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ABSTRACT

To deploy powerful deep neural network (DNN) into smart, but

resource limited IoT devices, many prior works have been proposed

to compress DNN to reduce the network size and computation

complexity with negligible accuracy degradation, such as weight

quantization, network pruning, convolution decomposition, etc.

However, by utilizing conventional DNN compression methods, a

smaller, but fixed, network is generated from a relative large back-

ground model to achieve resource limited hardware acceleration.

However, such optimization lacks the ability to adjust its structure

in real-time to adapt for a dynamic computing hardware resource

allocation and workloads. In this paper, we mainly review our two

prior works [13, 15] to tackle this challenge, discussing how to con-

struct a dynamic DNN by means of either uniform or non-uniform

sub-nets generation methods. Moreover, to generate multiple non-

uniform sub-nets, [15] needs to fully retrain the background model

for each sub-net individually, named as multi-path method. To re-

duce the training cost, in this work, we further propose a single-path

sub-nets generation method that can sample multiple sub-nets in

different epochs within one training round. The constructed dy-

namic DNN, consisting of multiple sub-nets, provides the ability

to run-time trade-off the inference accuracy and latency according

to hardware resources and environment requirements. In the end,

we study the the dynamic DNNs with different sub-nets generation

methods on both CIFAR-10 and ImageNet dataset. We also present

the run-time tuning of accuracy and latency on both GPU and CPU.

CCS CONCEPTS

• Computer systems organization→ Real time system; • Net-

works→ Dynamic neural network.
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1 INTRODUCTION

Recently, Deep Neural Network (DNN) evolves into deeper layers,

wider channels, and denser connections to further improve perfor-

mance, while rapidly growing network parameters and computation

complexity. Such development trend rises great challenge to deploy

into power and resource limited hardware platform, such as IOT

devices, mobile phone, etc. To tackle this issue, various DNN com-

pression techniques to reduce the network size and computation

cost have been proposed, such as weight and activation quantiza-

tion [4, 5, 8], network pruning [2, 14], convolution decomposition

[7, 11], etc.

However, such model compression techniques mainly have two

limitations: 1) given a DNNmodel, it needs to be optimized specially

for each target hardware platform owing to their unique computing

resources; 2) for one specific hardware platform, although a compact

network can be generated by utilizing these techniques, it is fixed

after deployment. Oppositely, in the real-world applications, both

the hardware platform and workload environment are dynamic.

For example, the mobile phone could be in high performance model

or battery saving mode. Another example could be, owing to the

dynamic sensing efforts or communication channels, the workloads

of real-time machine learning computing are also dynamic with

streaming input data. Thus, it urges the need to construct a new

dynamic DNN model with the ability to adjust its structure on-

the-fly to fast adapt for a dynamic computing hardware resource

allocation and workloads.

Based on our two previous research works published in ASP-

DAC’20 and DAC’20 [13, 15] aiming to tackle this challenge, in

this work, we mainly review the general dynamic neural network

framework, which consists of multiple sub-nets that can run-time

multiplex between them, tuning the inference accuracy according

to hardware resources and environment requirement. Generally,

the overflow of the framework includes two successive phases: Sub-

nets generation and Fused sub-nets training. In the first phase, multi-

ple sub-nets are sampled from a background model. Two sub-nets

generation methods (i.e. uniform and non-uniform) are discussed

in [13, 15] respectively. Specifically, [13] presents a uniform sub-net

sampling method, which manually sets the channel width of all

layers to be a constant ratio (e.g., 0.25, 0.5), along with utilizing

knowledge distillation [6] to improve performance. Alternatively,

[15] generates non-uniform sub-nets, inspired by the model pruning

[10, 12? ] that different layers in a DNN model may have different

sensitivities, resulting in non-uniform layer-wise sparsity. In the
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Figure 1: Overviewof two-phase dynamic neural network framework for both uniformandnon-uniform sub-nets sampling. In

the first phase, #𝑁 sub-nets are generated from the background model concerning difference sizes. Note that, the overlapped

weights of sub-nets are partially shared w.r.t the same weight channels location. Then in the followed second phase, fused

sub-nets training is leveraged to construct the a single full-size dynamic model. In the end, such dynamic model with #𝑁
sub-nets can run-time trade-off the inference accuracy via selecting different sub-nets according to hardware and workload

dynamics.[13, 15].

second phase, to construct a dynamic network, the sub-nets sam-

pled by different methods above are trained by a general method

that are fused into a cross entropy loss function for multi-subnets

optimizations.

