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Scalable information-theoretic path
planning for a rover-helicopter team
in uncertain environments
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Abstract
Mission-critical exploration of uncertain environments requires reliable and robust mechanisms for achieving information
gain. Typical measures of information gain such as Shannon entropy and KL divergence are unable to distinguish between
different bimodal probability distributions or introduce bias toward one mode of a bimodal probability distribution. The
use of a standard deviation (SD) metric reduces bias while retaining the ability to distinguish between higher and lower risk
distributions. Areas of high SD can be safely explored through observation with an autonomous Mars Helicopter allowing
safer and faster path plans for ground-based rovers. First, this study presents a single-agent information-theoretic utility-
based path planning method for a highly correlated uncertain environment. Then, an information-theoretic two-stage
multiagent rapidly exploring random tree framework is presented, which guides Mars helicopter through regions of high
SD to reduce uncertainty for the rover. In a Monte Carlo simulation, we compare our information-theoretic framework
with a rover-only approach and a naive approach, in which the helicopter scouts ahead of the rover along its planned path.
Finally, the model is demonstrated in a case study on the Jezero region of Mars. Results show that the information-
theoretic helicopter improves the travel time for the rover on average when compared with the rover alone or with the
helicopter scouting ahead along the rover’s initially planned route.
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Introduction

In highly uncertain environments, maximizing information
gain is vital to ensuring safe, efficient, autonomous explo-
ration. This research enhances the scientific and engineer-
ing value of autonomous vehicles by finding the fastest
traversable routes in uncertain environments. The informa-
tion of the highest value in an uncertain environment is
found in regions in which the rover’s speed probability
distribution has high standard deviation (SD). In other
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words, the most important information is found in the
regions in which true speed of the rover could deviate
significantly from the expected value. Efficient exploration
of these regions with an unmanned information-theoretic
helicopter reduces the rover’s travel time uncertainty and
enables the rover to adjust its planned route if the condi-
tions inside the highly uncertain region are found to be
more optimal.

Traditional uncertainty metrics such as Shannon entropy
do not distinguish between different bimodal distributions
by treating all information as equally valuable.1 Nonmetric
measures of information gain, such as Kullback–Leibler
(KL) divergence, provide an appealing alternative.2 KL
divergence has been used in machine learning-based image
processing and has been shown to work for unimodal dis-
tributions.3 However, KL divergence presents a problem
for multimodal distributions by introducing bias toward
only one mode (e.g. exclusive, reverse KL divergence) or
toward the mean of the modes (e.g. inclusive, forward KL
divergence). The data set for this study contains non-
Gaussian bimodal probability distributions and represent-
ing the information gain using KL divergence requires
comparison to an ideal distribution. This biases the agent
toward exploring only some types of uncertain regions
while ignoring other potentially valuable uncertain regions.
Therefore, uncertainty in expected rover travel time is rep-
resented as the SD of the rover’s travel time probability
distribution.

In this study, two types of path-planning models are
presented. First, a utility-based information-theoretic
model for routing a single agent through an uncertain cor-
related grid environment is presented. Then, a rapidly
exploring random tree (RRT)-based two-stage multiagent
path-planning algorithm is presented, which computes
travel time optimized and safe routes for a Mars rover to
successfully navigate through rugged, uncertain terrain
with the aid of a cooperating information-theoretic helicop-
ter. In the proposed RRT-based path-planning algorithm,
knowledge about the environment is gained by the helicop-
ter and transmitted to the rover allowing the rover to opti-
mize its path. The rover travel time probability distribution
for the surface is generated based on a rover mobility model
(RMM).4 Inputs to the RMM are the terrain type deter-
mined using the soil property and object classification
(SPOC) terrain classifier, slope data from a digital eleva-
tion model (DEM) generated using HiRISE stereo images
(Figure 1), and rock abundance in terms of the cumulative
fractional area (CFA) covered by rocks.5,6,7

The information-theoretic helicopter is routed using an
information-theoretic RRT algorithm (RRT*-IT),
which balances the cost of travel with the reward of
sequential information gain. The rover’s RRT algorithm
(RRT*-ETT) considers the expected travel time (ETT)
while avoiding uncertain regions with high SD. RRT algo-
rithms with edge cost based on ETT and the ability to be
rewired (e.g. RRT*) provide computationally fast path

planning and replanning on a large-scale, high-resolution
environment.

Previous studies have focused on minimizing risk to the
rover by not visiting highly uncertain, low-confidence
regions, but the potential exists for these regions to be
traversable. Scouting these regions may offer significant
travel time savings under certain conditions; however,
naively entering a region of high uncertainty without scout-
ing is a high-risk/high-reward strategy that increases the
risk of getting stuck. For this study, the Mars environment
is assumed to be static over the time scales involved, but
knowledge about the environment is dynamic. We compare
the results for four Mars scenarios: rover alone using naive
shortest path planning, rover alone using safe path plan-
ning, rover using safe path planning with helicopter scout-
ing the planned rover path, and rover using safe path
planning with information-theoretic helicopter (Figure 2).

The presented rover þ information-theoretic helicopter
methodology is best suited to cases in which imperfect a
priori knowledge about an unexplored environment is
available, the cooperating helicopter’s search cannot be
exhaustive, there is a need to reduce travel time where
possible, the penalty for failure is high, and computational
hardware is limited. The presented methodology is not well
suited to scenarios in which a rover-helicopter team must
cooperate to traverse a completely unexplored environment
or for scenarios in which travel time is not a concern and
safety can be completely prioritized. Because of the spe-
cific nature of this problem in which reasonably accurate a
priori knowledge of the environment exists, the median
travel time reduction seen with the addition of an

Figure 1. Left: HiRISE image of Jezero region on Mars. Top right:
Detailed view of ROI. Bottom right: Slope map for ROI generated
from stereo pair digital elevation model. ROI: region of interest.
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information-theoretic helicopter is not always expected to
be extreme.

For example, if a map’s terrain classifications are known
with reasonably high certainty, a path, which always
assumes that the maximum probability classification is
true, can perform acceptably in a majority of cases. The
problem with this assumption is most apparent in terms of
the worst-case performance, as some fraction of trips will
end with the rover becoming stuck. For the Mars rover
case, getting stuck means the failure of an extremely expen-
sive and time-consuming mission. Alternatively, path plan-
ning using the worst-case travel time for each grid cell in
the map can provide maximum safety but results in an
overly cautious route, which is excessively slow in many
cases and inappropriate for missions with time restrictions
or deployments in which saved time allows the rover to
perform additional nondriving-related scientific tasks.

