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Abstract. There has been significant recent progress on algorithms for
approximating graph spanners, i.e., algorithms which approximate the
best spanner for a given input graph. Essentially all of these algorithms
use the same basic LP relaxation, so a variety of papers have studied the
limitations of this approach and proved integrality gaps for this LP. We
extend these results by showing that even the strongest lift-and-project
methods cannot help significantly, by proving polynomial integrality gaps
even for nΩ(ε) levels of the Lasserre hierarchy, for both the directed and
undirected spanner problems. We also extend these integrality gaps to
related problems, notably Directed Steiner Network and Shallow-
Light Steiner Network.

1 Introduction

A spanner is a subgraph which approximately preserves distances. Formally, a
t-spanner of a graph G is a subgraph H such that dH(u, v) ≤ t · dG(u, v) for all
u, v ∈ V (where dH and dG denote shortest-path distances in H and G respec-
tively). Since H is a subgraph it is also the case that dG(u, v) ≤ dH(u, v), and
thus a t-spanner preserves all distances up to a multiplicative factor of t, which
is known as the stretch. Graph spanners originally appeared in the context of
distributed computing [26,27], but have since been used as fundamental build-
ing blocks in applications ranging from routing in computer networks [30] to
property testing of functions [5] to parallel algorithms [20].

Most work on graph spanners has focused on tradeoffs between various
parameters, particularly the size (number of edges) and the stretch. Most
notably, a seminal result of Althöfer et al. [1] is that every graph admits a
(2k − 1)-spanner with at most n1+1/k edges, for every integer k ≥ 1. This trade-
off is also known to be tight, assuming the Erdős girth conjecture [19], but
extensions to this fundamental result have resulted in an enormous literature on
graph spanners.

Alongside this work on tradeoffs, there has been a line of work on optimizing
spanners. In this line of work, we are usually given a graph G and a value t,
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and are asked to find the t-spanner of G with the fewest number of edges. If
G is undirected then this is known as Basic t-Spanner, while if G is directed
then this is known as Directed t-Spanner. The best known approximation
for Directed t-Spanner is an O(n1/2)-approximation [4], while for Basic t-
Spanner the best known approximations are O(n1/3) when t = 3 [4] and when
t = 4 [17], and O

(
n

1
�(t+1)/2�

)
when t > 4. Note that this approximation for

t > 4 is directly from the result of [1] by using the trivial fact that the optimal
solution is always at least n−1 (in a connected graph). So this result is in a sense
“generic”, as both the upper bound and the lower bound are universal rather
than applying to the particular input graph.

One feature of the algorithms of [4,17], as well as earlier work [14] and exten-
sions to related settings (such as approximating fault-tolerant spanners [15,17]
and minimizing the maximum or norm of the degrees [8,9]), is that they all use
some variant of the same basic LP: a flow-based relaxation originally introduced
for spanners by [14]. The result of [4] uses a slightly different LP (based on cuts
rather than flows), but it is easy to show that the LP of [4] is no stronger than
the LP of [14].

The fact that for Basic t-Spanner we cannot do better than the “generic”
bound when t > 4, as well as the common use of a standard LP relaxation, nat-
urally gives rise to a few questions. Is it possible to do better than the generic
bound when t > 4? Can this be achieved with the basic LP? Can we improve
our analysis of this LP to get improvements for Directed t-Spanner? In other
words: what is the power of convex relaxations for spanner problems? It seems
particularly promising to use lift-and-project methods to try for stronger LP
relaxations, since one of the very few spanner approximations that uses a dif-
ferent LP relaxation was the use of the Sherali-Adams hierarchy to give an
approximation algorithm for the Lowest Degree 2-Spanner problem [12].

It has been known since [18,21] that Directed t-Spanner does not admit
an approximation better than 2log

1−ε n for any constant ε > 0 (under standard
complexity assumptions), and it was more recently shown [13] that Basic t-

Spanner cannot be approximated any better than 2(log
1−ε n)/t for any constant

ε > 0. Thus no convex relaxation can do better than these bounds. But it is
possible to prove stronger integrality gaps: it was shown in [14] that the inte-
grality gap of the basic LP for Directed t-Spanner is at least Ω̃(n

1
3−ε), while

in [17] it was shown that the basic LP for Basic t-Spanner has an integrality
gap of at least Ω(n

2
(1+ε)(t+1)+4 ), nearly matching the generic upper bound (par-

ticularly for large t). But this left open a tantalizing prospect: perhaps there
are stronger relaxations which could be used to get improved approximation
bounds. Of course, the hardness of approximation results prove a limit to this.
But even with the known hardness results and integrality gaps, it is possible
that there is, say, an O(n1/1000)-approximation for Directed t-Spanner and
an O(n1/(1000t))-approximation for Basic t-Spanner that uses more advanced
relaxations. It is also possible that a more complex relaxation, which perhaps
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cannot be solved in polynomial time, could lead to better approximations (albeit
not in polynomial time).

