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ABSTRACT

Machine learning and cloud computing have been integrated in

diverse applications to provide intelligent services. With power-

ful computational ability, the cloud server can execute machine

learning algorithm efficiently. However, since accurate machine

learning highly depends on training the model with sufficient data.

Transmittingmassive rawdata from distributed devices to the cloud

leads to heavy communication overhead and privacy leakage. Dis-

tributed learning is a promising technique to reduce data transmis-

sion by allowing the distributed devices to participant in model

training locally. Thus a global learning task can be performed in

a distributed way. Although it avoids to disclose the participants’

raw data to the cloud directly, the cloud can infer partial private

information by analyzing their local models. To tackle this chal-

lenge, the state-of-the-art solutions mainly rely on encryption and

differential privacy. In this paper, we propose to implement the

distributed learning in a three-layer cloud-edge computing system.

By applying the mini-batch gradient decent, we can decompose a

learning task to distributed edge nodes and participants hierarchi-

cally. To improve the communication efficiency while preserving

privacy, we employ secure aggregation protocol in small groups

by utilizing the social network of participants. Simulation results

are presented to show the effectiveness of our proposed scheme in

terms of learning accuracy and efficiency.

CCS CONCEPTS

• Security and privacy → Mobile and wireless security.
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1 INTRODUCTION

The past decade has witnessed the development of machine learn-

ing and cloud computing in providing intelligence for smart appli-

cations [10, 13]. By collecting raw data from the Internet-of-Things

(IoT) devices, cloud server executes machine learning algorithms

to train the data and performs data prediction. However, the grow-

ing number of IoT devices has generated tremendous amount of

data. Transmitting massive data to centralized machine learning

has significant communication overhead and computational com-

plexity. Therefore, distributed learning is proposed as a promis-

ing approach to provide reliable data processing while reducing

communication and computational costs [2, 6, 14]. Specifically, the

cloud server assigns a global machine learning model to the dis-

tributed participants. Those participants perform data training lo-

cally using their IoT devices (e.g., smart phone, laptop, tablet, and

so on.) and upload their updated models/parameters to the cloud

server. The cloud server then aggregates the updated information

and corrects the global model. The same procedure is repeated un-

til an accurate global model is obtained. Since the participants are

unnecessary to upload their raw data to the centralized server, the

risks of privacy leakage are reduced [5, 7].

However, in conventional distributed learning, attackers can launch

white-box attack to infer the raw data by analyzing the updated

machine learning models from the participants [3]. To tackle this

challenge, the state-of-the-art solutions mainly depend on differ-

ential privacy (DP) and encryption techniques. On the one hand,

differential privacy [16] is deployed to add random noise to the

updated models when they are transmitted from the distributed

participants to the centralized cloud server. Random noise can also

be introduced to the raw data via local differential privacy (LDP)

[8, 17] to achieve privacy preservation. Nevertheless, adding noise

makes it difficult to train machine learning model accurately [12].

On the other hand, cryptographic tools, such as secure multiparty

computation (SMC), secret sharing (SS), and homomorphic encryp-

tion (HE), are employed to design secure aggregation protocols for
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guaranteeing model security. For instance, in SMC and HE based

protocols [9], the participants upload the encrypted models and

the cloud server can aggregate models over the ciphertext. In SS-

based protocols [4], the participants can securely aggregate their

models by exchanging random values with all the others. Whereas,

since these protocols rely on heavily cryptographic primitives and

require frequent information exchange, the computation and com-

munication overheads are high, resulting in latency and inefficiency

in learning procedure [11].

Motivated by these challenges, we propose a privacy-preserving

distributed learning scheme to improve computation and commu-

nication efficiency. We integrate edge computing and develop a

three-lay distributed learning architecture, involving the cloud layer,

edge layer, and participant layer.When decomposing a global learn-

ing task to the distributed participants, the edge nodes assist in

data transmission and aggregation, reducing direct communica-

tions between cloud and participants. In our work, we avoid in-

troducing randomness to the original data or the updated models.

In addition of secure aggregation protocols, we utilize the social

relationships to divide participants into groups. The participants

are able to apply secure aggregation protocols in small groups,

which improves the communication efficiency while guaranteeing

privacy preservation. Themain contributions of this paper are sum-

marized as follows.

• Wepropose a three-layer distributed learning schemewhich

integrates cloud-edge computing into the distributed learn-

ing. By utilizingmini-batch gradient decent (MBGD), a global

learning task can be decomposed to edge nodes and partici-

pants hierarchically.