Related work

The presented scalable autonomous path-planning algo-
rithm will determine routes that optimize travel time for a
rover on the surface of Mars. In robotic path planning, risk
is often assumed to be a binary parameter in which a region
is either obstructed or clear, and the path costs are assumed
to be a deterministic function of Euclidean distance.
Assuming stochastic path costs can present significant scal-
ability problems, which prohibit real-time path planning in
a full-scale environment. In the proposed research, terrain
properties are probabilistic and traversability of the envi-
ronment is not certain for the rover. The addition of a
helicopter enables exploration of the most uncertain
regions without risk for the rover.

Prior studies on the topic of scalable path planning for a
Mars rover used a variant of Dijkstra’s algorithm to gen-
erate a path.4,8 Their work assumed the existence of hard

obstacles (e.g. cells are either obstructed or clear), used
prespecified regions of interest, and considered only the
rover itself without a cooperating helicopter. The use of a
cooperating helicopter and a Markov decision process
(MDP) to find optimal paths has been explored; however,
using MDPs to solve the path planning problem introduces
additional complexity due to time and path-dependent
rewards for information gain.9 The problem does not
strictly conform to the Markov property due to rewards
being based on the previous spatiotemporal locations of the
agent; therefore, solving the problem using MDPs requires
methods, which can degrade computational performance or
the quality of the result. A similar Mars rover navigation
problem was solved using an MDP formulation; however,
this research only considered slope when evaluating traver-
sability, assumed a coarse 20" 20 m2 cell size, and did not
consider a cooperating helicopter.10 The addition of terrain
type and rock abundance to their model could significantly
increase the state and observation spaces.

Prior research has explored the use of a cooperating
rover and drone for a small-scale rover navigation prob-
lem.11 The authors compared a D* algorithm with their
response time algorithm for rover path planning and did
consider speed and traversability for different terrain types.
Two drone exploration strategies were considered: greedy
search and exhaustive search. Only three terrain types were
considered: concrete, water, and grass, with water serving
as a hard obstacle. The authors did not consider a priori
probabilistic terrain classifications to inform their search,
“no map, and no information about the terrain classes, is
available a priori.”11 Additionally, the authors assumed that
the highest probability classification from their convolu-
tional neural network classifier is the true classification.11

A safe ship navigation problem with the goal of avoid-
ing sea mines was solved under three different strategies,
including the shortest path, least maneuvers, and a
combined strategy.12 Their developed algorithm was
based on the A* algorithm and used a large map size of
6" 4.5 km2. The safe ship navigation problem was solved
in 2D space with mines serving as hard obstacles and did
not consider speed or traversability, only turning radius
constraints.12 Solution time varied depending on the level
of optimality desired. Because their algorithm is online,
the solution occurs in two stages with preprocessing times
ranging from 1.3 min to 35.7 min and planning times
ranging from 0.8 s to 16.2 s.

Performance comparisons of path constrained safe
interval path planning and any-angle safe interval path
planning algorithms for solving a rover path-planning
problem with dynamic obstacles have been explored.13

Dynamic obstacle trajectories were assumed to be known
a priori and the authors did not consider a cooperating
helicopter or a traversability model. Their map size was
46 " 70 m2 with 1 m2 grid cells, and no solution times
were included in the results.

Figure 2. 1: Rover alone using standard RRT*. 2: Rover alone
using RRT*-ETT. 3: Rover using RRT*-ETT with helicopter
scouting planned route. 4: Rover using RRT*-ETT with helicopter
searching nearby uncertain regions using RRT*-IT to find better
routes. RRT: rapidly exploring random tree; ETT: expected travel
time; RRT*-IT: rapidly exploring random tree-information
theoretic.
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Safe robot navigation in 2D and 3D spaces formulated
as a mixed observability MDP problem and solved using a
variant of the Monte-Carlo tree search (MCTS) algo-
rithm.14,15 Their research produced reasonable but subop-
timal path plans on two simple maps. The authors
considered only the presence of hard obstacles in their
maps without a traversability model and did not consider
a cooperating helicopter. The authors did not include solu-
tion times in their results aside from setting the maximum
runtime to 180 min.

Traditional partially observable MDP (POMDP)
approaches are less computationally tractable when com-
pared with MDPs.16 While simple 2D POMDP models for
aircraft and autonomous ground navigation research have
been successful, these studies lack the high 1 m2 resolution
required for safe scalable autonomous navigation on an
uncertain Mars environment.17,18 The use of traditional
POMDP approaches for this problem would require coarse
sampling of the region or solutions for very small regions.
Our research focuses on regions containing 40,000 to
673,854 1 m2 cells allowing for multiple days (Martian Sol)
of rover travel time and is beyond the scope of traditional
POMDP approaches.

Scalable algorithms for eventual deployment on auton-
omous Mars-based vehicles will make use of onboard
computing. This requirement rules out algorithms, which
rely on Earth-based computers leveraging both CPU and
GPU parallelization, as well as high power consumption,
to achieve scalability. While research into highly paralle-
lizable POMDPs such as DESPOT-a is promising, these
algorithms perform well because of massively paralleliz-
able hardware found in modern standalone GPUs.19 Such
hardware is unavailable for space-faring rovers, which
continue to rely on simpler single-board computers with
large radiation-resistant transistors, such as the BAE Sys-
tems RAD750.20

Guided RRT algorithms (e.g. solving RRTs for potential
fields) offer efficient solutions in stochastic environ-
ments.21 RRT algorithms are also effective for path plan-
ning in dynamic environments and for multiple agents
through node sharing.22 In addition, RRT algorithms can
benefit from parallelization, further improving perfor-
mance and scalability.23

The use of a multiagent information-sharing communi-
cation approach for solving path planning, routing, and
scheduling problems has shown to be successful in recent
years.24,25,26 Multiagent methods have been used previ-
ously for tasks such as multirobot exploration and search-
and-rescue.27 Individualized metaheuristic/local search
combinations have also been used to schedule and route
multiple agents.25 Multiagent approaches have also been
used to effectively plan optimal taxiing routes for aircraft
with three types of agents: resource management, aircraft,
and resource node agent.28

In the transportation research above, routing uncertainty
typically addresses variance in traffic patterns through the

day or variability in bus transfer times. There are many
studies on human decision making based on travel time
reliability, but prediction of travel time and link speed still
depend on traffic sensors and other infrastruc-
ture.29,30,31,32,33 Travel time prediction therefore depends
on sample data from the network. If the sample data is
inaccurate, resulting in unexpected low travel speed or
nontraversability, significant costs are incurred by the user.
To minimize the disadvantage of uncertain classification
and link travel times, this research proposes an anticipatory
methodology for a helicopter to visit select regions based
on the terrain type probability distribution. The cost of
visiting a region is balanced by the benefit of gaining infor-
mation about that region.

