
Optimal Vertex Fault-Tolerant Spanners in Polynomial Time

Greg Bodwin∗

University of Michigan

bodwin@umich.edu

Michael Dinitz†

Johns Hopkins University

mdinitz@cs.jhu.edu

Caleb Robelle

UMBC

carobel1@umbc.edu

Abstract

Recent work has pinned down the existentially optimal size

bounds for vertex fault-tolerant spanners: for any positive

integer k, every n-node graph has a (2k − 1)-spanner on

O(f1−1/kn1+1/k) edges resilient to f vertex faults, and there

are examples of input graphs on which this bound cannot be

improved. However, these proofs work by analyzing the out-

put spanner of a certain exponential-time greedy algorithm.

In this work, we give the first algorithm that produces ver-

tex fault tolerant spanners of optimal size and which runs

in polynomial time. Specifically, we give a randomized algo-

rithm which takes Õ
(
f1−1/kn2+1/k +mf2

)
time. We also

derandomize our algorithm to give a deterministic algorithm

with similar bounds. This reflects an exponential improve-

ment in runtime over [Bodwin-Patel PODC ’19], the only

previously known algorithm for constructing optimal vertex

fault-tolerant spanners.

1 Introduction

Let G = (V,E) be a graph, possibly with edge lengths
w : E → R≥0. A t-spanner of G, for t ≥ 1, is a subgraph
H = (V,E′) that preserves all pairwise distances within
a factor of t, i.e.,

dH(u, v) ≤ t · dG(u, v)(1.1)

for all u, v ∈ V (where dX denotes the shortest-path
distance in a graph X). Since H is a subgraph of G it is
also true that dG(u, v) ≤ dH(u, v), and so distances in
H are the same as in G up to a factor of t. The distance
preservation factor t is called the stretch of the spanner.
Spanners were introduced by Peleg and Ullman [PU89a]
and Peleg and Schäffer [PS89], and have a wide range of
applications in routing [PU89b], synchronizers [AP90],
broadcasting [ABP91, Pel00], distance oracles [TZ05],
graph sparsifiers [KP12], preconditioning of linear sys-
tems [EEST08], etc.

The most common objective in spanners research
is to achieve the best possible existential size-stretch

∗Supported in part by NSF awards CCF-1717349, DMS-

183932 and CCF-1909756.
†Supported in part by NSF award CCF-1909111.

trade-off, and to do this with algorithms that are as
fast as possible. Most notably, a landmark result of
Althöfer et al. [ADD+93] analyzed the following simple
and natural greedy algorithm: given an n-node graph
G and an integer k ≥ 1, consider the edges of G in non-
decreasing order of their weight and add an edge (u, v)
to the current spanner H if and only if dH(u, v) > (2k−
1)w(u, v). They proved that this algorithm produces
(2k − 1)-spanners of existentially optimal size: the
spanner produced has size O(n1+1/k), and (assuming
the well-known Erdős girth conjecture [Erd64]) there are
graphs in which every (2k−1) spanner (and in fact every
2k-spanner) has at least Ω(n1+1/k) edges.

1.1 Fault Tolerance A crucial aspect of real-life
systems that is not captured by the standard notion
of spanners is the possibility of failure. If some edges
(e.g., communication links) or vertices (e.g., computer
processors) fail, what remains of the spanner might
not still approximate the distances of what remains of
the original graph. This motivates the notion of fault
tolerant spanners:

Definition 1.1. A subgraph H is an f -vertex fault
tolerant (f -VFT) t-spanner of G if

dH\F (u, v) ≤ t · dG\F (u, v)(1.2)

for all u, v ∈ V and F ⊆ V \ {u, v} with |F | ≤ f .

In other words, an f -VFT spanner contains a spanner of
G\F for every set of |F | ≤ f nodes that could fail. The
definition for edge fault tolerance (EFT) is equivalent,
with the only change being that F ⊆ E rather than
F ⊆ V \ {u, v}.

Fault tolerant spanners were originally introduced
in the geometric setting (where the vertices are points
in R

d and the initial graph G is the complete graph with
Euclidean distances) by Levcopoulos, Narasimhan, and
Smid [LNS98a] and have since been studied extensively
in that setting [LNS98b, Luk99,CZ04,NS07]. Chechik,
Langberg, Peleg and Roditty [CLPR10] were the first to
study fault-tolerant spanners in general graphs, giving
a construction of an f -VFT (2k − 1)-spanner of size

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2924

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

approximately O(f2kf+1 · n1+1/k log1−1/k n) and an f -
EFT (2k − 1)-spanner of size O(f · n1+1/k). So they
showed that introducing tolerance to f edge faults costs
us an extra factor of f in the size of the spanner, while
introducing tolerance to f vertex faults costs us a factor
of f2kf+1 in the size (compared to the size of a non-fault
tolerant spanner of the same stretch).

Since [CLPR10], there has been a line of work
focused on improving these bounds, particularly for
vertex faults (see Table 1). The first improvement
was by [DK11], who improved the bound for vertex

faults to O(f2− 1
kn1+ 1

k log n) via a black-box reduction
to non-fault tolerant spanners. Following this, the area
turned towards analyses of the FT-greedy algorithm, the
obvious extension of the greedy algorithm of [ADD+93]
to the fault tolerant setting: look at the edges (u, v) of
the input graph G in order of nondecreasing weight,
and add (u, v) to the spanner H iff currently there
exists a set of |F | ≤ f faults such that (1.2) fails.
This algorithm was first analyzed by [BDPW18] who
obtained a size bound of O(exp(k)f1−1/kn1+1/k). They
also proved a lower bound of Ω(f1−1/kn1+1/k) for f -
VFT (2k − 1)-spanners: assuming the girth conjecture
of Erdös [Erd64], there are graphs which require that
many edges for any f -VFT (2k − 1)-spanner. An
improved analysis of the FT-greedy algorithm was then
given by [BP19], who remove the exp(k) factor and so
proved that this algorithm gives existentially optimal
VFT spanners.

While the FT-greedy algorithm inherits some of the
nice properties of the non-faulty greedy algorithm (such
as simplicity, easy-to-prove correctness, and existential
optimality), it unfortunately has serious issues in run-
time. The edge test in the FT greedy algorithm, i.e.,
whether or not there exists a fault set under which
(1.2) holds, is an NP-hard problem known as length-
bounded cut [BEH+06], and hence the algorithm in-
herently runs in exponential time. Addressing this,
a greedy algorithm with slack was recently proposed
in [DR20]. This algorithm is an adaptation of the FT-
greedy algorithm which replaces the exponential-time
edge test with a different subroutine test(u, v), which
accepts every edge (u, v) where there exist |F | ≤ f faults
under which (1.2) fails, and possibly some other edges
too. This slack maintains correctness and allows one to
escape NP-hardness, but it introduces the challenge of
bounding the number of additional edges added. The
approach in [DR20] is to design an O(k)-approximation
algorithm for length-bounded cut and use this in
an efficiently computable test subroutine. This gives
a polynomial runtime, but pays the approximation ra-
tio of O(k) in spanner size over optimal. So the result
in [DR20] takes an important step forward (polynomial

time) but also a step back (non-optimal size, by a factor
of O(k)).

It thus remains an important open problem to
design a polynomial time algorithm which obtains truly
optimal size. We note that k factors are often considered
particularly important for spanners, since the regime
k = Θ(log n) yields the sparsest possible spanners and
hence arises commonly in algorithmic applications (see,
e.g., [BBG+20] for a recent example), and here an extra
factor of k in the size of the spanner is significant.
Accordingly, for spanners and many related objects
there has been significant effort expended to remove
unnecessary factors of k. It seems to often be the case
that initial algorithms pay a factor of k, which can
later be removed through more careful algorithms and
analyses. Our results fit into this tradition, addressing
the remaining open question: can we get truly optimal-
size fault tolerant spanners in polynomial time?

1.2 Our Results and Techniques We answer this
in the affirmative, giving both randomized and deter-
ministic algorithms for constructing optimal-size fault-
tolerant spanners. More formally, we prove the following
theorems.

Theorem 1.1. There is a randomized algorithm which
runs in expected time

Õ
(
f1−1/kn2+1/k +mf2

)

which with high probability returns an f -VFT (2k − 1)-
spanner with O(f1−1/kn1+1/k) edges.

Theorem 1.2. There is a deterministic algorithm
which constructs an f -VFT (2k − 1) spanner with at
most O(f1−1/kn1+1/k) edges in time

Õ
(
f4−1/kn2+1/k +mf5

)
.

If f = poly(n) (i.e., f ≥ nc for some constant c > 0)
then the running time improves to

Õ
(
f1−1/kn2+1/k +mf2

)
,

where the polynomial exponent c appears in both the
spanner size and the running time but is hidden by the
O(·) notation.

