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Abstract—The cloud-based Internet-of-Things (IoT) has been
applied to support ubiquitous data collection and centralized data
processing among various applications. Equipped with powerful
resources, a semi-trusted cloud is able to deduce private infor-
mation by launching inference attack. Homomorphic Encryption
(HE) has been proposed as an effective way to preserve privacy
from inference attack while allowing certain computation over
ciphertext. However, HE leads to longer latency due to additional
communication and computation overheads. In this paper, we
propose an optimization framework in privacy-preserving access
control under cloud-fog computing systems. The optimization
goal is to maximize the average user satisfaction in the system,
where cost and latency serve as key metrics measuring user
satisfaction. Due to the NP-hardness of the formulated problem,
we propose a low-complexity suboptimal algorithm to solve it,
where the access offloading decision making, user cooperation,
and resource allocation are considered. Simulation results are
presented to show the advantages of our proposed algorithm
in terms of the average USI (User Satisfaction Index) and the
number of users with zero USI.

Index Terms—privacy-preserving, user satisfaction, access con-
trol, cloud-fog.

I. INTRODUCTION

Internet-of-Things (IoT) becomes a key enabler for a variety
of applications such as smart home, smart grid, e-health, smart
transportation, and so on [1]–[4]. Benefiting from IoT, various
devices are connected for data collection and information
sharing. Meanwhile, cloud computing is a platform which
provides powerful storage and computation resources. By
integrating the cloud into IoT, the cloud-based IoT has shown
significant potential in centralized data processing and data
storage. However, a cloud may derive private information
by launching inference attack. Inference attack can deduce
sensitive information by analyzing the access behaviors of
data requestors. For instance, in e-health applications [5],
Alice outsources her encrypted health data to a cloud. If the
cloud notices that a doctor from the department of plastic
surgery requests the data of Alice for several times in the
past two weeks, then it may deduce that Alice had plastic
surgery recently. Currently, Homomorphic Encryption (HE)
has been applied as an effective way to resist privacy leakage
from inference attack in different scenarios [6]–[8]. However,
HE results in additional computation and communication
overheads, thus causing longer latency to data requestors
[9] [10]. Fog computing is proposed to reduce the latency
caused by a remote cloud [11]. As a platform located between
the devices and the cloud, fog computing is expected to

provide storage, computation and communication resources
closer to the devices, thus processing latency-sensitive data
at the network edge instead of the remote cloud.
However, The cloud-fog computing systems are mainly

applied for latency-sensitive task processing [12]–[14]. Most
of existing work focuses on task offloading and resource
allocation issues. In [12], user fairness is guaranteed by
optimizing the task offloading decisions and resource alloca-
tion. The authors in [13] improved system performance via
jointly managing computation and communication resources.
However, data computing in access control is totally different
from that in task processing, preventing from applying existing
results of task processing into access control directly. Because
in task processing, data is uploaded from device to fog or
cloud. In access control, however, data is stored in fog and
cloud. The distribution of data storage can have a great impact
on the access offloading decision.
To deploy the benefits of the cloud-fog computing into

HE-based access control systems to achieve lower latency
for data requestors, the above challenges must be considered.
Different from task offloading, the access offloading in this
work is defined as decision making about where a data user
can access data. Particularly, an access offloading decision
is either a fog node or cloud. To this end, we propose
an optimization framework for the privacy-preserving access
control in cloud-fog computing systems. The optimization
framework combines access offloading and resource allocation
to satisfy data users. The main contributions of this paper are
summarized as follows.

• Different from existing research work in task processing,
an optimization framework is proposed to maximize the
average user satisfaction in HE-based access control.

• The optimization problem is formulated as mixed-integer
nonlinear programming (MINLP). In the formulation, la-
tency and cost are considered to measure user satisfaction.

• A low complexity algorithm (AUR) is proposed to solve
the formulated NP-hard problem. This algorithm is com-
posed of access offloading decision making, user coop-
eration strategy and resource allocation.

The rest of this paper is organized as follows. In Section II,
the system model is provided. In Section III, the formulated
optimization problem is described. After that, AUR is pro-
posed in Section IV. Simulation results are analyzed in Section
V and conclusions are provided in Section VI.
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Fog layer

Cloud layer

IP network

Fig. 1. System Model

II. SYSTEM MODEL

A. System Overview

In this paper, we consider a cloud-fog system that supports
privacy-preserving access control. As shown in Fig. 1, the
system model contains three types of entities: data users, fog
nodes and cloud.