Contribution

This work introduces new methods for a multiagent coop-
erative robot-helicopter team to perform safe scalable path
planning in uncertain environments using RRTs. RRT algo-
rithms are sampling-based approaches, which enable com-
putationally efficient exploration of large environments.
Our information-theoretic helicopter explores regions with
high uncertainty, eliminating risk for the mission-critical
rover while providing improved travel time on average and
greater safety for the rover.

We introduce two extensions to the RRT* algorithm,
which generate paths based on cost functions. The
RRT*-ETT algorithm generates a path plan for the rover
by calculating route cost as ETT, which is calculated as the
path integral of the inverse expected speed based on
the RMM shown in Figure 3 along the 3D surface. The
RRT*-IT algorithm balances the cost of travel time with

Figure 3. Rover mobility model.4 (a) Smooth regolith, smooth
outcrop, and fractured outcrop; (b) sparse linear ripples; (c) rough
outcrop; and (d) crater, rock field, dense linear ripples, deep sand,
polygonal ripples, and scarps.
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the reward of information gain to find the best locations for
the Mars helicopter to observe. Figure 4 shows a partial
construction of the RRT*-IT tree, which considers infor-
mation gain as the reduction in the SD of the probability
distribution of expected rover speed at each location.

Information-theoretic path planning

This section presents a utility-based methodology for
improving the travel time of a single agent in an uncertain
environment by balancing exploring for information gain
and exploiting the information through travel time reduc-
tion. The environment for this scenario, shown in Figure 5,
is a small M " M grid with uncertain travel time through
each cell. In this scenario, observations of one cell provide
information about unobserved cells of the same type.

Single-agent information-theoretic scenario

A detailed description of a utility-based single-agent path
planning scenario is presented in this subsection, while
subsequent sections demonstrate a methodology for apply-
ing this utility-based model to an RRT* framework with
single and multiple agents. Assume an M " M grid with
binary travel time probability distribution for each cell, a
single agent (i ¼ 1), and no time-dependence of the grid.
For small grids, it is possible to compute all feasible paths
using depth first search. For large grids, a stochastic
method such as random search or a sampling-based
approach such as RRTs may be used. In this section, the
utility-based methodology is compared to two other path-
planning methods.

For each path, three travel times are created: the
best-case travel time, worst-case travel time, and ETT. The

worst-case travel time assumes that the travel time for a
given path is the sum of the maximum travel time through
each cell. The best-case travel time assumes that the travel
time for a given path is the sum of the minimum travel time
through each cell j. The ETTi;p for agent i on path p 3 J

containing J cells is defined in equation (1)

ETTi;p ¼
XJ

j¼1

XY

y¼1

½Pj;yTy% (1)

where Pj;y is the probability of the cell j being type y, Ty is

the travel time through a cell of type y, and Y is the total
number of cell types.

Defining and calculating entropy. Due to uncertainty in the
environment, the agent should explore to gather informa-
tion rather than naively following the route, which is
expected to give the fastest travel time. This incentive to
explore and gather information is specified by a utility
function in equation (2). Balancing the trade-off between
reward (information gain) and cost (increased travel time)
determines which route to take. Two weighting variables,
W i;1 and W i;2, are used to alter agent i’s exploration pre-
ferences and approximate the normalization of the cost and
reward variables, which are in different units. In the RRT*
sections of this article, we also find that traditional normal-
ization techniques are not feasible, because each edge of

Figure 4. Example run of RRT*-IT code on the Jezero region of
Mars, showing the tree growing along routes of greatest utility in
terms of the travel cost and information gain for the Mars heli-
copter. RRT*-IT: rapidly exploring random tree-information
theoretic.

Figure 5. Single agent: Three paths compared on a grid map with
entropy minimization. The actual path (utility function optimized)
is the path based on the utility function in 9, while the other two
are theoretical paths, which minimize the initial expected travel
time or the Max ½PðTÞ% (highest probability classification)-based
travel time. The grid shows each cell type by number (white) and
filled color. Note that the highest information gain is achieved by
visiting the maximum number of different cell types.
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the tree has only a single travel time and single information
gain value. Additionally, normalization fails in the case of
using the range of possible travel times (0 to infinity) for
normalization. Therefore, we approximate normalization
using the user-defined weighting variables W i;1 and W i;2

U i;p;t ¼ W 1;irewardi;p;t (W 2;icosti;p;t (2)

The reward component in equation (2) is defined in
terms of the information gained by visiting that cell. Con-
sider an environment which contains only three possible
terrain types: type 1, type 2, and type 3. Initial satellite
observation indicates that the cell (3,5) is classified as ter-
rain type 1. If an agent visits cell (3,5) and finds it to be of
terrain type 2, then it has new information regarding every
other cell initially classified as type 1. For this simplified
model, the optimal route in terms of information gain
would be the route, which gained the most information in
the shortest number of steps. The most optimal path not
only considers how much information is gained but also
considers how quickly the information is gathered. Many
paths gather a large amount of information, but fewer paths
can gather information quickly.

In a highly correlated grid, not all cell exploration is
equally valuable because some cells contain more infor-
mation than other cells. This is due to each cell’s poten-
tial for variance from the ETT and its correlation with
other cells in the grid. For example, if there are an equal
number of cells of each terrain type in the environment,
then the most valuable cells would be the cells in which
the variance of ETT is highest. These cells have the
greatest potential to change the travel time for the agent.
Knowledge of the true state of cells with large travel
time SD is more valuable when selecting a route than
knowing the true states of cells with a small travel time
variance because knowing the latter cells’ true states
will not cause the ETT to deviate as significantly from
the original prediction. In the binary travel time grid-
based scenario, we represent this variance as the differ-
ence between the maximum and minimum travel times
T 2 ( T 1 within each cell.

If the number of cells of each terrain type is different,
then the abundance of cells of each type must also be con-
sidered when determining which cells contain the most
information in a correlated grid environment. If there is
only one cell of a given type in the entire grid, then know-
ing its state does not provide as much information gain as
knowing the state of a cell, which has four other identical
cells in the grid. Equation (3) accounts for the number of
cells of a given type. This equation comes from the concept
of informational entropy and provides a measure of the
information gained by visiting a cell whose terrain type is
specified by the variable y under the assumption of perfect
observation

Reward ¼ ny

N
(3)

where ny is the number of cells of type y and N is the total
number of cells in the grid.

