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Abstract. Cardiac cine magnetic resonance imaging (CMRI) is the
reference standard for assessing cardiac structure as well as function.
However, CMRI data presents large variations among different centers,
vendors, and patients with various cardiovascular diseases. Since typi-
cal deep-learning-based segmentation methods are usually trained using
a limited number of ground truth annotations, they may not generalize
well to unseen MR images, due to the variations between the training and
testing data. In this study, we proposed an approach towards building
a generalizable deep-learning-based model for cardiac structure segmen-
tations from multi-vendor,multi-center and multi-diseases CMRI data.
We used a novel combination of image augmentation and a consistency
loss function to improve model robustness to typical variations in CMRI
data. The proposed image augmentation strategy leverages un-labeled
data by a) using CycleGAN to generate images in different styles and
b) exchanging the low-frequency features of images from different ven-
dors. Our model architecture was based on an attention-gated U-Net
model that learns to focus on cardiac structures of varying shapes and
sizes while suppressing irrelevant regions. The proposed augmentation
and consistency training method demonstrated improved performance
on CMRI images from new vendors and centers. When evaluated us-
ing CMRI data from 4 vendors and 6 clinical center, our method was
generally able to produce accurate segmentations of cardiac structures.
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1 Introduction

Cine cardiac MRI (CMRI) is considered a reference standard for assessments
of the function and morphology of the heart. Analysis of the heart from CMRI
can be essential in disease diagnosis and treatment planning. This analysis is
greatly facilitated by proper identification of the left ventricular blood pool, my-
ocardium, and the right ventricular blood pool at both end diastolic and end
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systolic phases. Recent developments in deep learning (DL) are accelerating this
previously time-consuming identification process. This has been accomplished
by supervised learning of deep neural networks with previously annotated data
[2, 1]. However, it is well known that DL methods are prone to over-fitting train-
ing data and in turn under-performing on real-world data, especially when the
amount of training data is limited. Prior DL-based CMRI segmentation meth-
ods were usually trained using small datasets obtained from only one or two
sources [6]. However, CMRI data are sensitive to a number of factors, including
differences in vendor, magnetic coil types and/or acquisition protocols. Thus,
the performance of DL based methods can drop significantly when tested on im-
ages that differ from the training data [9, 3]. An outstanding challenge has been
to develop generalizable DL based methods that can perform consistently well
across different centers, making them useful for real-world clinical applications.

Recent works have helped to improve the generalization capabilities of DL
based models. Tao et. al. trained a conventional U-Net model on a large multi-
vendor, multi-center training set from patients with various cardiovascular dis-
eases[9]. Chen et. al. showed that training models using a single yet large data
source with appropriate data normalization and augmentation could also achieve
promising performance on data from other sources [3]. . However, the collec-
tion and labeling of such large or diverse datasets are extremely expensive,
which limits real-world applicability or adaptability to other segmentation tasks.
Therefore, several studies have sought to use unsupervised domain adaptation
techniques to optimize the model on an unannotated target dataset [5, 4]. Such
methods require images from new sources and their generalization capabilities
were usually tested with only one new data source with a limited number of
samples. Thus, building generalizable DL models that can be reliably and effi-
ciently applied to data from new clinical centers and scanner vendors remains
to be demonstrated.

In this study, we proposed an approach towards building a generalizable
DL based model for cardiac structure segmentations from multi-vendor, multi-
center and multi-diseases CMRI data. We develop a fully automated segmen-
tation model based on an attention-gated U-Net model [8]. To improve model
robustness to typical spatial and intensity variations of cardiac MR images, we
propose a novel combination of image augmentation and consistency loss. The
proposed image augmentation strategy leverages un-labeled data by a) using
CycleGAN to generate images in different styles and b) exchanging the low-
frequency features of images between different vendors. A consistency loss is
introduced to coerce the model to generate consistent predictions on images
with the same anatomical features but different appearances. Our framework
demonstrated improved segmentation performance on CMRI images from new
vendors and clinical centers.
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2 Methods

