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High-pressure study of the low-Z rich superconductor Be;;Re
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With 7, ~ 9.6 K, BeyRe exhibits one of the highest critical temperatures among Be-rich compounds. We
have carried out a series of high-pressure electrical resistivity measurements on this compound to 30 GPa.
The data show that the critical temperature 7, is suppressed gradually at a rate of d7,./dP = —0.05K/GPa.
Using density functional theory (DFT) calculations of the electronic and phonon density of states (DOS) and
the measured critical temperature, we estimate that the rapid increase in lattice stiffening in Be,;Re overwhelms
a moderate increase in the electron-ion interaction with pressure, resulting in the decrease in 7. High-pressure
x-ray diffraction measurements show that the ambient pressure crystal structure of Be,,Re persists to at least

154 GPa.

DOI: 10.1103/PhysRevB.00.004500

I. INTRODUCTION

The recent discovery of several hydrogen-rich compounds
that become superconducting at record-breaking temperatures
[1-4] has highlighted the potential of low-Z conventional su-
perconductors to exhibit high temperatures superconductivity.
Among systems at ambient pressure, MgB, (7. = 39 K) pro-
vides the best known example of a low-Z superconductor with
a high critical temperature [5]. The lightest elemental metal
Li (Z = 3) exhibits a critical temperature of only 0.4 mK at
ambient pressure [6], but this increases to a relatively high
15-20 K under pressures of ~30GPa [7-9]. A number of
studies have focused on the potential for high-7,. supercon-
ductivity in novel lithium based compounds at high pressure
(e.g., Ref. [10]).

Substantially less work has been done on compounds of the
second lightest elemental metal Be (Z = 4). This may be due,
in part, to the dangers associated with the inhalation of Be,
though alloys and compounds of Be such as Be-Cu are safe to
handle and find widespread use. Elemental Be is a poor super-
conductor with 7, = 26 mK [11], but the potential for high 7,
values in Be compounds has been appreciated for some time
[12]. Beryllium tends to form compounds that are very Be
rich (e.g., BeyyRe), but unlike the case of the superhydrides
[2,3,13,14], these low-Z rich compounds can often be syn-
thesized at ambient pressure. Several Be-rich compounds are
found to be superconductors at ambient pressure (Be3U [15],
Be3Th [16], BejzLu [16], and Be,,Re), while several others
have yet to be reported to be superconducting (e.g., BejsLa,
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Be3Y, BesRe). It is interesting to consider whether higher
T, values can be induced in Be-rich compounds through the
application of high pressure.

Among Be-rich compounds, Be;;Re displays one of the
highest critical temperatures, with 7, = 9.6 K (nearly 400
times higher than the 7, of elemental Be [11]). Supercon-
ductivity was reported in the Be»X (X = Mo, W, Tc, or Re)
family of compounds by Bucher and Palmy in 1967 [17]. The
crystal structure is a cubic, ZrZny, type, with space group
Fd3m (No. 227) and Z = 8 formula units per conventional
unit cell. The structure is reminiscent of the clathratelike
structures found in certain superhydrides at high pressure [18].
Recent measurements on Bey;Re indicate isotropic s-wave
superconductivity [19].

In this work we report the pressure dependence of
the superconducting transition temperature in BejRe re-
vealed by high-pressure electrical resistivity measurements
to 30 GPa. The superconducting transition temperature T,
decreases monotonically with increasing pressure at a rate of
—0.055(3) K/GPa. Density functional theory (DFT) calcula-
tions indicate that pressure decreases the electronic density of
states at the Fermi level N(0), and we present arguments why
the effect of pressure on the electron-phonon matrix element
and the electronic density of states is weak, such that lattice
stiffening dominates the reduction of 7;. with pressure.

II. METHODS
Polycrystalline Be;Re was synthesized by arc-melting. Be

and Re in stoichiometric amounts (with 3% excess Be added

©2021 American Physical Society
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FIG. 1. X-ray diffraction pattern of Be,;Re at ambient pressure.
The blue tick marks indicate the expected locations of the peaks. No
additional peaks, indicative of impurity phases, were detected. Inset
shows the crystal structure of cubic Be,;Re (8 formula units) with
ap = 11.568 A, Vy = 1547.86 A3, and py = 3.299 g/cm® in good
agreement with the previous study [21].

to account for mass loss during melting) were arc-melted to-
gether three times using 99.5% pure Be from Brush Wellman
and 99.97% pure Re from Alfa Aesar.

