 3 performing methods

depending on different cardiac structures (LV, MYO and RV) and different
slice position for both ED and ES. The apex and the base are defined as
the last and first annotated slices, respectively. The middle slice is the
slice located in between the apex and base slices. The remaining slices
are defined based on their relative position with respect to the middle
slice.

A. Analysis of the methods

The obtained results, first of all, indicate that data augmen-
tation, though its primary purpose is to increase training size
and reduce over-fitting, can perform well in addressing some
of the differences in image appearance between vendors. In
particular, by varying the parameters and types of intensity
transformations (e.g. histogram matching, contrast modifica-
tion, noise addition, image synthesis), one can generate new
training images that enhance the generalizability of the models.
As an example, one can look at the performance of the
baselines models B1 and B2 and augmented models, such as
P1, P2 and P3. While for the baseline models, the results do
not differ significantly for specific cases, such as at ES, P1-P3
used many more data augmentation types, such as histogram
matching, noise addition, brightness modification and contrast
modification, and obtained a more marked improvement (e.g.
the DSC for the myocardium at ES increased from 0.84 for
B1 to 0.86 for P1, the DSC for the RV at ES increased from
0.81 for B1 to 0.84 for P3). This indicates the added value
of more advanced image-driven data augmentation for multi-
vendor image segmentation as well as that the domain shift
between different scanners or protocols can be potentially
solved by using an exhaustive set of image transformations
during training. However, the results also clearly show that
the obtained segmentations remain generally more stable in
trained vendors compared to unseen vendors, as intensity-
driven data augmentation alone cannot enable a full coverage
of the variety of imaging protocols that can exist across clinical
centres.

As for domain adaptation, while it is theoretically suitable
for multi-vendor image segmentation, as it can adapt on the
spot to the imaging distribution of the unseen images, it did
not result in better segmentations than when using exhaustive
data augmentation alone. In fact, the three first techniques in
the ranking did not use any domain adaptation, though it is
important to reiterate that the first seven solutions obtained
relatively similar results overall. It is worth noting that the
choice of the baseline model may play a role, as again
the first three techniques used the same model, namely the
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Successful
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Failed
generalizations

Fig. 10. Prediction examples for method P1 for vendors C (GE) and D (Canon). Top two rows show satisfactory results, while the two bottom rows
present some error in the final contours. Color correspondence: left ventricle endocardium (red), left ventricle epicardium (green) and right ventricle

endocardium (yellow). Ground truth is drawn in white color.

nnUNet. Finally, while the results indicate the potential of
data augmentation and domain adaption, they also show that
there is still a loss in segmentation accuracy when segmenting
labelled versus unlabelled or unseen image samples. Note also
that training and testing a model on two datasets from the
same vendor does not guarantee a good generalizability. This
is particularly true if the two sets of images are from two
different centres and scanner types, such as 1.5T (e.g. centre
1) and 3T (e.g. centre 6) as shown in Figure 7.

The results also show that advanced workflows integrating,
for instance, data augmentation or generative adversarial net-
works, are not guaranteed to lead to robust segmentations. In
fact, half of the submitted techniques had a lower performance
than the two baselines implemented for comparison. This
shows that over-fitting remains a challenge that requires spe-
cial attention during the calibration and validation of complex
deep learning solutions for cardiac image segmentation, in
particular in the presence of highly heterogeneous data.

Lastly, the presented methods show a vast diversity in
hardware performance, with training times ranging from 6 to
100 hours and inference times from tenths of seconds to almost
half a minute. However, the amount of training and inference
time do not correlate well with the final accuracy, indicating
an excessive use of computational power for some techniques.
For example, the methods implemented by P1 and P2, despite
using the same baseline model than P3, needed around half
the time for training and obtained slightly better results (1.2%
average improvement in DSC), while P4 used around one tenth
of computing time for similar loss of accuracy with respect to
P1 (1.6% average loss in DSC). Furthermore, clinical centres
usually lack dedicated hardware for deep learning models thus

increasing even more the segmentation time. In this sense, a
good equilibrium between accuracy and processing time needs
to be attained, with methods such as P4 serving as a good
example with a competitive performance and a prediction rate
of around 3 images per second.