1.1 Our Results and Techniques

This is the problem which we investigate: can we design stronger relaxations for
spanners and related problems? While we cannot rule out all possible relaxations,
we show that an extremely powerful lift-and-project technique, the Lasserre hier-
archy [22] applied to the basic LP, does not give relaxations which are signifi-
cantly better than the basic LP. This is true despite the fact that Lasserre is an
SDP hierarchy rather than an LP hierarchy, and despite the fact that we allow a
polynomial number of levels in the hierarchy (even though only a constant num-
ber of levels can be solved in polynomial time). And since the Lasserre hierarchy
is at least as strong as other hierarchies such as the Sherali-Adams hierarchy [29]
and the Lovasz-Schrijver hierarchy [24], our results also imply integrality gaps
for these hierarchies.

In other words: we show that even super-polynomial time algorithms which are
based on any of the most well-known lift-and-project methods cannot approximate
spanners much better than the current approximations based on the basic LP.

Slightly more formally, we first rewrite the basic LP in a way that is similar
to [4] but is equivalent to the stronger original formulation [14]. This makes the
Lasserre lifts of the LP easier to reason about, thanks to the new structure of
this formulation. We then consider the Lasserre hierarchy applied to this LP,
and prove the following theorems.

Theorem 1. For every constant 0 < ε < 1 and sufficiently large n, the inte-
grality gap of the nΩ(ε)-th level Lasserre SDP for Directed (2k − 1)-Spanner

is at least
(

n
k

) 1
18−Θ(ε).

Theorem 2. For every constant 0 < ε < 1 and sufficiently large n, the inte-
grality gap of the nΩ(ε)-th level Lasserre SDP for Basic (2k − 1)-Spanner is

at least 1
k · (

n
k

)min{ 1
18 , 5

32k−6}−Θ(ε) = nΘ( 1
k −ε).

While the constant in the exponent is different, Theorem 2 is similar to [17] in
that it shows that the integrality gap “tracks” the trivial approximation from [1]
as a function of k. Thus for undirected spanners, even using the Lasserre hierar-
chy cannot give too substantial an improvement over the trivial greedy algorithm.

At a very high level, we follow the approach to building spanner integrality
gaps of [14,17]. They started with random instances of the Unique Games
problem, which are known to not admit any good solutions [6]. They then used
these Unique Games instances to build spanner instances with the property
that every spanner had to be large (or else the Unique Games instance would
have had a good solution), but by “splitting flow” the LP could be very small.

In order to apply this framework to the Lasserre hierarchy, we need to make
a number of changes. First, since Unique Games can be solved reasonably well
by Lasserre [3,7], starting with a random instance of Unique Games will not
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work. Instead, we start with a more complicated problem known as Projec-
tion Games (the special case of Label Cover in which all the edge rela-
tions are functions). Hardness reductions for spanners have long used Projec-
tion Games [13,18,21], but previous integrality gaps [14,17] have used Unique
Games since it was sufficient and was easier to work with. But we will need to
overcome the complications that come from Projection Games.

Fortunately, an integrality gap for the Lasserre hierarchy for Projection
Games was recently given by [10,25] (based on an integrality gap for CSPs
from [31]), so we can use this as our starting point and try to plug it into the
integrality gap framework of [14,17] to get an instance of either directed or
undirected spanners. Unfortunately, the parameters and structure that we get
from this are different enough from the parameters used in the integrality gap
of the basic LP that we cannot use [14,17] as a black box. We need to reanalyze
the instance using different techniques, even for the “easy” direction of showing
that there are no good integral solutions. In order to do this, we also need some
additional properties of the gap instance for Projection Games from [10]
which were not stated in their original analysis. So we cannot even use [10] as a
black box.

The main technical difficulty, though, is verifying that there is a “low-cost”
fractional solution to the resulting SDP. For the basic LP this is straightforward,
but for Lasserre we need to show that the associated slack moment matrices are
all PSD. This turns out to be surprisingly tricky, because the slack moment
matrices for the spanner SDP are much more complicated than the constraints
of the Projection Game SDP. But by decomposing these matrices carefully
we can show that each matrix in the decomposition is PSD. At a high level, we
decompose the slack moment matrices as a summation of several matrices in a
way that allows us to use the consistency properties of the feasible solution to
the Projection Games instance in [10] to show that the overall sum is PSD.