2.1 Image Dataset Information and Pre-Processing

Image data from the 2020 Multi-Centre, Multi-Vendor& Multi-Disease Car-
diac Image Segmentation Challenge (M&Ms) was utilized. This dataset contains
CMRI scans from 4 vendors and 6 clinical centers. The training set consisted of
150 annotated images from 2 vendors (Vendor A and B) and 25 unannotated im-
ages from another vendor (Vendor C). The ground truth annotations include the
left and right ventricular blood pools and left ventricular myocardium. Trained
models were validated using a separate validation set, which contained a collec-
tion of 80 CMRI scans from all vendors/centers. The final model was evaluated
on the M&Ms test set containing 160 CMRI scans. We sliced each stacked 3D
image volume into 2D short-axis images and resampled each 2D slice to the same
size of 256 × 256 and a pixel spacing of 1.2 mm. For each scan, we clipped the
pixel intensity values between 0 and the 99th percentile to reduce bright arti-
facts, and normalized the pixel intensity for each slice to zero mean and unit
variance.

2.2 Image Augmentation

Image augmentation was used to improve the robustness of deep neural network
models to certain image variations. We considered two categories of common
variations for cardiac MR images, spatial and appearance. For spatial variations
of the heart, we randomly scaled the training images by a factor of 0.8 to 1.2. We
also randomly rotated the images clockwise or counter-clockwise by 90 degrees
and then applied a small amount of random rotation by up to 10 degrees. For
appearance variations of the images, we used frequency-domain augmentation
and Cycle GAN to change pixel intensities, as described in more detail below.

Frequency Domain Augmentation (FDA) The intensity of MR images
does not have fixed meaning; tissue intensities can vary significantly across dif-
ferent vendors and clinical centers even after applying intensity normalization
as described above. To better handle this factor, we propose perturbing the low-
frequency contents of an MR image. Namely, as shown in figure 1, we augmented
Vendor A and B images with the low-frequency features of the unlabeled Ven-
dor C images, to introduce the low-level statistics of Vendor C images into our
training data, similar to a strategy proposed in [10]. The two image slices are
extracted at the same relative location from their image stacks so that they show
a similar region of the hearts. Namely, for a labeled image slice xU from Vendor
A or B and its corresponding unlabeled Vendor C image slice xL showing the
similar location of the heart, the augmented image slice xL−→U can be obtained
by equation 1, where FA and FP denote the amplitude and phase components of
the Fouirer transform F , and M is a mask with zero values except for the center
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square as illustrated in figure 1. We used a dimension ratio of 0.02 between the
swapped region and the full image.

xL−→U = F−1
([
M ◦ FA(xU ) + (1−M) ◦ FA(xL),

M ◦ FP(xU ) + (1−M) ◦ FP(xL)
]) (1)

Our method differed from [10] in that we swapped both the amplitude and phase
information in the frequency domain; swapping only the amplitude, as in [10],
led to numerous artifacts.

Fig. 1: Illustration of image augmentation in the frequency domain. An image
slice (first column) from a labeled dataset (e.g., Vendor A in the first row or
Vendor B in the second row) is selected and its magnitude spectrum from FFT
is computed (second column). A corresponding image slice (third column) from
the unlabeled Vendor C data is selected, and its magnitude spectrum from FFT
is computed (fourth column), and subsequently used to augment the spectrum
of the original image to generate a perturbed image (fifth column). The third
row illustrates the influence of using a larger dimension ratio of 0.05 between
the swapped region and the full image. Red boxes represent the center regions
where the amplitude and phase components of fourier transformed images were
swapped.

Appearance Augmentation Using Cycle GAN Although frequency do-
main augmentation perturbs image intensity while preserving anatomical fea-



Cardiac segmentation with augmentation and attention U-Net 5

tures, it sometimes introduces unrealistic intensity inhomogeneity. Observing
that MR images from different vendors are different in appearance, we used Cy-
cle GAN [11] to transfer the appearance of images from Vendor B to Vendor A
or C and vice versa. Briefly, Cycle GAN takes in two images from two styles and
output the corresponding synthetic images that have the texture appearance in
the other style, respectively. It consists of two generator networks to generate
synthetic images and two discriminator networks that attempt to discriminate
generated images from real images. Compared with the original implementation
[11], we reduced the learning rate of the discriminator to 0.00002 to achieve a
better balance between the generators and the discriminators and replaced the
transpose convolution layer with bilinear upsampling followed by a convolution
layer to reduce checkerboard artifacts [7]. We trained the Cycle GAN models for
30 epochs and saved the model weights at the end of each epoch after the 5th
epoch. For each image in Vendor A or B, we augmented it with 10 CycleGAN
models randomly picked from the saved ones. As shown in figure 2, the aug-
mented images resemble the appearance of images from the other vendor and by
using CycleGAN models saved at different epochs, we obtained further intensity
variations among the generated images.

