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Delta Baryon Photoproduction with Twisted Photons

Andrei Afanasev* and Carl E. Carlson

A future gamma factory at CERN or accelerator-based gamma sources
elsewhere can include the possibility of energetic twisted photons, which are
photons with a structured wave front that can allow a pre-defined large
angular momentum along the beam direction. Twisted photons are potentially
a new tool in hadronic physics, and one possibility is considered here, namely
the photoproduction of 𝚫(1232) baryons using twisted photons. It is shown
that particular polarization amplitudes isolate the smaller partial wave
amplitudes and they are measurable without interference from the terms that
are otherwise dominant.

1. Introduction

Twisted photons are examples of light with a structured wave
front that can produce transitions with quantum number
changes that are impossible with plane wave photons. One can
envision a number of applications in the field of hadron struc-
ture that would require sources of twisted photons with MeV-
GeV energy scales. Such energies are achievable via Compton
up-conversion in high-energy electron collisions with twisted
optical photons [1,2] or in twisted-photon collisions with high-
energy ions, as recently suggested for CERN Gamma Factory.[3]

Presently, HIGS facility is making important steps toward
twisted-photon generation, [4] opening new opportunities for nu-
clear physics studies.
Herein, we will focus on how twisted light may contribute to

measuring small but important contributions to the electromag-
netic production of Δ(1232) baryons from nucleon targets.
More specifically, twisted photons are states with total angular

momentum whose projection along the direction of motion can
be any integer, m𝛾 , times ℏ. The Poynting vector or momentum
density of these states swirls about a vortex line, and the inten-
sity of the wavefront is typically zero or very small on the vortex
line. (Indeed, the “hole” in the middle of the wavefront can find
applications seemingly unconnected to the swirling of the states,
as in stimulated emission spectroscopy studies; see ref. [5])

A. Afanasev
Department of Physics
The George Washington University
Washington, DC 20052, USA
E-mail: afanas@email.gwu.edu
C. E. Carlson
Physics Department
William & Mary
Williamsburg, VA 23187, USA

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/andp.202100228

DOI: 10.1002/andp.202100228

In photoabsorption, the photon’s pro-
jected angular momentum m𝛾 is trans-
ferred to the target system and may be
shared between internal excitation of the
final state and orbital angular momen-
tum of the final state’s overall center-of-
mass. That the final internal angular mo-
mentumprojection can differ bym𝛾 units
from that of the target allows transitions
quite different from the plane wave case,
where the photon necessarily transfers
m𝛾 = Λ = ±1 to the final excitation. Here
Λ is the helicity or spin along the direc-
tion ofmotion of the photon and thatΛ =
±1 only is a standard fact for plane waves.

That large projected angular momentum transfer works in
practice for atoms has been shown experimentally and re-
ported in ref. [6], where optical orbital angular momentum
was transferred to bound electrons, exciting S1∕2 to D5∕2 tran-
sitions in 40Ca ions with quantum number changes beyond
what a plane wave photon could induce. Further, the sharing
of final state angular momentum between internal and over-
all degrees of freedom, when the ion was offset from the vor-
tex line, was also measured and matched well with theoretical
studies.[7,8]

TheΔ(1232) is a spin 3/2 baryon that can be photoexcited from
the nucleon (Figure 1) via M1 (with related notations M1+ and
G∗

M) and E2 (ditto with E1+ or G∗
E) transitions. For a thorough

review of electromagnetic excitation of theΔ(1232), see ref. [9]. In
simple models, the Δ is dominantly a spatial S-state with a spin-
3/2 spin wave function. This can be obtained from the nucleon
by a simple spin flip, which an M1 transition can do, and there
is a large N to Δ M1 amplitude. The E2 transition requires two
units of orbital angular momentum, and must involve the small
D-wave spatial component of the Δ or of the nucleon. Accurate
knowledge of the E2 size would help elucidate theΔ composition
and hadron structure generally.
Currently the particle data group [10] quotes an G∗