Powder x-ray diffraction measurements were performed
using a Panalytical X’Pert Pro diffractometer. Analysis of the
diffraction pattern was performed using the software GSAS-II
[20] and indicates single phase material after melting (see
Fig. 1). Magnetic susceptibility measurements performed us-
ing a Quantum Design MPMS gave a T, onset of 8.6 K and
indicate full shielding (see Fig. 2).

For the high-pressure resistivity measurements, a micron-
sized BeyRe polycrystal sample (~30 x 30 x 5 um?) was
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FIG. 2. Magnetic susceptibility of Be,,Re versus temperature at
ambient pressure. The data are consistent with full shielding.

cut from a larger piece of bulk sample and placed in a
gas-membrane-driven diamond anvil cell (OmniDAC from
Almax-EasyLab) along with a ruby (~10 pum in diameter)
for pressure calibration [22]. Two opposing diamond anvils
(0.15 and 0.5 mm central flats) were used, one of which
was a designer-diamond anvil (0.15 mm central flat) with
six symmetrically deposited tungsten microprobes in the en-
capsulated high-quality-homoepitaxial diamond [23]. A 316
stainless steel metal gasket was pre-indented from ~150
to 25 um in thickness with a hole (~80 um in diameter),
which was filled with soapstone (steatite) for electrically
insulating the sample from the gasket and also serving as
the pressure-transmitting medium. The diamond cell was
placed inside a customized continuous-flow cryostat (Ox-
ford Instruments). A home-built optical system attached to
the bottom of the cryostat was used for the visual ob-
servation of the sample and for the measurement of the
ruby manometer. Pressure was applied at ~8K to the de-
sired pressure, and then the sample was cooled down to
5 K and warmed up to 15 K at a rate of ~0.5K/min at
each pressure for the temperature-dependent resistivity mea-
surement. During compression around 8 GPa, pressure was
accidentally unloaded to ~3 GPa and then increased again to
15 GPa.

To estimate the electrical resistivity from the resistance,
we used the van der Pauw method (assuming an isotropic
sample in the measurement plane) p = wtR/In2, where ¢ is
the sample thickness (~5 pum) with currents of 0.1-2 mA .
The accuracy of the estimated resistivity is roughly a factor
of 2 considering uncertainties in the initial thickness of the
sample. No attempt was made to take into account the changes
in the sample thickness under high pressures.

The high-pressure angle-dispersive x-ray diffraction
(ADXRD) experiments on Be,;Re powder sample were car-
ried out at beamline 16-BM-D, Advanced Photon Source
(APS), Argonne National Laboratory. The x-ray beam with
a wavelength of 0.4133 A (30.00keV) was focused to ~5 um
(vertical) x 5 um (horizontal) (FWHMs) at the sample po-
sition. X-ray diffraction intensities were recorded using a
MAR345 image plate detector. The typical exposure time
was ~60 to 120 s/image depending on the sample position.
The sample to detector distance was calibrated using a CeO,
standard. The pressure inside the DAC was determined using
an online ruby spectrometer and the Au grains loaded inside
the sample chamber. Ne was used as the pressure transmitting
medium. The 2D diffraction images were converted to 1D
XRD patterns using the DIOPTAS software [24], which were
then further analyzed by LHPM-Rietica software and Le Bail
methods [25].

For evaluating the density of states (DOS) at the Fermi
level as a function of pressure, we used density functional
theory (DFT) as implemented in VASP [26,27]. The cutoff
energy for the plane-wave basis set was set to 520 eV and a
k-point density of 60 points per A~! was used to relax the
structures at various pressures. We used the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
[28] for the exchange-correlation energy along the projector
augmented wave (PAW) pseudopotentials [29]. To obtain ac-
curate electronic DOS values, the tetrahedron method with
Blochl correction was used [30].

004500-2

92
93
9
95
%
97
%8
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151



BD14019

152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168

169

170
17
172
173

174

175
176
177
178
179

180

181
182
183
184
185
186
187

188

PRB  July23,2021  19:16

HIGH-PRESSURE STUDY OF THE LOW-Z RICH ...

