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Abstract: Given the importance of fresh water, we investigated undergraduate students’ understand-
ing of water flow and its consequences. We probed introductory geology students’ pre-instruction
knowledge using a classroom management system at two large research-intensive universities. Open-
ended clicker questions, where students click directly on diagrams using their smart device (e.g.,
cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and
(2) velocity and erosion in a river channel. Approximately one-third of students correctly identified
groundwater flow as having lateral and vertical components; however, the same number of students
identified only vertical components to flow despite the diagram depicting enough topographic
gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified
zones of high velocity. However, for curved river channels, students incorrectly identified the inside
of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that
students have mental models of water flow that are not consistent with fluid dynamics. The use of
students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual
challenges associated with the complex spatial and temporal processes that govern water movement
in the Earth system.

Keywords: undergraduate students; water literacy; conceptions; diagrams; formative assessment;
spatial reasoning; geoscience education

1. Introduction

In his critical and thought-provoking piece on science literacy, Feinstein posits that
science literacy is “not incidentally but fundamentally about identifying relevance: learning
to see how science is or could be significant to the things you care about most” [1] (p. 180).
Science literacy has moved beyond a collection of canonical facts, what Feinstein calls
rhetorical science literacy, and to a socially meaningful construct in service to everyday
life. The Next Generation Science Standards (NGSS) underscore this modern definition
by prominently featuring human impacts in the Earth system, climate change, biogeology,
water, natural resources, and natural hazards [2]. One significant barrier to Earth systems
science literacy is conceptual understanding of the fundamental physical processes driving
movement of energy and matter. Decades of research on the conceptual understanding of
hydrological systems reveals that students struggle with issues of scale and the connected-
ness of system components in the natural world [3–7]. Similar to recent studies by Arthurs
and Elwondger [3] and Lally and Forbes [8], the present study leverages visual models
(e.g., diagrams) to explore students’ reasoning about surface and ground water processes.
One rationale for this approach is to understand our students’ knowledge base and how
that differs from the scientific knowledge that people need to make informed decisions
about water-related issues (e.g., town planning boards, community referenda). Specifically,
management of freshwater resources, such as the High Plains aquifer of North America and
the Guarani Aquifer of South America, require understanding and cooperation that crosses
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political boarders [9–11]. The goal of this study was to assess undergraduate students’
conceptual understanding of fluid dynamics (e.g., velocity, flow direction) in rivers and
groundwater using diagrams, a largely unexplored aspect of water literacy. These topics are
of particular importance because groundwater flow determines the migration of pollutants
and surface water flow patterns determine zones of high erosion. A well-informed public
must understand these spatially and temporally dynamic processes to predict their impact
on health and safety in their community (e.g., drinking water, riverbank erosion).

The following research questions guided this work:
1. What is the pattern of students’ predictions about groundwater flow?
2. What is the pattern of students’ predictions about velocity and erosion in straight

and curved river channels?

1.1. Students’ Understanding of Water

In their recent contribution to this special issue, McCarroll and Hamann [6] conducted
a systematic review of literature in pursuit of a better definition of water literacy. Within the
context of their framework, the present study probes into students’ “science and systems
knowledge” [6] (p. 8) of water’s physical properties and ability to transport dissolved and
solid materials [6]. We pursue this line of research in response to prior work identifying
gaps and disconnections in students’ mental models of surface and groundwater.

1.1.1. Groundwater

In a study of elementary students in Arizona, only 18% included groundwater in their
drawings of the water cycle [12]. In a different study, two-thirds of high school students
acknowledged an underground component of the water cycle, though they described
it as a static subsurface lake [13] (p. 373). This is consistent with more recent findings
that secondary and undergraduate students conceptualize water as an underground river
or layer of water [3], despite the fact that karst systems provide less than 20% of the
groundwater storage in the U.S. When probing secondary and undergraduate students,
Dickerson and Dawkins [7,14] found that students’ terminology did not consistently reflect
their understanding. The authors found as many as one-third used terminology that is
inappropriate for the scale of the feature (e.g., pipes as a microscopic conduit for water
transport). Some students could correctly elaborate on groundwater occupying small
pore spaces despite using terms such as “underground stream” or “pools”, while others
who utilized terms such as “porosity” and “permeability” did not have a conceptual
understanding of those terms.

