
Processing-in-Memory Acceleration of MAC-based Applications
Using Residue Number System: A Comparative Study

Shaahin Angizi†, Arman Roohi‡, MohammadReza Taheri∗, Deliang Fan†
† School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA

‡ Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA
∗ Independent Researcher

The first two authors contributed equally
aroohi@unl.edu

ABSTRACT
Processing-in-memory (PIM) has raised as a viable solution for the
memory wall crisis and has attracted great interest in accelerating
computationally intensive AI applications ranging from filtering to
complex neural networks. In this paper, we try to take advantage
of both PIM and the residue number system (RNS) as an alternative
for the conventional binary number representation to accelerate
multiplication-and-accumulations (MACs), primary operations of
target applications. The PIM architecture utilizes the maximum
internal bandwidth of memory chips to realize a local and paral-
lel computation to eliminates the off-chip data transfer. Moreover,
RNS limits inter-digit carry propagation by performing arithmetic
operations on small residues independently and in parallel. Thus,
we develop a PIM-RNS, entitled PRIMS, and analyze the potential
of intertwining PIM architecture with the inherent parallelism of
the RNS arithmetic to delineate the opportunities and challenges.
To this end, we build a comprehensive device-to-architecture eval-
uation framework to quantitatively study this problem considering
the impact of PIM technology for a well-known three-moduli set
as a case study.

CCS CONCEPTS
• Hardware → Memory and dense storage;

KEYWORDS
processing-in-Memory; residue number system; multiplication-and-
accumulation

ACM Reference Format:
Shaahin Angizi†, Arman Roohi‡, MohammadReza Taheri∗, Deliang Fan†.
2021. Processing-in-MemoryAcceleration ofMAC-basedApplications Using
Residue Number System: A Comparative Study . In Proceedings of the Great
Lakes Symposium on VLSI 2021 (GLSVLSI ’21), June 22–25, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3453688.
3461529

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461529

Figure 1: (a) MAC occupations in different neural networks [3], and (b) energy costs for
addition, multiplication, and read operations in 45nm 0.9V [4].

1 INTRODUCTION
Since we have hit multiple walls in processor and system design,
including power and memory wall, instruction-level parallelism
wall, and recently network wall, achieving significant improve-
ments (order-of-magnitude) in the performance of general-purpose
architectures is challenging and crucial. Therefore, with the high
demands on high performance and energy-efficient designs for
resource-limited devices such as edge-AI, domain-specific accel-
erator designs have attained worldwide attention in both the re-
search community [1, 2] as well the industry such as Graphcore
IPU, Google TPU, and Cerebras. On the one hand, numerous signal
processing and artificial intelligence applications, including natural
language processing, machine learning platforms, speech, pattern,
and emotion recognition, require intensive Multiply-Accumulate
(MAC) operations. For example, in Fig. 1a, the main portions (>99%)
of various deep neural networks (DNNs), as a particular subset of
machine learning, are occupied by MAC operations, while MAC
units are one of the most energy-hungry building blocks. On the
other hand, the aforementioned applications’ energy consumption
is usually dominated by data accesses to off-chip memory and on-
chip storage existed in conventional von Neumann architectures,
shown in Fig. 1b. It means MAC units’ processing demands face se-
rious challenges for their tractability in terms of memory resources.
These have been motivating the development of alternative ap-
proaches in both organization and hardware domains to improve
MAC design efficiency.

Processing-in-Memory (PIM) architecture has beenwell designed
and developed for different applications [5–7] as a possible way to
address the challenges mentioned earlier. The main idea of PIM is
to incorporate logic computation within memory units such that
memory can process data internally that provides inherent parallel

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

265

https://doi.org/10.1145/3453688.3461529
https://doi.org/10.1145/3453688.3461529
https://doi.org/10.1145/3453688.3461529

processing mechanisms exploiting large internal memory band-
width. Considering the larger memory capacities of DRAM and
off-chip data movement reduction as opposed to SRAM-based PIM,
processing-in-DRAM platforms [6–9] have gained much more at-
tention as a promising accelerator for different applications. DRISA
[7] presents two alternative 3T1C- and 1T1C-based PIM techniques
as CNN’s accelerators and improves speed and energy-efficiency
by 7.7× and 15× over GPUs, respectively. Nevertheless, the im-
plementation of X(N)OR and addition -based tasks faces multiple
challenges, making these platforms inefficient. This inefficiency
comes from the intrinsic logic complexity of X(N)OR operation that
is implemented by majority/AND/OR-based multi-cycle operations
and required row initialization methods.