PHYSICAL REVIEW B 00, 004500 (2021)

As the primitive cell contains 46 atoms, a complete cal-
culation of the full phonon dispersion at multiple pressures
is computationally prohibitive. Therefore, we attempt here
to develop a qualitative understanding of trends in 7. with
pressure based on estimates using phonon frequencies only at
the I" point. The phonon frequencies are calculated using the
finite-difference method [31]. To estimate the phonon density
of states (PDOS), F'(w) from the I' point phonon frequencies,
we apply a Gaussian smearing with a width of o =1 THz
(4.135 meV),

Y. D) (@ — w;)?
F(w) = ; N exp (—T>, (D

where the summation is over all the I' point phonons, and
D(w;) is the degeneracy of the phonon with frequency w;.

Allen et al. [32] noted that for simple materials (e.g.,
elements) ®F is proportional to F. For example, the a*F
and F for Pb have almost identical shapes and only differ in
magnitude by a constant factor (see Appendix I of Ref. [32]).
Assuming that the same holds also for Be,;Re, we approxi-
mate «’F as

o’F = kN(0)F (0), )

where k is a proportionality factor and N(0) is the density of
states at the Fermi level, accounting for possible changes in
the number of states that can couple to the phonons. With this
approximation, we obtain the Allen-Dynes parameters A, i,
and (w?) [32] from the phonon density of states as

00 2 00
A= 2/ PiCY :sz(0)/ dot @ 3
0 0 @
o] 2
Wlog = €XP [%/0 dw? Fw(a)) In w]
= exp |:2kN(O) ” da)M In w], 4
0 w
n 2 i 2 n—1
(@") = X/(; doo”F(w)w
_ 2k]Z(0)/(; d(,()F((,())(l)nil- (5)

If k were a function of w, it would quantify the inter-
action/coupling strength between electrons at E; and the
phonons at frequency w. In this study we first assume that k
is independent of @ and pressure. We then fix the value of the
constant k such that the simplified Allen-Dynes equation (i.e.,

fi=f=1[32],

Wiog
T. =
¢T 120

[ 1.04(1 + 1) ] ©

o — (14 0.622)

reproduces the experimental value of 7, at ambient pressure.
In order to obtain trends in 7, that are relevant to the high-
pressure data, we have used the extrapolated zero pressure 7,
value from our high-pressure data 7.(P = 0) ~ 8 K, which is
somewhat lower than the ambient pressure 7, ~ 8.6 K from
susceptibility data on a different piece of the sample. This may
be due to strain induced disorder in the sample due to the non-
hydrostatic conditions present in the pressure chamber. The

T

Be,,Re (I = 0.1 mA)

T, (onset)

P (GPa)

— 1.2
——3.9
— 76
— 9.8
— 15
—— 19
— 25
— 30

T, (offset)

1

5 6 7 8 9
Temperature (K)

FIG. 3. Relative resistivity versus temperature measured while
warming at several pressures to 30 GPa. Three arrows represent
T. (onset), T, (mid), and T, (p = 0), respectively, as defined in the
text. All the data were taken during compression except for those
at 9.8 GPa which were measured during decompression. The inset
shows the photograph of the BexRe sample along with a ruby
for pressure calibration, steatite insulation (bright area surrounding
the sample at center), a 316 stainless steel metal gasket, and six
tungsten leads configuration. Leads 2, 3, 4, and 5 were used for the
measurement.

Coulomb pseudopotential ©* is approximated as u* = 0.1. If
we instead allow k to vary with pressure such that the exper-
imentally observed T, values are reproduced, we find that the
value of k varies by only about 4% between ambient pressure
and 30 GPa. This suggests that a pressure independent k is a
reasonably good approximation.

III. RESULTS

Figure 3 shows the relative resistivity p(T)/piog versus
temperature for Bey;Re to pressures of 30 GPa, focusing on
the low temperature region near the superconducting tran-
sition. All the resistivity curves are based on compression
except for 9.8 GPa, which was measured during decompres-
sion. We define 7, (onset), 7. (mid), and 7. (p = 0) as the
temperatures where the resistivity just begins to drop below
the normal state trend, drops to 50% of the normal state
value, and drops to O, respectively. The critical temperature 7,
monotonically decreases with increasing pressure from 8.07 K
at 1.2 GPa to 6.41 K at 30 GPa. Ambient pressure resistivity
measurements found a transition width of 0.23 K [19]. Under
pressure, the width of the superconducting transition AT,
defined as the difference between 7. (onset) and 7, (p = 0),
increases from 0.6 K at 1.2 GPa to 0.8 K at 30 GPa. The
relatively small increase in transition width under pressure
indicates that the tiny sample is subject to only small pressure
gradients.