The cost component in equation (2) is computed by
comparing the difference in ETTs between the current
route and the route with the fastest ETT, as shown in equa-
tion (4). If there is a large increase in travel time for the
current route compared with the fastest ETT route, then
the cost increases. Equation (4) becomes negative when the
fastest ETT route has a higher travel time than the detour
route. By subtracting a negative value, the utility function
is increased and this type of route is given more incentive.
If the detour takes longer than the fastest ETT route, then
the utility is reduced

Costi;p;t ¼ ETTi;detour;t ( ETTi;fastest;t (4)

where ETTi;fastest;t is the fastest ETT and ETTi;detour;t is the

travel time of the path for which the utility function is being
calculated. The extent of this increase or decrease is con-
trolled by the weighting variable W 2;i in equation (5) on the
difference in travel times for the fastest path and the detour
path. This variable serves to prevent cost from scaling with
grid size, since the reward does not

W 2;i ¼ W cost;i ¼
1

N
(5)

To disincentivize collecting rewards late in the path, a

discount factor lk is used, where k is the number of discrete
steps taken along the path. A typical value used in this
model is l ¼ 0:98; however, this value can be adjusted to
achieve the desired amount of exploration, with lower l
values making exploration less rewarding to the agent. The
cost for taking a path is defined by the additional ETT
incurred by taking that path versus the path with the fastest
ETT. The utility function for agent i is now defined by
equation (6), where p is a unique path

U i;p;t ¼ rewardi;p;t (W 2;icosti;p;t (6)

Equation (7) is the path reward

Rewardi;p;t ¼
XEnd

j¼0

W 1;jlkny;j;tðT max;j;t ( T min;j;tÞ
N

" #

(7)

and equation (8) is the weighting function

W 1;j ¼ log2

1

Max½Pj;tðT min;j;tÞ; 1( Pj;tðT min;j;tÞ%

! "
(8)

where j is a cell in the path, ny is the number of cells of a
given terrain type, N is the total number of cells, T max;j;t is

the greater of the two times in the binary travel time cell at
time t, and T min;j;t is the lesser of the two times in the binary

travel time cell.
A probability-based calculation will further improve the

likelihood of choosing the best route, and therefore, the
reward should take the probability distribution into
account. The probability component of the utility function,
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shown in equation (8), is taken from the representation of
probability distributions in terms of their entropy.

Consideration of probability distribution accuracy. In real-world
applications of this model, discrepancies may exist
between the predictions made using sensor analysis and
the actual conditions on the ground. The extent of these
discrepancies is not known beforehand, and therefore, the
accuracy of the probability distribution should be defined.
The accuracy of the probability distribution is represented
by an error term in the utility function. The error is
reduced during the trip any time a cell of the same type
is visited and the state is confirmed to be identical to the
original cell. Because the error is not assumed to be iden-
tical for all cells, it can only be improved when visiting a
cell of the same type after visiting a cell of that type
initially. A single sample from a probability distribution
cannot confirm the shape of the distribution. To reduce the
error, resampling cells with the same probability distribu-
tion is performed.

This technique has the added benefit of correcting the
correlation assumption we use. If cells with the same prob-
ability distribution are 100% correlated, the error will
decrease as the trip progresses. An error reduction will
produce greater confidence in the chosen path, ensuring
safer routing and more accurate travel time prediction. If
a situation is encountered in which the correlation assump-
tion does not hold, the error will increase as successive cells
of the same type are visited and found to be in different
states. This will have the effect of weakening the correla-
tion assumption in the algorithm. Our algorithm has the
capability of adapting to real-world information about the
state of the grid, appropriately adjusting the predicted state
of unexplored grid cells based on information obtained
during the trip. It is also possible that correlation assump-
tion is valid only in certain regions of the grid. In this case,
the error term will allow the agent to adapt to the changes in
its environment. The error can increase or reduce the ETT.
Our model will add negative error from the maximum PðtÞ,
providing a worst-case uncertainty with regard to the state
of the cell when path planning.

Once a cell of a given type is visited, the state of all cells
of the same type are assumed to be known within some
error. This error term, e, is reduced as subsequent corre-
lated cells are visited and found to be in the same state as
the first cell of that type. The error grows if subsequent
correlated cells are visited and found to be in a different
state than the first cell of that type. The agent does not
directly receive a reward for visiting a cell, which is iden-
tical to one which it has already visited. However, updating
the error term provides an indirect reward to visiting cells
of the same type. The error term is included in the prob-
ability component of equation (9) as an addition to the
probability component of the reward weighting function.
The reward is increased when the cells are found to have

been correlated and is decreased when the cells are found to
not be correlated

W j;1 ¼ log2

1

Max½Pj;tðT j;1;tÞ; 1( Pj;tðT j;1;tÞ% þ e

! "
(9)

Consideration of trade-off. Routing an agent through a grid
that contains uncertainty requires a method to measure
which routes are most likely to be effective. The objective
of the agent dictates the effectiveness of a given route. In
some cases, the objective is to explore the grid to minimize
the uncertainty. In other cases, the objective is to move
through the grid as quickly as possible.

When the uncertainty in a grid is a simple binary prob-
ability, such as a grid whose cells are either blocked or
clear, the entropy of an individual cell can be described
using Shannon entropy in equation (10). The probability
that a cell is clear is given by pðcÞ and the probability that
the cell is blocked is ð1( pðcÞÞ

HCðcÞ ¼ (pðcÞlog2½pc% ( ð1( pðcÞÞlog2½1( pðcÞ% (10)

Mars terrain and expected speed models

The RRT-based two-stage multiagent path-planning algo-
rithm uses the 3D Mars terrain model (Figure 6) and rover
expected speed model presented in this section. Path plan-
ning for the rover is accomplished using an ETT-based
extension of the RRT* algorithm called RRT*-ETT. We
define the environment as a discretized grid with each grid
cell representing one pixel from the 3D stereo satellite
imagery (Figure 6). The use of a grid structure allows the
model to be applied to images of any region. Map resolu-
tion is 1 m2 per pixel and each cell in the grid is 1 m2.

The initial state of each grid cell is defined by four
variables obtained from satellite data, with the fourth

Figure 6. Example 3D view of a path on the Mars terrain simu-
lation region (same region as Figure 7).
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variable being used to calculate the distance between any
two points. These are the slope, the terrain type probability
distribution in Figure 8, the CFA of rocks, and the eleva-
tion. Slope data is calculated using a DEM generated from
stereo pair HiRISE images using the Geospatial Data
Abstraction Library.34 CFA data are obtained using the
methodology developed by Golombek et al.7

There are 11 possible terrain types, which are classified
using the SPOC algorithm.5 SPOC generates a probability
distribution over the 11 terrain type classes. Because SPOC
is a machine learning algorithm working with image data,
most grid cells have some uncertainty in their terrain type
classification.