E∕G
∗
M ratio

in the 2–3% range, based on plane wave photon cross section
measurements where the E2 is neither the only nor the dominant
contribution.We shall show that twisted photons can in principle
produce signals there the E2 is the only contributor.
In much of what follows, it is more natural to describe plane

wave Δ photoproduction using helicity amplitudes(pw)
miΛ

, where
Λ is the helicity of the photon and mi is the spin of the nucleon
target along the photon’s momentum direction. There are two
independent helicity amplitudes

(pw)
1∕2,1 ∝

√
3
(
G∗

M +G∗
E

)
(pw)

−1∕2,1 ∝ G∗
M − 3G∗

E (1)
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Figure 1. Photoexcitation of Δ(1232) baryon on a proton target.

and others can be obtained by parity transformation

(pw)
−mi,−Λ

= −(pw)
miΛ

(2)

In this notation, our goal is to use twisted photons to isolate physi-
cally achievable situations where the helicity amplitudes combine
with theM1 contributions canceling and the E2 not.
The calculation of the N to Δ transition with twisted photons

is in many ways analogous to atomic calculations. However, the
most straightforward atomic calculations are made in a no-recoil
limit, which gives accurate results for targets that are quite mas-
sive compared to the photon energy. For the the N to Δ transi-
tions, we do take account of the recoil, eventually finding that the
recoil corrections are small, at the level of a few percentage. Also,
for the apparently simplest atomic analog, an S1∕2 to D3∕2 transi-
tion in a single electron atom, theM1 does not contribute at all to
leading order. However, our crucial results are based on the prop-
erties of the twisted photon and on the quantum numbers and
rotation properties of the hadronic states. A more exactly anal-
ogous atomic analog can be found among multi-electron atoms.
In particular, there is an Boron-like example where the calculated
M1 and E2 amplitudes are about the same size,[11] and we have
elsewhere shown how twisted photons could be instrumental in
measuring these amplitudes.[12]

In the following, Section 2 will contain some background ma-
terial on twisted photons, which may be skipped or skimmed by
readers already expert. Section 3 will, for the sake of beginning
simply, find results for twisted photon induced N toΔ transitions
in the no-recoil limit. Section 4 will include proper relativistic
consideration of the Δ recoil, and will show that the corrections
are visible on some plots but that they are not large. Some final
comments will appear in Section 6.

2. Twisted Photons

A twisted photon is a state whose wavefront travels in a definite
direction and which has arbitrary integer angular momentum
along its direction of motion. Reviews may be found, for exam-
ple, in refs. [13, 14]. In addition, the states studied are usually
monochromatic, and at a theoretical level, one can choose be-
tween Laguerre–Gaussian or Bessel versions of these states. We
here use the latter; experience has shown that results are numeri-
cally nearly the same either way, whereas analytic expressions are
simpler for Bessel modes.

Figure 2. A twisted photon state in wavenumber space or momentum
space.

Bessel photons, in addition to the twistedness and monochro-
maticity, are nondiffracting exact solutions to the Helmholtz
equation. The states can be most simply written in wave number
space, or momentum space, where they can be represented as a
collection of plane wave photons, each with the same value of kz,
where z is the direction of propagation of the state, each with the
same magnitude of transverse momentum |k⃗⟂| = 𝜅, and hence
each with the same polar angle or pitch angle 𝜃k = arctan(𝜅∕kz),
but differing azimuthal angles 𝜙k. The set of wave vectors thus
form a right circular cone in momentum space, Figure 2.
The state is [1,15,16]

|𝜅m𝛾kzΛb⃗⟩ = A0 ∫
d𝜙k

2𝜋
(−i)m𝛾 eim𝛾𝜙k−ik⃗⋅b⃗ |k⃗,Λ⟩ (3)

wherem𝛾 is the total angularmomentum in the z-direction, |k⃗,Λ⟩
is a plane wave photon state with

⟨k⃗′,Λ′|k⃗,Λ⟩ = (2𝜋)3 2𝜔𝛿Λ′Λ𝛿
3(k⃗′ − k⃗) (4)

Λ is the helicity of each component state, 𝜔 is the angular fre-
quency of the monochromatic state, and A0 is a normalization
chosen, for example, in refs. [1, 15] as A0 =