Figure 4 presents T, versus pressure for Be;;Re to 30 GPa.
The points are taken from the midpoint of the transition
while the vertical error bars indicate T, (onset) and T, (p =
0) as defined in Fig. 3. The red line represents a linear fit
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FIG. 4. Superconducting transition temperature (7.) of BexRe LA AN X T = -5 >~ 4.7 ]
versus pressure. Blue sphere (or open) symbols indicate the midpoint 1 1 1 1 1 1 1
4 6 8 10 12 14 16

of the transition taken from compression (or decompression). The red
solid line refers to the linear fit of 7.

to the midpoint of the transition, which produces a slope
—0.055(3) K/GPa. The trend is reversible as the data at
9.8 GPa, which was measured during decompression, fits well
within the trend. An estimate of 7. at ambient pressure from
the linear fit yields ~8 K. This is somewhat lower that the
ambient pressure resistivity onset reported by Shang et al.
[19], but is consistent with the midpoint of the susceptibility
transition that we measured (see Fig. 2).

High-pressure x-ray diffraction patterns measured at room
temperature to pressures as high as 154 GPa are shown in
Fig. 5. Clearly no structural transition is observed throughout
the pressure range underscoring the significant stability of the
initial cubic structure of BeyRe. Some XRD patterns, for
example at 18 and 97 GPa, show the presence of preferred
orientation depending on the sample position, which is intro-
duced by the nonhydrostatic pressure condition. The resulting
pressure-volume (PV) curve is shown in Fig. 6, which is fitted
with Vinet equation of state (EOS) [33]. The fit produces the
enhanced value of bulk modulus (Kj), 155 GPa for Bey,Re,
compared to that of Be metal, 114 GPa [34]. It is clear that
despite the low concentration, the dilute Re plays an important
role for the hardness of Bey;Re given that the bulk modulus
of Re metal is 353 GPa [35]. The inset of Fig. 6 shows the
refined diffraction pattern at 125 GPa in terms of the initial
cubic structure using the Le Bail method [25], which confirms
the absence of any structural transition.

Figures 7(a) and 7(b) shows the VASP calculated I" point
phonons along with their degeneracies and the calculated
phonon density of states using Gaussian smearing as de-
scribed in Sec. II. Increasing the smearing o leads to the
smoothing of the phonon density of states. The resulting
values of the integrated F'(w) are not strongly dependent on
the smearing for reasonable values of o. Figure 8 shows the
pressure dependence of the density of states at the Fermi level
N(0) (red curve) and the electron-phonon coupling parame-
ter A (blue curve). A is determined using Eq. (3), with the

20 (degree)

FIG. 5. Representative high-pressure XRD patterns of Be,;Re at
pressures to 154 GPa. No structural transition was observed through-
out the pressure range studied.

value of the constant k determined using the extrapolated zero
pressure T, = 8 K from the high-pressure data. N(0) slightly
monotonically decreases with pressure by about 20%, while
A decreases monotonically by nearly a factor of 2 between
ambient pressure and 150 GPa.

The electron-phonon coupling parameter A can also be
represented by

2
L_NOW)

, 7
M(w?)  M{w?) @
1500 [, i 125 GPa ]

o
%d L ]
1400 N H
4 JUL-‘-}‘—’M}-M—
& %% L . ‘I' I [} II Lo II 1"
<1300 . 5 10 15
g 9 20 (degree)
31200 9 1
> N \9
1100 f ) 9 1
V,=1547.86 A® T
_ 9.
1000 _KD = 155(6) GPa @ BeyRe \h. i
Ky'=3.6(2) -.—-=- Vinet EOS fit b

60 80 100 120 140 160
Pressure (GPa)

0 20 40

FIG. 6. PV isotherm of Be,;Re at room temperature. Inset shows
the Le Bail fit at 125 GPa with the initial cubic structure. Numbers in
the parentheses are the uncertainties on the last digit for K, and K|).
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requency (me

FIG. 7. (a) I" point phonon frequencies and their respective de-
generacies at 0 GPa. (b) Calculated phonon DOS given a smearing
factor 0 = 4.135 meV (1 THz).

where (I?) is the Fermi surface averaged electron-phonon
matrix element, M represents an average atomic mass, and
n is the McMillan-Hopfield parameter [36-38]. From Eq. (7)
we can extract the value of (I2)/M as a function of pressure
and this is plotted as the black data points in Fig. 8. Allen and
Dynes [32] have highlighted that 7 is one of the key parame-

1x10~4

0.50 [

o

0.45 [0

98]

0.40< [5.0

(I2)/M

\S)

1035 145

N 0) States/eV/unit_cell)

—_—

1030 140

0L— . - . .
010 30 50 100 150
Pressure (GPa)
FIG. 8. Calculated density of states at the Fermi level N(0) (red
curve: both spins are included), electron-phonon coupling parameter
X (blue curve), and (I?)/M (black curve) as a function of pressures.

ters controlling the superconducting critical temperature. We
find that 5 increases by more than 50% from ambient pressure
to 30 GPa.