• Data users refer to the data requestors in this work. Data
users send data requests to their local fog nodes and
access data from local fog nodes or cloud.

• Every fog node is responsible for a local area that consists
of a certain number of data users. When a fog node
receives any request from the data user, it makes access
offloading decision to determine whether the data user
accesses data from the local fog node or cloud. A fog
node only stores part of data in the system due to its
limited storage and computation resources.

• One centralized cloud is considered in this work. Unlike a
fog node, the cloud stores all data in the system, profiting
from its powerful resources.

Cloud and fog nodes are assumed to be semi-trusted. It
means that they honestly follow access control policy as
requested, but they may be curious to deduce additional
information by launching inference attack. In this work, we
apply HE in [5] to prevent privacy leakage from semi-trusted
cloud and fog nodes.

B. User Satisfaction

As discussed in the previous section, data users may have
sensitive latency requirements. To achieve lower latency, more
resources are expected. However, more resources come with
higher cost. Data users need to consider the balance between
latency and cost. Therefore, these two parameters are used

to measure user satisfaction in this work. We define the user
satisfaction index (USI) of user n as Equation (1).

USIn = 1−W1 ×
Cn

CEn
−W2 ×

Tn

TEn
, (1)

where W1 and W2 are weights of cost and latency. CEn and
TEn are the cost and latency constraints given by user n. Cn

and Tn are actual cost and latency that user n achieves.
When implementing HE to prevent from inference attack,

additional computation is required to preserve the privacy
of role attributes and access policies. For data sets with
different sizes, the required computation could be different.
The relationship between the necessary computation resource
and data size is represented as follows [5].

CRn = α×Dn. (2)

The actual cost of user n denoted as Cn, is defined as follows.

Cn = β1× µn + β2× λn, (3)

where µn is the assigned computation capability of user n and
λn is the assigned bandwidth of user n. β1 and β2 are the unit
costs of computation resource and communication resource
respectively.
The actual latency of user n, which is denoted as Tn,

includes communication latency and computation latency. It
is defined as follows [12][13].

Tn =
Dn

Rn
+

CRn

µn
, (4)

where Rn = λn × log2(1 + SNR).
All notations used in this paper are listed in Table I.

III. PROBLEM FORMULATION

We consider a set of data users U = {u1, u2, ..., uN}.
Each data user has his/her latency and cost constraints. In
fog layer, a set of fog nodes, denoted as F = {f1, f2, ...,
fM}, is considered. We assume that the computation resource
of cloud is unlimited while the computation resource of a
fog node is limited. In particular, the communication resource
considered in this work is bandwidth, and the computation
resource refers to CPU cycle rate. Thus the computation time
in cloud can be negligible. Similarly, fog nodes are close to
data users, making the communication time between data users
and fog nodes are negligible. In other words, if a data user
accesses data from cloud, the actual latency is dominated by
the communication time. If a data user accesses data from a
fog node, the actual latency is dominated by computation time.
Note that a data user can only access data from either cloud
or a fog node. We aim to maximize the average USI among
all data users while meeting their cost and latency constraints.
An optimization problem that combines the access offloading
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TABLE I
NOTATION DEFINITIONS

Variable Definition
N Number of users in the user set
M Number of fog nodes in the fog nodes set
BW Total bandwidth in the system
CFm Computation capability of fog m
CEn Cost constraint of user n
TEn latency constraint of user n
Cn Actual cost of user n
Tn Actual latency of user n
Dn Data size required by user n (bits)
λn Assigned bandwidth of user n
µn Assigned computation capability of user n (cycles/second)
ρn,s ρn,0 = 1, if user n accesses data from cloud;

ρn,0 = 0, otherwise. (s = 0)
ρn,m = 1, if user n accesses data from fog m;
ρn,m = 0, otherwise. (s = m ∈ [1,M ])

CF Set of computation capability of fogs
CE Set of expected cost of users
T E Set of expected latency of users
D Set of data size required by users
ρ Set of data access status of users
λ′ Set of temporary assigned bandwidth of users
µ′ Set of temporary assigned computation resource of users
C′ Set of bandwidth cost of users
C′′ Set of computation resource cost of users
CF ′ Set of available computation capability of fogs
BW ′ Available bandwidth in the system
P Set of probability that users change strategy
λ Set of final assigned bandwidth of users
µ Set of final assigned computation resource of users

decision and resource allocation is formulated as follows.

