
Learning A Wafer Feature With One Training Sample

Yueling (Jenny) Zeng, Li-C. Wang
University of California, Santa Barbara

Santa Barbara, California 93106

Chuanhe (Jay) Shan
IE3A, Inc.

Los Angeles, California 90017

Nik Sumikawa
NXP Semiconductor
Chandler, AZ 85224

Abstract—In this work, we consider learning a wafer plot
recognizer where only one training sample is available. We
introduce an approach called Manifestation Learning to enable
the learning. The underlying technology utilizes the Variational
AutoEncoder (VAE) approach to construct a so-called Manifes-
tation Space. The training sample is projected into this space
and the recognition is achieved through a pre-trained model
in the space. Using wafer probe test data from an automotive
product line, this paper explains the learning approach, its
feasibility and limitation.

1. Introduction
Analysis of wafer plots derived from test results is an

area of study in test data analytics. One capability desired in
practice is to automatically recognize wafer plots exhibiting
a certain feature. Such a recognizer can be deployed to
monitor a production line and identify wafers containing the
specific feature. In this context, the work in [1][2] developed
an automatic wafer plot recognition software.

In [1], a wafer plot feature is called a concept. A concept
recognizer is a model to identify wafer plots containing the
feature. In contrast to “classifier”, the term “recognizer” is to
emphasize that the model is for separating (a few) in-class
plots from (many) out-of-class plots. In [1], the approach
to learn a recognizer is based on the popular Generative
Adversarial Network (GAN) [3][4][5].

One key reason to use GAN was because it enabled
training with very few in-class samples. In [1], training a
recognizer can be done with five in-class samples. GAN
training can be tricky though [4][5], and the robustness of a
GAN-based recognizer can be a concern in practice. Hence,
the work in [2] employs tensor computation based tech-
niques [6][7][8] to improve robustness of the recognition.

Once deployed, the recognition software [2] would au-
tomatically decide the need to train a new recognizer, select
5 training samples to represent the concept, and train a
recognizer. However, if there were less than five training
samples found for a feature, the software would simply not
act. Initially, this limitation motivated us to pursue this work.

For example, Figure 1 shows a wafer plot with a “ring”
feature which was not captured by the recognition software
as a concept. Note that in this plot, a yellow dot shows
the location of a failing die. The data was from the same
automotive SoC line as that reported in [2].

Figure 1. Goal: Learning a recognizer with one training sample

1.1. The learning problem

The learning problem can be stated as the following: We
are given a single sample s exhibiting a feature of interest.
The goal is to build a model Ms such that given future
samples s1, . . . , sn, ∀si, 1 ≤ i ≤ n, Ms(si) would return
“yes” if si exhibits the same feature as s.

In machine learning, a closely-related problem is the
one-shot learning [9] which also intends to learn with one
training sample. One-shot learning is a form of transfer
learning [10]. To apply one-shot learning, we start with a
model M() which is already learned to classify wafer plots
into different categories based on their feature. The single
training sample s is given to represent a new category. Then,
the model M() is enhanced based on the new sample.

In our work, the requirement is different though. For
each category, we intend to build a recognizer independent
of other recognizers. Hence, the learning has to “start from
scratch”. The reason we prefer independent models is to
facilitate debugging and maintenance of the recognition
software. If there is a deficiency in recognition of one
category of plots, we can simply focus on that particular
recognizer without concerning other recognizers.

1.2. Two elements in a learning algorithm

In the above problem statement, the exact meaning of
the word “feature” is to be defined by a learning algorithm.
Typically, si and s are treated as having the same feature
if they are similar. However, different algorithms might
measure this similarity differently.

A learning algorithm of this sort essentially comprises
two elements. The first can be thought of as a projection
method that maps each sample to a score. For example,
a score indicates how close a given sample si is to be
considered as the same category of the training sample s.
For the most part, this projection method is the learning
algorithm. However, just obtaining the scores is not enough.
To decide a sample si should be treated as in-class or out-
of-class, a threshold would also be needed.

Distinguished Paper
978-1-7281-9113-3/20/$31.00 ©2020 IEEE

INTERNATIONAL TEST CONFERENCE 1

In practice, threshold can be decided by extensive exper-
iment. However, this is only feasible if sufficient data are
available. If not, the problem can become challenging.

1.3. Challenge on deciding a threshold

With only one training sample, it is not surprised that
threshold selection is a challenge. Take the wafer plot shown
in Figure 1 as an example. To accomplish the first element,
i.e. the projection method, we can simply choose a similarity
measure that computes a similarity score between two wafer
plots. For example, suppose each plot is represented as a
48 × 48 matrix. Each entry contains one of the three values
−1 (purple), 0 (green), and +1 (yellow).

Given two wafer plot matrices W1,W2, a simple way is
to use their square distance, ∥W1 −W2 ∥

2, i.e. subtracting
each entry individually and take the sum of their square.
Another way is to focus on the yellow entries (“+1” entries)
where the feature is defined. First we replace every “−1”
with “0” to make the matrix binary. Let U be the number
of “1” entries in W1 ∨W2. U captures the size of the union
set of the yellow dots. Then, let I be the number of “1”
entries in W1 ∧W2. I captures the size of the intersection
set of the yellow dots. We let the similarity score be I

U
. We

use IoU(W1,W2) to denote this score.
In our dataset, there are six plots with the “ring” feature.