So if f is subpolynomial in n then our deterministic
algorithm is slower than our randomized algorithm by
about f3, while if f is polynomial in n then we get
determinism essentially for free (although the hidden
polylogarithmic factors are larger in the deterministic
case). Recent work by Karthik and Parter [CP21]

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2925

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Spanner Size Runtime Greedy? Citation

Õ
(
kO(f) · n1+1/k

)
Õ
(
kO(f) · n3+1/k

)
[CLPR10]

Õ
(
f2−1/k · n1+1/k

)
Õ
(
f2−2/k ·mn1+1/k

)
[DK11]

O
(
exp(k)f1−1/k · n1+1/k

)
O
(
exp(k) ·mnO(f)

)
X [BDPW18]

O
(
f1−1/k · n1+1/k

)
O
(
mnO(f)

)
X [BP19]

O
(
kf1−1/k · n1+1/k

)
Õ
(
f2−1/k ·mn1+1/k

)
(X) [DR20]

O
(
f1−1/k · n1+1/k

)
Õ
(
f1−1/kn2+1/k +mf2

)
(X) (this paper)

Table 1: Prior work on f -VFT (2k−1)-spanners of weighted input graphs on n nodes and m edges. Size bounds
in red are existentially optimal, and runtimes in blue are polynomial. The (X) entries indicate a greedy algorithm

with slack, as discussed below. With Õ we hide factors of log n (or k, since we may assume k ≤ log n).

provides a better derandomization which gives the same
Õ
(
f1−1/kn2+1/k +mf2

)
bound for all values of f .

To put these results in context, note that this is an
exponential improvement in running time over [BP19],
the only previous algorithm to give optimal-size fault
tolerant spanners. And unlike [DR20, DK11] it gives
spanners with existentially optimal size, saving an O(k)
factor over [DR20] and an O(f log n) factor over [DK11].
It is also polynomially faster than both [DR20,DK11].
We note that not only is k = Θ(log n) (and supercon-
stant k more generally) a particularly interesting regime
(as discussed), large values of f are also particularly in-
teresting. If we only ever think of f as small then the
dependence on f in the size of the spanner does not mat-
ter much, but of course we are interested in protecting
against as many faults as possible! So our results are
strongest (compared to previous work) precisely in one
of the most interesting regimes for fault-tolerant span-
ners: k = Θ(log n) and f polynomially large in n.

Additional Properties. Our algorithms and
techniques have a few other properties that we briefly
mention here, but which will not be a focus in the pa-
per. First, a corollary of our techniques and analysis
is that we actually speed up the running time of the
non-fault tolerant greedy algorithm from O(mn1+1/k)
to O(kn2+1/k). Second, our algorithms and bounds con-
tinue to hold for edge fault tolerance, but for simplicity
we will only discuss the VFT case. These size bounds
are also not known to be optimal for edge fault tolerance
(except for spanners of stretch 3) since the known lower
bounds are weaker, making our results more interesting
in the VFT setting. See Section 6 for more discussion of
edge fault tolerance. Finally, since our algorithms are
slack-greedy, they are unconditionally optimal : even if
the Erdős girth conjecture is false, our algorithms still

produce spanners of optimal size (whatever that is).

1.2.1 Our First Algorithm Our first algorithm is
a surprisingly simple randomized algorithm that, while
not as efficient as the algorithm we will use to prove
Theorem 1.1, achieves our main goal: it has polynomial
running time and produces spanners of optimal size. It
also illustrates the main ideas that our more advanced
algorithms (faster and/or deterministic) will utilize.

Theorem 1.3. There is a randomized algorithm which,
given an undirected weighted n-node graph and positive
integers f and k, runs in polynomial time and with
high probability returns an f -VFT (2k−1)-spanner with
O(f1−1/kn1+1/k) edges.

The main new ingredient is the following simple
test(u, v) subroutine. To test an edge (u, v) we first
randomly sample Θ(log n) induced subgraphs of the
current spanner, each of which is obtained by including
u and v and then including each other node with
probability 1/(2f). Then we test (1.1) in each of the
sampled subgraphs, and we add (u, v) to the spanner iff
a large enough fraction of these subgraphs violate (1.1).
For correctness, one observes that if there exists any set
of |F | = f vertex deletions under which dH\F (u, v) is
large, then with high probability a large fraction of the
subgraphs will delete all of F . Hence d(u, v) will be
large in these subgraphs, and we will correctly include
(u, v) in the spanner.

The more interesting part of the argument is bound-
ing the size of the output spanner. This relates to the
blocking set technique introduced in [BP19] and also
used in [DR20]. This technique uses the following ob-
servation: if the spanner H is sufficiently dense, and
one samples a random induced subgraph on n/f nodes,
then that subgraph will still be dense enough that it

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2926

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

must have some ≤ 2k-cycles. This statement is even
somewhat robust, in that one will not be able to destroy
all ≤ 2k-cycles by deleting only a constant fraction of
remaining edges in the subgraph. Thus one can certify
sparsity of the spanner by arguing that it is in fact pos-
sible to sample a subgraph, remove a constant fraction
of the surviving edges, and destroy all ≤ 2k-cycles in
the process. In [BP19, DR20], one roughly predefines
a small set of edges in the spanner (called the “block-
ing set”) that intersects all ≤ 2k-cycles; the strategy is
then to sample a subgraph and remove the parts of the
blocking set that survive. This approach works, but it
is limited: if we use a slack FT-greedy algorithm (as
in [DR20]) then the size of the blocking set increases
with the slack, giving spanners that no longer have op-
timal size.

Our main idea is to bypass blocking sets by more
closely tying together the algorithm and the analysis.
The analysis of the blocking set technique uses ran-
dom subgraph sampling, but this does not appear in
the actual algorithm of [DR20] or [BP19]. Our new al-
gorithm, by explicitly sampling subgraphs as part of the
test(u, v) subroutine, is in some sense doing algorith-
mically exactly the minimum needed for the analysis
to work. As is shown more formally in Section 3, if
an edge passes our new test(u, v) then by construction
the probability that it will have to be removed in the
analysis in order to obtain high-girth is at most some
constant less than 1. So getting our sampled subgraph
to be high-girth in the analysis requires removing only
a constant fraction of the remaining edges. This is in
contrast to the ideas behind blocking sets, where the
blocking set is predefined by the algorithm and so an
edge either has to be removed from the analysis sub-
graph (if it is part of the blocking set) or does not (if it
isn’t). Hence another way to think of our idea is that we
are moving from a global analysis of which edges need
to be removed (blocking sets, where edges are either in
the set or not) to a local analysis (where each edge has
only a constant probability of being removed).

Details of this algorithm and analysis are given in
Section 3.

1.2.2 Our Faster Randomized Algorithm As
discussed, obtaining fast algorithms for spanners – not
just any polynomial time – is a long-standing and
important line of research. Once we are able to achieve
polynomial time, we naturally want to minimize this
time. Our next algorithm (which achieves the running
time bound of Theorem 1.1) optimizes the runtime in
two ways:

1. It is costly to randomly sample subgraphs anew
in each round of the algorithm. A more efficient

approach is to randomly sample vertex sets once
at the very beginning, use these to perform the
test in each round, and incrementally maintain
the sampled subgraphs as edges are added to the
spanner. We show that this approach works as
long as we sample Θ(f3 log n) total subgraphs in
the beginning.

2. Since we incrementally maintain a fixed set of sub-
graphs, to test (1.1) on each subgraph we can use
an appropriate incremental data structure rather
than computing from scratch each time. The ob-
vious way of doing this requires using an incre-
mental dynamic distance oracle / APSP algorithm,
but unfortunately known constructions are not fast
enough for our purposes. However, we can use
an idea from [RZ11]: it suffices to solve a cer-
tain relaxed version of this problem. Specifically,
instead of measuring d(u, v) exactly; it suffices
for our oracle to simply decide whether d(u, v) >
(2k − 1)w(u, v) in each subgraph. In the setting
of unweighted input graphs, this easily reduces to
a problem of reachability (rather than distance) on
a (k + 1)-layered version of the subgraph, and we
can use an observation from [DR20] to make this
reduction work for weighted input graphs as well
thanks to the fact that our framework is a slack
version of the greedy algorithm. We can then use a
classical data structure for incremental reachability
by Italiano [Ita86].

Together, these improvements give the runtime
listed in Theorem 1.1. Details are given in Section 4.

1.2.3 Our Deterministic Algorithm Our second
improvement is to regain determinism. Both the expo-
nential time algorithm of [BDPW18] and the polynomial
time algorithm of [DR20] are deterministic, while the
core ideas of our previous two algorithms seem to require
randomization (particularly our first, non-optimized al-
gorithm). But by constructing set systems with spe-
cific properties through the use of almost-universal hash
functions, we are able to derandomize the algorithm of
Theorem 1.1.