√
𝜅∕(2𝜋). The state

written has a vortex line passing through the point b⃗ = (bx, by, 0),
where we might instead give a magnitude b and azimuthal angle
𝜙b.
With this state normalization, the electromagnetic potential

for a plane wave photon is

⟨0|A𝜇(x)|k⃗,Λ⟩ = 𝜖𝜇(k⃗,Λ)e−ikx (5)

where 𝜖𝜇(k⃗,Λ) is a unit polarization vector for a photon of the
stated momentum and helicity. The vector potential for the
twisted state in coordinate space can now be worked out, and in
cylindrical coordinates and for b⃗ = 0 the components are

A𝜌 = i
A0√
2
ei(kzz−𝜔t+m𝛾𝜙) ×

[
cos2

𝜃k
2
Jm𝛾−Λ(𝜅𝜌) + sin2

𝜃k
2
Jm𝛾+Λ(𝜅𝜌)

]
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A𝜙 = −Λ
A0√
2
ei(kzz−𝜔t+m𝛾𝜙)

×
[
cos2

𝜃k
2
Jm𝛾−Λ(𝜅𝜌) − sin2

𝜃k
2
Jm𝛾+Λ(𝜅𝜌)

]

Az = Λ
A0√
2
ei(kzz−𝜔t+m𝛾𝜙) sin 𝜃k Jm𝛾

(𝜅𝜌) (6)

with E⃗ = i𝜔A⃗ and B⃗ = −iΛE⃗. The J𝜈 are Bessel functions. For gen-
eral impact parameter, let 𝜌 be the transverse coordinates and let
𝜌 → |𝜌 − b⃗|.
One sometimes makes a paraxial approximation, wherein the

pitch angle 𝜃k is small, and one keeps only the leading nontrivial
terms in 𝜃k. We will usually not do this. Additionally, one can find
exact twisted wave solutions to theHelmholtz equation where the
smaller terms (for small 𝜃k) inA𝜌 andA𝜙 above are absent,

[17] with
the expenses of changing the longitudinal component and of not
having all the component photons in momentum space have the
same helicity. We will find the uniformity in helicity useful, and
so stay with the forms above.
The time averaged Poynting vector is

⟨S𝜌⟩ = 0

⟨S𝜙⟩ = 𝜔2A 2
0

2
sin 𝜃kJm𝛾

(𝜅𝜌)

×
[
cos2

𝜃k
2
Jm𝛾−Λ(𝜅𝜌) + sin2

𝜃k
2
Jm𝛾+Λ(𝜅𝜌)

]
(7)

⟨Sz⟩ = 𝜔2A 2
0

2

[
cos4

𝜃k
2
J2m𝛾−Λ

(𝜅𝜌) − sin4
𝜃k
2
J2m𝛾+Λ

(𝜅𝜌)
]

To close this section and prepare for the next, we work out
the photoabsorption amplitude involving the twisted photon in
the limit where the Δ is treated as very heavy and its recoil
velocity is neglected. The necessary manipulations mirror the
atomic physics case worked out in ref. [18]. We wish to obtain the
amplitude

 = ⟨Δ(mf ) |(0)|N(mi); 𝛾(𝜅m𝛾kzΛb⃗)⟩ (8)

where  is the interaction Hamiltonian density. The nucleon is
at rest, and its spin projection along the z-axis is labeled as mi.
Similarly, we label the spin projection of the Δ along the same
axis as mf . The twisted photon state can be expanded in plane
waves, as in Equation (3), and the plane wave photon states can be
obtained by rotations of states with momenta in the z-direction,

|k⃗,Λ⟩ = R(𝜙k, 𝜃k, 0) |kẑ,Λ⟩ (9)

which follows [1,15] in using the Wick phase conventions of
1962.[19]

The Hamiltonian is rotation invariant. Rotations of the nu-
cleon states are given in terms of the Wigner functions,

R†(𝜙k, 𝜃k, 0) |N(mi)⟩ = eimi𝜙k
∑
m′
i

d1∕2
mi,m

′
i
(𝜃k) |N(m′

i )⟩ (10)

and rotations of the Δ can be given analogously—if the recoil
velocity of the Δ is neglected. One obtains