Doing this requires us to use some properties of the feasible fractional solution
provided by [10], some of which we need to prove as they were not relevant in
the original setting. In particular, one important property which makes our task
much easier is that their fractional solution actually satisfies all of the edges in
the Projection Games instance. That is, their integrality gap is in a particular
“place”: the fractional solution has value 1 while every integral solution has
much smaller value. This is enormously useful to us since spanners and the
other network design problems we consider are minimization problems rather
than maximization problems like Projection Games, as it essentially allows
us to use essentially “the same” fractional solution (as it will also be feasible
for the minimization version since it satisfies all edges). Technically, we end up
combining this fact about the fractional solution of [10] with several properties
of the Lasserre hierarchy to infer some more refined structural properties of
the derived fractional solution for spanners, allowing us to argue that they are
feasible for the Lasserre lifts.
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Extensions. A number of other network design problems exhibit behavior that
is similar to spanners, and we can extend our integrality gaps to these problems.
In particular, we give a new integrality gap for Lasserre for Directed Steiner
Network (DSN) (also called Directed Steiner Forest) and Shallow-
Light Steiner Network (SLSN) [2]. In DSN we are given a directed graph
G = (V,E) (possibly with weights) and a collection of pairs {(si, ti)}i∈[p], and
are asked to find the cheapest subgraph such that there is an si to ti path for
all i ∈ [p]. In SLSN the graph is undirected, but each si and ti is required to be
connected within a global distance bound L. The best known approximation for
DSN is an O(n3/5+ε)-approximation for arbitrarily small constant ε > 0 [11],
which uses a standard flow-based LP relaxation. We can use the ideas we devel-
oped for spanners to also give integrality gaps for the Lasserre lifts of these
problems. We provide the theorems here; details and proofs can be found in the
full version [16].

Theorem 3. For every constant 0 < ε < 1 and sufficiently large n, the integral-
ity gap of the nΩ(ε)-th level Lasserre SDP for Directed Steiner Network
is at least n

1
16−Θ(ε).

Theorem 4. For every constant 0 < ε < 1 and sufficiently large n, the inte-
grality gap of the nΩ(ε)-th level Lasserre SDP for Shallow-Light Steiner
Network is at least n

1
16−Θ(ε).

2 Preliminaries: Lasserre Hierarchy

The Lasserre hierarchy lifts a polytope to a higher dimensional space, and then
optionally projects this lift back to the original space in order to get tighter
relaxations. The standard characterization for Lasserre (when the base polytope
includes the hypercube constraints that every variable is in [0, 1]) is as follows
[22,23,28]:

Definition 1 (Lasserre Hierarchy). Let A ∈ R
m×n and b ∈ R

m, and define
the polytope K = {x ∈ R

n : Ax ≥ b}. The r-th level of the Lasserre hierarchy
Lr(K) consists of the set of vectors y ∈ [0, 1]P ([n]) (where P denotes the power
set) that satisfy the following constraints:

y∅ = 1, Mr+1(y) := (yI∪J)|I|,|J|≤r+1 � 0,

∀� ∈ [m] : M �
r (y) :=

(
n∑

i=1

A�iyI∪J∪{i} − b�yI∪J

)

|I|,|J|≤r

� 0

The matrix Mr+1 is called the base moment matrix, and the matrices M �
r are

called slack moment matrices.

Let us review (see, e.g., [28]) multiple helpful properties that we will use
later. We include proofs in the full version [16] for completeness.
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Claim. If Mr(y) � 0, |I| ≤ r, and yI = 1, then yI∪J = yJ for all |J | ≤ r.

Claim. If Mr(y) � 0, |I| ≤ r, and yI = 0, then yI∪J = 0 for all |J | ≤ r.

Lemma 1. If Mr+1(y) � 0 then M i,1(y) = (yI∪J∪{i})|I|,|J|≤r � 0 and
M i,0(y) = (yI∪J − yI∪J∪{i})|I|,|J|≤r � 0 for all i ∈ [n].

3 PROJECTION GAMES: Background and Previous Work

In this section we discuss the Projection Games problem, its Lasserre relax-
ation, and the integrality gap that was recently developed for it [10] which form
the basis of our integrality gaps for spanners and related problems. We begin
with the problem definition.

Definition 2 (Projection Games). Given a bipartite graph (L,R,E), a
(label) alphabet set Σ, and projections (functions) πe : Σ → Σ for each e ∈ E,
the objective is to find a label assignment α : L ∪ R → Σ that maximizes the
number of edges e = (vL, vR) ∈ E where πe(α(vL)) = α(vR). We refer to these
as satisfied edges.

We sometimes use relation notation for the projection πe, e.g., we use
(σ1, σ2) ∈ πe. Projection Games is the standard Label Cover problem,
but where every relation is required to be a projection (and hence we inherit the
relation notation when useful). Similarly, if we further restrict every function πe

to be a bijection, then we have the Unique Games problem. So Projection
Games lies between Unique Games and Label Cover.