In addition to the PIM platform as a non-von Neumann architec-
ture, using the Residue Number System (RNS) as an unconventional
number system can lead to further performance improvements in
a vast range of computationally intensive applications. RNS is a
non-weighted number system whose unique features and number-
theoretic properties can enhance the performance of special types
of computations. Compared to the traditional weighted number
system that tolerates the long carry propagation chain in the arith-
metic operations, RNS restricts the inter-digit carry propagation
by carrying out operations like addition and multiplication on rel-
atively small integers in several parallel and individual channels.
This number representation leads to shortening the carry prop-
agation chain of addition and reducing partial product matrices’
size in multiplication, which results in high performance and low
power computations in a vast range of applications. Although these
promising features offer high-speed and low-power VLSI imple-
mentation in many applications like DSPs and cryptography, RNS is
limited by complex and costly intermodulo operations, such as mag-
nitude comparison, sign detection, and reverse conversion [10, 11].
Thanks to the high rate of internal arithmetic operations to for-
ward/reverse conversions in the RNS realization of MAC-based
application, herein, leveraging RNS-based computation leads to
performance enhancement.

To comprehensive examine the impact of both PIM implementa-
tions and the RNS in the MAC-based structures, in summary, our
major contributions in this paper can be listed as follows: 1) We
introduce a PIM-based MAC engine with RNS number representa-
tion, namely PRIMS1, to reduce the power dissipation and enhance
the operational frequency. 2) Comprehensive energy and delay
analyses are performed regarding various volatile and non-volatile
memory technologies. 3) We developed an evaluation framework
to study PIM implementations’ impact in the RNS domain, from
device-level upwards to architecture-level.

2 BACKGROUND
2.1 Residue Number System in a Nutshell
Residue Number System (RNS) is a non-weighted number system
initially proposed during the late 1950s by Garner. The unique fea-
ture and number-theoretic properties of RNS can boost up the speed
of special-purpose computations. Contrary to the conventional
weighted number system, which is suffering from the inevitable

1Inspired by the name of the greedy algorithm, “Prim’s.”

Figure 2: The typical Architecture of an RNS.

lengthy carry propagation chain, RNS limits inter-digit carry prop-
agation. An RNS composed of b relative prime numbers such as
{𝑚1,𝑚2,. . . ,𝑚𝑏 }, where 𝑏 ≥ 2 is the cardinality of the system, and
𝑚𝑖 is called the moduli. In such RNS, any integer X with 0 ≤ X < M
is uniquely represented by a 𝑏-tuple of non-negative integers such
as (x1, x2, ..., x𝑏), where x𝑖 = X mod m𝑖 is called residue, and M=∏𝑏

𝑖=1𝑚𝑖 is the dynamic range of the system [10, 12].
Fig. 2 depicts the typical architecture of an RNS, which is con-

sists of three main blocks: Forward converter, RNS datapath, and
reverse converter. As it can be seen from Fig. 2, despite the fantastic
benefits of RNS, it faces some overhead for interfacing with binary-
weighted number system by employing the forward and reverse
converters. The forward converter’s role is computing the residue
for each moduli channel based on the received weighted numbers
as input data. In comparison, the reverse converter translates the
obtained results from the datapath computations to the weighted
number representation. The arithmetic operations are carried out
in the RNS datapath. These operations can be categorized into two
groups. The main and the primary group consist of modulo 𝑚𝑖

operations ⊗ ∈ {+,−,×} with 𝑖 ∈ {1, 2, . . . , 𝑏}, that are executed
parallel and independently in modulo arithmetic channels. Let X,
Y, and R be three integers, where R is computed by carrying out
the arithmetic operation ⊗ upon X and Y, i.e. 𝑅 = 𝑋 ⊗ 𝑌 . The
isomorphic relations of these computations, between the weighted
number representation and their RNS counterpart with a given
moduli set {𝑚1,𝑚2,. . . ,𝑚𝑏 } can be expressed as:

𝑅 ≡ (𝑟1, 𝑟2, . . . , 𝑟𝑏) (1)

𝑋 ⊗ 𝑌 ≡
(
⟨𝑥1 ⊗ 𝑦1⟩𝑚1 , ⟨𝑥2 ⊗ 𝑦2⟩𝑚2 , . . . , ⟨𝑥𝑏 ⊗ 𝑦𝑏⟩𝑚𝑏

)
(2)

where (𝑥1, 𝑥2, . . . , 𝑥𝑏), (𝑦1, 𝑦2, . . . , 𝑦𝑏), and (𝑟1, 𝑟2, . . . , 𝑟𝑏) are the
residue representation of X, Y, and R, respectively. Arithmetic oper-
ations are not limited to multiplication, addition, and subtraction
and may include operations such as sign identification, magnitude
comparison, and scaling, depending on the application. These op-
erations impose extreme complexity into RNS due to their costly
inter-modulo computations, which cannot independently perform
parallel. Albeit energy-efficient implementations for inter-modulo
operations are vital and challenging, it is out of the scope of this
work.

2.2 RNS-based MAC Unit
The MAC unit can be regarded as one of the substantial comput-
ing blocks in DSP applications. The architecture of a conventional

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

266

Figure 3: Conventional schematic of MAC unit, where𝐶 =
∑𝐿

𝑗=1 𝐴𝑗 × 𝐵 𝑗 .

MAC unit is shown in Fig. 3, which accumulates the result of a
sequence of multiplication. According to Fig. 3, an n-bit MAC unit
includes an n-bit multiplier, a (2𝑛 + 𝑙𝑜𝑔2𝐿)-bit adder, and a control
unit, where 𝐿 is the length of accumulation sequence. The multi-
plier includes three main components: a partial product generator,
a partial product reduction unit, and a carry propagate adder that
performs the final 2-operand addition. To accelerate the operation
of the MAC unit, a vast range of studies in several design levels are
conducted in the literature. One of these solutions is adopting the
RNS in the realization of MAC-based applications. Due to the note-
worthy features of RNS, like highly parallel arithmetic operation,
this number representation has gained attraction for a wide range
of compute-intensive MAC-based applications.

To implement MAC operation in the RNS domain, numbers A
and B as the inputs of MAC unit are represented in residue form
considering the target moduli set {𝑚1,𝑚2, . . . ,𝑚𝑏 }. Therefore, by
adopting RNS, the multiplication and accumulation of typical MAC
unit in Fig. 3 can be conducted in b independent and parallel datap-
aths in separate residue channels, as shown in Fig. 4. The modulo
MAC operation in each independent residue channel is carried out
by using modulo multiplier and adder. The complexity and effi-
ciency of the modulo multiplier and modulo adder of the MAC
unit in each channel are highly dependent on its corresponding
modulus.

Since the modulo addition and multiplication can be regarded
as the vital operations in the datapath of RNS-based MAC with a
significant impact on the operational efficiency, several contribu-
tions have been made to the literature on the effective realization
of these arithmetic blocks. The types of selected moduli set for RNS
and the topologies of the adder and multiplier structures can be
counted as two influential factors in the performance of modulo
adder and multiplier. Considering the first factor, special moduli in
the form of 2𝛼 , 2𝛼 − 1, and 2𝛼 + 1 are mostly explored for low-cost
and effective hardware implementation of modulo arithmetic oper-
ations in RNS. Considering the second factor, various techniques
and topologies for the hardware realization of modulo adders and
multipliers are presented in the literature. Apart from these efforts,
one ingenious way to accelerate the RNS-based MAC operation is
breaking the memory wall in modulo operations of the MAC unit:
modulo addition and multiplication. To enhance the exploitation of
the parallelism provided by the RNS, we mainly focus on the RNS-
based MAC acceleration using non-von Neumann architectures,
i.e., processing in-memory designs. Partial product generation and
partial product reduction of modulo multiplier are conducted by
employing in-memory AND operations and compressors, respec-
tively. Also, for improving the modular addition performance in
the accumulator and the final step of the multiplier, in-memory