The main idea is to leverage the fact that our
fast randomized algorithm samples vertex sets only
once at the very beginning. By examining the proof
of Theorem 1.1 we can determine what properties we
need these sets to have. Informally, we need that for
every (u, v) ∈ E there are not many sets containing
both u and v, and that for every (u, v) ∈ E and
F ⊆ V \ {u, v} with |F | ≤ f , a constant fraction of
the sets which contain both u and v do not contain
any vertex in F (note that this guarantee has to hold

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2927

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

simultaneously for all possible fault sets). So we just
need to give a deterministic construction of such a set
system. We show how to do this by building an (almost-
)universal hash family from V to [Θ(f)], and for each
hash function in the family creating Θ(f2) sets based
on pairs of hash values. Interestingly, we are able to
tolerate relatively large values of “almost”: our spanner
construction still works even if the universal hashing
guarantee is violated by large constants. Most of the
literature on hashing, on the other hand, is optimized for
the case of only a (1+ǫ) violation. By taking advantage
of our ability to withstand weaker hashing guarantees,
we can design an extremely small hash family based
on Message Authentication Codes from cryptography,
which is a standard and classical construction but to the
best of our knowledge has not previously been used in
the context of hashing or derandomization. This allows
us to obtain running time that is essentially the same
as our fast randomized algorithm when f is polynomial
in n.

These ideas give the deterministic runtime in Theo-
rem 1.2. Details are given in Section 5. Independently,
Karthik and Parter [CP21] used similar ideas but in
a more sophisticated manner to provide improved de-
randomizations for a number of related combinatorial
objects, and their techniques when applied to our algo-
rithm make it possible to remove the restriction that f
is at least polynomial in n.

2 Preliminaries and Notation

We will use Õ(·) to suppress polylogarithmic (in n)
factors. For any integer a ≥ 1, let [a] = {1, 2, . . . , a}.
Given an edge-weighted graph G = (V,E,w), let
dG(u, v) denote the shortest-path distance from u to v in
G according to the weight function w and let d∗G(u, v)
denote the unweighted distance (minimum number of
hops) from u to v in G.

Many of our algorithms are randomized, and so we
make claims that hold with high probability. Formally,
this means that they hold with probability at least
1− 1/n.1

We will use the following Chernoff bounds
(see [DP09]).

Theorem 2.1. Let X =
∑n

i=1 Xi, where Xi (i ∈ [n])
are independently distributed in [0, 1]. Then:

• For 0 < ǫ < 1: Pr[X < (1 − ǫ)E[X]] ≤
exp((−ǫ2/2)E[X]) and Pr[X > (1 + ǫ)E[X]] ≤
exp((−ǫ2/3)E[X]).

1By changing the constants in the algorithm/analysis, all high

probability claims we make can be made to hold with probability

at least 1 − 1/nc for any constant c. We choose c = 1 only for
simplicity.

• If t > 2eE[X], then Pr[X > t] < 2−t.

We will use the following structural lemma about
fault-tolerant spanners, which was given explicitly in
[DR20] but appeared implicitly in essentially all previ-
ous papers on fault-tolerant spanners. It essentially says
that we only have to worry about spanning edges (not
all pairs of nodes), and only edges for which the shortest
path between the endpoints is the edge itself.

Lemma 2.1. Let G = (V,E) be a graph with weight
function w and let H be a subgraph of G. Then H is
an f -VFT t-spanner of G if and only if dH\F (u, v) ≤
t · w(u, v) for all F ⊆ V with |F | ≤ f and u, v ∈ V \ F
such that (u, v) ∈ E.

3 Optimal Fault-Tolerant Spanners in
Polynomial Time

In this section we resolve the main open question left
by [DR20, BP19, BDPW18] by proving Theorem 1.3:
we give a polynomial time algorithm which constructs
optimal-size vertex fault tolerant spanners. As dis-
cussed in Section 1.2.1, the algorithm itself is quite sim-
ple: we just use the greedy algorithm but test whether
to include an edge by sampling subgraphs and checking
whether the distance between the two endpoints is too
large. This algorithm is given formally as Algorithm 1.

Algorithm 1 Basic f -VFT (2k−1)-Spanner Algorithm

Input: Graph G = (V,E) on n nodes, edge weights
w : E → R

+, integers k ≥ 1 and f ≥ 1.
1: H ← (V, ∅)
2: for all e = (u, v) ∈ E in nondecreasing weight order

do
3: Sample α = c log n subgraphs {Ĥi

e ⊆ H}i∈[α],
where each is an induced subgraph on a vertex
set obtained by including u and v, and then
each other node independently with probability
1/(2f).

4: Let P̂e be the fraction of these subgraphs in which
d
Ĥi

e
(u, v) > (2k − 1) · w(u, v).

5: if P̂e ≥ 1/4 then
6: Add e to H
7: return H

The following definitions will be useful in our analy-
sis. LetH be the final spanner, and letH ′ be an induced
subgraph of H obtained by including each node, inde-
pendently, with probability 1/(2f) (note that H ′ is only
an analytical tool, not part of the algorithm). Let He

(H ′
e) denote the subgraph of H (H ′) containing only the

edges considered strictly before e in the algorithm. For

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2928

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

e = (u, v), let

Pe := Pr
[
dH′

e
(u, v) > (2k − 1) · w(u, v) | u, v ∈ V (H ′)

]

where the probability is over the random construction of
H ′. So P̂e in the algorithm is an experimental estimate
of Pe, and we can bound its accuracy as follows:

Lemma 3.1. With high probability, for every edge e ∈
E, we have P̂e ∈ Pe ± 1/8.

Proof. We will prove the lower bound P̂e ≥ Pe − 1/8;
the upper bound is essentially identical. The random

variable αP̂e is the sum of α random variables
{
P̂ i
e

}
,

where

P̂ i
e :=

{
0 if d

Ĥi
e
(u, v) ≤ (2k − 1) · w(u, v)

1 if d
Ĥi

e
(u, v) > (2k − 1) · w(u, v).

Thus we may apply Chernoff bounds (Theorem 2.1),
giving:

Pr
[
αP̂e < α(Pe − 1/8)

]
= Pr

[
αP̂e < E

[
α
(
P̂e − 1/8

)]]

≤ Pr

[
αP̂e <

7

8
E

[
αP̂e

]]

≤ e−
(1/8)2

2 αE[P̂e] ≤ e−α/128

where the first equality follows by linearity of expecta-

tion, and the fact that by construction Pe = E

[
P̂e

]
. If

we set α ≥ 128 · 3 lnn, then the probability is at most
1/n3. So, by a union bound over the m ≤ n2 edges in
the input graph, the probability that the lower bound
fails for any edge is at most 1/n, proving the lemma.

We are now ready to prove the properties of Algo-
rithm 1.

Lemma 3.2. With high probability, Algorithm 1 returns
an f -VFT (2k − 1)-spanner.

Proof. Let e = (u, v) be an edge considered by the
algorithm, and suppose there exists a fault set F ⊆
V \ {u, v} with |F | ≤ f such that

dHe\F (u, v) > (2k − 1) · w(e).

In the event thatH ′
e contains u, v but it does not contain

any node in F , we thus also have

dH′

e
(u, v) > (2k − 1) · w(e).

Thus Pe is at least the probability that none of the nodes
in F survive in H ′

e, which we may bound:

Pe ≥ (1− p)|F | ≥

(
1−

1

2f

)f

≥ 1/2.

By Lemma 3.1, with high probability we have P̂e ≥
Pe − 1/8 ≥ 1/2 − 1/8 > 1/4, and so we add e to H
in the algorithm. So for any edge e not added to the
spanner, no such fault set F exists. It then follows from
Lemma 2.1 that H is an f -VFT (2k−1)-spanner.

Lemma 3.3. With high probability, |E(H)| ≤
O
(
f1−1/kn1+1/k

)
.

Proof. Recall that H ′ is an induced subgraph of H
obtained by including every vertex independently with
probability 1/(2f), and hence E[|V (H ′)|] = n/(2f).
For each edge (u, v) ∈ E(H ′), we say that (u, v) is
bad if dH′

e
(u, v) ≤ (2k − 1) · w(u, v), and otherwise

(if dH′

e
(u, v) > (2k − 1) · w(u, v)) we say that (u, v)

is good. Let H ′′ ⊆ H ′ be obtained by deleting all bad
edges. We will now bound its expected number of edges
E [|E(H ′′)|], conditioned on the high probability event
from Lemma 3.1 holding, in two different ways:

• For any cycle C in H ′ with at most 2k edges, notice
that the edge (u, v) ∈ C considered last by the
algorithm is bad, since there is a u v path around
the cycle consisting of at most 2k−1 edges, each of
weight at most w(u, v). Thus (u, v) is removed in
H ′′. It follows that H ′′ has no cycles with at most
2k edges; the folklore Moore Bounds then imply
that

|E(H ′′)| = O
(
|V (H ′′)|

1+1/k
)
.