 = A0(−i)mf −mi ei(m𝛾+mi−mf )𝜙b Jmf −mi−m𝛾
(𝜅b)

×
∑
m′
i

d3∕2
mf ,m

′
i
+Λ(𝜃k) d

1∕2
mi,m

′
i
(𝜃k)(pw)

m′
i
,Λ (11)

The plane wave amplitude is defined from

⟨Δ(m′
f ) |(0)|N(m′

i ); 𝛾(kẑ,Λ)⟩ = (pw)
m′
i
,Λ 𝛿m′

f
,m′

i
+Λ (12)

The 𝛿-function follows because all the spins and momenta in the
plane wave amplitude are along the z-direction.
In terms of the Jones–Scadron form factors,[9,20]

(pw)
1∕2,1 = −

3eE𝛾

2

√
2
3

(
G∗

M +G∗
E

)

(pw)
−1∕2,1 = −

√
3 eE𝛾

2

√
2
3

(
G∗

M − 3G∗
E

)
(13)

where an isospin Clebsch–Gordan factor
√
2∕3 for the p → Δ+

transition is included, and

E𝛾 =
m2

Δ −m2
N

2mN
= 2𝜋

𝜆
(14)

is the photon energy to excite a Δ from a nucleon at rest.[21]

3. Twisted Amplitudes for 𝚫 Photoexcitation

When a stationary proton absorbs a photon of the correct energy
to produce aΔ(1232), theΔ recoils with themomentum acquired
from the photon, at a not so negligible speed of about 0.27c. None-
the-less, we will start by calculating the twisted photon photoex-
citation amplitudes neglecting the recoil. We will find certain as-
pects of the no-recoil results are can be understood qualitatively,
and others aspects can in simple ways be worked out analytically.
In particular, that only the E2 amplitude can contribute to transi-
tions withΔm = mf −mi = ±2 is easy to understand. Then in the
next section, we will show that for crucial observables, the recoil
corrections change the result in fractional terms by only about
the square of half the recoil speed (in units of c).
The no-recoil result for the amplitude is like the result in an

atomic transition. It is given in terms of two independent plane
wave amplitudes, a pair of Wigner functions, and a Bessel func-
tion, and is shown as Equation (11) in the previous section.
We have prepared plots for a variety of m𝛾 , Λ, and mf = mΔ,

all for mi = mp = −1∕2 and placed the results in a 4 × 6 grid in
the Appendix. (Plots for mi = 1∕2 are identical if one makes the
appropriate parity changes on the other quantum numbers.)
To understand the plots, we focus on two of them, shown in

Figure 3a and b. The ordinate for both is the magnitude of the
amplitude, the abscissa is the displacement of the vortex line of
the twisted beam from the target proton, sweeping from the left
along (say) the x-axis to the right in units of photon wavelength,
𝜆. Both of plots are for m𝛾 = 2, Λ = 1, and mi = −1∕2. Figure 3a
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Figure 3. Selected amplitude magnitude plots for twisted photon + pro-
ton→ Δ versus displacement of the proton from the photon’s vortex line,
along (say) the positive and negative x-axis, in units of the photon wave-
length (3.65 fm). The amplitude units are arbitrary but are the same for
each figure. Each of these plots hasm𝛾 = 2, Λ = 1, andmi = mp = −1∕2.
Part (a) has mf = mΔ = 1∕2 and parts (b) and (c) have mf = mΔ = 3∕2.
(a) and (b) omit recoil corrections, as in Section 3. c) includes recoil cor-
rections, as in Section 4. The E2 only curve overlays or nearly overlays the
Total in parts (b) and (c). The recoil corrections are visible but small.

hasmf = 1∕2 and Figure 3b hasmf = 3∕2. The plots are for pitch
angle 𝜃k = 0.2.
General observations valid for all these plots, and not specific

to the N → Δ, include
∙ on-axis observation: If the target sits on the vortex line, b = 0,

the angular momentum of the photon must all go into the inter-
nal excitation of the final state, i.e., Δm = mf −mi = m𝛾 . If this
cannot happen, the amplitude must be zero in the center, as in
Figure 3a but not Figure 3b.