The basis of our integrality gaps is the integrality gap instance recently shown
by [10] for Lasserre relaxations of Projection Games. We first formally define
this SDP. For every Ψ ⊆ (L ∪ R) × Σ we will have a variable yΨ . Then the r-th
level Lasserre SDP for Projection Games is the following:

SDPr
Proj :

max
∑

(vL,vR)∈E,(σL,σr)∈π(u,v)

y(vL,σL),(vR,σR)

s.t. y∅ = 1
Mr(y) :=

(
yΨ1∪Ψ2

)
|Ψ1|,|Ψ2|≤r

� 0

Mv
r (y) :=

(
∑

σ∈Σ
yΨ1∪Ψ2∪{(v,σ)} − yΨ1∪Ψ2

)

|Ψ1|,|Ψ2|≤r

= 0 ∀v ∈ V

It is worth noting that for simplicity we are not using the original presentation
of this SDP given by [10]: they used a vector inner product representation. But
it can be shown (and we do so in the full version [16]) that these representations
are equivalent. To prove their integrality gap, [10] gave a Projection Games
instance with the following properties. One of the properties is not proven in
their paper, but is essentially trivial. We give a proof of this property, as well as
a discussion of how the other properties follow from their construction, in the
full version [16].
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Lemma 2. For any constant 0 < ε < 1, there exists an instance of Projec-
tion Games (L,R,EProj , Σ, (πe)e∈EP roj

) with the following properties:

1. Σ =
[
n

3−3ε
5

]
, R = {x1, . . . , xn}, L = {c1, . . . , cm}, where m = n1+ε.

2. There exists a feasible solution y∗ for the r = nΩ(ε)-th level SDPr
Proj, such

that for all {ci, xj} ∈ EProj,
∑

(σL,σR)∈π(ci,xj)
y(ci,σL),(xj ,σR) = 1.

3. At most O
(

n1+ε lnn
ε

)
edges can be satisfied.

4. The degree of vertices in L is K = n
1−ε
5 − 1, and the degree of vertices in R

is at most 2Knε.

4 Lasserre Integrality Gap for DIRECTED (2k−1)-Spanner

In this section we prove our main result for the Directed (2k − 1)-Spanner
problem: a polynomial integrality gap for polynomial levels of the Lasserre
hierarchy.

4.1 Spanner LPs and Their Lasserre Lifts

The standard flow-based LP for spanners (including both the directed and basic
(2k − 1)-spanner problems) was introduced by [14], and has subsequently been
used in many other spanner problems [4,8,15]. However, it is an awkward fit
with Lasserre, most notably since it has an exponential number of variables (and
hence so too do all the Lasserre lifts). We instead will work with an equivalent LP
which appeared implicitly in [14] and is slightly stronger than the “antispanner”
LP of [4].

First we review the standard LP, as stated in [14], and then describe the new
LP. Let Pu,v denote the set of all stretch-(2k − 1) paths from u to v.

LPFlow
Spanner : min

∑
e∈E

xe

s.t.
∑

P∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ E,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ E

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ E,P ∈ Pu,v

Since the fP variables do not appear in the objective function, we can project
the polytope defined by LPFlow

Spanner onto the xe variables and use the same objec-
tive function to get an equivalent LP but with only the xe variables. To define
this LP more formally, let Zu,v = {z ∈ [0, 1]|E| :

∑
e∈P ze ≥ 1 ∀P ∈ Pu,v} be

the polytope bounded by 0 ≤ ze ≤ 1 for all e ∈ E and
∑

e∈P ze ≥ 1 for all
P ∈ Pu,v. Then we will use the following LP relaxation as our starting point,
which informally says that every “stretch-(2k − 1) fractional cut” must be cov-
ered, and hence in an integral solution there is a stretch-(2k − 1) path for all
edges (and so corresponds to a (2k − 1)-spanner).
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LPSpanner : min
∑

e∈E

xe

s.t.
∑

e∈E

zexe ≥ 1 ∀(u, v) ∈ E, and z ∈ Zu,v

xe ≥ 0 ∀e ∈ E

While as written there are an infinite number of constraints, it is easy to see
by convexity that we need to only include the (exponentially many) constraints
corresponding to vectors z that are vertices in the polytope Zu,v, for each (u, v) ∈
E. Thus there are only an exponential number of constraints, but for simplicity
we will analyze this LP as if there were constraints for all possible z. We show
in the full version [16] that LPSpanner and LPFlow

Spanner are equivalent.
Using Definition 1, we can write the r-th level Lasserre SDP of LPSpanner

(which is the SDP we consider in our integrality gap results) as follows. We let
SDPr

Spanner denote this SDP.

min
∑

e∈E ye

s.t. y∅ = 1
Mr+1(y) := (yI∪J)|I|,|J|≤r+1 � 0

Mz
r (y) :=

( ∑
e∈E

zeyI∪J∪{e} − yI∪J

)

|I|,|J|≤r

� 0 ∀(u, v) ∈ E, z ∈ Zu,v

4.2 Spanner Instance

We now formally define the instance of Directed (2k − 1)-Spanner that we
will analyze to prove the integrality gap. We follow the framework of [14], who
showed how to use the hardness framework of [18,21] to prove integrality gaps for
the basic flow LP. We start with a different instance (integrality gaps instances
for Projection Games rather than random instances of Unique Games), and
also change the reduction in order to obtain a better dependency on k.