Max
ρn,s,µn,λn

N∑
n=1

USIn
N

(6)

s.t. ρn,s ∈ {0, 1}, (7)
M∑
s=0

ρn,s = 1, ∀n ∈ [1, N ], (8)

N∑
n=1

ρn,0 × λn ≤ BW, (9)

N∑
n=1

ρn,m × µn ≤ CFm, ∀m ∈ [1,M ], (10)

Tn ≤ TEn, ∀n ∈ [1, N ], (11)
Cn ≤ CEn, ∀n ∈ [1, N ]. (12)

(7) and (8) are the constraints on the access offloading de-
cision, indicating that each data user can only access data
from either cloud or a fog node. (9) represents that the
allocated communication resource cannot exceed the total
communication capacity of the cloud. (10) is the computation
resource constraint of each fog node. (11) and (12) indicate
to satisfy the latency and cost requirements of data users.

Remark 1: The formulated problem is mixed-integer non-
linear programming, which is generally NP-hard.

IV. PROPOSED ALGORITHM

As the formulated problem is NP-hard, it is infeasible to find
an optimal solution efficiently. We are motivated to design an
algorithm to find a suboptimal solution within limited time.

Algorithm 1 Access Offloading Decision Making
Input: U , BW , CF , CE , T E , D
Output: ρ, λ′, µ′

Initialization: ρ = 0, λ′ = 0, µ′ = 0, C′ = 0, C′′ = 0,
CF ′ = CF , BW ′ = BW
Functions: (1) - (4)
1: for all un ∈ U do
2: Compute λ′

n and µ′
n based on TEn, (2), (4) and (5);

3: Compute C ′
n and C ′′

n based on (3);
4: if C ′

n <= C ′′
n and BW ′ then

5: ρn,0 = 1;
6: BW ′ = BW ′ − λ′

n;
7: else if C ′

n >= C ′′
n and CF ′

m then
8: ρn,m = 1;
9: CF ′

m = CF ′
m − µ′

n;
10: else
11: Find a user to change his/her strategy base on

Algorithm2;
12: Change the strategy of uj ;
13: if C ′

n <= C ′′
n then

14: ρn,0 = 1;
15: BW ′ = BW ′ − λ′

n;
16: else
17: ρn,m = 1;
18: CF ′

m = CF ′
m − µ′

n;
19: end if
20: end if
21: end for

The proposed AUR consists of three parts, i.e., access
offloading decision making, user cooperation strategy, and
resource allocation. Algorithm 1 describes the strategy of
access offloading decision making in details. Firstly, a data
user is assigned to either cloud or local fog node for data
access by making constraint (11) or (12) as equality. For
example, by making constraint (11) as equality, we can
calculate the necessary resources for a data user and further
calculate the minimal communication and computation cost.
If the communication cost is lower than the computation cost,
the data user then accesses data from cloud. Otherwise, the
data user accesses data from the local fog node. Note that it
is possible for a data user to be assigned to a resource-limited
server. For example, data user un is assigned to the cloud to
access data, while the communication resource of cloud is not
sufficient to satisfy constraint (11). Then the User Cooperation
Strategy (UCS) is launched to find the best candidate among
data users who have been assigned to the cloud to access
data. The candidate changes his/her access decision and access
data from his/her local fog node, leaving more communication
resource to u1.
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The detailed steps of UCS are summarized in Algorithm
2. All data users assigned to the cloud need to be evaluated
whether they can be candidates. A parameter pi which is
defined as the ratio of ui’s required computation resource to
the available computation resource of u1’s local fog node. If
pi < 1, ui becomes a candidate. Among all candidates, the
one with minimal ratio value is the best candidate. Note that
it is possible we cannot find any candidate in this step, then
we set the USI of this user as zero directly. It means that this
user is not served.

Algorithm 2 User Cooperation Strategy (UCS)
Input: ρ, λ′, µ′, C′, C′′, CF ′, BW ′, n
Output: j (index of user who needs to change strategy)
Initialization: P = 0

1: if C ′
n <= C ′′

n then
2: for all ui, i ∈ [1, n− 1] do
3: if ρi,0 then
4: pi =

µ′
i∑M

m=1 CF ′
m×ρi,m

;
5: end if
6: end for
7: else
8: for all ui, i ∈ [1, n− 1] do
9: if ρi,0 == 0 then

10: pi =
λ′
i

BW ′ ;
11: end if
12: end for
13: end if
14: Find min pi ∈ P ;
15: return j = i

After that, the strategy of resource allocation is considered.
As the goal is to maximize user satisfaction, we need to
consider the trade-off between cost and latency. Particularly,
a lower latency responds with a higher cost because more
resources are required. In Algorithm 1, data users are assigned
with minimal resources which can satisfy constraints (11) and
(12). In this step, we try to find the balance between cost and
latency by giving extra resources to data users, thus achieving
the highest USI for each data user. The detailed description
of resource allocation strategy can be found in Algorithm 3.
For example, when a data user is assigned to the cloud for
accessing data, we can easily derive the balance of cost and
latency for this data user based on his/her cost and latency
constraints, and then we can calculate how much bandwidth
this data user requires to achieve the highest USI, and assign
required bandwidth to this user.