In an effort to develop a learning progression describing how student understanding
transitions from naïve views to scientific models of socio-ecological systems, including
groundwater systems, data were collected with students across the K-12 grade levels [5,15].
Students were asked to draw “what it looks like underground where there is water” [15]
(p. 45) and whether a landfill could pollute a well. Sixty-five percent of middle and high
school students drew underground rivers and lakes. Only 17% of high school students
accurately represented groundwater as occurring in spaces within rocks or sediment.
With respect to pollution, 59% of high school students recognize that pollution can occur
underground but only 18% described how groundwater movement assists in the transport
of pollution. Consequently, Gunckel et al. [5] developed a four-level learning progression
to elaborate on the levels of understanding. The learning progression consists of four levels.
In level 1, students describe only the visible the components of the water cycle (e.g., lakes,
rivers) with no mechanisms except humans to move water from place to place. In level
2, students also only describe macroscopic, visible components of the water cycle, but
they are beginning to identify some mechanisms for how water moves (e.g., downhill).
In level 3, students are able to describe microscopic (e.g., substances in water) through
macroscopic components and recognize the three-dimensional nature of water systems.
For example, students possessing level 3 understanding will recognize the presence of
groundwater stored underground and the mixing of materials with water. However, only
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level 4 students will recognize the driving mechanisms involved in systems. For example,
level 4 students will recognize that topography, permeability, and other factors constrain
the flow of water. Gunckel et al. [5] found that only 11% of their participants achieved level
4 water literacy. The present study investigates undergraduate students’ understanding at
this fourth level, where groundwater movement is determined by a combination of gravity
and topography.

1.1.2. Surface Water

Despite the focus of water literacy studies on the water cycle or watersheds, there
are fewer studies focused on the mechanisms involved with rivers and streams than on
groundwater. In a study of rural Indiana middle school students’ concepts of watersheds,
none of the students’ drawings connected water on adjacent land or underground to the
water in rivers [7]. Similar patterns are observed with adults, where personal experience
plays a big role in one’s conceptual model. A study in Florida revealed that only one third
of the survey sample could name the watershed and only 19% could name a body of water
in the watershed [16]. There are no studies providing data on students’ understanding of
water movement in a river.

Within the learning progression described by Gunckel et al. [5], a student with a level
3 understanding may be able to trace connections between bodies of water (i.e., structures)
but only those with level 4 understanding would be able to explain or make predictions
about the driving forces of gravity and the controlling variables, such as permeability and
topography, that would determine where and how water will flow on the surface. Building
on the learning progression, Sadler et al. [17] explored the physical dynamics of water flow
with more precision in a framework called Understandings of Water Systems. Sadler’s [17]
framework categorizes the dimensions of surface and groundwater in water systems into
process mechanisms, energy transfer, scale, representations, and human agency. For the
present study, we focused on students’ understanding of: (1) the movement of surface
water (Sadler’s process mechanism for surface water) and its implications for erosion,
and (2) the movement of groundwater (Sadler’s energy transfer for groundwater) and its
implications for pollution transport. These foci map on to Sadler’s [17] learning goals for
the dimensions of process mechanisms and representations (i.e., diagrams) elaborated in
their Table 1. Our efforts to probe these concepts are unique with respect to the empirical
findings reported in published studies. Sadler’s [17] conceptual framework is yet untested
and the present study extends investigation of students’ understanding of water to a finer
grain than the learning progression on socio-ecological systems [5,15].

Table 1. Number of students consenting to participate in each course by semester, instructor
and institution.

Institution Instructor Semester N

Institution 1 Instructor 1 Spring 2017 56
Fall 2017 53

Spring 2018 26
Fall 2018 37
Fall 2019 50

Instructor 2 Fall 2017 15
Spring 2018 18

Fall 2018 17
Institution 2 Instructor 3 Fall 2017 115

Spring 2019 126

1.2. Learning with Diagrams

One often overlooked aspect of science literacy is the ability to draw meaning from a
variety of visual representations. Citizens seeking information to better understand issues
in their communities may encounter websites containing tables, graphs, and diagrams



Water 2021, 13, 622 4 of 18

designed by experts to communicate with other experts. Additionally, the physical scale
and temporal variability of Earth’s processes require science educators to rely on several
types of models, including diagrams, when communicating about Earth [18]. Students can
learn more from words and pictures than from words alone [19]. The content of diagrams
may not include important elements that students need to learn. For example, in an analysis
of Indian pre-college textbooks, Vinisha and Ramadas [20] found that subsurface structures
and processes were largely absent from water cycle diagrams. A recent analysis of water
cycle diagrams (N = 350) from textbooks, peer-reviewed articles, and government materials
from 12 countries revealed that although groundwater and surface water are commonly
depicted, the aspects of pollution transport, groundwater recharge and discharge, and
intermittent streams are under-represented [21].

Despite the informational affordances of diagrams, there is a cognitive cost to process-
ing diagrams [22,23], and diagrams can facilitate learning for some students disproportion-
ately based on their spatial skills while leaving others behind [23]. Expert-designed visuals
can be complicated and novices may struggle to extract their meaning [24]. In addition to
the cognitive effort of processing diagrams, the individual elements in a diagram can be
seductive, distracting from the learning process [23]. Clark et al. [25] found that aspects of
a plate tectonic diagram, such as an orange mantle, reinforces erroneous conceptions of the
Earth’s mantle as molten. Dolphin and Benoit [26] found that metaphors and visualizations,
for example representing continents as distinct objects rather than components of tectonic
plates, hindered students’ mental models of plate tectonics. Consequently, for this study,
we designed diagrams that adhere to principles of good graphic design to maximize stu-
dents’ processing of the diagrams [27] and minimize distracting details (e.g., signals [28])
for the present study. Specifically, we omitted features commonly observed in depictions
of the water cycle including color, dimensional shading, realism (e.g., clouds, waves) and
arrows [29].