Since each of the n nodes in H are included in H ′′

independently with probability 1/(2f), we have

E [|E(H ′′)|] = O
(
E

[
|V (H ′′)|

1+1/k
])

(3.3)

= O
(
E [|V (H ′′)|]

1+1/k
)

= O

((
n

f

)1+1/k
)
.

In particular, the reason we can pull the exponent
outside the expectation in the second step is due to
the following computation:

∣∣∣E
[
|V (H ′′)|

1+1/k
]
− E [|V (H ′′)|]

1+1/k
∣∣∣

≤
∣∣∣E
[
|V (H ′′)|

2
]
− E [|V (H ′′)|]

2
∣∣∣

= V ar [|V (H ′′)|] = O(n/f)

and hence the difference between these two terms
may be hidden in the O.

• For an edge e = (u, v) ∈ E(H), the probability
that e survives in H ′′ may be decomposed as
the probability that it survives in H ′, times the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2929

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

probability that it survives in H ′′ given that it
survives in H ′. This gives:

Pr [(u, v) ∈ E(H ′′)]

= Pr [u, v ∈ V (H ′)]

× Pr [(u, v) is good | u, v ∈ E(H ′)]

= Θ(1/f2) · Pe.

Since (u, v) was added to H, we have P̂e ≥ 1/4,
and so (since we condition on Lemma 3.1) we have
Pe ≥ 1/8. Hence the probability of (u, v) ∈ E(H ′′)
is Θ(1/f2). By linearity of expectations, we then
have

(3.4) |E(H ′′)| = Θ

(
|E(H)|

f2

)
.

Combining (3.3) and (3.4), we have

Ω

(
|E(H)|

f2

)
= E [|E(H ′′)|] = O

((
n

f

)1+1/k
)

and so, comparing the left- and right-hand sides and
rearranging, we get

|E(H)| = O
(
n1+1/kf1−1/k

)

as desired.

Lemma 3.4. Algorithm 1 runs in polynomial time.

Proof. We first need to sort the edges by weight, which
takes at most O(m log n) time. Then for each edge
e ∈ E, we must sample Θ(log n) independent sub-
graphs and then run a single-source shortest path com-
putation in each. Sampling such a subgraph takes
O(n + |E(H)|) ≤ O(f1−1/kn1+1/k) time (using the
bound on |E(H)| from Lemma 3.3). The running
time of the shortest path computation on the sub-
graph is at most O(|E(H)| log n),2 which is at most
O(f1−1/kn1+1/k log n). Since we repeat O(log n) times
per round, and we havem total rounds in the algorithm,
the total runtime is O(mf1−1/kn1+1/k log2 n).

4 An Even Faster Randomized Algorithm

Algorithm 2 is a bit more complicated than Algorithm 1,
but it is significantly faster: in terms of runtime, it
essentially turns the O(m) factor in Lemma 3.4 into
an O(k2n) factor. In Algorithm 1, up to a logarithmic

2This estimate is conservative; except in a small range of

parameters the subgraph is much smaller than H and thus the

running time of the shortest path computation is dominated by
the time needed to sample the subgraph in the first place.

factor the runtime per sampled subgraph is dominated
by the time required to compute the subgraph rather
than the time to measure distances on the subgraph,
since sampling the subgraph requires time linear in
|E(H)| while distances are computed in the subgraph
itself, which has fewer edges than H. This leads
to essentially O(|E(H)| · m log n) total runtime, since
we sample O(m log n) subgraphs in total: O(log n)
subgraphs in each round, and m total rounds. In our
new algorithm, we improve this by (1) pre-sampling
Θ(f3 log n) subgraphs and using them in each round,
and (2) measuring relevant distances on these subgraphs
using a certain incremental dynamic algorithm, rather
than recomputing from scratch. See Section 1.2.2 for
a more detailed overview. We now state the algorithm
formally as Algorithm 2.

Definition 4.1. Let G = (V,E) be an undirected
graph, and let k ≥ 1 be an integer. The layered graph
G2k is the directed graph with vertex set V × [2k] and
edges

((u, i), (v, i+ 1)) for all i ∈ [2k − 1], (u, v) ∈ E, and

((u, i), (u, i+ 1)) for all i ∈ [2k − 1], u ∈ V.

Notice that the unweighted distance between u and
v in G is at most 2k − 1 if and only if there is a path
from (u, 1) to (v, 2k) in G2k.

Theorem 4.1. ([Ita86]) There is a data structure
which takes O(n2) time to initialize on an empty n-
node graph, and which can then support directed edge
insertions in O(n) time (amortized) and reachability
queries (answering “is there currently a u v path
in the graph?”) in O(1) time.

Like for Algorithm 1, we let H be the final spanner,
and now we let H ′ be a uniform random subgraph
among those selected in the preprocessing phase. Let He

(H ′
e) denote the subgraph of H (H ′) containing only the

edges considered strictly before e in the algorithm. We
note that we do not have separate analogous definitions
of P̂e, Pe this time: the relevant probability Pe is
computed exactly by the algorithm. We start our
analysis with the following technical lemma:

Lemma 4.1. With high probability over the choice of
random subgraphs in the preprocessing phase, for every
e = (u, v) ∈ E and F ⊆ V \ {u, v} with |F | ≤ f , we
have:

1. |Le| = O(f log n)

2. |{i ∈ Le | F ∩ Vi = ∅}| = Ω(f log n)

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2930

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Algorithm 2 Faster f -VFT (2k − 1)-Spanner Algo-
rithm
Input: Graph G = (V,E), edge weights w : E → R

+,
integers k ≥ 1 and f ≥ 1.
{preprocessing phase}

1: H ← (V, ∅)
2: for i = 1 to α = cf3 log n do
3: Create Vi by including every vertex of V indepen-

dently with probability 1/(2f)
4: Let Hi = (Vi, ∅)
5: Create the layered graph H2k

i , and initialize the
data structure of Theorem 4.1 for H2k

i

6: for all e = (u, v) ∈ E do Let Le = {i | u, v ∈ Vi}

{main greedy algorithm}
7: for all e = (u, v) ∈ E in nondecreasing weight order

do
8: for all Hi ∈ Le do
9: Query whether there is a (u, 1) (v, 2k) path

in H2k
i

10: Let Pe be the fraction of subgraphsHi ∈ Le where
the query returns NO

11: Let 0 < τ < 1 be an absolute constant that we
choose in the analysis

12: if Pe ≥ τ then
13: Add e to H
14: for all i ∈ Le do
15: Add e to Hi

16: Update the connectivity data structure for
H2k

i by inserting the edges ((u, j), (v, j + 1))
and ((v, j), (u, j+1)) inH2k

i for all j ∈ [2k−1]
17: return H

Proof. For the first part, by linearity of expectations
the expected number of sets Vi that contain both u and
v is exactly α/(2f)2 = (c/4)f log n. Applying Chernoff
bounds (Theorem 2.1), we have (for sufficiently large c):

Pr [|Le| > ce · f log n] = Pr [|Le| > 4eE [|Le|]]

< 2−ce·f logn < 1/(2n3)

A union bound over the m ≤ n2 edges in the graph
implies that |Le| = O(f log n) for all e, simultaneously,
with probability at least 1− 1/(2n).

For the second part of the lemma, for any e =
(u, v) ∈ E and F ⊆ V \{u, v} with |F | ≤ f , and for any
i ∈ [α], we have

Pr[i ∈ Le and F ∩ Vi = ∅] = Pr[u, v ∈ Vi] · Pr[F ∩ Vi 6= ∅]

since the two probabilities on the right-hand side con-
sider independent events (since u, v /∈ F). Thus we may
continue

Pr[i ∈ Le and F ∩ Vi = ∅] =

(
1

4f2

)(
1−

1

2f

)|F |

≥
1

4f2

(
1−

1

2f

)f

≥
1

8f2
.

By linearity of expectations,

E [|{i ∈ Le | F ∩ Vi = ∅}|] ≥
α

8f2
=
(c
8

)
f log n.

Again by Chernoff bounds, we have

Pr

[
|{i ∈ Le | F ∩ Vi = ∅}| <

(
1

2

)(c
8

)
f log n

]

≤ exp

((
−
1

8

)(c
8

)
f log n

)
≤

1

2n4f

(where the last inequality is assuming sufficiently large
c).

Taking a union bound over all ≤ nf possible choices
of F and all m ≤ n2 edges, we have

|{i ∈ Le | F ∩ Vi = ∅}| = Ω(f log n)

for all choices of e, F , simultaneously, with probability
≥ 1− 1/(2n). Hence, by an intersection bound, the two
parts of the lemma hold jointly with high probability.

We are now ready to prove the properties of Algo-
rithm 2:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2931

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Lemma 4.2. With high probability, Algorithm 2 returns
an f -VFT (2k − 1)-spanner.