Roughly speaking, given a Projection Games instance, we start with the
“label-extended” graph. For each original vertex in the projection game, we
create a group of vertices in the spanner instance of size |Σ|, so each vertex in
the group can be thought as a label assignment for the Projection Games
vertex. We add paths between these groups corresponding to each function πe

(we add a path if the associated assignment satisfies the Projection Games
edges). We add many copies of the Projection Games graph itself as the
“outer graph”, and then connect each Projection Games vertex to the group
associated with it. The key point is to prove that any integral solution must
contain either many outer edges or many “connection edges” (in order to span
the outer edges), while the fractional solution can buy connection and inner
edges fractionally and simultaneously span all of the outer edges. A schematic
version of this graph is presented in Fig. 1.

More formally, given the Projection Games instance (L = ∪i∈[m]{ci}, R =
∪i∈[n]{xi}, EProj , Σ = [n

3−3ε
5 ], (πe)e∈EP roj

) from Lemma 2, we create a directed
graph G = (V,E) as follows (note that K is the degree of the vertices in L).
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Fig. 1. Directed (2k − 1)-Spanner instance

For every ci ∈ L, we create |Σ|+kK|Σ| vertices: ci,σ for all σ ∈ Σ and cl
i for

all l ∈ [kK|Σ|]. We also create edges (cl
i, ci,σ) for each σ ∈ Σ and l ∈ [kK|Σ|]. We

call this edge set EL. For every xi ∈ R, we create |Σ|+kK|Σ| vertices: xi,σ for σ ∈
Σ and xl

i for l ∈ [kK|Σ|]. We also create an edge (xl
i, xi,σ) for each σ ∈ Σ and l ∈

[kK|Σ|]. We call this edge set ER. For every e = {ci, xj} ∈ EProj , we create edges
(cl

i, x
l
j) for each l ∈ [kK|Σ|]. We call this edge set EOuter. For each e = {ci, xj} ∈

EProj and (σL, σR) ∈ πi,j , we create vertices wi,j,σL,σR,t for t ∈ [2k−4] and edges
(ci,σL

, wi,j,σL,σR,1), (wi,j,σL,σR,1, wi,j,σL,σR,2), . . . , (wi,j,σL,σR,2k−4, xj,σR
). We call

this edge set EM . Finally, for technical reasons we need some other edges ELStars

and ERStars inside each of the groups groups.
More formally, V = LDups ∪ LLabels ∪ MPaths ∪ RLabels ∪ RDups and E =

EL ∪ ELStars ∪ EM ∪ ERStars ∪ ER ∪ EOuter, such that:

LLabels = {ci,σ | i ∈ |L|, σ ∈ Σ}, LDups = {cl
i | i ∈ |L|, l ∈ [kK|Σ|]},

RLabels = {xi,σ | i ∈ |R|, σ ∈ Σ}, RDups = {xl
i | i ∈ |R|, l ∈ [kK|Σ|]},

MPaths = {wi,j,σL,σR,t | {ci, xj} ∈ EProj ,(σL, σR) ∈ πi,j , t ∈ [2k − 4]}
Ei,l

L = {(cl
i, ci,σ) | σ ∈ Σ}, El

L = ∪i∈|L|E
i,l
L , EL = ∪l∈[kK|Σ|]El

L,

Ei,l
R = {(xl

i, xi,σ) | σ ∈ Σ}, El
R = ∪i∈|R|E

i,l
R , ER = ∪l∈[kK|Σ|]El

R,

Ei,j,σL,σR

M = {(ci,σL
, wi,j,σL,σR,1), (wi,j,σL,σR,1,wi,j,σL,σR,2),

(wi,j,σL,σR,2, wi,j,σL,σR,3), . . . , (wi,j,σL,σR,2k−4, xj,σR
)}

Ei,j
M = ∪(σL,σR)∈πi,j

Ei,j,σL,σR

M EM = ∪i,j:{ci,xj}∈EP roj
Ei,j

M

EOuter = {(cl
i, x

l
j) | {ci, xj} ∈ EProj , l ∈ [kK|Σ|]}

ELStars = {(ci,1, ci,σ), (ci,σ, ci,1) | i ∈ |L|, σ ∈ Σ \ {1}},
ERStars = {(xi,1, xi,σ), (xi,σ, xi,1) | i ∈ |R|, σ ∈ Σ \ {1}},
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Note that if k < 3 then then there is no vertex set MPaths, but only EM which
directly connects ci,σL

and xj,σR
for each {ci, xj} ∈ EProj and (σL, σR) ∈ πi,j .