V. PERFORMANCE EVALUATIONS

In this section, we consider a network with one cloud and
three fog nodes. The number of data users under each fog node
varies within [20, 300]. Different from [12][13], we choose the
number of data users per fog instead of the number of users
in system as a key parameter, because it presents the user
density more accurately. The bandwidth of the cloud is set as

Algorithm 3 Resource Allocation
Input: ρ, λ′, µ′, CF ′, BW ′, BW , CF
Output: λ, µ
Initialization: △λ = 0, △µ = 0

1: if BW ′ then
2: for all un ∈ U do
3: if ρn,0 then
4: Compute △λn to achieve maxQn;
5: else
6: △λn = ∞
7: end if
8: end for
9: Rank △λn from low to high;
10: while BW ′ do
11: assign min△λx ∈ △λ to ux;
12: end while
13: end if
14: for all m ∈ [1,M ] do
15: if CF ′

m then
16: for all un ∈ U do
17: if ρn,m then
18: Compute △µn to achieve maxQn;
19: else
20: △µn = ∞
21: end if
22: end for
23: Rank △µn from low to high;
24: while CF ′

m do
25: assign min△µy ∈ △µ to uy;
26: end while
27: end if
28: end for
29: Updateλ′, µ′

30: return λ = λ′, µ = µ′

BW = 5 MHz. The computation resource of fog nodes is set
as a random distribution from 50 to 60 Gcycles/second. The
data size is randomly distributed from 0.5 to 10 Mbits, and
latency constraint for each data user is randomly distributed
from 0.3 to 2 seconds. We compare the proposed algorithm
with the random method [13], which refers to a random access
offloading decision making. In [13], if a data user is randomly
assigned to a resource-limited server, the data server cannot
be served due to insufficient resource. Thus the USI of this
data user is zero. In addition, we evaluate the AUR without
UCS. Our simulation results show the performance under
the comparison of three methods (the random method, the
proposed AUR, and the AUR without UCS). Note that each
point in the following figures is based on the average values
of 1000 simulation runs.
Fig. 2 evaluates the performance of average USI. We take

W1 = 0.1 as an example and increase the number of users per
fog from 20 to 300 by the step of 10 to show the performance
of average USI. Apparently, for AUR and the AUR without
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Fig. 2. The average USI vs. the number of users per fog

UCS, the average USI is almost steady and starts to decrease
when the number of users per fog is more than 200. This
is because with the increase of number of users, more users
are not served due to limited resource. Then the number of
users with zero USI rises, reducing the average USI. AUR
performs better than the AUR without UCS when number
of users per fog is less than 200. In other words, UCS can
efficiently improve the average USI in AUR. However, the
gap is narrowed down when the number of users per fog is
greater than 200. For the random method, the average USI
goes down greatly when the number of users per fog is less
than 100 and keeps decreasing slightly after that.

Fig. 3 shows the evaluation about the number of users with
zero USI. Intuitively, for AUR and the AUR without UCS, all
users can be served when the number of users is less than
200. This is reasonable since resource is sufficient. However,
when more users require resource, it is possible that some
users cannot be served due to limited resources. For random
method, it has users with zero USI even when the number of
users per fog is very small due to the randomness of access
offloading decision making. Therefore, the data showed in Fig.
3 also explains the result of Fig. 2.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an optimization frame-
work for the privacy-preserving access control in cloud-fog
computing systems. To achieve maximal user satisfaction, an
optimization problem has been formulated. Due to the NP-
hardness of the formulated problem, we have designed AUR,
which jointly involves access offloading decision making, user
cooperation, and resource allocation, to find a suboptimal
solution with low time complexity. The simulation results have
demonstrated that our proposed algorithm can achieve a higher
average USI and provide service to more users. In the future
work, we will further improve the average USI by employing
the cooperation between fog nodes.
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