These six plots are shown in Figure 2. We treat them as the
in-class. Then, if any other plot considered by a recognizer
as in-class, it is treated as a false positive.

Figure 2. The six plots with “ring”, before and after denoising

Before applying IoU(), each wafer plot goes through
a denoising step which removes random and scatter yellow
dots while maintaining the feature. This is typical in image
processing. Figure 2 shows the images before and after the
denoising step. In the rest of the paper, all wafer plots shown
are after the denoising.

Let W be the first wafer plot shown in Figure 2. Suppose
it is the one training sample given to us. First, we have
IoU(W,W) = 1. For any other Wi, unless Wi =W exactly
we have IoU(W,Wi) < 1. The minimum IoU score is 0.

Suppose we have 25 other wafers to help in finding a
threshold. Figure 3-(a) shows the IoU values for the 25
wafers. The values are shown along the y-axis. Note that
for ease of viewing, the blue dots are spread out along the
x-axis direction which has no physical meaning.

Suppose we know all blue dots are out-of-class samples.
There can be two (reasonable) options to set the threshold.
Threshold T1= 0.0653 is set by the blue dot with the highest
score. Another option is to set the threshold at the middle
point, i.e. T2= 1+0.0653

2
= 0.53265. Note that setting a

threshold close to the red dot is not an option in this plot
because we would not know how close is “close”.

Figure 3. Model building: Selecting a threshold

Suppose we apply the model to check on future 125
wafers where none is in-class. Figure 3-(b) shows the result.
If T1 is taken, it will result in 15 false positives. If T2 is
taken, it will have no false positive. But result in Figure 4
below shows that taking T2 will miss all the in-class plots.

Figure 4. What if adding a second training sample

Suppose the second wafer plot in Figure 2 is also
available to us. Figure 4-(a) shows its IoU score. This score,
0.1823, now can be our third threshold option, T3. The figure
shows that if a different set of 125 wafer plots is considered,
T3 would result in 12 false positives.

Figure 4-(b) shows the IoU scores for the remaining
four in-class plots. Observe that even with T3, the model
would have treated two in-class plots as out-of-class (below
the threshold line). If threshold T2 = 0.53265 from Figure 3
is used, the model would have missed all in-class plots.

The above example illustrates the challenge for deciding
a threshold when limited data is available. Unless the data
show where the highest blue dot (out-of-class) or the lowest
red dot (in-class) might be, there seems no effective way to
optimize a model against false positive or false negative.

In the above example, we assume there are out-of-class
samples to help decide the threshold. Even this assumption
is considered unrealistic in our work. Suppose our software
is deployed already. Then, the learning depicted in Figure 1
needs to be carried out online. Without acquiring labels for
other samples through another means, the software would
not know if they are in-class or out-of-class, i.e. the learning
cannot simply treat unlabeled samples as out-of-class.

Distinguished Paper INTERNATIONAL TEST CONFERENCE 2

2. Manifestation Learning
Suppose a sample s is given to represent a concept in

domain A . The idea of Manifestation Learning is that, we
would try to recognize the concept by using a pre-trained
recognizer Mb for a different concept in a different domain
B. The recognizer Mb is trained with a dataset originated
from the alternative domain, where there are plenty of
training samples available.

Figure 5. The basic idea of Manifestation Learning

Figure 5 illustrates the idea. Given an instance to be
recognized for a concept in A , we simply manifest the
instance into a concept in B domain and use Mb for
the recognition. To realize this idea, at minimal requires
building a mapping function that maps every instance in
A to an instance in B. Note that like one-shot learning,
manifestation learning can also be thought of as a special
form of transfer learning [10].

2.1. The manifestation space
Recent advances in the AutoEncoder (AE) approach

[11], in particular the Variational AutoEncoder (VAE) [12],
provide a means for realizing the proposed idea. An AE has
three essential components: an encoder function, a proba-
bilistic decoder model, and a coded latent space.

Figure 6. Setup for Manifestation Learning

Figure 6 illustrates our setup to realize the manifestation
learning idea. Given a dataset for learning about a concept in
B (which contains many in-class and out-of-class samples),
an encoder and a decoder are trained. The encoder and
decoder in the setup are both neural network models. For
an input sample x, the encoder maps x onto a point in the
latent space. This point essentially can be seen as a code
z⃗ for x. For example, if the latent space is defined with
16 dimensions, z⃗ is a vector of size 16. Then, the decoder
reconstructs the input x from the code z⃗. A main training
objective is to minimize the reconstruction error.

After the training, each sample in the dataset is mapped
to a code in the latent space. In manifestation learning, one
sample s for a concept in A is given. This sample is used in
training an encoder and a decoder separately. This manifes-
tation encoder maps s to a selected code in the latent space.

This selected code corresponds to a particular sample from
a selected concept in B. The decoder then reconstructs the
sample from the code. The training objective for the decoder
is also to minimize the reconstruction error. However, the
training objective for the encoder is different from before,
i.e. now the objective is to map s to a selected code.