Figure 4: (a) General MAC architecture for arbitrary moduli sets, and (b) block diagram of
the modulo𝑚1MAC unit.

parallel prefix structures that provide a brilliant trade-off between
delay and hardware cost are utilized in this paper.

3 PRIMS ARCHITECTURE
We develop a general RNS-based MAC PIM engine called PRIMS,
as shown in Fig. 5 to perform a PIM technology-dependencies
study in Section 4. To take advantage of the promising features of
RNS, PRIMS performs almost the entire computations in the RNS
domain. Thanks to the high performance and low complexity of
modulo-(2𝑛 + 1)-free arithmetic operations, RNS with moduli set
{2𝑛+1 − 1, 2𝑛 − 1, 2𝑛} has found great popularity among researchers
for boosting a variety of computation-intensive applications. This
moduli set’s unique theoretical properties also lead to effective
hardware implementations for a variety of intermodulo operations
[13]. Therefore, to validate and evaluate our PRIMS, this moduli set
is chosen.

The PRIMS is developed on top of the existing main memory
hierarchy by dividing every memory chip into multiple memory
banks all the way into multiple sub-arrays. The PRIMS converts
every memory sub-array to a potential computation core, called
computational sub-array, capable of performing in-memory logic
and MAC operation on the memory side depending on the PIM
technology features. For the software support, we developed a par-
ticular backbone virtual machine and instruction set for parallel
thread execution such that the programs could be translated at
install time to the PRIMS hardware instruction set. PRIMS receives
one of the PIM instructions from the memory controller and ac-
cordingly issues control signals to implement one of the in-memory
functions. Besides, we designed add-on forward and backward con-
verters, and a global buffer on the memory die to facilitate RNS
processing. Figure 6 gives a clear picture of how the PRIMS data
partitioning and mapping occur, considering a three-moduli RNS
{𝑚1,𝑚2,𝑚3}. As shown in step (1), the input batch with a size of

Figure 5: RNS-based MAC PIM engine (PRIMS) schematic regarding studied memory cell
technologies.

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

267

Figure 6: The multiply-accumulate operations for two 3D tensors, A and B, using RNS-based MAC engine.

kw×kh×c is fed to the Forward conv. to provide a triple of integer
number three parallel channels for each integer number element
corresponding to the target moduli set, represented by 𝐴𝑚1, 𝐴𝑚2,
and 𝐴𝑚3. Each channel is then assigned to a certain sub-array ad-
dress with the memory, where the corresponding operand batch
moduli is pre-stored 𝐵𝑚1, 𝐵𝑚2, and 𝐵𝑚3 in step (2). For example,
sub-array 𝑖 to 𝑖 + 3 are allocated to compute the MAC between 𝐴𝑚1
and 𝐵𝑚1 through summation implementation in step (3) parallel
computation. The MAC engine of modulo 25−1 channel is depicted
in Fig. 7. The graph structure of the modulo 25 − 1 parallel prefix
adder as a primary building block of RNS-based MAC is demon-
strated, wherein each building block is effectively translated into
PRIMS’s ISA. All the preliminary calculation square blocks could
be generated in an ideal PIM platform.