From the first three variables defining the cell state,
an expected speed probability distribution is generated
for each cell. This distribution is consistent with prior
work and contains four discrete speed possibilities for
any combination of the three state variables.4 The
possible speed classifications are 0, 50, 150, and
200 m/Sol.

Example expected speed calculation

Generation of expected speed probability distribution is
accomplished using an RMM with three input variables:
slope, rock abundance as a CFA, and terrain type. The
slope is calculated using a DEM from HiRISE satellite
data and the CFA is obtained using the methodology
developed by Golombek et al.7 Next, the terrain type is
determined using a deep learning-based image classifica-
tion algorithm, SPOC, which generates the 11 class dis-
crete terrain type probability distribution for each pixel of
the HiRISE image.

There are four possible speed outputs for the RMM
based on the slope, CFA, and terrain type. For example,
if a pixel in the HiRISE image has a slope of 5), CFA of
10%, and terrain type of smooth regolith, the expected
rover speed based on the RMM is 50 m/Sol. SPOC does
not always provide certainty with the terrain type clas-
sification. Many pixels will have a terrain type probabil-
ity distribution. For pixels with uncertain terrain type
classification, the terrain type probability distribution
from the SPOC algorithm is used to generate an
expected speed probability distribution from the RMM.
Given a pixel with the terrain type probability distribu-
tion shown in Figure 9, a slope of 5), and CFA of 10%,
the resulting expected speed probability distribution is
shown in Figure 10. This calculation was performed for

Figure 7. Case study on Jezero region showing path plans for
three scenarios. Map color represents expected speed probability
distribution standard deviation. True travel time for rover alone
is 2.62 Sol. True travel time for rover þ naive helicopter is
2.55 Sol. True travel time for the proposed rover þ IT heli
model is 1.68 Sol.

Figure 8. Probability map for one of the 11 terrain classes,
smooth regolith, in Jezero region.

Figure 9. Example terrain type probability distribution.
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each pixel on a subregion of the Jezero region on Mars.
The results are shown in Figure 11.

Multiagent scenarios

RRT*-Expected travel time

Path planning for the rover is accomplished using an exten-
sion of the RRT* algorithm called RRT*-ETT. This algo-
rithm functions as a standard RRT* algorithm with the
exception that the maximum expected edge travel time is
used in place of the maximum edge length.35,36 Because the
algorithm is applied to a 3D surface with variable travel
time, the ETT along each branch in the tree is computed by
taking the line integral of the pace along the branch. This
algorithm is robust to information error because it always

assumes the worst case. When the tree is rewired during
each iteration of tree growth, we again use the ETT for the
length of the rewired edge. The advantage of using RRT* in
a large-scale environment is that it converges on reasonable
solutions without an excessive number of iterations and
without considering all possible routes. No hard obstacles
exist in the environment; therefore, rover movement is
allowed in any direction and to any location on the map
but attempted traversal of cells that have an expected speed
of 0 m/Sol or cells with SD * 90 is strongly discouraged
due to the potentially infinite ETT due to getting stuck.
This is accomplished by setting the travel time to a high,
but noninfinite value, such as intmax in MATLAB.37

The RRT*-ETT Algorithm 1 is an extension of the
RRT* algorithm with altered cost calculation. The Nearest
function in the standard RRT* algorithm looks at the
nearest node by Euclidean distance, while our function

NearestETT (Algorithm 2) considers ETT. This step

involves solving an integral along the surface, where each
step along the surface ds is multiplied by the expected pace
along that step to obtain the ETT. Our environment is
uncertain; therefore, we do not assume hard obstacles.
Accordingly, we replace the ObstacleFree function
with the NoExceed function (Algorithm 4), which verifies
that no cell along the path exceeds the maximum allowable
SD, slope, and rock abundance (CFA) for the rover. Within
the NoExceed conditional statement, the ParentETT
function (Algorithm 3) considers the closest node by travel
time, rather than distance.

Figure 11. Expected rover speed based on slope, CFA, and
terrain type probability distribution.

Algorithm 1. RRT*-ETT.

Algorithm 2. NearestETT(T,qrand).

Figure 10. Example rover speed probability distribution.

Folsom et al. 9



Standard deviation as a measure of information gain

Information gain algorithms typically utilize Shannon
entropy or KL divergence to measure uncertainty. While
both Shannon entropy and KL divergence can measure
information gain, they are not always appropriate. Shannon
entropy is unable to distinguish between different weighted
distributions because it only considers raw information
gain. KL divergence measures the deviation of a sampled
distribution from an ideal distribution, but this introduces
bias toward the ideal distribution. This feature of KL diver-
gence is often desirable. However, if the objective is to find
regions, which offer the most potential travel time loss or
gain, then SD provides a superior measure of information
gain. SD-based information gain ensures that regions with
broad bimodal probability distributions are targeted over
regions with narrow probability distributions. When the
probability distribution is heavily weighted at either
extreme, the true rover travel time will either be very low
or very high. Therefore, regions with broad bimodal dis-
tributions offer the greatest potential delta between the
expected and true travel times.

Using a separate agent (e.g. helicopter) to observe the
grid in advance of the rover’s arrival allows several
changes to the algorithm. First, the need to obtain informa-
tion as early as possible during the path plan is relaxed.
Next, replacing the Shannon entropy with SD allows the
reward component to be simplified to the weighted sum of
the reduction in SD over the path. This results in equation
(11), used in the following section

U i;p;t ¼
XEnd

j¼0

!
W j;1ðSDprior ( SDposteriorÞ

"
(W i;2costi;t

(11)

for agent i, path p, cell j, and time t.

RRT*-information theoretic

The Mars helicopter uses the information-theoretic exten-
sion of the RRT* algorithm presented in this subsection for
path planning. The utility function-based algorithm consid-
ers a single-agent gaining information as quickly as pos-
sible to improve its travel time. This requires obtaining the
maximum amount of information early in the trip while
balancing the cost of obtaining that information in terms
of added travel time. In the case of the rover-helicopter
team, the problem has been extended to a multiagent case,
where the single-agent seeking to gain information is the
helicopter. The information gathered by the helicopter is
beneficial to reducing travel time for the rover. In a real-
world scenario on Mars, the helicopter can be assumed to
travel much faster than the rover and its flight times are
extremely short (several minutes) relative to the time
scales involved in moving the rover (<200 m/24.66 h).
Therefore, the process can be approximated as a two-
stage process, or a series of two-stage processes, in which
the helicopter first obtains information and the rover then
proceeds along its path.