∙ off-axis observation 1: off-axis, the photon’s total angular mo-
mentum can be shared by the internal excitation of the final state
and by angular momentum of the final state overall center of
mass,[22] and the amplitudes in general are not zero for b ≠ 0.

∙ off-axis observation 2:When the target is away from the vortex
line, the target sees only a piece of the swirl, which can lookmore
unidirectional, like a plane wave. The selection rules reflect this
and transitions possible with plane wave quantum numbers tend
to have larger peak amplitudes than other transitions. This can
be seen by comparing the vertical scales in Figure 3a,b.
Specific to theN → Δ transition are the separate contributions

of theM1 and E2 amplitudes, which are shown in the plots. Most
interesting is Figure 3b, where theM1 does not contribute at all.
A measurement with the final Δ constrained to be in the pro-
jection mf = 3∕2 state would give a direct measurement of the
E2 amplitude.
The plots are forG∗

E∕G
∗
M = 3%, and Figure 3a shows the amore

usual case where theM1 gives the major share of the amplitude.
Further regarding the absence ofM1 contribution to theΔm =

mf −mi = 2 transition, there are only two terms in the sum for
the amplitude, Equation (11), so it is easy to insert explicitWigner
functions and plane wave amplitudes in terms of M1 and E2,
Equation (13), and demonstrate analytically that the M1 contri-
bution cancels. This is true for any Δm = 2 transition, and one
can see this in the plots in the Appendix, where every plot in the
right hand column has Δm = 2 and noM1 contribution.

4. Recoil Momentum Corrections

The Δ recoils when it is produced by the proton absorbing the
photon. The rotations of the moving state are not given so simply
as for a state at rest. It will turn out that the corrections are not
numerically large, but we want to consider them.
We find it here helpful to consider the wave function of the

initial nucleon state. The theory is simplest when the target is
localized both in coordinate space and in momentum. One of
these makes it possible to write results using helicity amplitudes
defined for plane waves, the other will show the expected result
that the Delta comes only from where the target proton was
located. We of course realize that there is a playoff between
uncertainty in target localization and uncertainty of target
momentum. We shall treat the uncertainties in both position
and momentum as small judged by to scales over which other
quantities in the calculation vary.[23,24] This is standard in atomic
physics, and appears feasible here also. For comparison, even
situations in particle or nuclear physics that ultimately involve
only plane waves have the manipulations involved in scattering
theory justified by using wave packets for the states—see, for
example, refs. [23, 24]—and then taking limits.
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The amplitude is

 = ∫ (d3p)𝜙i(p⃗i) × ⟨Δ(pf , m′
f )|H|N(p⃗i, mi), 𝛾(𝜅m𝛾kzΛb⃗)⟩ (15)

where H is the interaction Hamiltonian and (d3p) is d3p∕(2𝜋)3.
Inserting the expansion for the twisted photon gives

 = A0 ∫
d𝜙k

2𝜋
(−i)m𝛾 eim𝛾𝜙k−ik⃗⋅b⃗ 𝜙i(p⃗i)

× ⟨Δ(pf , m′
f )|(0)|N(p⃗i, mi), 𝛾(k⃗,Λ)⟩ (16)

where p⃗f = p⃗i + k⃗. Further,

 = A0 ∫
d𝜙k

2𝜋
(−i)m𝛾 ei(m𝛾+mi)𝜙k−ik⃗⋅b⃗ 𝜙i(p⃗f − k⃗)

×(pw)
m′
i
Λ d

1∕2
mim

′
i
(𝜃k) (17)

with m′
f = m′

i + Λ. This supposes that the wave function peaks
sharply enough so that we can evaluate the plane wave ampli-
tude at p⃗i = 0, and do rotations on the nucleon as if it were at
rest. There is only one Wigner function, because we have not yet
projected the Δ onto states with spin quantized along the z-axis.
This is the amplitude for producing |Δ(p⃗f , m′

f )⟩. The whole of
the Δ final state is

|f ⟩ = ∑
m′
f

∫
(d3pf )