Several studies on students’ conceptions of hydrologic systems utilize student sketches
to elicit their understanding of water in the Earth system [3–7,12–14,30]. The approach used
in the present study has enabled us to gather data with a broader sample of students because
classroom response systems (CRS) can be employed with large numbers of students. Covitt
et al. [15] probed students’ reasoning with diagrams by asking students to interpret cross-
sectional diagrams and maps of water ways that depicted elevation gradients. However,
they did not report on the students’ errors with the level of specificity we investigate
in the present study since their goal was to describe a learning progression of water in
environmental systems [15]. The present study is smaller in scope, focusing on fewer
concepts associated with water movement in two discrete scenarios. This study is novel
because we use diagrams and a CRS to investigate aspects of surface and groundwater
movement that are missing in prior studies.

1.3. Current Study

The goal of the present study is to investigate undergraduate introductory students’
common errors associated with ground and surface water processes. Most studies on
students’ conceptual understanding involves interviews [3,13] or analysis of open-ended
text [3,5,13] data. These methods are time intensive and involve relatively small sample
sizes. Alternatively, we leveraged a web-based CRS (i.e., Top Hat) to collect a large
volume of data. The use of smart technology (i.e., cell phones and tablets) allows CRS to
move beyond traditional multiple-choice clicker questions. Now, students can respond
by clicking on a diagram to efficiently reveal conceptions of spatial phenomena [31]. In
the present study, students were prompted to identify a feature or make a prediction.
The predictions indicate students’ understanding of the dynamic and spatial processes
associated with water flow in groundwater and rivers.
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2. Materials and Methods
2.1. Setting and Population

Student data were gathered in introductory courses at two institutions: Northern Illi-
nois University, a large, high research activity, public Midwestern university (Institution 1)
in the United States and University of Calgary, one of the U15 Canadian public research
universities (Institution 2). Data were collected from spring 2017 through Fall 2019 (Table 1).
Individual student-level demographics were not collected. All sections at Institution 1
were the same introductory geology course, a general education elective for most and a
required course for pre-service middle grades and geology majors. Fewer than 10% of
the enrolled students were science and geology majors. Enrollment in the course reflects
the demographics of the university, which at the time of data collection included approxi-
mately 51% White, 17% Hispanic/Latino/a/x, 14% Black with approximately equal gender
enrollment. Data were collected with two introductory geology courses at Institution 2.
One course, Principles of Geoscience (Fall 2017), served science majors, primarily biology,
with approximately ten percent geology majors. The other course, Introduction to Geology
(spring 2019), served non-science majors, predominantly humanities and social science
majors, with fewer than 10% education majors. Racial demographics are not reported by
this institution but the gender balance was not equal. Greater than 60% of enrollment
in the science majors course comprised male and greater than 60% of enrollment in the
non-science majors course comprised female. Three instructors, two at Institution 1 and
one at Institution 2, administered the set of questions in the first two weeks of the semester
as assessment of students’ initial knowledge prior to instruction. Students were given
approximately 45 s to answer each question before the instructor advanced to the next
question. They received points for class participation for taking the assessment regardless
of whether they consented to have their responses included in this research study. Only
data from consenting students were included. This study was approved by the Northern
Illinois University Institutional Review Board (IRB) and Canadian Institution’s Research
Ethics Board.

2.2. Diagrams and Prompts
2.2.1. Diagrams

Three diagrams were created to investigate student conceptions related to groundwa-
ter and rivers (Figures 1 and 2). The diagrams were modeled after common representations
used in textbooks and assessments, and designed to reduce complexity (see 1.2. Learn-
ing with Diagrams). The groundwater diagram (Figure 1) contained several layers and
included a confined aquifer (e.g., sandstone), confining layer or aquitard (e.g., shale), and
an unconfined aquifer (e.g., gravel and sand). The diagram includes a house with a septic
tank and the water table is labeled. The same diagram was used for all of the groundwater
prompts (Figure 1B). The river diagrams included a curved river channel (Figure 2A) and a
straight (Figure 2B) river channel. The latter was added in spring 2019 to evaluate how
students’ responses for a curved river compare to their general understanding of erosion
and velocity in the river. Both river channel diagrams (Figure 2A,B) were used for each of
the prompts (Figure 2C).
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2.2.2. Prompts

The prompts used in conjunction with the diagrams asked students to click on the
diagrams to identify a structure or feature, and to predict direction or velocity of water
flow (Figures 1 and 2). Based on the positions of their clicks, we identified whether they
responded based on scientifically accurate reasoning or naïve understandings of water
flow. For groundwater, we first probed their conception of a confined aquifer and then
groundwater flow (Figure 1). The latter was probed using a prompt asking students to
“Click where you expect to find the pollution in a month”. We revised the pollution prompt
in spring 2019 to expand the time period to “several months” to further evaluate whether
students understood local flow. Local flow is the three-dimensional movement of water
based on the combined impact of gravity and topography. For example, if gravity were
considered alone, water would flow down. In Figure 1, the house is located on a hill
and therefore the water table is higher under the hill. This will cause the water to flow
laterally, from left to right, under the hill. Extending the length of time in the prompt
increased the likelihood of probing students’ conception of Level 4 understanding [15]—
that groundwater is influenced by topography.