In the case of the rover-helicopter team, the helicopter is
assumed to be free to obtain the maximum amount of infor-
mation available in the nearby area surrounding the start
position. Because of the lack of a defined goal location for
the information-theoretic helicopter in some cases and the
intractability of solving for all possible paths on large-scale
maps, an RRT framework called RRT*-IT is used. The
RRT*-IT Algorithm 5 considers the utility function 12 in

NearestIT (Algorithm 6) and ParentIT (Algorithm 7)

when constructing the tree

U i;p;t ¼ W i;2costi;t (
XEnd

j¼0

!
W j;1ðSDprior ( SDposteriorÞ

"

(12)

The utility function in equation (12) is modified from
equation (11) such that it can be minimized because max-
imizing a cost function is not possible with RRT-based
algorithms. Therefore, finding the paths which minimize
equation (12) between any two points will generate opti-
mal paths.

Helicopter communications and sensor model

This research is intended to highlight a method for using a
helicopter to improve the travel time of a rover and to
provide an upper bound on the improvements in travel

Algorithm 3. ParentETT(qnear; qnearest; qnew ;Unew).

Algorithm 4. NoExceed(qnew ,qnear).
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time. Communication is not directly modeled, however,
without communication between the two vehicles, the
rover will revert to using its original RRT*-ETT routing
solution with only the satellite imagery as an input. The
rover’s travel time in this case will match the safe rover
distribution shown in Figure 12.

Additionally, the communication assumption is reason-
ably safe given that the rover is capable of moving no more
than 200 m in a 24.66 h time period and the helicopter has
flight times of several minutes before needing to recharge
using solar energy. Therefore, the distances between the
two vehicles are assumed to be no more than a few hundred
meters at any given time allowing for reliable communica-
tion over the relatively short distances separating them.

Our helicopter model has sensors with a viewing cone
originating from an altitude of approximately 50 m above
the surface. Information gain for the helicopter is modeled
by generating a ground truth data set, which is revealed
when the helicopter observes a location. A simple sensor
model can be implemented in which the helicopter has a

measurement error and the SD is reduced to a lesser but
nonzero value.

For an initial distribution from a satellite image observa-

tion of location i described by the mean ! and variance s2

Psat;i ¼ ½!sat;i;s
2
sat;i% (13)

and a subsequent helicopter observation of location i

Pheli;i ¼ ½!heli;i;s
2
heli;i% (14)

an estimate of the true distribution is given by

Pest;i ¼
!
ð1( bÞ!sat;i þ b!heli;i; ð1( bÞs2

sat;i

"
(15)

where

b ¼
s2

sat;i

s2
sat;i þ s2

heli;i

(16)

A sensor model for the Mars helicopter was not imple-
mented in our research for several reasons. First, the
path-planning decisions of the helicopter are intended to
maximize information gain for the rover and should not
be affected by sensor error. The locations of highest
uncertainty are still the best locations to observe, even if
the helicopter’s observations are imperfect. Unlike
POMDP models which typically try to account for loca-
lization measurement errors when planning a path, our
helicopter model uses a more efficient RRT*-based
approach which finds paths that maximize the potential
for information gain to benefit the rover. A helicopter
sensor model would serve merely as an intermediate data
processing step between the helicopter’s path-planning
stage and the rover’s path-planning stage. This intermedi-
ate step would not change the routing decisions of the
information-theoretic helicopter.

Figure 12. Results of Monte Carlo simulation on a user-defined
region (Figure 13) displayed as a box plot. True travel time is in
Martian Sol (1 Sol + 24.66 h). The IT helicopter provides safe
approximately 10% median travel time savings or 2.3 h per Sol.

Algorithm 5. RRT*-IT.

Algorithm 6. NearestIT(T,qrand).

Algorithm 7. ParentIT(qnear; qnearest; qnew ;Unew).
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Second, we assume that the helicopter’s observations do
not increase uncertainty. The rover þ IT heli model (Fig-
ure 12) represents a best-case solution in which the heli-
copter is able to remove uncertainty in the observed
regions. The safe rover model (Figure 12) represents the
worst-case scenario in which the rover must navigate based
on satellite imagery containing quantifiable error. As error
of the helicopter sensors increases, the resulting rover
travel time distribution is expected to lie somewhere
between these two bounds.

Third, errors in the helicopter’s observations do not
reflect on the performance of the safety-oriented rover
path-planning algorithm we have developed, because the
safe rover (Figure 12) path-planning algorithm already
accounts for error in the observations when planning its
path. If the helicopter does not provide perfect observa-
tions, then the rover’s routing algorithm accounts for
this by planning the best-case safety-oriented path.
Travel time improvements for the rover can be expected
to be reduced as known helicopter sensor error increases,
just as they do given a known stereoscopic satellite image
error.

Fourth, considering the effects of unknown helicopter
sensor error due to a sensor model, which gives inaccurate
information without any quantification of error or SD, is
beyond the scope of this research. For example, we do not
consider scenarios in which the helicopter incorrectly pre-
sents 200 m/Sol with 100% certainty, when the true rover
speed is actually 0 m/Sol with 100% certainty.

Results

Scenario environment

Using a utility function based on the Shannon entropy
information gain metric in equation (10), an example
non-RRT-based scenario (depth-first search) is run on the
user defined grid in Figure 5. The results of this example
scenario are shown in Figures 14 and 15. In a highly corre-
lated uncertain environment, a single agent benefits most
by gaining information as early as possible during its trip.
This allows the agent to exploit the information gain to
reduce its own travel time. In the case of Figure 15, the
utility function optimized path gains more information
without sacrificing travel time cost. Subsequent agents tra-
versing this grid can exploit the greater information gained
by the first agent using the utility function optimized path.
Information gained at the end of the trip is less likely to
provide significant travel time savings for a single agent
because that agent is too far along the path to be able to use
the information gained to reduce its own travel time.
Results show that by prioritizing information gain early
in the trip, a single agent is free to exploit that information
gain during the rest of its trip.

The information gained by the agent can provide signif-
icant travel time savings over the initially planned path if

the initial path plan traverses highly uncertain cells.
Another benefit of this methodology is that it enables a
single agent to perform more nondriving related (e.g. sci-
entific exploration) tasks without a substantial increase in
true travel time over the ETT. For a Mars rover, this could
mean being able to visit and observe more types of terrain
and gain significantly more scientific information while
still arriving at the goal location on time. In the following
sections, RRT*-based algorithms are evaluated. The
helicopter is the first agent to traverse the map using the
RRT*-IT algorithm, while the rover benefits from this
information by planning a path, which is more optimal.

Figure 13. User-defined region with the 100 start (green, left)
and goal (red, right) locations used in each Monte Carlo simula-
tion. Parameters of the three elliptical regions also vary for each
MC run.