2Ef
|Δ(p⃗f , m′

f )⟩ (−i)m𝛾 ei(m𝛾+mi)𝜙k−ik⃗⋅b⃗

× 𝜙i(p⃗f − k⃗)(pw)
m′
i
Λ d

1∕2
mim

′
i
(𝜃k) (18)

We get the coordinate wave function of this state using theΔ field
operator and

⟨0|Ψ𝜇(x)|Δ(p⃗f , m′
f )⟩ = u𝜇(p⃗f , m

′
f ) e

−ipf ⋅x (19)

leaving

⟨0|Ψ𝜇(x)|f ⟩ = ∑
m′
f

∫
d𝜙k

2𝜋

u𝜇(p⃗f , m
′
f )

2Ef
(−i)m𝛾

× ei(m𝛾+mi)𝜙k−ik⃗⋅b⃗ 𝜙i(x⃗)(pw)
m′
i
Λ d

1∕2
mim

′
i
(𝜃k) (20)

at time zero. The peaking of the wave function gives p⃗f = k⃗, and
the angles for the outgoing Δ that we might call 𝜃Δ,𝜙Δ are the
same a 𝜃k,𝜙k.
The Rarita–Schwinger spin-3/2 spinors are given in terms of

spin-1 polarization vectors and spin-1/2 Dirac spinors as

u𝜇(p⃗, m) =
∑
𝜆,𝜇

(
3∕2 1 1∕2
m 𝜆 𝜇

)
𝜖𝜇(p̂, 𝜆)u(p⃗,𝜇) (21)

Given the structure of the Dirac spinor, one can define a two-
spinor with a vector index

𝜒𝜇(p̂, m) =
∑
𝜆,𝜇

(
3∕2 1 1∕2
m 𝜆 𝜇

)
𝜖𝜇(p̂, 𝜆)𝜒(p̂,𝜇) (22)

where 𝜒 is a two-component spin-1/2 helicity state. Thence,

u𝜇(p⃗, m) =
1√

EΔ +MΔ

(
(EΔ +MΔ)𝜒𝜇(p̂, m)

𝜎⃗ ⋅ p⃗ 𝜒𝜇(p̂, m)

)
(23)

where the 𝜎⃗ are the 2 × 2 Pauli matrices.
Under rotations, 𝜖𝜇 and 𝜒 transform simply using the Wigner

functions d1 and d1∕2, respectively, and withWigner function the-
orems [25,26] one can show that

𝜒𝜇(p̂, m) = R𝜒𝜇(ẑ, m) =
∑
m′

e−i𝜙k d3∕2mm′ (𝜃k)𝜒𝜇(ẑ, m
′) (24)

with R = R(𝜙k, 𝜃k, 0). This means that the upper components of
the Rarita–Schwinger spin or will transform under rotations with
the same application of theWigner functions as for a state at rest.
This means that one can do the same manipulations as for the
no-recoil case, and obtain results that look like the nonrelativistic
case, Equation (11). This in turn means that although the final Δ
is not amomentumeigenstate, one can express the upper compo-
nents, and hence the numerical bulk of the state, in terms of mo-
mentum eigenstate u𝜇 spinors with momenta in the z-direction.
However, for the lower components there is additional angular

dependence in the 𝜎⃗ ⋅ p⃗ term. In particular,

𝜎⃗ ⋅ k̂ = 𝜎+ sin 𝜃ke
−i𝜙k + 𝜎− sin 𝜃ke

+i𝜙k + 𝜎z cos 𝜃k (25)

where 𝜎± = 𝜎x ± i𝜎y. One can still do the azimuthal integral, but
the extra 𝜙k dependence will bring in Bessel functions with dif-
ferent indices from the main term.
Doing the integral, and projecting onto the z-direction spinor

ū𝜇(pẑ, mf ) leads to a main term that looks the same as the no-
recoil result Equation (11) (albeit with a factor of the target wave
function) plus a correction term which we will have the temerity
to write out,