• To preserve privacy and improve efficiency in the learning

procedure, we employ the social relationships between par-

ticipants to implement SS-based aggregation protocols in

small groups. In this way, each participant is unnecessary

to communicate with all the others in the system, the over-

all communication overhead is reduced.

• We conduct extensive simulations to evaluate the effective-

ness of our scheme. The results indicate that the proposed

scheme can train a machine learning model in a distributed

way with sufficient accuracy and efficiency.

The rest of this paper is organized as follows. In Section 2, the

system model and problem statement are provided. In Section 3,

the proposed approaches and the corresponding privacy analysis

are described. After that, simulation results are analyzed in Section

4 and conclusions are provided in Section 5.

2 SYSTEMMODEL AND PROBLEM

STATEMENT

In this section, we introduce the systemmodel, problem statement,

privacy model and design goals. All notations used in this part are

listed in Table 1.

2.1 System Overview

We consider a three-layer system that supports efficient and privacy-

preserving distributed learning. As shown in Fig. 1, the system

model contains three types of entities: participants, edge nodes,

Figure 1: SystemModel

and cloud server. Theses three entities are specifically described as

follows.

• Participants: Participants refer to the distributed data own-

ers. They use their raw data to train a machine learning

model locally. The obtained model is defined as local ma-

chine learning model (LMLM). The LMLMs are uploaded to

edge nodes.

• Edge nodes: Every edge node is in charge of a local area that

consists of a certain number of participants. When an edge

node receives the LMLMs from the participants, it aggre-

gates those models into a regional machine learning model

(RMLM) and uploads to the cloud server.

• Cloud server: After receiving the RMLMs from edge nodes,

the cloud server aggregates them and updates to a global

machine learningmodel (GMLM). The cloud server distributes

the updated GMLM to the edge nodes. The edge nodes then

assist in delivering GMLM to the participants to perform it-

erative distributed learning.

2.2 Problem Statement

In general, most of machine learning models can be formulated as

an optimization problem. For simplicity, we take the support vec-

tor machine (SVM) as an example to introduce how to decompose

the optimization problem in distributed learning systems. The goal

of SVM is typically to find a hyperplane for binary classification

problems. We train it by feeding labeled examples (𝑥𝑚 , 𝑦𝑚 ) from

dataset 𝐷 , where 𝑥𝑚 is the 𝑛-dimensional feature vector and 𝑦𝑚 is

the labeled class. Then the SVM model is defined as

𝑓 (𝑥𝑚 ) = 𝑠𝑖𝑔𝑛(𝒘★ · 𝑥𝑚 + 𝒃★),∀𝑥𝑚 ∈ 𝐷, (1)

where𝒘★ and 𝒃★ are the optimalweights and intercepts that define

the hyperplane. The corresponding cost function of Eq. (1) is

ℎ(𝒘) =
1

|𝐷 |

|𝐷 |∑
𝑚=1

[
1

2
‖𝒘‖2 +𝐶 max(0, 1 − 𝑦𝑚 (𝒘 · 𝑥𝑚 ))

]
. (2)
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To identify𝒘★, we train the model by minimizing the cost func-

tion as follows.

P1 : min ℎ(𝒘) (3)

where |𝐷 | is the size of the dataset and 𝐶 is the soft margin param-

eter.

In a fully distributed learning system, since each participant 𝑖

trains the SVM model locally with its dataset 𝐷𝑖 , the optimization

problem P1 can be decomposed as follows:

P2 : min
𝒘𝑖

ℎ𝑖 (𝒘𝑖 ), (4)

s.t. 𝒘𝑖 = 𝒛, (5)

where ℎ𝑖 is the cost function and 𝒘𝑖 is the weight values for each

participant 𝑖 . 𝒛 is an introduced parameter which forces all 𝒘𝑖 to

be the same, so that we can obtain an certain global SVM model at

the end of the optimization.

As shown in Fig. 1, we consider a three-layer system which in-

volves one cloud server and a set of edge nodes that is denoted as

F = {𝑓1, 𝑓2, ..., 𝑓𝐽 }. Each edge node 𝑓𝑗 connects with a set of par-

ticipants P𝑗 = {𝑝
𝑗
1, 𝑝

𝑗
2, ..., 𝑝

𝑗

𝑁 𝑗
}. In this system, the SVM model is

trained hierarchically as follows.