For a selected concept in B, its recognizer is built
in the latent space where each sample is represented as
a vector. The recognizer can be built using a traditional
learning technique such as SVM [13]. More importantly,
there are sufficient data for learning the model. Detail will
be discussed later in Section 3.

In Figure 6, we call the latent space as a Manifestation
Space. This is to differentiate our use of the space from that
of traditional AE and VAE.

2.2. VAE implementation
VAE replaces the deterministic encoder function in AE

with a posterior model q(z⃗∣x). The effect is that, instead
of learning a code for a sample as a vector in the latent
space, VAE learns codes represented as probabilistic distri-
butions in the space. When each sample is represented as a
probability distribution, effectively the latent space becomes
continuous. This enables information to be learned between
two sample points and allows samples to be drawn randomly
from the latent space.

Note that our VAE implementation did not follow the
original VAE [12] which uses KL divergence to regularize
learning of the latent space. As indicated in a number of
works [14][15], this can lead to an uninformative latent code
and also the tendency to over-fit the samples, especially on
a small dataset. We use the InfoVAE proposed in [16] which
uses Maximum Mean Discrepancy (MMD) [17] to measure
divergence and regularize the latent space.

2.3. The neural networks

Figure 7. Convolutional Neural Networks for VAE

Figure 7 illustrates the architecture of the neural net-
works for implementing VAE. Convolutional neural net-
works (CNN) are used to implement the encoder and de-
coder. The encoder comprises four convolutional layers
denoted as “CNN()”. The decoder comprises four transposed

Distinguished Paper INTERNATIONAL TEST CONFERENCE 3

convolutional layers denoted as “T.CNN()”. The input image
is a 48×48×1 tensor, i.e. a 48×48 image with one channel.
Unlike a RGB image with three channels, our image has
one channel with three possible values, −1, 0, and +1.

The first CNN layer essentially converts the input image
into a 24× 24 image with 128 channels, i.e. a 24× 24× 128
tensor. Each 24× 24 matrix is the result of applying a filter
on the original input image. Each filter uses a 4 × 4 kernel
(window) to “scan” the input image. The stride length is 2,
i.e. during scanning the window moves every 2 pixels. The
effect is to reduce the original image size by half.

Another way to understand the CNN layer’s operation is
by thinking in terms of a convolutional matrix [18], which is
defined by the kernel and the stride length. In the example,
the convolutional matrix can be denoted as C576×2304 where
576 = 24 ∗ 24 and 2304 = 48 ∗ 48. The 48 × 48 input
image matrix is flatten into a column vector v⃗2304. Then the
convolution layer computes the product C576×2304 ∗ v⃗2304.
This product is a vector of 576 values which can then be
reshaped into a 24 × 24 matrix.

Similarly, the other three CNN layers below the first
CNN layer further reduces the image size, from 24 × 24
to 12 × 12, then to 6 × 6, and then to 3 × 3. The number of
channels is equal to the number of filters used in each layer.
Each filter is a i× i× k tensor where i× i is the kernel size
and k is the number of channels from the previous layer.

After four CNN layers, the result is a 16-channel 3 × 3
image, i.e. a 3 × 3 × 16 tensor. This tensor is flatten into a
vector of size 144. The last layer of the encoder is a fully
connected (FC) layer that connects 144 inputs to 32 outputs.

The latent space has 16 dimensions. If it were AE,
another FC layer would have been used, to reduce the size
from 32 to 16. In training, each sample would be mapped
into a vector of size 16 in the latent space.

In VAE, two 16-dimensional vectors are used, denoted
as µ and lnσ2. In each training cycle, a multivariate constant
ε is randomly drawn from the distribution Z(0,1), the 16-
dimensional Gaussian distribution with mean 0 and standard
deviation 1. Then, µ+ε∗e

lnσ2

2 is used as the resulting vector
in the latent space (Note that e

lnσ2

2 = σ). Effectively, each
sample would correspond to a probability distribution in the
latent space. This distribution is assumed to be Gaussian,
represented by its mean vector µ and the vector lnσ2. Note
that the reason to use lnσ2 instead of its standard deviation
σ directly is a trick to enable the training [12].

The decoder takes a 16-dimensional vector from the
latent space and produces a 48×48 image. First, it uses a 16-
to-32 FC layer, followed by a 32-to-144 FC layer to expand
the 16-dimensional vector to a vector of size 144. The vector
is then reshaped into an 12 × 12 image with 1 channel. A
transposed convolutional layer is similar to a convolutional
layer except that instead of using a convolutional matrix, a
T.CNN uses the transpose of a convolutional matrix.

For example, in CNN suppose we multiply a convo-
lutional matrix C144×576 to the flatten vector of a 24 × 24
matrix. This gives a vector of size 144, equivalent to a 12×12
matrix. In T.CNN we would multiply (C144×576)

T to the

flatten vector of a 12×12 matrix. This gives a vector of size
576, equivalent to a 24 × 24 matrix.

The last T.CNN layer produces a 48 × 48 image with
16 channels. A FC layer is then used to convert the 16
channels into 1 channel. In VAE training, the reconstruction
error, i.e. the difference between the input image and the
output image, is minimized.