𝛿 = A0 i
(mi−mf )ei(mi+m𝛾−mf )𝜙b

MΔ − EΔ

2MΔ

∑
m′
i{(

3∕2 1 1∕2
mf mf − 1∕2 1∕2

)(
3∕2 1 1∕2

mf − 1 mf − 1∕2 −1∕2

)

× sin 𝜃k d
3∕2
mf −1,m′

i
+Λ(𝜃k)

+
(
3∕2 1 1∕2
mf mf + 1∕2 −1∕2

)(
3∕2 1 1∕2

mf + 1 mf + 1∕2 1∕2

)

× sin 𝜃k d
3∕2
mf +1,m′

i
+Λ(𝜃k)

+ (cos 𝜃k − 1) d3∕2
mf ,m

′
i
+Λ(𝜃k)

}

× 𝜙i(x)(pw)
m′
i
,Λ Jmf −m𝛾−mi

(𝜅b) d1∕2
mi,m

′
i
(𝜃k) (26)
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Figure 4. a) Matrix element squared, ||2, with summation/averaging
performed over baryon helicities. We choose the photon helicityΛ = 1 and
total angular momentum projection m𝛾 = 2. The blue solid line includes
both M1 and E2 transitions, while the green dashed (black dotted) lines
show individual contributions fromM1 (E2). b) Same as a) divided by the
photon energy flux density obtainable from Equation (6) and normalized
to the plane-wave limit m𝛾 = 1, 𝜃k → 0.

The nominal size of the correction term is

EΔ −MΔ

2MΔ
= k2

2MΔ(EΔ +MΔ)
≈ 1.9% (27)

as already noted in the introduction.
Implementing the corrections, the amplitude with projection

onto the final Δ state with mf = 3∕2 is shown in Figure 3c. The
amplitude in Figure 3 is given in arbitrary units; in particular
the factor A0, which is determined by the intensity of the incom-
ing wavefront, is omitted and the target wave function is taken
at some argument where the result is non-zero, but otherwise
also omitted. The extra terms have some effect, as seen, but very
small. The corresponding corrections for other quantumnumber
situations are visually even smaller.

5. Rates, Cross Sections, and Novel Spin Effects

Squaring the twisted amplitudes Equation (11), summing over
final helicities of Δ and averaging over initial helicities of a nu-
cleon, we obtain a quantity ||2 that defines a transition rate for
photoexcitation. The result is shown in Figure 4a as a function

Figure 5. Beam spin asymmetry for the transition rate (a) and flux-
normalized cross section (b) as defined in Equations(28) and (29). We
took l𝛾 = 1; notation for the curves is as in Figure 4.

of proton’s transverse position b with respect to the twisted pho-
ton’s axis.
It can be seen that the contribution of the electric quadrupole

amplitude E2 is almost independent of b, whereas the magnetic
dipoleM1 contribution is suppressed in the vicinity of the photon
vortex center as b → 0. Since this rate is obtained with a position-
dependent photon flux, it is instructive to divide the rate by the
flux, defining a position-dependent cross section 𝜎(b) of photoex-
citation shown in Figure 4b.
The outcome shows a remarkable feature of the twisted pho-

toexcitation: For E2 transitions the rate remains nonzero as b →
0, while the flux turns to zero. It effectively leads to an infinite
cross section seen in Figure 4b at the vortex center. On the other
hand,M1 absorption rate is proportional to the flux, same as for
the cross-section of plane-wave photoabsorption.
Next, we compare absorption rates and cross sections for dif-

ferent values of photon helicity Λ, while keeping fixed the quan-
tity l𝛾 = m𝛾 − Λ that corresponds to photon’s orbital angular mo-
mentum (in a paraxial limit). Namely, we form the following
asymmetries:

A(Λ)
2 =

||2Λ=1 − ||2Λ=−1||2Λ=1 + ||2Λ=−1 (28)
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Figure A.1. Plots of amplitudes for 𝛾 + p → Δ with twisted photons. The protons all have spin projection mi = −1∕2. The m𝛾 and Λ for each row are
labeled, and the spin projections of the final Δ run from −3∕2 to +3∕2. left to right. The units of the amplitude are arbitrary, but are the same for each
plot. The pitch angle for each plot is 𝜃k = 0.2. The red (for m𝛾 = Δm) or blue (otherwise) solid curves are the total; the green dashed curves are G∗