• Cloud-Edge: When considering the distributed learning be-

tween cloud layer and edge layer, we have the cost mini-

mization as follows:

P3 : min
𝒘 𝑗

ℎ 𝑗 (𝒘 𝑗 ) (6)

s.t. 𝒘 𝑗 = 𝒛
′, (7)

where ℎ 𝑗 is the regional cost function and𝒘 𝑗 is the regional

weight values for each edge node 𝑓𝑗 . The weights update

between cloud and 𝑓𝑗 following the MBGD approach,

𝒘
𝑡+1
𝑗 = 𝒘

𝑡
𝑗 − 𝛼 ′∇ℎ 𝑗

= 𝒘
𝑡
𝑗 − 𝛼 ′

𝜕ℎ 𝑗

𝜕𝒘 𝑗
, (8)

𝒛
′ =

1

𝐽

𝐽∑
𝑗=1

𝒘
𝑡+1
𝑗 , (9)

where 𝛼 ′ is the learning rate.

• Edge-Participants: When considering the distributed learn-

ing between edge layer and participant layer, we have the

cost minimization as follows:

P4 : min
𝒘 𝑗,𝑖

ℎ 𝑗,𝑖 (𝒘 𝑗,𝑖 ) (10)

s.t. 𝒘 𝑗,𝑖 = 𝒛
′′
𝑗 , (11)

where ℎ 𝑗,𝑖 is the local cost function and 𝒘 𝑗,𝑖 is the local

weight values for each participant 𝑝
𝑗
𝑖 (𝑖 ∈ [1, 𝑁 𝑗 ], 𝑗 ∈ [1, 𝐽 ]).

The weights update between 𝑓𝑗 and 𝑝
𝑗
𝑖
following the MBGD

approach as follows,

𝒘
𝑡+1
𝑗,𝑖 = 𝒘

𝑡
𝑗,𝑖 − 𝛼 ′′∇ℎ 𝑗,𝑖

= 𝒘
𝑡
𝑗,𝑖 − 𝛼

𝜕ℎ 𝑗,𝑖

𝜕𝒘 𝑗,𝑖
, (12)

𝒛
′′
𝑗 =

1

𝑁 𝑗

𝑁 𝑗∑
𝑖=1

𝒘
𝑡+1
𝑗,𝑖 , (13)

Table 1: Notation Definitions

Variable Definition

ℎ(𝒘) Global cost function

𝒘 Global weight values

𝑓𝑗 The edge node 𝑗

𝐽 The number of edge nodes

𝑁 𝑗 The number of participants under 𝑓𝑗

𝑝
𝑗
𝑖 The participant 𝑖 under 𝑓𝑗

ℎ 𝑗 (𝒘) Regional cost function

ℎ 𝑗,𝑖 (𝒘) Local cost function

𝒘 𝑗 Regional weight values

𝒘 𝑗,𝑖 Local weight values

𝑎, 𝑎′, 𝑎′′ Learning rate

𝒘
′
𝑗 Perturbed regional weight values

𝒘
′
𝑗,𝑖 Perturbed local weight values

𝑞 Percentage of participants who are involved in a group

where 𝛼 ′′ is the learning rate.

In this way, P1 is decentralized to P3 and P4. As shown in Fig. 1,

each participant uploads its𝒘 𝑗,𝑖 to the edge node 𝑓𝑗 . After aggrega-

tion, 𝑓𝑗 uploads its 𝒘 𝑗 to the cloud. Since 𝒘 𝑗,𝑖 and 𝒘 𝑗 reflect some

basic knowledge of participant’s data, attackers can use them to

reconstruct partial original data. How to protect 𝒘 𝑗,𝑖 and 𝒘 𝑗 from

being disclosed during the learning process is the problem targeted

in this work.

2.3 Privacy Model and Design Goals

All entities considered in the system are assumed to be semi-trusted.

Specifically, the participants can honestly train the model and up-

date local weight values to edge nodes, but one participant may be

curious to infer the other participants’ private data via their local

weight values. The cloud and edge nodes are honest in information

aggregation and model update, but they are curious to derive the

participants’ raw data by analyzing the received weight values.

The goals of our work are to 1) protect the participant’s local

weight values from the other participants, the edge nodes, and the

cloud; 2) protect the edge node’s regional weight values from the

other edge nodes and the cloud; 3) achieve accurate global machine

learning model; 4) guarantee communication and computation ef-

ficiency in the learning procedure.