The river prompts probed students’ understanding of erosion and velocity (e.g., water
flow) in rivers. Prior to 2019, only the river bend (Figure 2A) questions were implemented.
In spring 2019, we added the straight channel (Figure 2B) to compare students’ responses
along a river bend with a more straightforward example. In a straight river channel, the
greatest rate of erosion occurs along the middle of channel bed, at the location of maximum
velocity and greatest force from the weight over overlying water. In a river bend, or curved
river channel, the greatest rate of erosion occurs on the outside of the curve (e.g., on the
right of Figure 2A), where the momentum of the flowing water will exert greater force
on the river bed. Prior to 2019, the prompt asked students to: “Click where in the river
you expect to find erosion”. We modified this prompt in spring 2019 to direct students to
focus on the rate of erosion and bed of the river “Click in the river where you expect to
find the greatest rate of erosion in the river bed”. Throughout data collection, students
were first asked where they expect to find erosion and subsequently asked about velocity
to minimize priming them to connect the water flow (e.g., velocity) to the geologic process
(e.g., erosion).

2.3. Data Analysis

Student click data were recorded using the Top Hat (Toronto, Ontario, CA, USA)
classroom response system. Within Top Hat, the gradebook allows instructors to download
the coordinates of each student click. These coordinate data were then plotted and counted
using ArcGIS (version 10.7.1, ESRI, Redlands, CA, USA). We created polygons in ArcGIS
to denote regions of interest. The boundaries of the polygons were selected based on
correctness (i.e., where the correct answer should be located), common conceptual errors
documented in the literature (e.g., water table label as a distracting signal), and surround-
ing emerging regions of high density of student clicks. The boundary lines between regions
were positioned along natural breaks, when possible, and discussed among the authors
until consensus was reached. For questions with the same diagram, we kept the polygons
the same across the prompts. This decision enabled us to evaluate how students’ concep-
tions of related processes (e.g., erosion and velocity) compare and how modifications to
prompts influenced the students’ responses. Subsequently, the amount of clicks in each
polygon were tallied. We ran a chi-square test to compare the counts of clicks in polygons
for prompts that were modified in 2019 to include more precise language (e.g., length of
time for pollution, erosion in a river bed) and to compare students’ clicks for locations
of high velocity and erosion. This test was selected because it is a non-parametric test
for categorical data used to evaluate whether there is a significant difference between the
response pattern (e.g., correct, incorrect) for the two types of questions we studied. For the
revised prompts, we tested whether the revision significantly changed the response pattern.
For the velocity and erosion question, we tested whether students’ responses were coupled,
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indicating that they selected the same region for high velocity and high erosion. The total
number of consenting student responses for each prompt is available in Appendix A. For
greater detail on the methods for analyzing the coordinates of students’ clicks to evaluate
their conceptual understanding, refer to LaDue and Shipley [31].

2.3.1. Groundwater

The regions of interest for the groundwater diagram were constrained by the features
depicted (e.g., layers of rock, water table) (Figure 3). In addition to the geologic layers,
regions of groupings of clicks included the labels for “water table” and “tank”, as well
as the tank itself, depicted below the house. One challenge was whether to group clicks
in the zone of aeration (Figure 3, red) and in the zone of saturation (Figure 3, orange)
since both of these layers are the unconfined aquifer. In order to use the same polygons
across prompts with the same diagram, we decided to make these separate regions of
interest (i.e., polygons). Analysis of the prompts relating to pollution transport utilized
the same horizontal layers and water table polygon as the confined aquifer question, and
added polygons to capture the most common regions of interest for the flow of pollution
(Figures 4 and 5).
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2.3.2. Surface Water

The regions of interest for the straight and curved river channels were constrained first
by the shape of the river and second by the density of clicks. The river channel was split
into left bank, middle, and right bank polygons, where natural breaks in the click patterns
occurred (Figures 6–10). To maintain consistency between questions, the same regions of
interest (i.e., polygons) were utilized for all of the prompts for a particular diagram.
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3. Results
3.1. Research Question 1. What Is the Pattern of Students’ Predictions about Groundwater Flow?
3.1.1. Confined Aquifers

Students were asked to identify the confined aquifer, which is the porous layer of sand-
stone bounded below by a non-descript layer of “bedrock” and above by an impermeable
confining layer of shale. When prompted to identify the location of the confined aquifer,
only 15% (n = 60) of students clicked in the correct layer for this question; the sandstone
layer is the confined aquifer (Figure 3). A similar percentage selected the confining shale
layer (16%, n = 61). Most students click in the unconfined aquifer consisting of the zone
of saturation, the sand and gravel layer labeled in orange in Figure 4 (26%, n = 100) and
the zone of aeration, the unlabeled region above the water table labeled in red in Figure
4 (8%, n = 32). The other polygons received the rest of the students’ clicks: water table
labels (8%, n = 30), tank (7%, n = 29), and bedrock layer (4%, n = 17). There were seven
additional clicks (2%) that fell outside of all polygons that we attributed to accidental clicks
or students’ not putting effort into answering the questions.