Proof. Let e = (u, v). As with our proof of correctness
of Algorithm 1 (Lemma 3.2), by Lemma 2.1 we just need
to show that when the algorithm considers e, if there is
a fault set F for which

dHe\F (u, v) > (2k − 1) · w(e),

then the algorithm adds e to H. Notice that this implies

d∗He\F
(u, v) > 2k − 1,

since by construction the weight of every edge in He

is no larger than w(e) (recall from Section 2 that d∗

denotes the unweighted distance). By Lemma 4.1, with
high probability a constant fraction of the i ∈ Le have
F ∩ Vi = ∅ and thus we have d∗(u, v) > 2k − 1 in
the corresponding subgraphs. Thus Pe is at least an
absolute constant; by setting τ less than this constant,
we will add e to H.

Lemma 4.3. With high probability, |E(H)| ≤
O
(
f1−1/kn1+1/k

)
.

Proof. This loosely follows the proof of Lemma 3.3. For
each edge (u, v) ∈ E(H ′), let us say:

(u, v) is bad if d∗H′

e
(u, v) ≤ 2k − 1

(u, v) is good if d∗H′

e
(u, v) > 2k − 1.

Let H ′′ ⊆ H ′ be obtained by deleting all bad edges. We
now again bound E[|E(H ′′)|] in two ways:

• By essentially the same argument as in Lemma 3.3,
H ′′ has no cycles on ≤ 2k edges, and thus

E [|E(H ′′)|] = O
(
E

[
|V (H ′′)|

1+1/k
])

= O
(
E [|V (H ′′)|]

1+1/k
)

where we may pull the exponent outside the ex-
pectation by the same argument as in Lemma 3.3.
When we choose random subgraphs in the prepro-
cessing phase, the total number of nodes added to
all subgraphs can be viewed as the sum of indepen-
dent binary random variables, and the expectation
is Θ(nf2 log n). Thus, by Chernoff bounds, with
high probability over the choice of random sub-
graphs in the preprocessing phase, we do indeed
have Θ(nf2 log n) total nodes in our subgraphs.
Conditioned on this high probability event, since
we have exactly α = Θ(f3 log n) subgraphs, the av-
erage sampled subgraph Hi has |V (Hi)| = Θ(n/f).

We then have E[|V (H ′′)|] = Θ(n/f), and so with
high probability

E [|E(H ′′)|] = O

((
n

f

)1+1/k
)

(where the expectation is only over the choice of H ′

among the subgraphs sampled in the preprocessing
phase).

• By Lemma 4.1, with high probability over the
choice of random subgraphs, we have |Le| =
Θ(f log n) for all edges e. In this event, when-
ever we add an edge e = (u, v) to the spanner
we also add the edge to Θ(f log n) out of the
α = Θ(f3 log n) subgraphs. Moreover, by construc-
tion, in at least a constant τ fraction of these sub-
graphs Hi, our (u, 1) (v, 2k) path query returns
NO. It follows that the current unweighted u v
distance in these subgraphs is > 2k − 1, and hence
e is a good edge in Θ(τ · f log n) = Θ(f log n) sub-
graphs. So the total number of good edges among
the Θ(f3 log n) subgraphs is Θ(|E(H)|f log n) We
thus have

E [|E(H ′′)|] = Θ

(
|E(H)|

f2

)
.

Combining these, we have

Ω

(
|E(H)|

f2

)
= E [|E(H ′′)|] = O

((
n

f

)1+1/k
)
,

and again the lemma follows by comparing the left- and
right-hand sides and rearranging.

Lemma 4.4. The expected running time of Algorithm 2
is at most

O
(
k2f1−1/kn2+1/k log n+mf2 log n

)
.

Proof. We first analyze the preprocessing phase. Note
that without loss of generality, m ≥ f1−1/kn1+1/k ≥ fn
or else we are already finished (we can simply return the
input graph).

We can create the Vi sets in time O(nf3 log n) =
O(mf2 log n) by flipping α = O(f3 log n) weighted coins
for each vertex. Once we do this, we may assume that
every vertex v has a sorted list Lv of the values of i for
which v ∈ Vi. In expectation, each of the layered graphs
H2k

i has O(kn/f) vertices, so we can then create the
layered graphs in expected time O((kn/f)f3 log n) =
O(knf2 log n) = O(kf1−1/kn2+1/k log n) (by linearity
of expectations). Note that this includes the initial

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2932

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

edges of the form ((u, i), (u, i+1)) in each of the layered
graphs. Initializing the data structure of Theorem 4.1
for each of the layered graphs takes time O((kn/f)2) in
expectation (since the number of nodes is binomial ran-
dom variable and E[X2] ≤ O(E[X]2) for any binomial
random variableX), and thus the total expected time to
initialize these data structures is O((kn/f)2f3 log n) =
O(k2fn2 log n) ≤ O(k2f1−1/kn2+1/k log n). We also
need to insert all of the initial edges of the form
((u, i), (u, i + 1)) into these data structures, which
takes expected time O(f3 log n · (kn/f) · (kn/f)) =
O(k2fn2 log n) ≤ O(k2f1−1/kn2+1/k log n) (again us-
ing the square of a binomial random variable). Hence
we can construct and initialize the vertex sets and the
needed data structures in expected time at most

O(mf2 log n) +O(kf1−1/kn2+1/k log n)

+O(k2f1−1/kn2+1/k log n)

+O(k2f1−1/kn2+1/k log n)

= O(mf2 log n) +O(k2f1−1/kn2+1/k log n).

To create the Le sets we need to be a little more
careful, since doing it naively (looping through each
edge and each i ∈ [α] and checking if both endpoints are
in Vi) would take O(mf3 log n) time. But we can speed
this up: since every vertex v has Lv in a sorted list, for
each edge e = (u, v) we can just do a single pass through
Lu and Lv to compute Le = Lu ∩Lv. Thus this can be
done in O(|Lu|+|Lv|) time, and since |Lv| ≤ O(f2 log n)
with high probability for every v ∈ V , this takes time
O(f2 log n) per edge and thus O(mf2 log n) total.

Putting all of this together, we get that the prepro-
cessing takes time O(k2f1−1/kn2+1/k log n+mf2 log n).

We now analyze the main loop. For every
e = (u, v) ∈ E, the algorithm performs a connec-
tivity query in O(f log n) of the layered subgraphs.
By Theorem 4.1, this takes O(mf log n) total time.
When we decide to add an edge e to the spanner
(which happens at most O(f1−1/kn1+1/k) times by
Lemma 4.3), we have to do O(k) insertions into each
of the O(f log n) layered graphs in Le. The amor-
tized cost of each insertion is O(kn/f) by Theorem 4.1
(since the number of nodes in each layered graph is
O(kn/f) by Lemma 4.1), and hence the total time
of all insertions is O(f1−1/kn1+1/k(kn/f)kf log n) =
O(k2f1−1/kn2+1/k log n). This is asymptotically larger
than m log n since m < n2, and hence the running time
of the main loop is O(k2f1−1/kn2+1/k log n).

5 Deterministic Algorithm

We now design a deterministic algorithm by deran-
domizing Algorithm 2. Recall that Algorithm 2 uses
randomization in the preprocessing phase to create

Θ(f3 log n) vertex sets. We will derandomize this by
deterministically creating sets with the same properties
by using appropriately chosen hash functions. This re-
sults in a deterministic algorithm whose running time
depends on the size of the hash family that we use.
If we use universal or pairwise-independent hash func-
tions, then we end up paying additional factors of n in
the running time. We can improve this by using almost-
universal hash functions, since our analysis is robust to
changes in constants. Standard constructions then give
the same dependence on n as in Algorithm 2, but poly-
nomially worse dependence on f . But in the most im-
portant regime where f is polynomial in n, we can use
ideas from message authentication codes in cryptogra-
phy to design a hash family which is significantly more
efficient, allowing us to get running time that is essen-
tially identical to the randomized algorithm!

5.1 Set System Intuitively, we want sets which “act
like” the Θ(f3 log n) random sets of Algorithm 2. So
they should each have size about n/f , there shouldn’t
be too many sets in each Le (each edge shouldn’t be in
too many of the subsets), and for every fault set F a
constant fraction of the sets in Le should not intersect
F . We will proceed somewhat similarly to the approach
of [Par19], who needed a set system where for all sets A
of some size a and all sets B of some size b, there was at
least one set in the system which contained all of A and
none of B. This is similar to what we want, but differs
in two important respects: we are only concerned with
the special case of a = 2, but we want not just that
there exists a set in the system which contains all of A
and none of B, but that a constant fraction of the sets
in the system which contain A do not contain any of B.

Trying to apply [Par19] as a black box, or even using
the construction from [Par19], gives highly suboptimal
bounds: the number of sets we would need would
be exponential in f .3 So we need to change the
construction. And in order to optimize the running time
we will hash onto a smaller range (approximately f ,
whereas using [Par19] would hash onto approximately
f2) and will use a different hash family (at least for the
regime where f is polynomial in n).