3 PROPOSED APPROACHES

In this section, we propose the approaches for protecting the local

weight values and regional weight values. Since weight values are

uploaded from bottom to up in the three-layer system, we first de-

scribe the proposed approach between participant layer and edge

layer. Then we introduce the privacy preservation between edge

layer and cloud layer.
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Figure 2: Undirected Graph of A Social Network

3.1 Privacy-preserving learning in

edge/participant layers

As described in P4, each edge node 𝑓𝑗 needs to aggregate the lo-

cal weight values following Eq. (13). To calculate the summation of

local weight values privately, the SS-based secure summation pro-

tocol [4] is a popular solution. Basically, assume there are 𝑁 users

and each user 𝑖 has a value 𝑣𝑖 . The protocol has the following steps:

• Each user 𝑖 randomly generates a number 𝑟𝑖𝑘 and sends 𝑟𝑖𝑘
to user 𝑘 with ∀𝑘 ∈ [1, 𝑁 ], 𝑘 �= 𝑖 . Thus, each user 𝑖 generates

𝑁 −1 random numbers and receives 𝑁 −1 random numbers

from other users in total.

• Each user 𝑖 calculates the summation of its generated num-

bers as 𝐴𝑖 =
∑𝑁
𝑘=1,𝑘 �=𝑖

𝑟𝑖𝑘 and the summation of its received

numbers as 𝐵𝑖 =
∑𝑁
𝑘=1,𝑘 �=𝑖

𝑟𝑘𝑖 .

• Each user 𝑖 sends 𝑣𝑖 +𝐴𝑖 − 𝐵𝑖 to the agent.

• The agent can calculate the summation of 𝑣𝑖 by
∑𝑁
𝑖=1(𝑣𝑖 +

𝐴𝑖 − 𝐵𝑖 ) =
∑𝑁
𝑖=1(𝑣𝑖 +

∑𝑁
𝑘=1,𝑘 �=𝑖

𝑟𝑖𝑘 −
∑𝑁
𝑘=1,𝑘 �=𝑖

𝑟𝑘𝑖 ) =
∑𝑁
𝑖=1 𝑣𝑖 .

However, since each user needs to communicate with all the

other users, the communication overhead is extremely heavy for

large-scale systems. In our work, in addition to the secure summa-

tion protocol, we utilize the social relationship of participants to

reduce the communication overhead while preserving secure ag-

gregation. As shown in Fig. 2, we can use an undirected graph to

illustrate the social relationship in a social network. Each user is

represented as a node and two nodes are connected by an edge if

there exists social relationship between them. In our work, we al-

low the participants to self-organize groups based on their social

relationships. Each group has only two participants and each par-

ticipant can only be involved in one group. For instance, in Fig. 2,

node 1 and node 4 form a group. Although node 5 has social con-

nection with node 1 and node 4, it cannot form groups with them.

Similarly, there exist other two groups. One consists of node 2 and

Figure 3: Overview of the Proposed Approaches

node 3 while the other one has node 6 and node 8. For each group,

the two nodes perturb their private data following four steps.

• Node 𝑖 sends a random number 𝑟 to node 𝑘 . Node 𝑘 sends a

random number 𝑑 to node 𝑖 .

• Node 𝑖 calculates 𝐴 = 𝑣𝑖 + 𝑟 − 𝑑 . Node 𝑘 calculates 𝐵 =

𝑣𝑘 + 𝑑 − 𝑟 .

• Node 𝑖 and node 𝑘 send 𝐴, 𝐵 to the agent respectively.

• The agent can calculate 𝑣𝑖 + 𝑣𝑘 = 𝐴 + 𝐵.

It is noted that nodes 5,7,9 are isolated nodes without being in-

volved in any groups. These nodes utilize the secure summation

protocol to protect the information.

Fig. 3 shows the details of the learning procedure between edge

layer and participant layer. Specifically, it involves the following

phases.

Phase 1: Each participant 𝑝
𝑗
𝑖
trains machine learning model lo-

cally and obtains 𝒘 𝑗,𝑖 . Meanwhile, each participant attempts to

form a group with other participants based on their social relation-

ships. Note that one group only includes two participants and one

participant cannot be involved in more than one group.

Phase 2: When being involved in a group, each participant gen-

erates𝒘 ′
𝑗,𝑖 by following the steps:

• 𝑝
𝑗
𝑖 sends a random number 𝑟 to 𝑝

𝑗

𝑘
. 𝑝

𝑗

𝑘
sends a random num-

ber 𝑑 to 𝑝
𝑗
𝑖
.