In summary, the main findings are:

a) Exhaustive data augmentation reduced considerably the
domain gap, although the results were still more stable
within the domains used during training.

b) Domain adaptation did not result in better performance
when compared to nnUNet models trained with spatial
and intensity-driven data augmentation.

¢) Complex workflows did not always lead to better results,
resulting sometimes in an excessive use of computing
resources.

B. Analysis of the segmentation results

Compared to other publicly available and annotated multi-
structure (LV, MYO, RV) datasets in the field of CMR seg-
mentation, M&Ms is the largest as well as the most diverse
(375 cases from four vendors, six centres and three countries,
vs. 150 cases for ACDC from one centre). However, given
that ACDC is an established database, we selected to use
its contouring SOP in this challenge to derive standardized
annotations for the community, as well as to enable the
combination of these datasets in future studies.

Note that our study, while it focuses on multi-scanner
generalizable segmentation, confirms several of the results
already obtained by the ACDC challenge and other previous
works. Specifically:
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a) The segmentations at ED were more accurate than at
ES for LV and RV cavities, but not for the myocardium,
which becomes thicker and therefore easier to segment
when the heart contracts.

b) The segmentation accuracy according to the DSC was
the highest for the LV blood pool, followed by the RV
and MYO, in this order, but it was the lowest for the
RV for the distance-based measures, given its shape
complexity.

¢) The segmentation accuracy was at its maximum at the
mid-ventricular slices, while the performance decreased
for the apical and basal slices, where there is higher
variability and complexity.

On average, the best performing method in this challenge
obtained 0.88 as DSC and 11 mm as HD versus the values 0.93
and 9 mm obtained in the ACDC challenge, respectively, with
the greatest difference shown at ES. This gap can be easily
explained by the single-centre nature of the ACDC studies in
comparison to a multi-centre scenario in this work, although
other effects such as the training size may play a role and
should be assessed (150 vs. 100 studies, respectively).

C. Future work

In addition to the results and analyses presented in this paper
on multi-scanner cardiac image segmentation, we also provide
the M&Ms dataset open-access for the community, which
can be downloaded from the M&Ms website®. It represents
one of the most heterogeneous datasets ever compiled in
cardiac image analysis, comprising CMRs from a variety of
imaging protocols and cardiology units, and including a range
of cardiovascular diseases as distinct as coronary heart disease,
cardiomyopathies, abnormal right ventricle or myocarditis. We
thus hope the dataset will be of high value for the community
to address a number of research topics in the field, such as
multi-scanner image registration, multi-structure segmentation,
cardiac quantification, motion analysis and image synthesis.

It is important to note that a follow-up challenge is being
organised on multi-centre, multi-vendor and multi-disease car-
diac diagnosis. The diagnoses for the 375 cases are being gath-
ered from the different hospitals in a legally compliant manner
and the clinical information will be made available after the
end of the next challenge, thus allowing the community to
work on cardiac image analysis as well as on computer-aided
diagnosis in a multi-centre setting. Note that the participants
had less than three months to implement, optimize and test
their techniques, which did not allow to go beyond the
existing state-of-the-art techniques in data augmentation and
domain adaptation. With more time at their disposal beyond
the constraints of the challenge, we expect that researchers
will have a valuable resource with the M&Ms dataset to
investigate, develop and test new theories and frameworks for
addressing the difficulties posed by domain-shift in cardiac
image analysis.

6www.ub.edu/mnms

D. Conclusions

The M&Ms challenge is the first study to evaluate a range
of deep learning solutions for the automated segmentation of
multi-centre, multi-vendor and multi-disease cardiac images.
The results show the promise of existing data augmentation
and domain adaptation methods, but also calls for further
research to develop highly generalizable solutions given the
inherent heterogeneity in cardiac imaging between centres,
vendors and protocols. More generally, there is a need for
more research and development to realise the much-needed
shift from single-centre image analysis towards multi-domain
approaches that will enable wider translation and usability
of future artificial intelligence tools in cardiac imaging and
clinical cardiology.
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