5.1.1 Almost Universal Hashing Parter [Par19]
began with “almost-pairwise independent” hash fami-
lies. We will use a slightly different (but related) def-

3It is worth noting, though, that it is not hard to change the

construction of [Par19] to give bounds that are polynomial in f :
one simply needs to modify the construction in their Lemma 17

to define sets based on a hash value being some value, as opposed

to the given construction which defines sets based on a hash value
not being some value.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2933

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

inition of “almost-universal” hash families, which is a
weaker requirement but is sufficient for our needs and
will allow us to design faster algorithms than if we re-
quired almost-pairwise independence.

Definition 5.1. A family H = {h : U → R} is δ-
almost universal if:

1. For all x1, x2 ∈ U with x1 6= x2: Prh∼H [h(x1) =
h(x2)] ≤

δ
|R| , and

2. For all y ∈ R and h ∈ H, |{x ∈ U : h(x) = y}| ≤
O(|U |/|R|).

3. Each h ∈ H can be described with Õ(1) bits and
can be evaluated in Õ(1) time.

Setting δ = 1 recovers the standard definition of
universal hash families. The second and third parts
of this definition are not always part of the standard
definition of universality, but easily follow from most
standard constructions (and, in particular, from the
constructions that we will use). The third property
implies that in time Õ(|H||U |) we can compute all hash
functions from the family on all elements of the domain.

We will use two different constructions of δ-almost
universal hash families, one which works for all regimes
and one which only gives meaningful bounds when the
size of the range is polynomial in the size of the domain.
The first construction we will use is the following:

Theorem 5.1. For every δ > 1, there is a δ-
almost universal hash family H with O(poly(1/(δ −
1))|R|4 log2 |U |) functions.

To the best of our knowledge, this theorem does
not appear explicitly anywhere in the literature, since
most papers just bound the number of random bits
as O(log |R| + log log |U |). Since the constant is un-
specified, this is not enough to prove Theorem 5.1.
But Theorem 5.1 can easily be derived from Theo-
rem 2 of [AGHP92] by using N = |U | log |R| bits to
define a hash function and setting k = 2 log |R| and
ǫ = (δ − 1)/|R|2.

If |R| is close to |U |, we can use a different construc-
tion based on ideas from the cryptography literature,
and in particular from Message Authentication Codes
(MACs). This construction and analysis is essentially
standard (see [KR09,dB93,Tay94,BJKS93]), but to the
best of our knowledge has not been explicitly phrased
as a hash function before in the literature. We will ac-
tually use a slightly weaker (and thus more efficient)
version of the standard construction since we only need
almost-universality, not almost-pairwise independence.
We give the proof for completeness.

Theorem 5.2. There is a
⌈
log |U |
log |R|

⌉
-almost universal

hash family H with O(|R|) functions.

Proof. Without loss of generality, let U = {0, 1}u and
let R = {0, 1}r with u divisible by r, and we interpret
U as F2u and R as F2r . A single hash function is
defined by a single element a ∈ F2r . Given x ∈ U , we
split x into u/r chunks x0, x1, x(u/r)−1, each of which
has r bits and so is an element of F2r . This defines a
polynomial Mx(a) =

∑(u/r)−1
i=0 xia

i of degree (u/r)− 1.
Given an element a ∈ F2r , we define a hash function
ha(x) = Mx(a).

Let H = {ha : a ∈ F2r}. Clearly |H| = 2r = |R|.
It is also not hard to see that H is a u/r-almost
universal family. To see this, let x, y ∈ U with x 6= y.
Then ha(x) = ha(y) if and only if Mx(a) = My(a),
which is equivalent to Mx(a) − My(a) = 0. Clearly

Mx(a) − My(a) =
∑(u/r)−1

i=0 (xi − yi)a
i is a non-zero

polynomial (in a) of degree at most u/r, so there are at
most u/r roots and thus the probability that we choose
an a which satisfies this is at most (u/r)/2r = (u/r)/|R|.

Clearly we can compute these functions quickly
enough, so the third property of Definition 5.1 holds.
The second property of Definition 5.1 also holds, since
if we divide the possible x ∈ U into equivalence classes
by everything except their lowest-order chunk x0 (so
each class has 2r elements and there are 2u−r classes),
then for every fixed a and every equivalence class there
is exactly one element from the class which gets hashed
to every possible value.

Since log |U |/ log |R| is a constant if R and U are
polynomially related, Theorem 5.2 gives an O(1)-almost
universal family in the case of |R| ≥ poly(|U |). We will
only use this theorem in that regime.

5.1.2 Creating Our Sets We will use δ-almost uni-
versal hash families to create the subsets in the pre-
processing stage of Algorithm 2 rather than creating
these sets randomly. More formally, rather than create
O(f3 log n) sets independently, we will use the following
construction.

Let H be a δ-almost universal hash family with
domain V and range [4δf].4 We will create |H|

(
4δf
2

)
=

Θ(|H|f2) sets as follows: for every h ∈ H and y, z ∈
[4δf] with y 6= z, we let

Vh,{y,z} = {v ∈ V : h(v) ∈ {y, z}}

4This might seem strange in conjunction with Theorem 5.2,

since then the range is a function of δ but δ is also a function of the

range. We show how to set the parameters appropriately when we
actually instantiate this hash family in the proof of Theorem 1.2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2934

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

In order to keep our previous notation, we will let
α = |H|

(
4δf
2

)
and will arbitrarily number these sets and

refer to them as V1, . . . , Vα. And as before, we will let
Le = {i ∈ [α] : e ⊆ Vi} be the sets which contain
both endpoints of e. We first need the equivalent of
Lemma 4.1, but now all bounds are deterministic.

Lemma 5.1. If H is δ-universal hash family for some
constant δ > 1 then there exist constants c1, c2, c3 > 0
so that for sufficiently large n the sets V1, . . . , Vα have
the following properties:

1. |Vi| ≤ c1n/f for all i ∈ [α],

2. |Le| ≤ c2δ|H| for all e ∈ E, and

3. |{i ∈ Le : F ∩ Vi = ∅}| ≥ c3|H| for all e ∈ E and
F ⊆ V with |F | ≤ f and F ∩ e = ∅.

Proof. The second property of Definition 5.1 implies
that each set has size at most O(n/(4δf)) = O(n/f),
so the first property is clearly true. For the second
property, let e = (u, v) ∈ E, and let h ∈ H. If
h(u) = h(v) then e is contained in 4δf − 1 of the(
4δf
2

)
subsets defined by h, and if h(u) 6= h(v) then e is

contained in 1 of the subsets defined by h. By the first
part of the definition of almost universal, Prh∼H[h(u) =
h(v)] ≤ δ

4δf = 1
4f . Thus

|Le| ≤
∑

h∈H

1 +
∑

h∈H:h(u)=h(v)

(4δf − 1) ≤ |H|+ δ|H|

= (1 + δ)|H|.

For the third property, fix e = (u, v) ∈ E and
F ⊆ V \ {u, v} with |F | ≤ f . For every x ∈ F , let
Xxu be the indicator random variable for the event that
h(x) = h(u), and similarly let Xxv be the indicator
random variable for h(x) = h(v). Note that by the
definition of almost-universal, both of these random
variables have expectation at most δ/(4δf) = 1/(4f).
Let Z ⊆ F be the set of elements of F that hash to the
same value as u or v (so Z is a random subset). Then
|Z| ≤

∑
x∈F (Xxu +Xxv), and thus

E[|Z|] ≤ E

[∑

x∈F

(Xxu +Xxv)

]
=
∑

x∈F

(E[Xxu] + E[Xxv])

≤
∑

x∈F

2

4f
≤

1

2

So by Markov’s inequality, the probability that
|Z| ≥ 1 is at most 1/2. Thus in at least half of the
hash functions from H, nothing from F has the same
hash value as u or v. If we have such an h, and if
h(u) 6= h(v), then this means that F ∩Vh,{h(u),h(v)} = ∅.

As discussed earlier, the number of hash functions in
which h(u) = h(v) is at most |H|/(4f). Thus the
number of sets which contain both u and v but do not
contain any element of F is at least

|H|

(
1

2
−

1

4f

)
· 1 ≥

3

8
|H|

as claimed.

5.2 The Algorithm and Analysis Our determin-
istic algorithm is the same as Algorithm 2, except:

1. Instead of sampling O(f3 log n) sets, we use the
above construction to create O(|H|f2) sets which
obey Lemma 5.1,

2. We set the threshold τ to c3/c2, i.e., we add e to
the spanner if Pe ≥ c3/c2 (where c2 and c3 are the
constants from Lemma 5.1).

We now prove correctness and size bounds in es-
sentially the same way as in the randomized algorithm.
They just hold deterministically rather than with high
probability.