2.4. Example of manifestation space
TensorFlow [19] is used to implement the neural net-

works shown in Figure 7. One of the datasets we exper-
imented was from the MNIST handwritten digit database
[20]. The dataset comprises samples for individual digits “0”
to “9”. In our study, for each digit we had >5000 samples.
Figure 8 shows ten examples for digits “0”, “1”, and “2”.

Figure 8. Examples of “0”, “1”, and “2” from the MNIST dataset

We took 5000 samples for each of the three digits to
form a dataset of 15K images. We trained a VAE model with
these 15K images. We were interested in how the samples
distributed in the latent space.

The latent space has 16 dimensions. Hence, we used
the t-SNE technique [21] to project the latent space onto a
2D space for ease of viewing. Figure 9 shows the result.
For clarity, only 100 samples from each class are randomly
selected to be shown. It is interesting to observe that samples
from each digit exhibit a cluster in the latent space.

Figure 9. Manifestation space example

Recall that in VAE, each sample in the latent space cor-
responds to a probability distribution. Hence, it is important
to note that the points shown in Figure 9 is the result by
randomly drawing an ε (see Figure 7) for each sample. As
a result, if we tried to re-generate the plot in Figure 9 with
another run, the exact location of a sample’s point could
change due to the random drawing. However, exhibition of
the three clusters would always be there.

It is also important to note that during VAE training, the
images were used without their label. Hence, the training

Distinguished Paper INTERNATIONAL TEST CONFERENCE 4

is unsupervised. Therefore, the clustering property shown
in Figure 9 is the result of the VAE training. Note that
this property might not be there if a different dataset or
a different learning setup is used. Later in Section 3 we will
discuss this property in more detail.

Suppose we want to map a wafer plot to a sampled
point in the latent space. As shown in Figure 6, we train a
separate encoder and decoder (Encoder A and Decoder A
in the figure). As shown in Figure 9, this is done for three
wafer plots: the first “ring” wafer plot shown in Figure 2, a
generic no-fail (“blank”) plot, and a generic all-fail (”full”)
plot. Each plot is mapped to the “center” of a digit cluster.
In Figure 9, the centers are marked by a red star “⋆”.

To check how well the manifestation decoder works,
Figure 9 also shows the sequence of images produced by
two walks. The first walk moves from digit “1” to digit “0”.
Observe that the resulting images gradually change from
“ring” to “blank”. The second walk moves from digit “1”
to digit “2”. Also observe that the resulting images gradually
change from “ring” to “full”.

In the two walks, observe that the first three plots
all exhibit the “ring” feature. They can all be treated as
examples of concept A , i.e. concept “ring”. In the latent
space, those “ring” plots correspond to points closer to the
center of the digit “1” cluster. If we could define a region
around the digit “1” cluster, in Manifestation Learning this
region could also be used to define a region for concept A .
Then, recognizing concept A becomes simply to check if an
input image, after going through the manifestation encoder,
results in a point inside the concept region or not.

2.5. Another example of manifestation space
Before we discuss how to model a concept region in

a manifestation space, in this section we show another
example of manifestation space. This example shows some
generality of the Manifestation Learning idea.

Figure 10. A sentence-based manifestation space

Figure 10 shows a manifestation space learned based
on 60 paper titles from past International Test Conference
(ITC), where 29 titles are categorized as “Machine Learn-
ing” and 31 titles are categorized as “Automotive” (two
tracks of ITC in recent years). We use the VAE approach
proposed in [22] to train a VAE model, where the CNNs in
Figure 7 are replaced with LSTMs [23].

Then, we take two plots for training the manifestation
encoder and decoder, which follow the network architecture
shown in Figure 7. The first plot (on the top) is the same
correlation plot shown as Figure 3-(a) in paper [1] before.
The x-axis is the average e-test value and the y-axis is the
number of fails. Each yellow dot represents a wafer lot. It
is a correlation plot example used in [1] to show that, as
the e-test value becomes larger, it tends to result in more
fails. The second plot is a manually-created, generic counter
example showing no correlation between x and y.

The manifestation encoder is trained to map the correla-
tion plot to the center of the “Machine Learning” cluster.
The no-correlation plot is mapped to the center of the
“Automotive” cluster.

As before, by walking a path from “Machine Learning”
to “Automotive” in the manifestation space, we can generate
various plots using the manifestation decoder. In addition,
we can generate various paper titles using the VAE’s de-
coder. Note that in the figure, none of the generated titles
is the same as the original titles used in training the VAE.

It is interesting to observe that the top three titles are
about “Machine Learning”. The bottom three are about
“Automotive”. The middle one is a hybrid. Also observe
that the top three plots all show a similar correlation trend.
Suppose we have a model that can recognize a paper title of
“Machine Learning” category. Then, this model could also
be used to recognize plots with a correlation trend.

3. Concept Region
To model a concept region in a manifestation space, we

need to decide on the following four aspects:
(Dataset): We need to choose a labeled dataset that com-
prises multiple classes of samples, where for each class there
are sufficient samples for the VAE training.
(Learning Setup): To learn a model in the manifestation
space, we need to choose to employ a supervised learning
or an unsupervised learning setup.
(Algorithm): Based on the learning setup, we choose a
particular learning algorithm.
(Target Class): Through experiment, we choose a particular
class as our target class for modeling the concept.