Fig. 2: Original images and the generated images after style translation.

2.3 Training with Consistency Loss

A robust segmentation model should generate consistent predictions for two
images with the same anatomical features but different appearance. That is, after
applying intensity augmentation to an image slice as described in the previous
section, a robust model should predict similar probability maps between the
augmented image and the original image. Therefore, we trained our models with
two types of loss. One was a hybrid loss Lseg, accounting for cross entropy loss
and the dice loss, which optimizes for the accuracy of the predicted segmentation.



6 F. Kong & S.C. Shadden

The other was a consistency loss Lconsistency, which regularizes the differences
between the predictions P of one image slice I and its intensity-augmented
version A(I). The hybrid loss and consistency loss are defined by the following
equations, where G is the one-hot coded ground truth segmentation and N is
the number of segmentation domains:

Lseg(I,G) = − 1

N

N∑
i=1

∑
x∈I

Gi(x) log(Pi(x)) + N −
N∑
i=1

2
∑

x∈I Gi(x)Pi(x)∑
x∈I Gi(x) +

∑
x∈I Pi(x)

(2)

Lconsistency(I, A(I)) = − 1

N

N∑
i=1

|Pi(I)− Pi(A(I)))|. (3)

As illustrated in figure 3, during each training iteration, our proposed pipeline
takes in one image slice and its intensity-augmented version and generates pre-
dictions separately for the two inputs. The model parameters are then updated
based on the sum of the hybrid loss computed for the two predictions and the
consistency loss. Our model architecture is based on an attention-gated U-Net
model that learns to focus on cardiac structures of varying shapes and sizes
while suppressing irrelevant regions [8]. We used an Adam stochastic gradient
descent algorithm with an initial learning rate of 0.0005. We randomly split the
training dataset into five folds and used one fold as validation data and the rest
as training data.We adopted a learning rate schedule where the learning rate
was reduced by 20% if the validation dice score had not improved for 10 epochs.

Fig. 3: Proposed training pipeline with both segmentation and consistency losses

2.4 Weighted Ensemble

Ensemble learning with deep neural networks can reduce DL model variance and
thus better generalize to unseen data. We observed that our models were more
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likely to produce mistakes or inconsistent predictions on apical or basal slices.
Indeed, the ventricles imaged in these slices usually appear very small in size
or have large anatomical variation and noisy ground truth labels. Therefore, we
augmented the apical and basal slices four times more than the others using the
image augmentation methods described above. We computed a weighted average
of the probability maps predicted by models trained with and without such extra
augmentation on high-variance image slices. Namely, for apical or basal slices, we
assigned a higher weight ratio of 3:2 between models trained with and without
extra augmentation on high-variance image slices, respectively. While for other
image slices, we assigned a lower weight ratio of 1:2. These weight ratios were
experimentally determined by validation.

3 Results

We compared the performance of five segmentation models trained under differ-
ent augmentation and ensemble settings 1) the baseline attention-UNet model
trained without image augmentation (NoAug), 2) with only spatial augmenta-
tion(Sptl.Aug), 3) with spatial augmentation and intensity augmentation in the
frequency domain (Sptl.Aug+FDA) 4) with spatial augmentation and intensity
augmentation using CycleGAN (Sptl.Aug+CycleGan), and 5) ensemble of 3 sets
of models trained with frequency domain augmentation (Sptl.Aug+FDA+Ens.).
The segmentation predictions generated by these five models were evaluated on
the validation dataset from the M&Ms challenge and Table 2 compares the seg-
mentation accuracy for each vendor/center. Spatial augmentation consistently
improved segmentation performance for all vendors and centers. Adding fre-
quency domain and CycleGAN augmentation significantly improved the dice
scores for the fourth unseen vendor, Vendor D. Compared with a single model, a
weighted ensemble consistently improved the performance for all vendors/centers.