4.3 Fractional Solution

We now provide a low-cost feasible vector solution for the r-th level Lasserre
lift of the spanner instance described above. Slightly more formally, we define
values {y′

S : S ⊆ E} and show that they form a feasible solution for the r-th level
Lasserre lift SDPr

Spanner, and show that the objective value is O(|V |). We start
with a feasible solution {y∗

Ψ : Ψ ⊆ (L∪R)×Σ} to the (r+2)-th level Lasserre lift
SDPr+2

Proj for the Projection Games instance (based on Lemma 2) that was
used to construct our directed spanner instance, and adapt it to a solution for
the spanner problem. We first define a function Φ : E\EOuter → P((L∪R)×Σ)
(where P indicates the power set) as follows:

Φ(e) =

⎧
⎪⎨
⎪⎩

∅, if e ∈ ELStars ∪ EM ∪ ERStars

{(ci, σ)}, if e ∈ EL and e has an endpoint ci,σ ∈ Llabels

{(xi, σ)}, if e ∈ ER and e has an endpoint xi,σ ∈ Rlabels

We then extend the definition of Φ to P(E \ EOuter) → P((L ∪ R) × Σ) by
setting Φ(S) = ∪e∈SΦ(e). Next, we define the solution {y′

S | S ⊆ E}: For any
set S containing any edge in EOuter, we define y′

S = 0, otherwise, let y′
S = y∗

Φ(S).
Note that based on how we defined the function Φ, for all edges in ELStars ∪
EM ∪ ERStars we have y′

S = y∗
∅

= 1. In other words, these edges will be picked
integrally in our feasible solution. At a very high level, what we are doing is
fractionally buying edges in EL, ER and integrally buying edges in EM in order
to span edges in EOuter. The edges in ELStars and ERStars are used to span
edges in EL and ER. For the cost, a straightforward calculation (which appears
in the full version [16]) implies the following.

Lemma 3. The objective value of y′ in SDPr
Spanner is O(|V |).

Feasibility. We now show that the described vector solution y′ is feasible for the
r-th level of Lasserre, i.e., that all the moment matrices defined in SDP r

Spanner

are PSD. This is the most technically complex part of the analysis, particularly
for the slack moment matrices for edges in Eouter.

We first prove that the base moment matrix in SDP r
Spanner is PSD for our

solution y′ by using the fact that the base moment matrix in SDP r+2
Proj is PSD

for the Projection Games solution y∗ (the proof be can found in the full
version [16]).

Theorem 5. The base moment matrix Mr+1(y′) = (y′
I∪J)|I|,|J|≤r+1 is PSD.

Showing that the slack moment matrices of our spanner solution are all PSD
is more subtle and requires a case by case analysis. We divide this argument into
three cases (given by the next three theorems), from simplest to most complex,
depending on the edge in the underlying linear constraint.
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Theorem 6. Slack moment matrix Mz
r (y′) =

( ∑
e∈E

zey
′
I∪J∪{e} − y′

I∪J

)

|I|,|J|≤r

is PSD for all (u, v) ∈ ELStars ∪ EM ∪ ERStars and z ∈ Zu,v.

This first case corresponds to pairs (u, v) for which we assigned y′
(u,v) = 1, so

is comparatively simple to analyze via basic properties of the Lasserre hierarchy.
The proof is included in the full version [16].

Theorem 7. Slack moment matrix Mz
r (y′) =

( ∑
e∈E

zey
′
I∪J∪{e} − y′

I∪J

)

|I|,|J|≤r

is PSD for every (u, v) ∈ EL ∪ ER and z ∈ Zu,v.

This second case corresponds to the edges in EL and ER, and is a bit more
complex since these edges are only bought fractionally in our solution. At a high-
level, we first partition the terms of the summation

∑
e∈E ze(y′

I∪J∪{e})|I|,|J|≤r

depending on which middle edge e is included in the path that spans (u, v),
and then show that each part in the partition is PSD even after subtracting an
auxiliary matrix. Finally, we show that the sum of these auxiliary matrices is
PSD after subtracting (y′

I∪J)|I|,|J|≤r. Each step can be derived from the fact
that y∗ is a feasible solution of SDPr+2

Proj . The complete proof is included in the
full version [16].

Now we move to the main technical component of our integrality gap analysis:
proving that the slack moment matrices corresponding to outer edges are PSD.

Theorem 8. Slack moment matrix Mz
r (y′) =

( ∑
e∈E

zey
′
I∪J∪{e} − y′

I∪J

)

|I|,|J|≤r

is PSD for every (u, v) ∈ Eouter and z ∈ Zu,v.

Proof. In this case the edge (u, v) is not included in the solution, and is thus
only spanned using other (inner) edges. The main difficulty here is that the
spanning path is longer, and each hop of the path contributes to the solu-
tion differently. To prove this theorem, we have to again partition the summa-
tion

∑
e∈E ze(y′

I∪J∪{e})|I|,|J|≤r, while subtracting and adding a more carefully
designed set of auxiliary matrices. Note that in this argument we crucially use
the fact that the SDP solution of [10] satisfies all of the demands (property 2.
in Lemma 2).