3.1. Selection of the dataset
To choose a dataset, we considered various options.

Because our goal is to capture a concept based on a wafer
plot, it would seem intuitive to consider using a dataset
comprising multiple classes of wafer plots. For example,
the work in [2] shows 11 classes of wafer plots found in the
dataset with 8300 wafers. After investigating the possibility,
we decided not to use the dataset because the numbers of
wafer plots across the 11 classes differ significantly. Some
have much fewer samples while the largest class has over
a hundred. The imbalance and insufficiency in terms of the
number of samples are of the major concern.

One crucial property considered for a manifestation
space is that multiple classes of samples exhibit clustering as
that shown in Figure 9. This is important because it enables
us to model a target class region more easily.

Distinguished Paper INTERNATIONAL TEST CONFERENCE 5

We also considered using the CIFAR-10 dataset [24].
However, while we could train a VAE model with a good re-
construction accuracy, we found it more difficult to observe
the desired clustering property in the latent space. This was
true even with using only two classes of samples.

Figure 11. Latent space shows no clustering with CIFAR-10 samples

For example, Figure 11 shows the latent space with 100
samples each from two classes of CIFAR-10: cat and auto-
mobile. The training is based on 5000 samples in each class.
The reconstruction accuracy is 96.002%. The dimension of
the latent space is set at 1024 to achieve the accuracy. As
seen, points from the two classes show no clustering.

Figure 10 shows another option based on a sentence-
based manifestation space. While it is interesting, we found
that training with the sentence-based VAE [22] could be
much trickier than training a CNN-based VAE.

After all the experiments, we settled with the MNIST
handwritten digit dataset [20]. The dataset we used com-
prises 10 classes of image samples. Each class has 5000
samples. The dataset is balanced and also has a sufficiently
large number of samples from each class.

Figure 12. Clusters in the manifestation space with MNIST samples

Similar to Figure 9, Figure 12 shows the 2D projection
plot of the latent space. Again, the figure shows 100 samples
for each digit. As seen, samples of the same digit are
clustered. In terms of the clustering property, this was the
best result observed in all of our experiments. Hence, we
chose this space as our manifestation space.

3.2. Learning setup and the algorithm
Each sample in the MNIST dataset is labeled by its digit.

From the manifestation space, we can obtain a dataset where

each sample is represented as a vector of size 16. Each
vector has a label and hence intuitively, to learn a concept
region for a target class, say digit “1”, we can treat it as a
supervised binary classification problem, i.e. to treat “1” as
one class and the rest of digits as the other class.

After some initial study, we decided not to follow this
approach. The main reason is that we desire our model for
a concept region to have no false positive (This property
will be utilized later in Section 5). A supervised learning
algorithm usually is not designed to ensure no error with
respect to a given class. Hence, in our implementation we
chose to treat it as an unsupervised learning problem.

Suppose we want to learn a model to capture the concept
region for the digit “1” in the manifestation space. With an
unsupervised setting, when learning the model we would
only use the samples of digit “1”. The learning algorithm we
chose was the SVM one-class algorithm [13], in particular
the implementation from the Scikit-Learn package [25].

To run SVM one-class, user needs to supply value to
the parameter called ν (“nu”). The ν parameter provides an
upper bound on the fraction of samples that are classified
as out-of-class by the model. Note that in an actual imple-
mentation, this bound is not strictly followed because of the
use of a soft margin, i.e. if a sample falls outside but very
close to the decision boundary (within a margin), it would
not be considered as a violation of the bound.

For example, Figure 13 shows the result by running
SVM one-class on the 5000 samples of digit “1”. We set
ν = 0.01. This means that the model should classify no
more than 50 samples as outliers. The model comprises two
elements: (1) for each sample a score is calculated, and
(2) a threshold is provided to classify samples into in-class
(above the threshold) and out-of-class (below). Note that in
SVM this threshold is always set at the value 0. However,
the Scikit-Learn implementation moves this threshold by a
positive bias to facilitate plotting with a log scale.

Figure 13. Resulting SVM scores on digit “1” samples

As seen in Figure 13, 74 samples are considered out-
of-class, i.e. below the threshold. In our context, we can
interpret this as a recognition model capturing a concept
region that includes 4926 samples of digit “1”.

Next, we apply the digit “1” model to 5000 samples of
digit “0”. Figure 14 shows the result. While the model does
leave 4977 samples outside the concept region, it includes
23 samples as in-class. These 23 samples are false positives.
As mentioned above, we desire no false positive for a model.
Hence, this model would not work.

3.3. Target class selection
To search for a model that works, we use all the out-

of-class samples as the validation set. The search is based

Distinguished Paper INTERNATIONAL TEST CONFERENCE 6

Figure 14. Applying the SVM model on digit “0” samples

on changing ν. We would search for a minimal ν value
that results in a model with no false positive, i.e. the model
treating all samples in the validation set as out-of-class.

Figure 15. SVM scores by the digit “1” model, across all samples

Figure 15 shows the result based on the model found
with ν = 0.28 for digit “1”. The model includes 3599
samples of digit “1” as in-class. The model classifies all
samples from other digits as out-of-class.