M
alone and the black dotted curves are G∗

E alone.
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i.e., the beam spin asymmetry of transition rate and

A(Λ)
𝜎

=
𝜎Λ=1 − 𝜎Λ=−1
𝜎Λ=1 + 𝜎Λ=−1

(29)

or the beam spin asymmetry of cross sections. Both these asym-
metries would be identically zero for plane-wave photons if spa-
tial parity is conserved. They may be nonzero for the twisted pho-
tons because they arise due to the differences between twisted
photoabsorption with aligned vs. anti-aligned spin (Λ) with re-
spect to the orbital angular momentum (l𝛾 ). A similar effect for
atomic transitions was predicted theoretically in, ref.[27] with E2
transitions shown to be responsible for cross-sectional asymme-
tries.
The results shown in Figure 5 demonstrate that the spin asym-

metry of transition rate is dominated by M1 transition similarly
to spin dependence of the photon flux, but the asymmetry of
cross section is dominated by E2 contribution near the photon
vortex center.
The differences in contributions of E2 and M1 transitions in

the twisted photoabsorption can be better understood from com-
paring analytic expressions if we perform a Taylor expansion of
the cross section near the vortex center in a paraxial limit (c.f.
Equations (21)–(24) of ref.[12]):

𝜎(m𝛾=2,Λ=1) ∝ 3G∗2
E +G∗2

M +
3G∗2

E

(b𝜋∕𝜆)2
(30)

Comparing the expression above with the plane-wave cross sec-
tion

𝜎pw ∝ 3G∗2
E +G∗2

M (31)

it becomes apparent that the twisted cross section has a 1∕b2 sin-
gularity near the vortex center exclusively due to the E2 amplitude
G∗

E .

6. Summary

We have considered photoproduction of the Δ(1232) baryon by
twisted photons. The angular momentum selection rules for the
transitions to definite final states are different from what is pos-
sible with plane waves, and leads to additional opportunities. In
particular, there are transitions to which the main M1 compo-
nent does not contribute at all in the no-recoil or nonrelativistic
limit, and even with corrections implemented, contributes only
very slightly. A measurement of these transitions can isolate and
measure the smaller E2 amplitude, which is a measure of the
more complete structure of the baryon states.
Twisted photon experiments like these are clearly for the fu-

ture. One needs good control over the final energy and momen-
tum direction of twisted photons so that the pitch angle 𝜃k re-
mains much larger than beam’s angular spread in generation,
e.g., by backscattering visible photons from an energetic electron
beam. The CEBAF 12 GeV electron beam currently delivered to
Hall D (for example) has an energy spread of only 2.2MeV [28] and
angular spread 0.1/𝛾 in radians, where 𝛾 is the Lorentz factor of
he electron beam.[29] Laser produced visible photons are also pre-
cise in energy and direction, so maintaining spreads of this com-

pactness should be feasible and certainly adequate. More prob-
lematic is learning how to produce the energetic twisted photons
with large pitch angles and with good control over the location of
the photon’s vortex axis relative to the target. However, there are
good opportunities, and since gamma factories are under consid-
eration, twisted photon beams should also be considered.

Appendix: Larger Collection of Plots

Figure A.1 presents a set of plots for twisted photon + pro-
ton→ Δ(1232), with varying choices for the twisted photon total
angular momentum m𝛾 , photon helicity Λ, and final Δ spin pro-
jection mf . The vertical axis shows the amplitude magnitudes,
and the horizontal axis shows the impact parameter or the offset
between the target location and the photon vortex axis.
All plots have the proton polarized withmi = −1∕2. Plots with

mi = +1∕2 are identical if one uses parity to change the other
quantum numbers appropriately. Each row has m𝛾 and Λ, the
helicity of the incoming photons in a Fourier decomposition, la-
beled. In each row the spin projection of the final Δ goes from
−3∕2 on the left to +3∕2 on the right.
These plots include the recoil corrections. One notices that

all plots in the right-hand column show only small contribution
from the elsewhere dominantM1 amplitude.
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