3.1.2. Pollution Transport

Students were asked to predict where pollution leaking from a septic tank will be
located in the ground after a month. To answer this question, students must reason that
both gravity and topography influence groundwater flow. Therefore, we constructed a
polygon representing the down-sloped plume of pollution that would be transported by the
groundwater (Figure 4, dark purple). When prompted to predict the location of pollution
after “a month”, 29% (n = 96) of students clicked in the correct region labeled in dark purple
in Figure 4 (e.g., down-sloping plume). Most students clicked in the area directly below the
septic tank, labeled in light purple in Figure 5 (33%, n = 111). Additional popular regions
of interest were located near the water table labels (11%, n = 37) and uphill of the tank (9%,
n = 30). Regions with fewer clicks include the unconfined aquifer (4%, n = 13); the confined
sandstone aquifer (4%, n = 14); the septic tank (3%, n = 11); the confining shale layer (2%,
n = 7). Additionally, 5% (n = 17) of students clicked outside of any polygon.

The clustering of higher density regions of clicks (e.g., directly below the tank and
below and slightly towards the right) led to discussions amongst the researchers about the
length of time included in the prompt. With only a month for pollution transport and a lack
of scale in the diagram, it is impossible to distinguish between students’ understanding
of the differential effects of gravity versus topography on the migration of the pollutants.
Therefore, as noted previously we adjusted the prompt (Figure 1) by increasing the length
of time to better distinguish between students’ conceptions of groundwater movement.

When prompted to predict the location of pollution after “several months”, 32%
(n = 40) of students clicked in the correct region in dark purple in Figure 5 (e.g., down-
sloped plume). A similar number of students clicked directly below the tank (26%, n = 33).
Other common areas students’ clicked were the down-slope label for the water table (10%,
n = 13) and the unconfined aquifer (10%, n = 13). Few students clicked in the confining
shale layer (7%, n = 9), the confined sandstone aquifer (6%, n = 7), the uphill plume (5%,
n = 6), or the septic tank (2% n = 2). Additionally, 2% (n = 3) of students clicked outside of
any polygon. A chi-square test was conducted to examine whether there was a relationship
between number of correct (down-sloped plume) versus incorrect clicks (all other clicks)
and the prompt given (“one month” or “several months”). The chi-square test showed no
significant relationship between accuracy and prompt, X2 (1, N = 447) = 0.28, p = 0.597. To
evaluate whether more students selected the correct region (down-sloped plume) versus the
most common alternative (directly below the tank), a chi-square test showed no significant
relationship between accuracy and prompt, X2 (1, N = 281) = 1.44, p = 0.230.

In summary, pre-instruction assessments of undergraduate students indicate that
students do not have a strong conceptual understanding of groundwater storage or flow.
Only 15% of students correctly identified the sandstone layer as the confined aquifer
shown in the diagram. Approximately one third of students (29% for the “one month”
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prompt and 32% for the “several months” prompt) correctly identified a region requiring
water flow driven by both gravity and local topography. A similar percentage of students
attribute groundwater movement only to gravity and selected a region directly downward
from the pollution source (33% for the “one month” prompt and 26% for the “several
months” prompt).

3.2. Research Question 2. What Is the Pattern of Students’ Predictions about Velocity and Erosion
in Straight and Curved River Channels?

The results for the river questions are presented in the order that they were adminis-
tered to the students and implemented in this study. We presented the erosion questions
before the velocity questions in all classes to probe the students’ understanding of erosion
before priming them to consider water velocity, which drives erosion patterns. The straight
channel questions were added in 2017 to provide a comparison to contextualize their
responses to the curved river channel prompts; therefore, we present results from the
curved river channel questions first in this section.

3.2.1. Erosion and Water Velocity in a Curved River Channel

The momentum of water moving in a curved river channel is in the direction of the
outside of the curve, in this case the right bank. Consequently, water will be flowing faster
on the outside of the curve causing greater erosion of sediment. When prompted to predict
erosion in the curved river channel, most students clicked on the left bank (44%, n = 42),
followed by the right bank—the correct answer (40%, n = 38) (Figure 6). The center of the
channel received the fewest clicks (16%, n = 15).

To investigate whether the simplicity of the prompt led to assumptions about erosion
only occurring on the riverbanks depicted in the diagram, we modified the prompt to
include “in the riverbed” (Figure 7). For this revised prompt, most students clicked within
the correct polygon on the right bank (46%, n = 80) (Figure 7). Fewer students selected the
left bank (39%, n = 67) and the middle area (15%, n = 26). To test whether the modified
prompt changed the proportion of students with correct clicks, we conducted a chi-square
test comparing accuracy of responses for the prompts (e.g., “erosion” versus “erosion in
the riverbed”). Despite having more clicks in the correct region for the revised prompt,
the chi-square test showed no significant relationship between the regions clicked and the
prompt, X2 (1, N = 268) = 0.970, p = 0.325.