Figure 16. SVM scores by the digit “0” model, across all samples

In contrast, Figure 16 shows the model for digit “0”.
In order to achieve no false positive, the ν is set at 0.5,
resulting in excluding half of the samples of digit “0” from
the concept region (below the threshold).

TABLE 1. THE RESULTING ν FOR THE TEN DIGIT CLASSES
0 1 2 3 4 5 6 7 8 9

0.50 0.28 0.82 0.89 0.88 0.94 0.64 0.88 0.79 0.79

Table 1 shows the ν values found across the ten digit
classes where the resulting model has no false positive. The
search started from ν =0.01 with an increment of 0.01.
The result shows that samples of digit “1” provide the best
model, meaning that the model captures the largest number
of in-class samples in the concept region.

This result is consistent to the fact that the cluster of digit
“1” is more separated from others, which can be somewhat
observed in Figure 12. Suppose for each cluster we calculate
its “center” which is the average of all the sample vectors
in the manifestation space. For each digit, we calculate the
average (Euclidean) distance from its center to the other 9
centers. Table 2 shows such average distance for each digit.
As seen, digit “1” has the largest average distance to others.

More separation of a cluster to other clusters enables
building a better model, i.e. capturing more in-class samples
inside the concept region. Because of this observation, we
chose digit “1” as our target class for manifestation. In

TABLE 2. AVERAGE DISTANCE TO THE OTHER 9 DIGITS
0 1 2 3 4 5 6 7 8 9

5.64 6.16 5.37 5.01 5.27 4.87 5.28 5.35 4.46 4.47

other words, for a given concept A to be learned we would
map its training sample onto a sample of digit “1” in the
manifestation space.

3.4. Manifestation to a digit “1” sample
Refer back to Figure 6. To manifest the “ring” wafer plot

(concept A), we use the plot to train a manifestation encoder
and a manifestation decoder. When training the encoder, we
need to select a point in the concept region of digit “1”. In
our implementation, we select the point that has the largest
SVM score. We train the encoder to map the wafer plot to
the point. After that, we train the decoder to reconstruct the
wafer plot from the point. After manifestation training, we
then check how the resulting recognizer performs on the
other 8299 wafer plots.

Figure 17. Initial manifestation that does not work

Figure 17 shows the result for the 8300 wafer plots. Each
wafer plot corresponds to a point in the manifestation space.
The SVM model calculates a score for the point. The six
“ring” plots in Figure 2 are shown as six red dots “●”. All
others are shown as grey dots.

What we desire to see is that the six red dots are above
the threshold and none of the grey dots are above it. In
contrast, we see that majority of the grey dots are also above
the threshold, an undesirable result. In the enlarged view,
however, we do see that the scores of the six wafer plots
are higher. The problem is that the scores for other plots are
also high. Hence, we need to find a way to lower the scores
for all the other plots.

4. Generic Counter Examples
Figure 18 shows three wafer plot examples and the

corresponding plots generated by the manifestation decoder.
It is interesting to see that regardless of the input image,
the output image always shows a similar “ring” feature.
As explained below, the problem, though, is not with the
decoder, but is with the encoder.

Figure 18. Checking the decoder’s output - 3 examples

The manifestation encoder is trained with only one wafer
plot of concept A . Hence, the encoder lacks information on

Distinguished Paper INTERNATIONAL TEST CONFERENCE 7

where to map a wafer image different from concept A . To
improve the encoder’s mapping, we use a generic counter
example to differentiate from concept A .

One generic counter example is the no-fail wafer plot,
i.e. the “blank” wafer image. Figure 19 shows the result
by adding this image in training the manifestation model.
The training now has two wafer images. The blank image
is mapped to a point of digit “0” in the manifestation space.
Instead of mapping to the point with the largest SVM score,
it maps to the point with the medium SVM score. The
reason “0” is chosen is because in the manifestation space,
the distance between the center of digit “1” and the center
of digit “0” is the largest (e.g. see Figure 12). Through
experiment, we observed that the further away the digit we
chose for this mapping, the better the result would be.

Figure 19. Add a no-fail wafer image, mapped to digit “0”

Comparing to Figure 17, observe in Figure 19 the signif-
icant effect by adding the blank wafer image. The resulting
model classifies 21 wafer plots as in-class. Four out of the
21 plots are among those six containing a “ring”, i.e. those
shown in Figure 2. Hence, we consider the other 17 as false
positives. The images for five of these 17 false positives are
shown as examples.

To improve the result further, we consider adding a
second generic counter example. This time we add an all-
fail wafer plot, i.e. the “full” wafer image. This wafer image
is mapped to digit “2” whose center is the 2nd farthest to
the center of digit “1”. Figure 20 shows the effect.

Figure 20. Add a no-pass wafer image, mapped to digit “2”

The model classifies five images as in-class with only
1 false positive left. The four recognized in-class plots in
Figure 19 are also kept as in-class. Their images are shown
in Figure 20. The image of the one false positive is also

shown in Figure 20. Effectively, adding the “full” wafer
image removes 16 of the 17 false positives in Figure 19.