Moreover, to sample multiple non-uniform sub-nets, [15] needs

to fully retrain the background model for each sub-net individually,

named as multi-path sampling method. To reduce the training cost,

in this work, we further propose a single-path sub-nets sampling

method that can generate multiple sub-nets in different epochs

within only one training round.

2 DYNAMIC NEURAL NETWORK

In this section, we first describe the overflow of the dynamic neural

network framework and then discuss the various uniform and non-

uniform sampling methods [13, 15] in detail. As shown in fig.1,

the overflow of the dynamic neural network framework consists of

two phases:

• Sub-nets generation: In this phase, multiple sub-nets are

generated from the background model concerning different

model sizes. Our previous research papers [13, 15] generate

the sub-nets in uniform and non-uniform formats respec-

tively. In terms of non-uniform sub-nets generation, the

method in [15] samples each sub-net by fully re-training

the background model once, named multi-path non-uniform

sub-nets generation. To reduce the training cost, in this work,

we propose a single-path sub-nets generation method, which

generates multiple sub-nets from different training epochs

within only one training round.

• Fused sub-nets training: To construct a dynamic model

where the sub-nets generated from phase 1 can be exe-

cuted independently, two fusion techniques are utilized: 1)

weights fusion: the overlapped weights of sub-nets are

partially shared within a dynamic model. 2) optimization

fusion: these sampled sub-nets are fused into a loss func-

tion with multi-objective optimization [16]. By doing so, the

dynamic model could switch between different sub-nets for

run-time tuning between speed, power consumption and

accuracy.

2.1 Sub-nets generation

To better understand the method, we clarify the notation used in

this work. Given a deep neural network 𝑓 (𝒙;W) with 𝐿 layers,

where 𝒙 is the data and W𝑙 means the weight parameters. We

denote the 𝑖th sub-net as a set of layer-wise weight binary mask
{M𝑙,𝑖 }

𝐿
𝑙=1 ∈ {0, 1}.

2.1.1 Uniform sub-nets generation method. As illustrated in fig.2(a),

[13, 16] sample each sub-net by manually setting a channel-width

ratio, which is a constant factor (e.g., 0.25×, 0.5×) shared by all
layers. Such constrain can be formatted as

𝑅(M0,𝑖 ) = 𝑅(M1,𝑖 ) = ... = 𝑅(M𝐿,𝑖 ) (1)

Where 𝑅 represents the channel-width ratio which is a fixed con-

stant among all layers for the 𝑖th sub-net. For example, the 0.25×
sub-net sequentially selects quarter number of weight output chan-

nels for all layers except the last one. Also the 0.5× sub-net selects

half number of weight output channels sequentially in same order

as 0.25× sub-net, which means 0.25× sub-net is a complete subset

of the 0.25× sub-net.

2.1.2 Non-uniform sub-nets generation method. Different from the

uniform sub-nets generation which simply selects sub-nets by hand,

the non-uniform dynamic neural network utilizes optimized group

Lasso-based regularization method, named clipped Lasso [14, 15],

to learn the sub-nets structures.

Generation via clipped Lasso regularization. Group Lasso is a

general regularization-based method for structured pruning [12],

which acts as a additional term in the loss function to penalize all

the weights. Different from that, the clipped group Lasso only acts

on the weights with larger magnitude, which are considered as

“important" weights. To achieve this, an adaptive Weight Penalty
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Figure 2: Overview of uniform (a), multi-path (b) and single-

path (c) non-uniform sub-nets generation.

Clipping (WPC) in [15] is adopted, which is given by:

L∗ = L(𝑓 (𝒙 ; {W𝑙 }
𝐿
𝑙=1)) + 𝜆

𝐿∑

𝑙=1

𝐺𝑙∑
𝑖=1

min
(
| |W𝑙,𝑖 | |2;𝜏𝑙

)
︸����������������︷︷����������������︸

WPC

s.t. 𝜏𝑙 = 𝛽 ·
1

𝐺𝑙

𝐺𝑙∑
𝑖=1

| |W𝑙,𝑖 | |2

(2)

Where L is a general loss function(i.e. cross-entropy), and the

second term in the loss function is a weight penalty to perform

sampling by pruning. 𝜆 is a hyper-parameter to adjust the weight
regularization capacity. Moreover, the adaptive threshold 𝜏𝑙 is uti-
lized to clip the penalty on weights with larger 𝐿2-norm | |𝑾𝑙,𝑖 | |2.