Lemma 5.2. This algorithm returns an f -VFT (2k−1)-
spanner.

Proof. Let e = (u, v). As with our proofs of correctness
of Algorithms 1 and 2, by Lemma 2.1 we just need to
show that if when the algorithm considers e there is
a fault set F which is bad for e (i.e., |F | ≤ f and
dH\F (u, v) > (2k − 1)w(e)), then the algorithm adds
e to H.

Note that for any i ∈ [α] where e ⊆ Vi but F ∩Vi =
∅, we have dHi

(u, v) > (2k − 1)w(e) (since removing
F is enough to make the distance too large) and hence
there is no (2k − 1)-hop path from u to v in Hi (since
we consider the edges in nondecreasing weight order).
This implies that our reachability query from (u, 1) to
(v, 2k) in H2k

i will return NO. Thus by Lemma 5.1,

Pe ≥
c3|H|
c2|H| = τ , and so the algorithm will add e to the

spanner. Lemma 2.1 then implies the theorem.

We can now prove our size bound.

Lemma 5.3. |E(H)| ≤ O(f1−1/kn1+1/k).

Proof. We use randomness in our analysis in the same
way it was used in the proof of Lemma 4.2, but note
that the algorithm itself is deterministic.

Choose an i ∈ [α] uniformly at random, and let
H ′ = Hi. Then for each (2k)-cycle in H ′, remove the
heaviest edge to get H ′′.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2935

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

By part 1 of Lemma 5.1, we know that |V (H ′′)| ≤
O(n/f). Since H ′′ has no (2k)-cycles, this implies that

(5.5) |E(H ′′)| ≤ O
(
(n/f)1+1/k

)
.

Fix some e = (u, v) ∈ E(H). Then the third
property of Lemma 5.1 (with F = ∅) implies that
Pr[e ∈ H ′] ≥ Ω(|H|/(|H|f2)) = Ω(1/f2). Conditioned
on this, e fails to survive toH ′′ only if it was the heaviest
edge on some (2k)-cycle in H ′. Since the algorithm
considers the edges in nondecreasing weight order, e is
the heaviest edge on some (2k)-cycle if and only if when
it was added by the algorithm the hop-distance between
u and v in H ′ was at most 2k − 1.

The probability of this happening (conditioned on
e being in H ′) is by definition equal to 1 − Pe, and so
the probability that e does survive to H ′′ (conditioned
on being in H ′) is precisely Pe. Since e was added by
the algorithm we know that Pe ≥ c3/c2, and thus the
probability that e survives to H ′′ (conditioned on being
in H ′) is at least c3/c2.

Hence
(5.6)
E[|E(H ′′)|] ≥ |E(H)|·Ω(1/f2)·(c3/c2) ≥ Ω(|E(H)|/f2)

Combining (5.5) and (5.6) implies that

|E(H)| ≤ O(f2 · (n/f)1+1/k) = O(f1−1/kn1+1/k)

as claimed.

We now analyze the running time. Clearly it
depends on |H|, but for now we will leave this as a
parameter.

Lemma 5.4. The running time of the deterministic
algorithm is at most

Õ
(
f−1/kn2+1/k|H|+m|H|f

)
.

Proof. We proceed as in Lemma 4.4 by first analyzing
the preprocessing, and assuming without loss of gener-
ality that m ≥ f1−1/kn1+1/k ≥ fn.

Our set system has O(|H|f2) sets. For each hash
function in H, we can create the f buckets in Õ(n)
time (by evaluating the hash function on each vertex
in Õ(1) time). Then we can build each of the Θ(f2)
sets for that function in time O(n/f), so the time to
create all of the Θ(|H|f2) sets is Õ(|H|fn). Creating
the layered graphs takes additional O(|H|f2(n/f)k) =
O(|H|nfk) = O(mk|H|) time. Initializing all O(|H|f2)
data structures from Theorem 4.1 and inserting the ini-
tial edges takes time O(|H|f2·(kn/f)2) = O(k2n2|H|) =
Õ(f−1/kn2+1/k|H|). As in the analysis of the fast ran-
domized algorithm (Lemma 4.4), while creating the sets

we can record for each vertex a sorted list of which sets
it is in, and then can create each Le set by simple set
intersection. Since each vertex is in O(|H|f) sets, this
takes time O(m|H|f).

Thus our total preprocessing time is
Õ(f−1/kn2+1/k|H|+m|H|f).

We now analyze the main greedy loop. For every
e = (u, v) ∈ E, the algorithm performs a connectivity
query in |Le| ≤ O(|H|) of the layered subgraphs. By
Theorem 4.1, this takes O(m|H|) total time. When we
decide to add an edge e to the spanner (which happens
at most O(f1−1/kn1+1/k) times by Lemma 5.3), we
have to do O(k) insertions into each of the O(|Le|) =
O(|H|) layered graphs in Le. The amortized cost of
each insertion is O(kn/f) by Theorem 4.1 (since the
number of nodes in each layered graph is O(kn/f) by
Lemma 5.1), and hence the total time of all insertions is
O(f1−1/kn1+1/k(kn/f)k|H|) = O(k2f−1/kn2+1/k|H|).
This is asymptotically larger than m|H| since m < n2

and f < n, and hence the running time of the main loop
is O(k2f−1/kn2+1/k|H|).

This now finally allows us to prove Theorem 1.2,
which we restate here for clarity.

Theorem 1.2. There is a deterministic algorithm
which constructs an f -VFT (2k − 1) spanner with at
most O(f1−1/kn1+1/k) edges in time Õ(f4−1/kn2+1/k +
mf5), and if f = poly(n) (i.e., f ≥ nc for some
constant c > 0) then the running time improves to
Õ(f1−1/kn2+1/k +mf2)

Proof. The fault tolerance and size bounds are from
Lemmas 5.2 and 5.3. Using Lemma 5.4 with the almost
universal construction of Theorem 5.1 (with δ = 2)
gives a running time of Õ(k2f−1/kn2+1/kf4 + mf5) =
Õ(f4−1/kn2+1/k +mf5).

On the other hand, if f ≥ nc for some constant c >
0 then we want to use the almost universal construction
of Theorem 5.2. But as discussed earlier, we have to be
a little careful since if we use this construction then the
range is a function of δ but δ is also a function of the
range. So we need to show that we can set δ so that
it is a constant and the range is [4δf] (since that is the
construction we used). We first set δ = logn

log f ≤ 1/c and
set the range of the hash family to be 4δf . Then if we
use Theorem 5.2 with this range, the theorem implies
that this is a δ′ = logn

log(4δf) -almost universal family. But

δ′ is clearly at most δ, and hence it is also a δ-almost
universal family. So we have, as required, a δ-almost
universal family with range [4δf] where δ ≤ 1/c is a
constant. When we use this family, Lemma 5.4 implies
that the running time is Õ(k2f−1/kn2+1/kf + mf2) =
Õ(f1−1/kn2+1/k +mf2).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2936

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

6 Conclusion and Open Questions

In this paper we gave the first polynomial-time al-
gorithm to construct optimal-size vertex fault-tolerant
spanners. Our algorithm, after being optimized for run-
ning time, is also significantly faster than the previous
best (non-optimal) polynomial time algorithm. We also
derandomized our algorithm to get a deterministic algo-
rithm, which is always polynomial time and, in the most
interesting regime of f being polynomial in n, is just as
fast (ignoring polylogarithmic factors) as our random-
ized algorithm.

There are still a number of tantalizing open prob-
lems involving fault tolerant spanners. Algorithmi-
cally, while we significantly optimized the running time
to make it surprisingly efficient, even in the regime
f = O(1) it is still not as fast the fastest algorithms
for non-FT spanners (e.g., [BS07] which has running
time Õ(m)). These fast non-FT spanner algorithms are
not the greedy algorithm, which seems to be unable
to achieve such an efficient running time. Is it possi-
ble to compute optimal-size fault-tolerant spanners in
time Õ(m)? Similarly, there has been significant work
on computing spanners in other models of computa-
tion, most notably in distributed and parallel models
(see [BS07,DGP07,DGP07,PY18,BDG+20] for a small
sampling of such results). The greedy algorithm is typi-
cally difficult to parallelize or implement efficiently dis-
tributedly (particularly in the presence of congestion),
so there is the obvious question of computing optimal-
size fault tolerant spanners efficiently in these models.

Next, we note that while all of our constructions and
bounds work as well in the case of edge faults, they are
not known to be optimal. The best-known lower bound
on the size of an f -edge fault tolerant (2k − 1) span-

ner, proved in [BDPW18], is only Ω
(
f

1
2 (1−1/k)n1+1/k

)

rather than Ω
(
f1−1/kn1+1/k

)
as for vertex faults (for

k ≥ 3; for k = 2 the lower bounds are both Ω
(
f1/2n3/2

)
,

and hence the size bounds achieved here are optimal).
Closing this gap for general k, by either giving improved
upper bounds or improved lower bounds (or both), is
probably the most important open question about fault-
tolerant spanners.