When prompted to predict the velocity of water in the curved river channel, most
students clicked in the middle of the river channel (38%, n = 102) (Figure 8). However, the
students were similarly inclined to select the left bank (33%, n = 91) and the right bank (29%,
n = 79). Since water velocity determines the pattern of erosions in rivers, we conducted a
chi-square test to examine whether there was a relationship between accuracy of clicks (e.g.,
correct clicks in the right bank region versus incorrect clicks elsewhere) and the prompt
given (“curved channel erosion” or “curved channel velocity”). The chi-square test showed
a significant relationship between accuracy and prompt, X2 (1, N = 348) = 13.08, p < 0.001.
There were proportionally more correct clicks about erosion compared to the water velocity
in a curved river channel.

3.2.2. Erosion and Water Velocity in a Straight River Channel

When prompted to predict erosion in the river bed of a straight channel, the greatest
number of student clicks were on the left bank (48%, n = 83) (Figure 9). Fewer students
selected the right bank (28%, n = 48) and the middle of the river channel (24%, n = 41).

When prompted to predict the highest velocity in a straight river channel, most
students clicked in the middle of the river channel (78%, n = 138) (Figure 10). Fewer
students selected the left bank (15%, n = 26) and the right bank (7%, n = 12). Since the highest
water velocity will occur in the middle of a straight river channel, and determines the
location of greatest erosion, we conducted a chi-square test to examine whether there was a
relationship between accuracy of clicks and the prompt given (“straight channel erosion” or
“straight channel velocity”). The chi-square test showed a significant relationship between
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accuracy and prompt, X2 (1, N = 348) = 103.71, p < 0.001. There were proportionally more
correct clicks about water velocity compared to correct clicks about greatest erosion in a
straight river channel.

In summary, for the curved channel prompts, students were more likely to select the
outside and inside of the curve as the regions of greatest erosion. However, the student
clicks were more equally divided between the three locations for the region of highest
water velocity in the curved river channel. The chi-square test indicated that students were
more likely to select the correct region identifying erosion in the river than the correct
region of highest water velocity. For the straight river channel, students identified the left
bank as the region of greatest erosion but overwhelmingly selected the middle of the river
channels as the region of highest water velocity.

4. Discussion

The present study leverages a classroom response system and the open-ended click-
on-diagram questions to gather students’ responses to groundwater and surface water
questions using simple diagrams. Investigations of students’ understanding associated
with underground water storage [3–5,12–15] and surface water systems [7,16,32,33] reveal
that students struggle with connecting components in water systems. Therefore, in the
present study we focus on the processes and consequences of water flowing in the ground
and in a river channel. The prompts designed for this study probed the most robust
level of scientific understanding identified in the Learning Progressions for Socioscientific
Systems [5]—understanding of the variables controlling water movement. The prompts
also align Sadler’s [17] process mechanisms for understanding water systems. Specifically,
we probed introductory college-level students’ understanding of groundwater flow driven
by gravity and topographic relief, combined, and water flow in straight and curved river
channels and the correlated erosion patterns. This work fills a gap in the prior literature
and targets concepts related to dynamic processes associated with water flow.

4.1. Groundwater

To investigate students’ understanding of groundwater, we probed their interpretation
of the term “confined aquifer”. The majority of students clicked the unconfined aquifer
(e.g., gravel and sand) and an equal number of students clicked the confined aquifer
(e.g., sandstone) and confining layer (e.g., shale). We attribute this distribution of clicks
among the main layers in the diagram to students’ lack of knowledge about the term
“confined aquifer. The students responded prior to instruction to a question using academic
terminology. Many students selected the line labeling the water table. It is possible that
these students were unsure of the correct response and relied on signals [28] in the diagram
to direct them to important information that they thought would have a higher chance of
being correct. During analysis the research team observed that, in addition to the water
table labels, this diagram has some confusing or misleading information. Specifically,
shale and sandstone are types of bedrock and a more accurate label for the lowest layer
would be gneiss, granite, or an equally crystalline basement rock type that is found beneath
sedimentary features. Additionally, the presence of the water table, while relevant to the
subsequent prompts probing pollution transport, implies that there are distinct layers:
one composed of sand and gravel, and one above it that is unlabeled. One reason for this
decision was to remove blue color, which could imply a continuous layer of water and
perpetuate a common misconception about groundwater [3,13]. Nevertheless, the students’
poor understanding of the term “confined aquifer” does not impede our ability to interpret
the results of the pollution transport question.