4 PIM IMPACT: CHOICE OF TECHNOLOGY
As different data-intensive applications with various workload sizes
and memory access patterns are expected to benefit from PIM in
both cache and main memory levels, selecting the proper design
for a particular application is a complex task. Besides, by choos-
ing a PIM design, it is imperative to establish uniform evaluation
conditions to make an impartial choice between available design
options [14, 15]. To study the impact of the choice of NVM/VM
technology in MAC engine performance, we first considered a 4
MByte memory unit and adopted the promising PIM techniques,
i.e., GraphS [16] for SOT-MRAM (represented by SOT) and ReRAM
(Re); STT-CiM [17] as the STT-MRAM design (STT); RIMPA [18]
for Domain Wall Motion Magnetic Memory (DW); Neural Cache
[19] for SRAM (S); Ambit (D1) [6] and ReDRAM (D2) [8] designs
for DRAM. To perform fair technology-dependent analyses among
various technologies, the mentioned arithmetic-friendly moduli set
with 𝑛=5, {𝑚1 = 26 − 1,𝑚2 = 25 − 1,𝑚3 = 25}, is selected.

Figure 7: Schematic of a MAC unit for modulo 25 − 1. The PRIMS’s instructions to process
the accumulation in a computational sub-arrays.

4.1 Framework
We developed a comprehensive device-to-architecture level cross-
layer framework from scratch shown in Fig. 8. At the device level,
we jointly used the Non-Equilibrium Green’s Function (NEGF) and
Landau-Lifshitz-Gilbert (LLG) equations to model STT-MRAM and
SOT-MRAM bitcell [20, 21]. We used the default ReRAM and SRAM
.cell configuration of NVSim [22]. Moreover, DRAM cell parameters
were taken and scaled from Rambus [23]. At the circuit level, we
realized the generic digital PRIMS accelerator shown in Section 3
with the aforementioned NVM/VM technologies. At the sub-array
level, the specific memory peripheral circuity, including sense am-
plifier, a modified row decoder, etc. were replicated in Cadence
Spectre with 45nm NCSU Product Development Kit (PDK) library
[24] to extract the performance parameters such as latency and
energy consumption, etc. It is worth mentioning that forward and
reverse converters are exactly the same and are therefore not con-
sidered in our assessment for all architectures. At the architecture
level, we develop a comprehensive PIM compiler and evaluation
framework working with the NVSim tool for PRIMS. Given an in-
put network structure, the framework takes the instructions from
a user interface, partitions, maps the input data batches into the
computational sub-arrays for three channels, and then estimates
the performance of PIM platforms. We report our assessment on
the choice of technology in Fig. 9.

MTJ modeling using

NEGF-LLG

(Verilog-A)

Device

Extracting Performance Parameters i.e. Delay, Energy, Area

(Spectre/Spice)

Circuit

MATLAB-code for mapping and evaluation of different applications

C
o

n
tr

o
lle

r

(S
yn

o
p

sy
s

 D
es

ig
n

 C
o

m
p

ile
r)

Parameter settings

Application performance evaluations

MRAM

Circuit level based on

Ambit and ReDRAM

DRAM

Circuit level based on

Neural Cache

SRAM

DRAM cell

parameters from

Rambus

ReRAM

Design & Verification of a single 256x256 sub-array

(Cadence Spectre/Spice)
Circuit level GraphS

Default NVSim

ReRAM .cell file

Default NVSim SRAM

.cell file

Application

00

Verilog-A

1T1R STT-/

3T SOT-

MRAM

Develop PIM library for NVSim based on circuit level data for MRAM, ReRAM

and SRAM

Architecture

Modified Cacti based on circuit

level DRAM data

Extracting Performance Parameters i.e. Delay, Energy, Area for the system w.r.t. configuration file (.cfg)

Verilog-A

3T1R DW-

MRAM

Circuit level

RIMPA

Verilog-A 1T1R digital ReRAM

Figure 8: The bottom-up evaluation framework to determine the PIM impact.

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

268

Figure 9: Technology design-dependent performance of various PIM platforms: (a) Read latency, (b) Write latency, (c) In-memory Boolean logic (N)AND/(N)OR latency, (d) In-memory
addition/subtraction latency, (e) Read dynamic energy, (f) Write dynamic energy, (g) In-memory Boolean logic (N)AND/(N)OR energy, (h) In-memory addition/subtraction dynamic energy,
(i) Breakdown of area, (j) Power consumption in log-scale, (k) In-memory MAC latency in log-scale, and (l) In-memory MAC energy in log-scale.