• 𝑝
𝑗
𝑖 calculates𝒘

′
𝑗,𝑖 = 𝒘 𝑗,𝑖 +𝑟−𝑑 . 𝑝

𝑗

𝑘
calculates𝒘 ′

𝑘,𝑖
= 𝒘𝑘,𝑖 +𝑑−𝑟 .

When being isolated, all isolated participants communicate with

each other to generate 𝒘 ′
𝑗,𝑖 by following the steps:

• 𝑝
𝑗
𝑖 randomly generates a number 𝑟𝑖𝑘 and sends 𝑟𝑖𝑘 to 𝑝

𝑗

𝑘
with ∀𝑘 ∈ other isolated participants.

• 𝑝
𝑗
𝑖 calculates 𝐴𝑖 =

∑
𝑘 𝑟𝑖𝑘 , 𝐵𝑖 =

∑
𝑘 𝑟𝑘𝑖 ,𝒘

′
𝑗,𝑖 = 𝒘 𝑗,𝑖 +𝐴𝑖 − 𝐵𝑖 .

Then 𝑝
𝑗
𝑖
sends 𝒘 ′

𝑗,𝑖 to edge node 𝑓𝑗 .
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Phase 3: Each edge node 𝑓𝑗 performs data aggregation and cal-

culates𝒘 𝑗 =
1
𝑁 𝑗

∑𝑁 𝑗

𝑖=1𝒘
′
𝑗,𝑖 .

Following these three phases, the participants can upload their

local learning models to the edge nodes without exposing their lo-

cal weight values. Meanwhile, the edge nodes can aggregate these

models following Eq. (13) without information loss.

3.2 Privacy-preserving learning in cloud/edge

layers

Fig. 3 also shows the details of the learning procedure between

cloud layer and edge layer. Specifically, it involves the following

phases.

Phase 4: Each edge node 𝑓𝑗 communicates with other edge nodes

to generate 𝒘 ′
𝑗 by following the steps:

• 𝑓𝑗 randomly generates a number 𝑟 𝑗𝑘 and sends 𝑟 𝑗𝑘 to 𝑓𝑘 with

∀𝑘 ∈ [1, 𝐽 ], 𝑘 �= 𝑗 .

• 𝑓𝑗 calculates 𝐴 𝑗 =
∑
𝑘 𝑟 𝑗𝑘 , 𝐵 𝑗 =

∑
𝑘 𝑟𝑘 𝑗 ,𝒘

′
𝑗 = 𝒘 𝑗 +𝐴 𝑗 − 𝐵 𝑗 .

Then 𝑓𝑗 sends𝒘
′
𝑗 to cloud.

Phase 5: Cloud performs data aggregation and calculates 𝒘 =
1
𝐽

∑𝐽
𝑗=1𝒘

′
𝑗 .

Phase 6: Cloud sends 𝒘 to the edge nodes and the edge nodes

continue to send𝒘 to the participants for the learning of next iter-

ation.

3.3 Privacy Analysis

In the proposed scheme, the global learning task is decentralized

to edge nodes and participants. Eqs. (8), (9), (12), (13) provide the it-

erative decomposition at edge layer and participant layer. For each

participant, since it generates and updates the local weight values

𝒘 𝑗,𝑖 following Eq. (12) without exposing its own data, there is no

privacy leakage for this step which is the phase 1 in Fig. 3. The

computation of 𝑧 ′′𝑗 from Eq. (13) is possible to leak 𝒘 𝑗,𝑖 to 𝑓𝑗 and

other participants. As discussed in the phase 2 of the proposed ap-

proaches, the participants exchange random numbers with each

other and perturb the 𝒘 𝑗,𝑖 with those random numbers. Since the

secure summation protocol guarantees the privacy of the shared

information, 𝒘 𝑗,𝑖 is protected from the edge nodes and other par-

ticipants. Specifically, for each participant, it only sends random

numbers to other participants while keeping 𝒘 𝑗,𝑖 as private along

the procedure. Thus, the other participants cannot infer𝒘 𝑗,𝑖 via the

random numbers. For each edge node 𝑓𝑗 , since it only receives𝒘
′
𝑗,𝑖

which is a perturbed value. Without knowing the random values

of 𝐴𝑖 and 𝐵𝑖 in phase 2, the advantage of 𝑓𝑗 recovers𝒘 𝑗,𝑖 from𝒘
′
𝑗,𝑖

is negligible. Therefor, 𝒘 𝑗,𝑖 is protected from edge nodes and the

other participants.