4.1. The best manifestation setup

Figure 21. Add a bounding-box wafer image, mapped to digit “7”

Figure 21 shows the best manifestation setup found in
our study. Instead of using the all-fail wafer image, we use
an image with all-fail in a bounding box. The bounding box
is the smallest box containing the “ring” feature. Then, we
fill the box with yellow pixels (excluding the area outside the
wafer boundary if any). Because this bounding box image
depends on the wafer plot, we map this image to digit “7”
(instead of digit “2” as that in Figure 20). In Figure 12, we
observe that digit “7” is the closest digit to digit “1”.

As seen in Figure 21, the best model keeps the four in-
class plots as in-class while removing the 1 false positive
concerning us in Figure 20. We consider this as the most
desirable result as it can recognize wafer plots similar to the
given training wafer plot with no false positive.

5. Iterative Recognition
As shown in Figure 2, we consider six wafer plots

having the same “ring” feature. The first one is used to train
the manifestation model shown in Figure 21. The model
recognizes three of the other five plots. This leaves two
wafer plots unrecognized, i.e. two false negatives.

Because our manifestation setup is designed to achieve
zero false positive, the false negative issue can be mitigated
rather easily. The idea is that we would simply expand the
recognition by iteratively building additional manifestation
models based on those recognized wafer plots. Suppose in
iteration i, a set Si of wafers {W1,W2, . . .} are recognized
where no Wj is recognized in a previous iteration. For each
Wj , we build a manifestation model and apply it in the next
iteration to see if there is any new wafer plot recognized.

This process continues until either (1) we reach a closure
recognition set, or (2) the recognized plots are “too far” from
the original training wafer plot. A closure set {W1, . . . ,Wk}

means that if we build a manifestation model for any Wi in
the set, the recognized wafers are all in the set.

We found that iterative recognition can reach a closure
set in a few iterations (e.g. three iterations) but not always.
To avoid too many iterations, we can impose rules to prevent
building a model from some recognized plots.

For example, such rules can be implemented by checking
the size and location of a bounding box from a recognized

Distinguished Paper INTERNATIONAL TEST CONFERENCE 8

plot, as comparing to the bounding box from the original
wafer plot. In our implementation, if the size or location of
the bounding box differs from the original bounding box by
more than 50%, we would not build a manifestation model
for the recognized plot.

Figure 22. Iterated recognition for the “ring” concept

Figure 22 shows the result of this iterative recognition
process. The first iteration shows the same result as shown
in Figure 21. Then, the two missing in-class plots are recog-
nized in the 2nd and the 3rd iterations. With iterative recog-
nition, all six wafer plots shown in Figure 2 are included.
There is no false positive in the iterative recognition process,
i.e. Figure 22 shows all the recognized plots. Furthermore,
the process stops because it reaches a closure set.

5.1. Other classes of wafer plots
To validate the generality of the manifestation setup, we

consider two additional classes of wafer plots: “center” and
“edge” which were among the 11 classes of wafer plots
reported in [2]. Figure 23 shows the iterative recognition
result starting with a “center” wafer plot.

Again, in each iteration only those newly recognized
wafer plots are shown. A manifestation model is built and
applied based on each recognized plot, except those marked
with a “▲”. Those marked wafer plots were excluded by
the rule checking mentioned before.

For those unmarked plots, if there is no outgoing line, it
means all the recognized plots by the manifestation model
are already included in the previous and current iteration(s).
The figure shows all plots recognized in the process.

Figure 23. Iterated recognition for the “center” concept

Similarly, Figure 24 shows the result starting with a
wafer plot with an “edge” feature.

Note that in the work [2], out of the 8300 wafers, in total
there were 80 wafer plots reported as the “center” class and
108 wafer plots reported as the “edge” class. In contrast,

Figure 24. Iterated recognition for the “edge” concept

Figure 23 shows 20 wafer plots and Figure 24 shows 38
wafer plots. None of them would be considered as a false
positive from the classification reported in [2]. However,
the manifestation models recognize much fewer wafer plots
in each case. This is understandable because the recognition
process starts with one particular wafer plot, and the process
only tries to recognize plots similar to the given wafer plot.

6. Summary Of Manifestation Learning
In Section 1.3, we begin the paper by discussing a

similarity scoring method IoU(). Given a wafer plot, the
method calculates a score for every wafer plot. As discussed
in Section 3.2, in manifestation a SVM score is calculated
for every wafer plot. Figure 25 shows a comparison for the
top ranked plots using these two scoring methods.

Figure 25. Ranking comparison: SVM scores Vs. IoU scores

For the six “ring” plots, the SVM scoring ranks them as
1,2,3,4,6, and 7. The 1st plot is the given plot. The model
in Figure 21 puts the threshold between the 4th and the 5th
plots. Hence, the top 4 plots are recognized as in-class. The
IoU ranks the six plots as 1,2,3,6,9, and 11.

It is interesting to observe that if we assume the thresh-
old is set to include all the top 11 plots as in-class, with
both rankings, they both can capture all six “ring” plots as
in-class. Also, both have exactly five false positives. The
false positive sets, however, are different by three plots (the
three plots highlighted in each ranking).

In view of the IoU()-based method discussed in Sec-
tion 1.3, we see that the proposed Manifestation Learning
effectively does the following four things:
(1) It maintains the trend of an IoU ranking.
(2) It fine-tunes the IoU ranking.
(3) It automatically decides a threshold.
(4) It ensures no false positive to enable implementation of
an iterative recognition process.