By combining the information obtained on the density of
states at the Fermi level, electron-phonon coupling parame-
ter, and phonon frequencies, we can estimate the expected
pressure dependence of 7. Figure 9 illustrates the pressure
dependence of the phonon frequencies (dashed curves), exper-
imental 7, (black curve), and the computationally estimated
trend in 7; based on the approximation represented by Eq. (2)
together with the Allen-Dynes equation [Eq. (6)]. Estimates
are provided for different values of the Coulomb pseudopoten-
tial ;* and, as expected, the values of 7, depend rather weakly
on this parameter. In the region up to 30 GPa, where experi-
mental data exist, the agreement is reasonably good, with T,
underestimated by only 25% at 30 GPa for u* = 0.1. Since
we know from the high-pressure x-ray diffraction data that
the crystal structure remains unchanged to at least 150 GPa,
we can use this method to estimate 7. to pressures beyond the
range of the resistivity experiments. Based on the calculations
we find that 7, continues to decrease, reaching a value below
1 K at 150 GPa.

Changes in A (and consequently 7;) are controlled by the
relative changes in 1 and (w?). The observed decrease in A
with pressure can be understood as deriving from the fact
that lattice stiffening (increase in (w?)) dominates over elec-
tronic effects (increase in 1). At low pressures we find that
the logarithmic volume derivative of 1 takes on a value of
dInn/dInV ~ —1.2. This value is similar to that found for
many simple metal (s, p) superconductors (including, e.g.,
MgB,) and is significantly smaller than the value of ~ — 3.5
found in many transition metals [39]. The comparatively
small magnitude of dIn#n/dInV in elemental simple metals
causes T to decrease with pressure initially [40]. The fact that
Bey;Re behaves as a simple metal in regards to superconduc-
tivity under pressure is consistent with the fact that the N(0)
is dominated by Be 2p electrons [19].
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Adjacent to Be in the periodic table, Li is a prototypical
simple metal at ambient pressure, but exhibits a remarkable
divergence from simple metal behavior at high pressure. Un-
der pressure, Li becomes superconducting at temperatures
approaching 20 K, exhibits complex crystal structures, and
even becomes semiconducting above 75 GPa [7-9,41-44].
The anomalous behavior of Li has been attributed to the in-
fluence of the ion cores, which approach each other at high
pressure, increasingly restrict the valence electrons to low
symmetry interstitial regions, and eventually localize them
enough to produce semiconducting behavior [41,43,44]. Sim-
ilar physics is thought to influence the behavior of certain
Li-rich compounds which have either been found [45] to
exhibit superconductivity (7, = 13 K) under pressure or have
been predicted to exhibit higher temperature superconductiv-
ity or complex crystal structures under pressure [41,46,47].
However, the same evolution of complex crystal structures
does not appear likely to occur in Be-rich compounds because
the ion cores of Be are 25%—40% smaller than those of Li
[48,49]. The size difference is significant enough that even
at 300 GPa [50], the degree of core overlap for Be is much
less than for Li at 75 GPa (the pressure where Li becomes
semiconducting [43,51]). Thus, Be and Be-rich compounds
may tend towards simple metal behavior even at multimegabar
pressures.

IV. CONCLUSIONS

In summary, experiments show that the superconducting
critical temperature of Bey;Re is suppressed by pressure to
at least 30 GPa. Computational estimates based on electronic
density of states and phonon calculations suggest that 7, will

continue to be monotonically suppressed at higher pressures.
Furthermore, the calculations and measurements indicate that
lattice stiffening overcomes electronic effects, leading to the
observed decrease in A and 7, with pressure. High-pressure
x-ray diffraction shows that the ambient pressure crystal struc-
ture is remarkably stable and remains unchanged to at least
150 GPa. This stability is similar to that observed in elemental
Be, which remains in the ambient pressure hcp structure to at
least 170 GPa [52].
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