Similarly, the computation of 𝑧 ′ from Eq. (9) is possible to leak

𝒘 𝑗 to cloud and other edge nodes. As discussed in the phase 4 of the

proposed approaches, since secure summation protocol is utilized

to aggregate 𝒘 𝑗 without exposure, the privacy of𝒘 𝑗 is preserved.

4 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed scheme

by implement SVM over the dataset BCD [1]. BCD is breast cancer

Table 2: Classification Accuracy

Accuracy Recall Precision

Centralized 98.1% 96.6% 96.6%

DP-based 84.2% 81.3% 81.3%

Proposed 97.5% 94.8% 94.8%

0 50 100 150 200 250 300 350
Iterations
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4.5
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Figure 4: Convergence iteration.

dataset that involves 570 instances and 32 feature attributes, de-

scribing the characteristics of the cell nuclei of breast mass. Based

on these features, we train the SVMmodel to classify if the mass is

harmless or cancerous. When implementing the SVM in the three-

layer scheme, we consider one cloud server, two edge nodes, and

five participants under each edge node. We first evaluate the learn-

ing accuracy by comparing with centralized learning [15] and DP-

based distributed learning [3]. Thenwe discuss the communication

efficiency by comparing with the SS-based scheme [4].

Table 2 shows the comparison of the classification results in

terms of accuracy, recall, and precision. The centralized learning

performsbest and achieves extremely high accuracy,which ismore

than 98%. Our proposed scheme obtains significant accuracy, al-

though not as high as the centralized learning. In the centralized

learning, all instances of the dataset are fed into the training pro-

cedure. However, in the proposed scheme, since we apply MBGD

to decompose the global learning task, each participant only pick

a fixed size of instances to train the model. This could be a rea-

son why our performance is slightly degraded compared with the

centralized learning. The DP-based distributed learning has much

lower accuracy due to the introduced noise data.

Fig. 4 describes the performance in terms of convergence itera-

tion. For centralized learning and our proposed scheme, with the

increase of iterations, the value of logℎ(𝒘) (denoted as log cost)

tends to be minimum and stable. Specifically, the centralized learn-

ing converges at 150 iterations while our proposed scheme con-

verges at around 200 iterations. The model decomposition could

be a possible reason that leads to such a lower convergence speed.

The log cost of DP-based distributed learning fluctuates irregularly.

This is because in each iteration, the introduced noise is random,

which perturbs the weight values significantly. Then it is difficulty

for DP-based scheme to converge smoothly.
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Figure 5: Convergence vibration.
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Figure 6: Efficiency.

Fig. 5 evaluates the performance in terms of convergence vibra-

tion. Log difference represents the difference of costs in two consec-

utive iterations, which is defined as log|ℎ𝑡 (𝒘) −ℎ𝑡+1(𝒘)|. Similarly,

the centralized learning and our proposed scheme can converge

smoothly within 200 iterations. It means our proposed scheme is

time efficient in training themachine learningmodel and can achieve

sufficient accuracy when comparing with the centralized learning.

ForDP-based distributed learning scheme, it cannot converge within

300 iterations andmay takemuchmore iterations to achieve a satis-

fying convergence. Thus, DP-based schememay also lead to longer

latency in the training procedure due to lower convergence speed.

We compare the proposed schemewith SS-based scheme in term

of communication efficiency in Fig. 6. Assume the communication

overhead between two users to exchange the random numbers is

𝑜, then the communication overhead grows exponentially with the

increased number of participants. For our proposed scheme, since

we utilize the social relationships between participants, the partici-

pants who are not involved in a group are isolated. Let the percent-

age of participants who are involved in a group in the system be 𝑞.

As shown in Fig. 6, our proposed scheme has consumed less com-

munication resource than the SS-based scheme. The grater value

of 𝑞 is, the better our performance would be.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a three-layer distributed learn-

ing scheme, involving the cloud layer, edge layer, and participant

layer. Different from the fully distributed system, a global learning

task can be decomposed from cloud to participants hierarchically

through edge layer. To achieve efficient learning while guarantee-

ing privacy preservation during the training procedure, we have

proposed to employ the secure summation protocols to protect the

weight values and utilize the social networks to reduce the commu-

nication overhead. By implementing SVM in the proposed scheme,

we have evaluated the effectiveness of our work. The simulation

results have demonstrated that our proposed scheme can achieve

high learning accuracy with significant communication efficiency.
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