Finally, there are some additional nice properties
of the non-faulty greedy algorithm, and it would be
interesting to determine whether these have desirable
analogs for FT (slack-)greedy algorithms as well. In
particular: the non-FT greedy algorithm gives optimal
spanners for several important graph classes like Eu-
clidean graphs and doubling metrics [LS19], it produces
optimal spanners as measured by lightness [FS20], and
there is experimental evidence that it performs partic-
ularly well on graphs encountered in practice [FG05].

Acknowledgements

We would like to thank Xin Li for many helpful dis-
cussions about derandomization, and in particular for
pointing us towards message authentication codes.

References

[ABP91] Baruch Awerbuch, Alan Baratz, and David Peleg.
Efficient broadcast and light-weight spanners. Unpub-
lished manuscript, November, 1991.

[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin,
Deborah Joseph, and José Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geom-
etry, 9:81–100, 1993.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and
René Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures &
Algorithms, 3(3):289–304, 1992.

[AP90] Baruch Awerbuch and David Peleg. Network syn-
chronization with polylogarithmic overhead. In Foun-
dations of Computer Science, 1990. Proceedings., 31st
Annual Symposium on, pages 514–522. IEEE, 1990.

[BBG+20] Aaron Bernstein, Jan van den Brand, Max-
imilian Probst Gutenberg, Danupon Nanongkai,
Thatchaphol Saranurak, Aaron Sidford, and He Sun.
Fully-dynamic graph sparsifiers against an adaptive ad-
versary. arXiv preprint arXiv:2004.08432, 2020.

[BDG+20] Amartya Shankha Biswas, Michal Dory, Mohsen
Ghaffari, Slobodan Mitrović, and Yasamin Nazari.
Massively parallel algorithms for distance approxima-
tion and spanners, 2020.

[BDPW18] Greg Bodwin, Michael Dinitz, Merav Parter,
and Virginia Vassilevska Williams. Optimal vertex
fault tolerant spanners (for fixed stretch). In Artur
Czumaj, editor, Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 1884–1900. SIAM, 2018.

[BEH+06] Georg Baier, Thomas Erlebach, Alexander Hall,
Ekkehard Köhler, Heiko Schilling, and Martin Skutella.
Length-bounded cuts and flows. In Michele Bugliesi,
Bart Preneel, Vladimiro Sassone, and Ingo Wegener,
editors, Automata, Languages and Programming, pages
679–690, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[BJKS93] Jürgen Bierbrauer, Thomas Johansson, Gregory
Kabatianskii, and Ben Smeets. On families of hash
functions via geometric codes and concatenation. In
Proceedings of the 13th Annual International Cryptol-
ogy Conference on Advances in Cryptology, CRYPTO
’93, page 331–342, Berlin, Heidelberg, 1993. Springer-
Verlag.

[BP19] Greg Bodwin and Shyamal Patel. A trivial yet
optimal solution to vertex fault tolerant spanners. In
Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, page 541–543,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2937

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

New York, NY, USA, 2019. Association for Computing
Machinery.

[BS07] Surender Baswana and Sandeep Sen. A simple
and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Struct.
Algorithms, 30(4):532–563, 2007.

[CLPR10] Shiri Chechik, Michael Langberg, David Peleg,
and Liam Roditty. Fault tolerant spanners for general
graphs. SIAM J. Comput., 39(7):3403–3423, 2010.

[CP21] Karthik C.S. and Merav Parter. Deterministic re-
placement path covering. In Proceedings of the Thirty-
Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, 2021.

[CZ04] Artur Czumaj and Hairong Zhao. Fault-tolerant ge-
ometric spanners. Discrete & Computational Geome-
try, 32(2):207–230, 2004.

[dB93] Bert den Boer. A simple and key-economical un-
conditional authentication scheme. J. Comput. Secur.,
2:65–72, 1993.

[DGP07] Bilel Derbel, Cyril Gavoille, and David Peleg.
Deterministic distributed construction of linear stretch
spanners in polylogarithmic time. In Andrzej Pelc,
editor, Distributed Computing, pages 179–192, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[DK11] Michael Dinitz and Robert Krauthgamer. Fault-
tolerant spanners: better and simpler. In Proceedings
of the 30th Annual ACM Symposium on Principles of
Distributed Computing, PODC 2011, San Jose, CA,
USA, June 6-8, 2011, pages 169–178, 2011.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Con-
centration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, USA, 1st edi-
tion, 2009.

[DR20] Michael Dinitz and Caleb Robelle. Efficient and
simple algorithms for fault-tolerant spanners. In Pro-
ceedings of the 2020 ACM Symposium on Principles of
Distributed Computing, PODC ’20, 2020.

[EEST08] Michael Elkin, Yuval Emek, Daniel A Spielman,
and Shang-Hua Teng. Lower-stretch spanning trees.
SIAM Journal on Computing, 38(2):608–628, 2008.

[Erd64] Paul Erdős. Extremal problems in graph theory.
In In Theory of Graphs and its Applications, Proc.
Sympos. Smolenice, 1964.

[FG05] Mohammad Farshi and Joachim Gudmundsson. Ex-
perimental study of geometric t-spanners. In European
Symposium on Algorithms, pages 556–567. Springer,
2005.

[FS20] Arnold Filtser and Shay Solomon. The greedy
spanner is existentially optimal. SIAM J. Comput.,
49(2):429–447, 2020.

[Ita86] G.F. Italiano. Amortized efficiency of a path re-
trieval data structure. Theoretical Computer Science,
48:273 – 281, 1986.

[KP12] Michael Kapralov and Rina Panigrahy. Spectral
sparsification via random spanners. In Proceedings of
the 3rd Innovations in Theoretical Computer Science
Conference, pages 393–398. ACM, 2012.

[KR09] Bhavana Kanukurthi and Leonid Reyzin. Key

agreement from close secrets over unsecured channels.
In Antoine Joux, editor, Advances in Cryptology - EU-
ROCRYPT 2009, pages 206–223, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[LNS98a] Christos Levcopoulos, Giri Narasimhan, and
Michiel Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. In Proceedings of the
thirtieth annual ACM symposium on Theory of com-
puting, pages 186–195. ACM, 1998.

[LNS98b] Christos Levcopoulos, Giri Narasimhan, and
Michiel Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. In Proceedings of
the Thirtieth Annual ACM Symposium on Theory of
Computing, pages 186–195. ACM, 1998.

[LS19] Hung Le and Shay Solomon. Truly optimal euclidean
spanners. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages
1078–1100. IEEE, 2019.

[Luk99] Tamas Lukovszki. New results on fault tolerant
geometric spanners. Algorithms and Data Structures,
pages 774–774, 1999.

[NS07] Giri Narasimhan and Michiel Smid. Geometric
Spanner Networks. Cambridge University Press, 2007.

[Par19] Merav Parter. Small Cuts and Connectivity Cer-
tificates: A Fault Tolerant Approach. In Jukka
Suomela, editor, 33rd International Symposium on Dis-
tributed Computing (DISC 2019), volume 146 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:16, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Pel00] David Peleg. Distributed computing: a locality-
sensitive approach. SIAM, 2000.

[PS89] David Peleg and Alejandro A. Schäffer. Graph
spanners. Journal of Graph Theory, 13(1):99–116,
1989.

[PU89a] David Peleg and Jeffrey D. Ullman. An optimal
synchronizer for the hypercube. SIAM J. Comput.,
18(4):740–747, 1989.

[PU89b] David Peleg and Eli Upfal. A trade-off between
space and efficiency for routing tables. J. ACM,
36(3):510–530, 1989.

[PY18] Merav Parter and Eylon Yogev. Congested clique
algorithms for graph spanners. In Ulrich Schmid and
Josef Widder, editors, 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, volume 121 of LIPIcs,
pages 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest
paths problems. Algorithmica, 61(2):389–401, 2011.

[Tay94] Richard Taylor. An integrity check value algorithm
for stream ciphers. In Douglas R. Stinson, editor,
Advances in Cryptology — CRYPTO’ 93, pages 40–48,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate dis-
tance oracles. Journal of the ACM (JACM), 52(1):1–
24, 2005.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2938

D
o
w

n
lo

ad
ed

 0
9
/1

9
/2

1
 t

o
 1

4
2
.1

1
4
.1

2
6
.1

7
8
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Fault Tolerance
	Our Results and Techniques
	Our First Algorithm
	Our Faster Randomized Algorithm
	Our Deterministic Algorithm

	Preliminaries and Notation
	Optimal Fault-Tolerant Spanners in Polynomial Time
	An Even Faster Randomized Algorithm
	Deterministic Algorithm
	Set System
	Almost Universal Hashing
	Creating Our Sets

	The Algorithm and Analysis

	Conclusion and Open Questions