It is interesting to note that if we consider IoU as intu-
itive and interpretable to a person, we see that Manifestation
Learning keeps this intuition to a large extent.

Distinguished Paper INTERNATIONAL TEST CONFERENCE 9

7. Wafer Plot Generation
Figure 9 shows the possibility to use manifestation

learning for sample generation. For example, a walk from a
given wafer plot for a target concept to a (generic) counter
example can produce a sequence of new wafer plots to
represent the target concept. This can be particularly useful
if a user intends to obtain many wafer plots of the same
category from one wafer plot example.

Figure 26. Multi-directional wafer plot generation

Fig. 26 illustrates how this wafer plot generation scheme
can be used flexibly with different counter examples, two
generic ones and four selected from other categories of
wafer plots. As seen, by using different counter examples, a
walk can generate different “ring” wafer plots. In practice,
a counter example can be selected randomly from a set of
unlabeled wafer plots. Because each sample is generated
based on the given plot and a counter example, it is straight-
forward for a person to trace each generated sample back
to its sources. This traceability can be helpful when using
such a generated dataset in practice.

8. Conclusion
In test data analytics, one obstacle frequently encoun-

tered is the lack of sufficient samples for training a reliable
model. This work focuses on an extreme scenario where
only one training sample can be used. The proposed ap-
proach is by manifesting the given training sample into a
space where a recognition model is already pre-trained with
a large dataset originated from another domain. We call
this approach Manifestation Learning and in this work, its
feasibility is shown in the context of wafer plot recognition.
Although this work focuses on plot recognition, the prelim-
inary result in Section 7 also shows the potential of using
manifestation learning for plot generation.
Acknowledgment This work is supported in part by Na-
tional Science Foundation Grant No. 2006739.
References
[1] M. Nero, J. Shan, L. Wang, and N. Sumikawa, “Concept recognition

in production yield data analytics,” IEEE International Test Confer-
ence, 2018.

[2] C. Shan, A. Wahba, L.-C. Wang, and N. Sumikawa, “Deploying a
machine learning solution as a surrogate,” in IEEE International Test
Conferencel. IEEE, 2019, pp. 1–10.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and J. Bengio, “Generative adversarial net-
works,” arXiv:1406.2661, 2014.

[4] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen, “Improved techniques for training GANs,”
arXiv:1606.03498v1, 2016.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv:1511.06434v2, 2016.

[6] A. Wahba, L.-C. Wang, Z. Zhang, and N. Sumikawa, “Wafer pattern
recognition using tucker decomposition,” in VLSI Test Symposium
(VTS), 2019 IEEE 37th. IEEE, 2019, pp. 1–6.

[7] A. Wahba, J. Shan, L.-C. Wang, and N. Sumikawa, “Wafer plot
classification using neural networks and tensor methods,” in ITC-Asia.
IEEE, 2019, pp. 79–84.

[8] A. Wahba, C. Shan, L.-C. Wang, and N. Sumikawa, “Measuring the
complexity of learning in concept recognition,” in Int. Symposium on
VLSI Design, Automation and Test. IEEE, 2019, pp. 1–4.

[9] F.-F. Li, “Knowledge transfer in learning to recognize visual object
classes,” International Conference on Development and Learning
(ICDL), 2006.

[10] I. Goodfellow, Y. Benjio, and A. Courville, “15.2 transfer learning
and domain adaptation,” Deep Learning, 2016.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1,
pp. 318–362, 1986. [Online]. Available: https://doi.org/10.21105

[12] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013. [Online]. Available: https://arxiv.org/abs/1312.6114

[13] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. The MIT
Press, 2001.

[14] e. a. Xi Chen, “Variational lossy autoencoder,” 2016. [Online].
Available: https://arxiv.org/abs/1611.02731

[15] D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
“Ladder variational autoencoders,” Advances in Neural Information
Processing Systems, vol. 29, pp. 3738–3746, 2016.

[16] S. Zhao, J. Song, and S. Ermon, “Infovae: Information
maximizing variational autoencoders,” 2017. [Online]. Available:
https://arxiv.org/abs/1706.02262

[17] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J.
Smola, “A kernel method for the two-sample-problem,” Advances in
Neural Information Processing Systems, pp. 513–520, 2007.

[18] N. Shibuya, “Up-sampling with transposed convolution,” 2017.
[Online]. Available: https://medium.com/activating-robotic-minds/up-
sampling-with-transposed-convolution-9ae4f2df52d0

[19] M. Abadi and et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[20] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[21] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[22] e. a. Samuel R. Bowman, “Generating sentences from a continuous
space,” 2015. [Online]. Available: https://arxiv.org/abs/1511.06349

[23] ——, “Long short-term memory,” Neural Comput., vol. 9, pp. 1735–
1780, 8 1997.

[24] A. Krizhevsky, “Learning multiple layers of fea-
tures from tiny images,” 2009. [Online]. Available:
https://www.cs.toronto.edu/ kriz/cifar.html

[25] F. Pedregosa and et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011. [Online]. Available: https://scikit-learn.org/stable/

Distinguished Paper INTERNATIONAL TEST CONFERENCE 10