The clipping threshold 𝜏𝑙 is equal to the mean of | |𝑾𝑙,𝑖 | |2 with a

scaling factor 𝛽 ∈ (0, 1). By doing so, the weight penalty will be
only acted on the “important" weights, which has larger 𝐿2-norm
| |𝑾𝑙,𝑖 | |2 in comparison to the threshold 𝜏𝑙 .

Multi-path non-uniform sub-nets generation. As illustrated in

fig.2(b), to generate each sub-net, the background model needs to

be retrained for each subnet with clipped group Lasso regularization

as depicted in eq.2. It can be formatted as:

{M𝑙,𝑖 }
𝐿
𝑙=1 = argminL∗(𝑓 (𝒙 ; {W𝑙 ·M𝑙,𝑖 }), 𝜆𝑖 , 𝛽𝑖 ) (3)

Input

Dynamic Model

Forward and 
Backward

+ Loss

Sub-net N

Forward

Teacher net

Sub-net 1

(a)

Input

Dynamic Model

Sub-net 1

Forward and 
Backward
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Sub-net N
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Figure 3: Fused sub-nets training pipeline for (a)

uniform[13] and (b) non-uniform sub-nets[15].

By choosing different hyper-parameter 𝜆𝑖 and 𝛽𝑖 for 𝑖th sub-net,
multiple non-uniform sub-nets with different model sizes can be

generated [14].

Single-path non-uniform sub-nets generation. To reduce the train-

ing cost of the multi-path non-uniform sub-nets generation, in this

work, we propose to sample multiple sub-nets within only one

training round. Such method is inspired by an important observa-

tion: given a fixed hyper-parameter 𝜆𝑖 , the non-sparse background
model is pruned progressively during training with clipped lasso reg-

ularization, which means multiple sub-nets with different model sizes

can be generated in difference epochs. It can be formatted as:

{M𝑙,𝑖 }
𝐿
𝑙=1 = argminL∗(𝑓 (𝒙 ; {W𝑙 ·M𝑙,𝑖 }), 𝜆, 𝛽, 𝑒𝑖 ) (4)

where 𝑒𝑖 represents the epoch to select the corresponding 𝑖th sub-
net during one-round training (e.g., 20 epoch, 50 epoch).

2.2 Fused sub-nets training

After multiple sub-nets are sampled in phase one, the fused sub-

net training is utilized to fuse those sampled sub-nets into a gen-

eral cross entropy loss function with multiple objective optimiza-

tion. Such fused sub-nets training has two important properties:

1) weights fusion: the overlapped weights of different sub-nets

are partially shared within a dynamic model. 2) optimization fu-

sion: these sampled sub-nets are fused into a loss function with

multi-objective optimization [16], which can be formatted as:

min
{W𝑙 }

𝐿
𝑙=1

𝑁∑
𝑖=1

L𝑖

(
𝑓 (𝒙 ; {W𝑙 ·M𝑙,𝑖 }

𝐿
𝑙=1)

)
(5)

The fused sub-net training pipeline is illustrated in fig.3. Same as

multiple networks optimized individually, all sub-nets pass thought

the forward and backward to compute their gradients. But differ-

ently, these gradients are collected to update the weights once.

Although the computation complexity is increased comparing with

a single network training procedure, the dynamic model greatly
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reduces the developer-cost of training these sub-nets individually.

Furthermore, it achieves the run-time trade-off among speed, power

and accuracy. So, utilizing dynamic neural network, users can ad-

just the execution model in real-time into a suitable sub-net w.r.t

the current hardware resources and environment requirements.

As illustrated in fig. 3(a), knowledge distillation [6, 13] could

be leveraged to improve accuracy, but sacrificing the memory and

computation cost. The main idea behind it is to train sub-nets

by mimicking a pre-trained larger model (teacher net as shown

in Fig. 3(a)). Specifically, the sub-nets are not only optimized by

minimizing cross entropy loss with data labels, but also by distilling

information from the teacher model whose output is considered

as soft label. Alternatively, as illustrated in fig. 3(b), it is also fine

to directly compute a general cross entropy loss for all sampled

sub-nets.

3 EXPERIMENTS

In this section, we first elaborate on the experiments configurations,

then study the accuracy and latency of different methods. In the

end, we analyze and visualize the sub-nets structures.