Metric Dice ASSD

Vendor A B C D A B C D

Center 1 6 2 3 4 5 1 6 2 3 4 5

NoAug 0.867 0.822 0.883 0.928 0.848 0.837 1.303 1.746 0.894 0.358 1.249 1.421
Sptl.Aug 0.874 0.851 0.889 0.929 0.866 0.828 1.340 1.531 0.780 0.300 1.246 1.782
Sptl.Aug+FDA 0.883 0.839 0.899 0.926 0.862 0.850 1.133 1.615 0.605 0.421 1.230 1.436
Sptl.Aug+CycleGan 0.863 0.853 0.898 0.923 0.863 0.859 1.330 1.359 0.609 0.363 1.230 1.194

Sptl.Aug+FDA+Ens. 0.888 0.849 0.904 0.932 0.868 0.862 1.016 1.460 0.557 0.290 1.246 1.211

Table 1: Dice scores and average surface distance errors (ASSD) of segmentations
generated by different models. The dice scores and ASSD were calculated as the
averages over the three cardiac structures. The yellow-colored cells represent
clinical centers with no annotated training data and the bold numbers in black
are the best scores among the models without using ensemble. The bold numbers
in blue are when using ensemble achieves the best performance among all models.
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Metric Dice ASSD

Vendor A B C D A B C D

Center 1 6 2 3 4 5 1 6 2 3 4 5

Sptl.Aug+FDA 0.883 0.839 0.899 0.926 0.862 0.850 1.133 1.615 0.605 0.421 1.230 1.436
Sptl.Aug+FDA+Ens. 0.888 0.849 0.904 0.932 0.868 0.862 1.016 1.460 0.557 0.290 1.246 1.211

Table 2: Dice scores and average surface distance errors (ASSD) of segmentations
generated by different models. The dice scores and ASSD were calculated as the
averages over the three cardiac structures. The yellow-colored cells represent
clinical centers with no annotated training data and the bold numbers in black
are the best scores among the models without using ensemble. The bold numbers
in blue are when using ensemble achieves the best performance among all models.

Metric Dice ASSD

Vendor A B C D A B C D

Center 1 6 2 3 4 5 1 6 2 3 4 5

LV 0.924 0.904 0.900 0.919 0.891 0.903 1.010 1.168 1.168 0.913 1.374 1.184
RV 0.876 0.864 0.872 0.869 0.819 0.882 1.183 1.323 1.201 1.324 2.064 1.347
Myo 0.826 0.839 0.843 0.873 0.817 0.820 0.725 0.821 0.835 0.658 0.974 0.986

Table 3: Dice and ASSD values of the final model evaluated on the test set.

As ensemble learning improved the segmentation accuracy for most clinical
centers, we selected the best three sets of models, with each set trained using dif-
ferent training/validation splits. Each set contains two models that were selected
based on their performance–both on our own validation split and the M&Ms vali-
dation dataset. Specifically, the model ensemble consists of three models trained
with FDA, two models trained with CycleGAN augmentation and one model
trained with FDA and extra augmented apical and basal slices. Table 3 displays
the segmentation accuracy of our final submission evaluated on the M&Ms test
data. Overall, our method achieved promising results for most of the vendors
and clinical centers, although our method was only trained with annotated data
from two vendors and three centers. Figure 4 displays example segmentations of
our method on Vendor C and D, which did not have annotated training data.
Generally, our method predicted segmentations that closely resemble the ground
truths. For some cases, our method tends to make mistakes on apical or basal
slices, while generating better predictions in the middle part of the heart.

4 Conclusion

We presented a DL-based automatic cardiac segmentation framework that demon-
strated promising performance across multi-scanner and multi-site CMRI scans.
We showed that using image augmentation to simulate appearance variations
of CMRI data while at the same time constraining the model to generate sim-
ilar predictions on appearance-augmented images can lead to improved gener-
alization to previously unseen samples from a new vendor or clinical center.
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Fig. 4: Examples of predicted segmentations that were better (a) and worse (b)
than average compared with predictions by other participants. Segmentations are
overlaid with the corresponding image data. Predictions (Preds) are compared
with ground truths (GTs) for Vendor C and D. From top row to bottom row are
apical, middle and basal slices.

We also explored and compared two effective appearance augmentation tech-
niques, frequency-domain augmentation and CycleGAN based augmentation,
that can leverage information from an unlabeled data source to enrich the train-
ing dataset. The proposed method can be applied not only to CMRI segmenta-
tion but may be readily adapted to other segmentation tasks. Future work will
aim to combine the proposed augmentation and consistency training methods
with semi-supervised learning to further leverage the unlabeled data.
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