Figure 14. Single agent: Comparing information gain (y-axis) over
distance (x-axis) along three paths using the developed utility
function, only minimizing expected travel time, and assuming
the max½PðTÞ% travel time is the true travel time for each cell.
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Simulation environment

The Mars environment is complex and has the potential to
introduce terrain-specific geometric bias based on the
selected simulation region. This could result in strong bias
toward certain routes due to the steepness of the terrain or
distribution of rocks, reducing the apparent effectiveness of
our approach. Prior to testing the model on the Mars data
set, a separate user-defined region was generated to avoid
the problem of bias.

A Monte Carlo simulation of 100 runs for each of the
four scenarios was performed on a user-defined region with
two circular obstacles and three elliptical passages around
the obstacles (Figure 13). Each of the three passages was
randomly assigned an expected speed, SD, and ground truth
for each run. The ground truth is revealed only in locations,
which have been observed directly by the helicopter’s view
cone. The start and goal locations are drawn from a uniform
random distribution covering the extent of the y-axis but
fixed over a small range of x-axis values. This ensures that
the rover must always pass by the obstacles by traversing
one of the passages and removes bias induced by the geo-
metry of the environment. The helicopter is assumed to
have an altitude-dependent observation radius. The view-
ing radius is modeled by projecting a viewing cone from
the helicopter in the (z direction. The intersection of the
viewing cone with the surface defines the outer boundary of
the observable area.

Figure 12 shows results for the four scenarios. The naive
rover assumes a simple RRT* algorithm, which does not
consider risk. This algorithm performs well when condi-
tions allow because it attempts to find the shortest path to

the goal, however, it does not consider the risk of traversing
highly uncertain regions and gets stuck 21% of the time.
Note that the box plot for the Naive Rover scenario is
calculated after removing the 21% of points with infinite
travel time. The safe rover scenario uses the RRT*-ETT
algorithm to ensure that the rover safely reaches the desti-
nation by avoiding regions of high uncertainty. Because the
safe rover avoids regions of very high SD, it typically
avoids surprises. However, occasionally, the rover will
encounter a significant delay.

The safe rover is generally more cautious than the
rover þ IT heli team because of lower travel time cer-
tainty due to the lack of helicopter scouting. The worst-
case performance of this scenario is still vastly superior
to the naive rover, which can easily become stuck in the
worst case. Under the specific condition that the shortest
route is also the fastest route, the naive rover algorithm
is capable of achieving good results. However, the naive
RRT* algorithm does not perform well if the shortest
route traverses areas of high uncertainty. Caution should
be used when making comparisons with the naive rover
box plot in Figure 12. There were 21 runs in which the
rover became stuck, meaning the travel time is infinite.
Therefore, the naive rover box plot is only considering
the results in which the rover actually reached the goal.
With the other three algorithms in Figure 12, the rover
reached the goal in all cases. The best-case results for
the naive algorithm are good because the algorithm is
optimal in the specific case in which the shortest path is
also the fastest path and these cases do arise in the
Monte Carlo simulation. For cases in which this does
not hold, the naive algorithm risks complete mission
failure.

Results show that the presented rover þ IT heli algo-
rithm improves the worst-case results significantly com-
pared with the naive shortest path approach. The addition
of the IT heli also offers approximately 10% median travel
time improvement compared with the safe rover alone in
the Monte Carlo simulation region. In the case of long-term
missions on Mars, which span months or years, this saving
is significant. The rover þ IT heli algorithm provides the
most robust results, with the lowest travel time SD and the
lowest median travel times.

When the rover has a helicopter scouting its planned
path, the median result is very similar to when the rover
travels alone. The rover’s path is already safety-oriented
and this is accomplished by avoiding regions of high uncer-
tainty. The naive helicopter which scouts ahead on the
rover’s planned path fails to improve travel time substan-
tially because it also avoids high uncertainty regions. The
result of this technique is a slight improvement in median
rover travel time. Small improvements are seen in situa-
tions, where the helicopter detects that the speed through
the selected passage is less than expected and the rover
chooses to minimize its time spent inside the elliptical
passage.

Figure 15. Single agent: Comparing information gain (y-axis) over
travel time (x-axis) along three paths using the developed utility
function, only minimizing expected travel time, and assuming
the max½PðTÞ% travel time is the true travel time for each cell.
The optimal path in Figure 5 uses the developed utility function,
which maximizes information gain while minimizing travel time.
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When the helicopter can scout regions of high SD, it
either uncovers a superior path or discovers that the current
path is acceptable. This method is more robust compared to
the naive helicopter, because in the case that the rover’s
planned path passes through the region with the highest SD,
the information-theoretic helicopter will scout along the
planned path. The rover þ IT heli model, therefore, tends
to produce the most optimal results under more uncertain
conditions.

Jezero region case study

After confirmation of the model using the Monte Carlo
simulation, a case study was performed in the Jezero
region on Mars. Because of the complexity of the 3D
Mars environment and the number of unfeasible start and
goal locations, we can select a start and goal location,
which offer two main traversable routes to go around a
steep cliff. The performance of the rover þ IT heli model
was compared to the rover alone and to the rover þ naive
heli model, where the helicopter scouts ahead along the
rover’s planned route. In this region, the rover þ IT heli
model finds a superior path for the rover compared to
both the rover alone and the rover þ naive heli model.
Figure 7 shows the results of the case study, where the
rover þ IT heli model reduced the rover’s true travel time
from 2.62 Sol to 1.68 Sol.

In this case study, the rover must choose either to go
left or right around a region of low traversability caused
by an extremely steep slope. The path on one side of the
obstacle presents a longer distance for the rover due to the
shape of the terrain surface while the path on the other
side presents a shorter distance. Because the uncertainty
on the longer path is high, the rover will not choose to
take this path. Attempting to observe this environment
with the rover alone carries a high risk since the region
may turn out to increase travel time substantially. The
cost of visiting this region and becoming stranded, or
turning around and going back, is too great to risk send-
ing the rover to this destination. Therefore, the rover
alone will always choose the safer option. The results for
this case study are consistent with the Monte Carlo simu-
lation environment with the exception of the Mars heli-
copter naively observing the path the rover has chosen. In
this case, it does not search regions of high uncertainty,
since the rover will avoid these regions for those with
more reliable travel times. Therefore, the Mars helicopter
will only be evaluating regions with lower uncertainty.
Using the Mars helicopter, this way tends to produce
small median travel time improvements and can cause
increased travel time SD for the rover. The rover þ IT
heli model consistently produces the best results by
searching regions of higher SD and reducing uncertainty,
as shown in Figure 16. If the travel time can be improved,
the rover will adjust its path through the previously high
uncertainty region. Overall, the rover þ IT heli model

provides greater information gain and travel time savings
without increased risk for the rover.