We first show how to decompose Mz
r (y′) as the sum of several simpler

matrices. This will let us reason about each matrix differently based on the
assigned values and their connection to the Projection Games constraints.
We will then explain why each of these matrices is PSD. Observe that for each
(u, v) = (cl

i, x
l
j) ∈ Eouter, the set of stretch-(2k − 1) paths consist of the outer

edge, or one of the paths that go through some labels (σL, σR). It is not hard to
see that any other path connecting such pairs has length larger than (2k − 1).
More formally:

Claim. For every pair (cl
i, x

l
j) ∈ EOuter, the length (2k − 1) paths from cl

i to xl
j

are: the path consisting of only the edge (cl
i, x

l
j), or the paths consisting of edges

{(cl
i, ci,σL

)} ∪ Ei,j,σL,σR

M ∪ {(xj,σR
, xl

j)} for some (σL, σR) ∈ πi,j .



108 M. Dinitz et al.

We use this observation, and the fact that ye = 0 for all e ∈ EOuter to break
Mz

r (y′) into several pieces, and argue that each piece is PSD.
(

∑

e∈E

zey
′
I∪J∪{e} − y

′
I∪J

)

|I|,|J|≤r

(1)

=
∑

e∈E

ze

(
y

∗
Φ(I∪J)∪Φ(e)

)

|I|,|J|≤r
−

(
y

∗
Φ(I∪J)

)

|I|,|J|≤r

=
∑

σL∈Σ

z(cl
i
,ci,σL

)

(
y

∗
Φ(I∪J)∪{(ci,σL)}

)

|I|,|J|≤r

+
∑

(σL,σR)∈πi,j

∑

e∈E
i,j,σL,σR
M

ze

(
y

∗
Φ(I∪J)∪∅

)

|I|,|J|≤r

+
∑

σR∈Σ

z(xj,σR
,xl

j
)

(
y

∗
Φ(I∪J)∪{(xj,σR)}

)

|I|,|J|≤r

+
∑

e∈E\(E
i,l
L

∪E
i,j
M

∪E
j,l
R

)

ze

(
y

′
I∪J∪{e}

)

|I|,|J|≤r
−

(
y

∗
Φ(I∪J)

)

|I|,|J|≤r

=
∑

σL∈Σ

z(cl
i
,ci,σL

)

(
y

∗
Φ(I∪J)∪{(ci,σL)} −

∑

σR:(σL,σR)∈πi,j

y
∗
Φ(I∪J)∪{(ci,σL),(xj,σR)}

)

|I|,|J|≤r
(2)

+
∑

(σL,σR)∈πi,j

∑

e∈E
i,j,σL,σR
M

ze

(
y

∗
Φ(I∪J) − y

∗
Φ(I∪J)∪{(ci,σL),(xj,σR)}

)

|I|,|J|≤r
(3)

+
∑

σR∈Σ

z(xj,σR
,xl

j
)

(
y

∗
Φ(I∪J)∪{(xj,σR)} −

∑

σL:(σL,σR)∈πi,j

y
∗
Φ(I∪J)∪{(ci,σL),(xj,σR)}

)

|I|,|J|≤r

(4)

+
∑

e∈E\(E
i,l
L

∪E
i,j
M

∪E
j,l
R

)

ze

(
y

′
I∪J∪{e}

)

|I|,|J|≤r
(5)

−
⎛

⎝y
∗
Φ(I∪J) −

∑

(σL,σR)∈πi,j

y
∗
Φ(I∪J)∪{(ci,σL),(xj,σR)}

⎞

⎠

|I|,|J|≤r

(6)

+
∑

(σL,σR)∈πi,j

⎛

⎜
⎜
⎝z(cl

i
,ci,σL

) +
∑

e∈E
i,j,σL,σR
M

ze + z(xj,σR
,xl

j
) − 1

⎞

⎟
⎟
⎠ (7)

×
(

y
∗
Φ(I∪J)∪{(ci,σL),(xj,σR)}

)

|I|,|J|≤r
(8)

To prove the third equality, we have subtracted and added the sum over
(σL, σR) ∈ πi,j , and then partitioned it over the other sums.

The matrix in (3) is PSD by basic properties of Lasserre. The matrix in (5) is
PSD because it is a principal submatrix of Mr+1(y′), which is PSD by Theorem 5.
The matrix in (8) is equal to

(
y′

I∪J∪{(cl
i,ci,σL

),(xj,σR
,xl

j)}
)

|I|,|J|≤r
, and so it is also

a principal submatrix of Mr+1(y′) and is hence PSD. The coefficient in (7) is
non-negative because

∑
e∈P ze ≥ 1 for all path P ∈ Pcl

i,x
l
j

by definition of z.
We now argue that the matrices in (2), (4), and (6) are all-zero matrices,

which will complete the proof. In order to show this, we need the following
claim, which uses the fact that the fractional solution y∗ to the Projection
Games instance satisfies all of the demands.
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Lemma 4. y∗
Ψ∪{(ci,σL),(xj ,σR)} = 0 for all {ci, xj} ∈ EProj, (σL, σR) /∈ πi,j,

|Ψ | ≤ 2r.