3.1 Experiment Setup

3.1.1 Dataset and training configurations. We evaluate the experi-

ments for uniform[13] and multi-path [15] non-uniform methods

on both CIFAR-10 [9] and ImageNet [1] dataset using ResNet [3]

architecture. The detailed experiments setting can refer to our prior

works [13, 15]. Moreover, we also test the single-path non-uniform

method on CIFAR-10 using ResNet-20. Specifically, during sub-nets

generation phase, we adopt SGD optimizer with the 0.01 learning

rate trained by 60 epochs. We mainly select four sub-nets with

different model sizes. For the fused training phase, single-path non-

uniform method follows the same configuration with multi-path

method [15].

3.1.2 Baseline methods. There are mainly three baseline meth-

ods for comparison purpose. First, Slimmable Neural Network (S-

NN) [16], which is also a uniform dynamic neural network method

without using knowledge distillation. Second, the sampled sub-nets

that train from scratch individually. Third, the sub-nets that are

sampled by conventional group Lasso regularization method[12].

3.2 Uniform dynamic neural network

Table 1 illustrates the accuracy results on CIFAR-10. Note that, the

teacher model is also ResNet-20. We denote the uniform sub-nets

generation method as ‘Ours-U’. It shows that our full precision

(FP) models achieve better accuracy on all selected sub-nets than

S-NN. Moreover, it has negligible accuracy loss on 16-bits and 8-bits

quantization on both weights and activations.

We further study the accuracy on ImageNet dataset as shown

in table 2 . [15] also compares with the selected sub-nets that are

trained independently under the same sizes (denoted as ‘I-NN’ in

table 2). The results show that ‘Ours-U’ achieves the best accuracy

for each sub-net with the same size of parameters.

Network
Width S-NN [16] Ours-U[13]

FP FP 16-bit 8-bit

ResNet20

1.0× 89.8 91.1 91.0 91.1

0.75× 88.4 90.2 89.8 89.8

0.5× 85.6 87.5 87.0 86.9

0.25× 79.5 81.0 80.7 80.6

Table 1: Inference accuracy (%) of ResNet20 on Cifar10 for

uniform dynamic neural network[13].

Network Width I-NN S-NN [16] Ours-U[13] Params(MB)

ResNet50

1.0× 76.1 76.0 76.6 25.5

0.75× 74.7 74.9 75.4 14.7

0.5× 72.0 72.1 72.4 6.9

0.25× 63.8 65.0 65.2 2.0

Table 2: Inference accuracy (%) of ResNet50 on ImageNet for

uniform dynamic neural network[15].

3.3 Non-uniform dynamic neural network

The evaluation results are illustrated in table. 3 and table. 4. Note

that, we denote the multi-path non-uniform method as ‘Ours-M’

and single-path method as ‘Ours-S’. Ours-M method achieves al-

most the same or better accuracy for both individual and dynamic

networks, with even smaller number of parameters (106) and FLOPS

(108) of each sub-net. It’s worthy to note that ‘Ours-S’ has worse

accuracy than ‘Ours-M’, but reducing ∼ 2.75× training time.

Sub-nets subnet1 subnet2 subnet3 subnet4

Group

Lasso

Parameters 1.86 5.74 15.02 28.33

FLOPS 2.71 7.91 22.27 43.49

Individual 76.5 85.5 89.1 91.4

S-NN[16]

Parameters 1.69 6.74 15.14 26.83

FLOPS 2.62 10.26 22.91 40.58

Individual 80.1 86.5 89.5 91.3

Dynamic 79.0 85.4 88.6 89.7

Ours-M[15]

Parameters 1.22 6.67 14.39 28.19

FLOPS 2.21 9.56 19.75 43.49

Individual 81.3 87 89.3 91.4

Dynamic 80.7 86.3 88.4 89.9

Ours-S

Parameters 1.41 6.26 14.78 28.23

FLOPS 2.48 9.11 20.07 43.49

Individual 80.3 86.8 88.9 91.4

Dynamic 79.5 85.9 88.2 89.9

Table 3: Accuracy (%) results on CIFAR-10 using ResNet-20.