A 20 run simulation was performed on the Jezero
region with randomly generated ground truth data and
fixed start and goal locations. Due to bias caused by the
geometry of the region, when the helicopter naively
scouts ahead on the same path, this tends to worsen the
rover’s performance. This is because the rover only has
two feasible routes available and tends to favor one of

Figure 16. Case study on Jezero region showing information gain
in terms of the reduction of standard deviation per step along the
grid shown in Figure 7 for the naive helicopter and the
information-theoretic helicopter. Information-theoretic
helicopter gathers more important information sooner along its
path, enabling more effective rerouting of the rover.

Figure 17. Results of 20 run simulation on Jezero region (Fig-
ure 7) with constant start and goal location and varying ground
truth. True travel time is in Martian Sol (1 Sol + 24.66 h). The IT
helicopter provides safe median travel time savings of 11.4 h per
Sol over the rover alone.
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them due to the geometry of the environment. If the naive
helicopter discovers that the preferred route is less opti-
mal than the satellite data indicated, the rover tries the
other route, which turns out in some cases to be slower
than predicted and due to its greater path length, can add
significant travel time cost. In the IT heli case, the rover
avoids switching from its preferred route unless the IT
heli discovers a significant improvement in travel time on
the alternative route. The results for this simulation are
shown in Figure 17.

Scalability

Testing with traditional MDP and POMDP approaches
proved computationally intractable for the scale and reso-
lution of this problem. For example, an MCTS algorithm
was tested using POMDPs.jl on the following grid sizes and
resulted in exponentially increasing computational times,
as shown in the following table.15,38

Both the successive approximations of the reachable
space under optimal policies (SARSOP) and determinized
sparse partially observable tree (DESPOT) algorithms were

also tested using the approximate POMDP planning
(APPL) Cþþ toolkit.39,40,41 Both algorithms scaled poorly
even on small toy problems. The SARSOP algorithm took
389 s to solve the small-scale underwater navigation prob-
lem described in prior research.42 While our results are
superior to the performance in the prior research, this
difference is likely due to the use of an I7-8700K proces-
sor with a 4.3-GHz clock speed, compared to their use of a
2.66-GHz processor. The DESPOT algorithm solved the
same underwater navigation problem in 89 s, which is a
considerable improvement but still indicative of poor
scalability. Value iteration MDP solvers were also tested
on toy maps with entropy as a reward for both defined goal
states (Figure 18) and undefined goal states (Figure 19),
but the solvers tend to become trapped in local maxima
and are also computationally intractable for large high-
resolution maps.

The user-defined Monte Carlo simulation region in
Figure 13 contains 40,000 1-m2 cells and the Jezero case
study region in Figure 7 contains 673,854 1 m2 cells, con-
siderably greater than the simple cases attempted for
the MDP and POMDP approaches. The RRT*-based
approaches presented in this article are sampling-based and
allow for solutions on large-scale 3D environments without
excessive memory usage or computational requirements,
allowing deployment on a large transistor, radiation-
hardened ARM-based CPUs. Computational times using
a single core of an Intel I7-8700K processor for the most

Figure 18. MDP value iteration solution for a stochastic policy with entropy as a reward and a defined goal state. Yellow is high value,
green is low value, where value is a weighted reward.

Figure 19. MDP value iteration solution for a stochastic policy with entropy as a reward and an undefined goal state. Yellow is high
value and green is low value, where value is a weighted reward.

Grid size Average compute time (s)
10 " 10 0.4
15 " 15 18.63
20 " 20 106.14
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complex case of the two-stage algorithm (rover þ IT heli)
on both the Monte Carlo simulation region and the Jezero
case study region are shown in the following table.

The computational time is dependent on the number of
nodes and the maximum length of each edge in the tree.
Compared with traditional RRT* algorithms, the presented
algorithms take more time due to the fact that ETT is cal-
culated between each node and each edge of the tree tra-
verses a nonuniform surface with varying expected speeds.
This requires the calculation of a path integral along each
edge. Significant improvements are expected by imple-
menting the code in a programming language such as FOR-
TRAN, which offers much faster looping compared with
MATLAB.43,37

Conclusion

This research offers a set of novel techniques for single and
multiagent path planning in uncertain environments. The
addition of an information-theoretic helicopter guided by
the RRT*-IT algorithm allows safe information gain for a
ground-based rover without excessive computational cost,
and the use of RRT*-ETT algorithm ensures that the rover
takes the fastest route without incurring substantial risk.
The robustness of the RRT*-ETT algorithm is demon-
strated in the Monte Carlo simulation, which shows that
even without the helicopter, the rover achieves good med-
ian travel times. When the helicopter updates information,
the rover takes advantage of the new information while
considering the error and updates its path. This methodol-
ogy provides better routing and extends travel distance
allowing more time for the rover to perform nondriving
research activities.

By formulating utility functions, which balance the
trade-off between exploration and exploitation, this
research develops an algorithm for time-dependent path
planning with single or multiple autonomous agents. In
the model framework, each grid cell (e.g. image pixel)
contains the unique probabilistic distribution of travel
time, allowing the formulation of path plans under a par-
tial information environment. Invaluable knowledge and
insights are derived regarding correlation between cells of
the grid environment and integrating different sources of
information gain.

Future research

In real-world applications, the assumption that the helicop-
ter perfectly observes the environment, bringing the SD to
zero for all observed cells, is not necessarily valid. Future

research should consider the effects of partial or inaccu-
rate information gain by the helicopter by modifying the
rover’s path planning algorithm to account for incorrect
information.

Additionally, the rover þ heli models do not assume
correlation between regions in the environment. Significant
correlation may exist between regions of similar terrain
features. In a highly correlated environment, observing one
region can provide information about other regions, which
have not yet been observed. Future research will consider
this possibility by creating a terrain correlation model,
which demonstrates that locations, which share the same
terrain type probability distribution are highly correlated.
Under this correlation model, information gain obtained by
observing one location can reduce uncertainty in another
unobserved location. This technique could also be used to
adjust travel time predictions by inferring the accuracy of
satellite observations. Previous work involving correlation
has mostly focused on upstream or downstream effects in a
road network, rather than travel time correlation based on
satellite imagery.44,45

This model framework can be further applied to contrib-
ute to multiagent systems with core principles for informa-
tion sharing. In a disaster situation, when part of a road
network is disconnected and traversability is uncertain, the
proposed concept can efficiently guide semiautonomous
and autonomous rescue vehicles. Future autonomous elec-
tric vehicles can incorporate this model with the objective
of maximizing energy efficiency, considering the trade-off
between energy efficiency and congestion and making bet-
ter decisions when the outcomes are correlated across the
map or the actions of other agents.
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