The pollution transport questions probed students’ understanding of the relative
contributions of gravity, causing downward flow of groundwater, and topography, causing
lateral flow of groundwater. In the diagram, the septic tank appears on the right slope of
a hill, causing groundwater to flow to the right and downward. To keep the prompt and
diagram simple, we eliminated details of scale, permeability, and flow rates. Consequently,
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there is not one specific point that is correct, but rather the ideal region encompassing
vertical and horizontal movement of water (dark purple in Figures 4 and 5). We first probed
students’ understanding of the location of pollution a month after the septic tank leaked
for a week. The students were approximately split, with the most common responses
grouping directly below the tank, taking into account gravity only, and to the right and
down from the tank, the correct response taking into account gravity and topography. The
research team recognized that the short time span in the question, implied volume of leak,
and the lack of scale in the diagram were challenges to discerning the correct location of
pollution after one month. Therefore, we added that the pollution was transported over
several months to increase the likelihood that students would predict the pollution was
transported over a greater distance. For the revised prompt, we have fewer data points but
the students’ responses group in the same two locations as with the first prompt, with a
slightly greater number of students selecting the correct plume accounting for gravity and
topography. Nevertheless, these differences were non-significant and only one-third of
students answered correctly. This is likely to be a high estimate when accounting for those
who clicked close to the tank but by chance selected the downhill side rather than the uphill
side of the tank and those who clicked in the red region, which could be correct depending
on scale, permeability, and flow rates (Figures 4 and 5). Overall, the pattern of students’
clicks implies that few consider that water flows laterally underground and that flow is
determined based on topography. These aspects of groundwater flow are not typically
taught in K-12, but since they are a major contributor to pollution transport, which impacts
students’ everyday lives, we recommend that upper-level secondary and undergraduate
instructors engage students with groundwater models that demonstrate these factors
controlling groundwater flow. The use of models can build students’ understanding by
making visible what is currently invisible to them in the subsurface, enabling the students
to interpret patterns they observe in water flow.

4.2. Surface Water

The surface water questions were designed to probe students’ understanding of
surface water flow and the consequences for erosion in river channels. We observed that
student responses tend to cluster on the inside and outside of the river bend regardless
of whether they were prompted to respond to a general prompt about where erosion will
occur (Figure 6) or a more specific prompt about where erosion will occur along the river
bed (Figure 7). The momentum of water in the river will cause greater erosion on the
outside of a curved river channel. Surprisingly, approximately 40% of students identified
the inside of the river bend as the location of greatest erosion. One possible explanation for
this is that students think the river will wear away the feature sticking out into the river
(e.g., the inside of the curve). However, this interpretation warrants further investigation
involving open-ended questions where students can explain their reasoning. The prompt
investigating students’ understanding of erosion in the straight river channel was added
in 2019 to provide a comparison to the curved river channel. In this instance, students
overwhelmingly chose the left bank of the river channel. A straight channel should have
maximum erosion along the middle of the channel where the water volume and velocity is
the greatest, with no difference in erosion on the two banks. We conjecture that students
selected the left bank of the channel for two possible reasons: (1) they completed the curved
channel question first where they preferred the left bank for a specific reason, and therefore
we are observing ordering effects in our question bank, and/or (2) they selected the bank
that is vertically lower in the diagram because they misunderstood the perspective of
the diagram is a plan view and not a cross-section. The latter reason underscores the
importance of communicating the intent of diagrams to students and careful design for
educational materials. In future studies, we suggest two possible adjustments to the visuals
may improve how they communicate to students: changing the angle of the straight river
channel to be aligned with the vertical axis to avoid this potential confound or adding a
callout that reveals the cross-sectional view of the river channel.
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The velocity prompt was ordered after the erosion prompts intentionally to avoid
priming students to consider how water velocity may impact erosion patterns. Responses
to the curved and straight channel velocity questions (Figures 8 and 10, respectively) reflect
that students understand that the region of greatest water flow is usually the middle of a
river channel. However, in a curved river channel, the greatest velocity should be off-center
and closer to the outside of the bend. In Figure 8, students reveal confusion about velocity
in a curved river since the majority select the middle or inside of the curve. This suggests a
weak understanding of water flow in a curved channel is one source of misunderstanding
of the erosion patterns in a curved river. In the straight river channel (Figure 10), students
correctly identify the middle of the river channel. However, they identify the left bank of
the river as the location of greatest erosion (Figure 9). This disconnect further supports the
previous claim that answers to the erosion prompt are an artifact of ordering effects or the
diagram features. The curious pattern of responses in the surface water questions indicates
that further inquiry into students’ reasoning is necessary. Additionally, we have found
this to be a challenging topic to teach in the classroom. The use of stream table models
is one approach that K-12 and undergraduate instructors may use to engage students in
reasoning about the cause and effect of velocity and erosion in straight and curved river
channels. Additionally, engaging students in sketching may reveal their reasoning about
where water will move in a curved river channel and the resulting erosional patterns. In
summary, the main findings that emerged from this study of incoming undergraduate
students are:

• Students struggle to identify a confined aquifer in a groundwater diagram.
• Students attribute groundwater flow to gravity, but ignore lateral flow driven by

topographic relief.
• Students do not associate high water velocity with locations of maximum erosion in

river channels.
• Students incorrectly identify regions on the inside of curved river channels as sites of

maximum erosion.