Proof. By Property 2. of Lemma 2, we know that
∑

(σL,σR)∈πi,j
y∗
(ci,σL),(xj ,σR) =

1. By the slack moment matrix constraints in SDPr
Proj , we know that M ci

r (y∗)
and M

xj
r (y∗) are both all-zero matrices. Hence,

∑
σL∈Σ

∑
σR∈Σ

y∗
(ci,σL),(xj ,σR) =

∑
σR∈Σ

y∗
(xj ,σR) = 1 =

∑
(σL,σR)∈πi,j

y∗
(ci,σL),(xj ,σR)

In other words, since y∗
(ci,σL),(xj ,σR) ≥ 0 for all σL ∈ Σ and σR ∈ Σ, it follows

for all (σL, σR) /∈ πi,j that y∗
(ci,σL),(xj ,σR) = 0. Then basic properties of Lasserre

imply y∗
Ψ∪{(ci,σL),(xj ,σR)} = 0.

Next, we use this lemma to complete the proof. We argue that all entries of
the matrix in (2) are zero. This is because for any entry with index I and J we
have:

y∗
Φ(I∪J)∪{(ciσL)} =

∑
σR∈Σ

y∗
Φ(I∪J)∪{(ci,σL),(xj ,σR)}

=
∑

σR:(σL,σR)∈πi,j

y∗
Φ(I∪J)∪{(ci,σL),(xj ,σR)},

where the last equality follows from above Lemma 4. A similar argument implies
that the matrix in (4) is also all-zero.

To prove the matrix in (6) is also all-zero, consider an entry with index I
and J . Then

y∗
Φ(I∪J) =

∑
σL∈Σ

yΦ(I∪J)∪{(ci,σL)} =
∑

σL∈Σ

∑
σR∈Σ

y∗
Φ(I∪J)∪{(ci,σL),(xj ,σR)}

=
∑

(σL,σR)∈πi,j

y∗
Φ(I∪J)∪{(ci,σL),(xj ,σR)}.

Again, we have used Lemma 4 in the last equality.
Therefore, (3), (5), (8) are PSD, (2), (4), and (6) are all-zero, and (7) is

non-negative, which proves the theorem.

4.4 Proof of Theorem 1

In order to prove Theorem 1, we now just need to analyze the integral optimum
solution. In the full version [16] we prove the following.

Lemma 5. The optimal (2k − 1)-spanner of G has at least nkK|Σ|√K edges.

The proof of Theorem 1 then follows (after plugging in all parameters) from
Lemma 5, the feasibility of the fractional solutions (Theorems 5, 6, 7, and 8),
and the objective value of the fractional solution (Lemma 3).
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To see this, remember from Lemma 2 that m = n1+ε, K = n
1−ε
5 − 1, |Σ| =

n
3−3ε

5 . Also

|V | = |LDups| + |LLabels| + |MPaths| + |RLabels| + |RDups|
= mkK|Σ| + m|Σ| + (2k − 4)mK|Σ| + n|Σ| + nkK|Σ|
= O(mkK|Σ|) = O

(
kn

9+ε
5

)

Therefore, nkK|Σ|√K
O(|V |) = Ω

(√
K

nε

)
= Ω

(
n

1−11ε
10

)
= Ω

((
|V |
k

) 1
18−Θ(ε)

)
, proving

the theorem.

5 Undirected (2k − 1)-Spanner

In order to extend these techniques to the undirected case (Theorem 2), we need
to make a number of changes. This is the most technically complex result in this
paper, so due to space constraints we defer all details to the full version [16].
First, for technical reasons we need to replace the middle paths EM with edges,
and instead add “outside” paths (as was done in [17]). More importantly, though,
we have the same fundamental problem that always arises when moving from
directed to undirected spanners: without directions on edges, there can be many
more short cycles (and thus ways of spanning edges) in the resulting graph.
In particular, if we directly change every edge on the integrality gap instance
of Directed (2k − 1)-Spanner in the previous section to be undirected, then
there are more paths available to span the outer edges (more formally, the analog
of Claim 4.3 is false), so the integral optimum might no longer be large.

This difficulty is fundamentally caused by the fact that the graph of the
Projection Games instance from [10] that we use as our starting point might
have short cycles. These turn into short spanning paths of outer edges in our
spanner instance. In order to get around this, we first carefully subsample and
prune to remove a selected subset of edges in EProj , causing the remaining graph
to have large girth (at least 2k + 2) but without losing too much of its density
or any of the other properties that we need. This is similar to what was done
by [17] to prove an integrality gap for the base LP, but here we are forced to
start with the instance of [10], which has a far more complicated structure than
the random Unique Games instances used by [17]. This is the main technical
difficulty, but once we overcome it we can use the same ideas as in Sect. 4 to
prove Theorem 2.

Acknowledgements. The authors would like to thank Amitabh Basu for many help-
ful discussions.
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