‘Individual’means that the sub-nets are trained from scratch

independently. To the contrary, ‘Dynamic’ indicates the dyn-

maic model is trained via sub-nets fusion method[15]

3.4 Hardware performance

We further study the real hardware latency of dynamic neural

network on two platforms: INTEL Xeon CPU and NVIDIA Titan-

Xp GPU. Fig.6 illustrates the trade-off between accuracy and latency
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(a) S-NN[16] (b) Group Lasso[12] (c) Ours-M[15]

Figure 4: The sub-nets structures visualization on CIFAR-10 dataset using ResNet20[15]

Sub-nets subnet1 subnet2 subnet3 subnet4

S-NN

[16]

Parameters 0.83 3.05 6.68 11.68

FLOPS 1.35 4.83 10.4 18.14

Individual 49.9 61.1 66.7 69.7

Dynamic 48.7 60.9 66.6 69.4

Ours-M

[15]

Parameters 0.66 2.73 5.14 12.2

FLOPS 0.89 3.97 7.17 19.8

Individual 50.1 62.6 66.9 71.4

Dynamic 48.4 61.8 66.8 69.8

Table 4: Accuracy (%) results on ImageNet using ResNet18

for the dynamic neural network via multi-path non-

uniform sub-nets generation method[15].

S-NN[16] Ours-M[15]

Figure 5: The sub-nets structures on ImageNet dataset using

ResNet18 [15].

on both CPU and GPU. The experiment results show that multi-

path non-uniform method significantly improve the performance

of dynamic trade-off.

3.5 Sub-nets structure visualization

Although many works have proposed various pruning methods

resulting in different pruned model structure, there is no golden

solution that is considered as the best one. As shown in fig.4 and

fig.5, we study the sampled sub-nets structures via non-uniform

generation method[15] to further explore network pruning and

architecture search, which is described as follows:

Figure 6: The trade off between latency and accuracy on Ti-

tan GPU and Xeon CPU, for (top) ResNet-20 on CIFAR-10

and (bottom) ResNet-18 on ImageNet.

• Except the full-size network, the first layers of all sampled

sub-nets almost keep the same channel numbers, while the

last layers are gradually having more number of channels

with larger sub-net size. This observation implies that large

enough first and last layers are needed to keep representation

ability towards high accuracy.

• Significant higher channel numbers are occupied for the

layer after a down sampling operation (e.g., conv8 and conv14

in fig.4 ). This may because that down sampling reduces the

feature map dimension. Thus, more channels are needed to

have the same amount of feature information.
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• In comparison to conventional group Lasso method, sub-nets

that sampled by clipped Lasso [15] is more balanced in each

layer.

4 DISCUSSION

4.1 Teacher Model Selection

We study that how different teach models used by knowledge distil-

lation will effect the performance of dynamic neural network[13].

As illustrated in table 5, three different teacher models are used

as teacher: ResNet20/32/44. The experiment results show that, in

general, the trained dynamic model with larger teacher model can

achieve better performance.

Student
Width Teacher

ResNet20 ResNet32 ResNet44

ResNet20

1.0x 91.1 91.4 91.9

0.75x 90.2 90.7 91.2

0.5x 87.5 88.6 88.7

0.25x 81.0 82.9 82.5

Table 5: Teacher model selection for uniform sub-nets gen-

eration method[13]

4.2 Dynamic Network with Larger Number of

Sub-nets

In the main experiment results above, we only show the model

with four sampled sub-nets. Our methods also support much larger

number of sub-nets. To show its performance, we further study a

dynamic neural network with larger number of non-uniform sub-

nets via multi-path method [15]. Inspired by [17], the low bound

(e.g., 0.25×) and high bound (full model size) for the sub-nets are
configured. As illustrated in fig.7, nine different sub-nets are evalu-

ated on CIFAR-10 dataset using ResNet-20. The results show that

better accuracy can be achieved at most sub-nets compared with

S-NN.

Figure 7: The trade-off between accuracy and FLOPS

of a dynamic network with nine different sub-nets on

ResNet20[15]

5 CONCLUSION

In this work, we explicitly review different methods to construct

a dynamic neural network, which mainly includes two phases:

sub-nets generation and fused sub-nets training. Two different sub-

nets generation methods are discussed, which are used for the

uniform and non-uniform dynamic neural networks respectively.

Furthermore, to reduce the training cost of multi-path non-uniform

sub-nets generation method, in this work, we also propose a single-

path method. Experiments on CIFAR-10 and ImageNet both validate

the effectiveness of our methods. We also demonstrate the run-

time trade-off between inference accuracy and latency for dynamic

neural network on Titan GPU and Xeon CPU.
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