4.3. Limitations

The present study probes students’ understanding of the physical behavior of water
and its role in transport of dissolved and solid material. This is but one component of
water literacy as defined by McCarroll and Hamman [6]. Although not assessed in this
study, students’ local knowledge of their water infrastructure likely impacted their answers
on the assessment questions. Information about students’ individual context may yield
richer insights into what we have categorized as errors than we can observe from click data
alone. Most other studies utilize interviews [3,13] and open-ended text response [3,5,13]
data. Schwartz et al. [12] found that students’ drawings of groundwater systems were a
better representation of their content mastery than their answers to constructed questions.
The use of click data with diagrams in the present study introduces the dimension of
diagram comprehension, adding complexity to interpretation of the results. However,
we feel this approach is ecologically valid for an educational context because students
are presented with and assessed on their understanding of new concepts using diagrams
frequently in school settings. It is also common for information presented by scientists to
the public to include diagrams when representing information related to their everyday
lives (e.g., flood risk, water safety). Additionally, a limitation of our approach is the use of
terminology (e.g., confined aquifer, river bed) that may be unfamiliar to the students prior
to instruction. This may lead to guessing, for which errors are not indicative of underlying
misunderstandings about the water processes. Future work must further probe the topics
we investigated and students’ personal context through qualitative investigation that
includes student elaboration of their lived experiences and mental models to disentangle
the role of diagrams, terminology, and context.
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5. Conclusions

The diagrams and prompts used in this study probe undergraduate students’ under-
standing of pollution transport in groundwater and erosion in surface water (i.e., rivers)
using click-on-diagram questions with a classroom response system (e.g., Top Hat) at
two large research-active universities. The present study reveals that one-third of un-
dergraduate introductory geology students account only for gravity in the movement of
groundwater in a context where topography indicates there will be a lateral component
of flow. However, we are encouraged to find that almost 30% of our undergraduate stu-
dents identify that both gravity and topography contribute to groundwater flow prior
to instruction. The present study also demonstrates that pre-instruction, undergraduate
students have a strong conception of water velocity in a straight river channel, but struggle
to identify velocity and erosion in a curved river channel. Overall, we attribute errors
in students’ responses to questions involving straight rivers to misunderstandings of the
diagram or item ordering effects. In the curved river channel questions, students’ tendency
to select the inside of the curve as a location of greatest erosion is intriguing and merits
further study. Similarly, the dissociation between the selected regions of greatest erosion
and greatest velocity may indicate that they do not recognize the cause and effect nature of
these processes.

This study also demonstrates the opportunities and limitations of assessing student
understanding of spatial phenomena in the Earth system using classroom response systems
and click-on-diagram questions. These findings can guide policy and education efforts as
well as offer insights to maximize the communication validity of science diagrams.

Author Contributions: Conceptualization, N.D.L. and T.F.S.; methodology, N.D.L. and T.F.S.; analy-
sis, N.D.L., D.B., and J.R.A.; writing—original draft preparation, N.D.L., D.B., and J.R.A.; writing—
review and editing, T.F.S.; visualization, J.R.A.; project administration, N.D.L.; funding acquisition,
N.D.L. and T.F.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. National Science Foundation, grant number 1835950
and 1640800.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Northern Illinois
University (HS16-0009 on 20 January 2016 and HS17-0235 on 6 September 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. This data can be found in the Northern Illinois University Huskie Commons Institutional
Repository here: https://commons.lib.niu.edu/handle/10843/22890.

Acknowledgments: The authors are grateful for the students who participated in this study, Glenn
Dolphin for collaborating on data collection and question development, and Nicole James for sugges-
tions on an early version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Total Student Counts for Each Question Prompt by Year, Semester,
and Institution

Question Year Semester Institution N

“Click on the layer that represents the confined aquifer.” 2017 Spring Institution 1 56
Fall Institution 1 68
Fall Institution 2 115

2018 Spring Institution 1 44
Fall Institution 1 53

https://commons.lib.niu.edu/handle/10843/22890
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Question Year Semester Institution N

“The septic tank under the house leaks for a week before being repaired.
Click where you expect to find the pollution in a month.”

2017 Spring Institution 1 56

Fall Institution 1 68
Fall Institution 2 115

2018 Spring Institution 1 44
Fall Institution 1 53

“The septic tank under the house leaks for several months before being
repaired. Click where you expect the pollution will be found in the

groundwater.”
2019 Spring Institution 2 126

“Click in the river where you expect to find erosion.” 2018 Spring Institution 1 43
Fall Institution 1 53

“Click in the river [bend] where you expect to find the greatest rate of
erosion in the river bed.”

2019 Spring Institution 2 126

Fall Institution 1 47

“Click in the river [bend] where you expect to find the fastest
moving water.”

2018 Spring Institution 1 42

Fall Institution 1 54
2019 Spring Institution 2 126

Fall Institution 1 50

“Click in the river where you expect to find the greatest rate of erosion
along the river bed.”

2019 Spring Institution 2 125

Fall Institution 1 47

“Click in the river where you expect to find the fastest moving water.” 2019 Spring Institution 2 126
Fall Institution 1 50
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