4.2 Latency
Fig. 9a-d reports the latency for various under-test PIM candidates
in terms of read/write, in-memory Boolean logic, and add/sub, re-
spectively. We observe that ReRAM-PIM (indicated by Re) gives
the smallest latency for the read operation, whereas for the write
operation, it requires ∼20ns for programming to LRS and HRS.
Therefore, this could not be a proper candidate for the digital write-
back-intensive MAC-based applications such as DNNs. We can see
that SOTMRAM-PIM (SOT) achieves the smallest write latency
among NVMs (∼2.6ns) due to the intrinsic SOT-based magnetiza-
tion switching [15]. As for performing in-memory (N)AND/(N)OR
(Fig. 9c) and addition/subtraction operations (Fig. 9d), Re, volatile
SRAM (indicated by S) and SOT designs are respectively the fastest
designs. Besides, we report the breakdown of PIM MAC latency
for bit-wise multiplication and addition operation based on the
mapping technique presented in Section 3. In summary, we observe
that SOT (∼14.3ns) and S (∼19.4ns) offer the least MAC latency
compared to other counterpart designs among NVMs and VMs,
respectively.

4.3 Energy Consumption
We plot the dynamic energy consumption for various PIM candi-
dates in Fig. 9e-h. Based on our experiment results, SOT along with
S design could be again selected as the most promising energy-
efficient candidates among NVMs and VMs. As for D1, the PIM re-
quires a relatively small (0.75 nJ in Fig. 9g) to execute (N)AND/(N)OR,
however, it imposes 14memory cycles energy for addition/subtraction
operation to avoid overwriting data, which leads to much higher
energy consumption compared to other platforms (Fig. 9h). Fig. 9l
depicts the breakdown of PIM MAC energy for bit-wise multipli-
cation and addition operation. Based on the results, SOT and D2
achieve the least energy consumption compared with other designs
among NVMs and VMs, respectively. In terms of leakage power

consumption reported in Fig. 9j, the digital ReRAM and D1 could be
considered as more power-efficient candidates. The SRAM platform
consumes ∼14.5× more power when compared to the Re platform.

4.4 Area
Fig. 9i plots the breakdown of the area for various PIM technology
choices for memory die area and computational area. The com-
putational area includes areas imposed by the modified memory
controller, decoder, sense amplifiers, etc. In terms of memory die
area, the STT and D1 platforms show the smallest footprint, while S
owns the largest overall area compared to other PIM counterparts.

5 APPLICATION-LEVEL PERFORMANCE
To explore the trade-off between energy consumption and latency,
we implemented various MAC-based applications with the well-
known Slansky prefix structure using the selected technologies
from the cross-technology comparison in Section 4. We choose
five compact DNNs models for image classification, i.e., AlexNet,
SqueezeNet v1.0, MobileNet, GoogLeNet, and Inception-V2, SPDNN
for iris segmentation, WDRN-s and LapSRN for single-image super-
resolution. We then developed a correlated data partitioning and
mapping methodology for SOT, STT, S, and D2 platforms to make
a fair comparison.

The energy consumption results of this comparative study are
shown in Fig. 10a in log scale. Our first observation is that SOT
implementation of PRIMS consumes the smallest energy consump-
tion compared with others. This comes from the efficient MAC and
write-back operations in this technology. To show the impact of
micro-architectural design and mapping strategy in overall PIM
performance, we developed a second more optimized mapping tech-
nique. More number of local row buffers are used to avoid data
write-back. This new architecture requires a more specific mapping

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

269

Figure 10: The comparative results of (a) Energy Consumption and (b) Latency for SOT-
MRAM (SOT), STT-MRAM (STT), SRAM (S), and DRAM (D2) PIM platforms for various
MAC-based applications.

method (map2) for SOT, as shown in Fig. 10a. The SOT-Slansky-
map2 is able to reduce energy consumption on average by a factor
of 2 compared with baseline SOT. Our second observation is as the
workload size increases, the platforms with more energy-efficient
write-back operations such as S and D2 will show better perfor-
mance. Our third observation is that D2 consumes relatively smaller
energy comparedwith S in different benchmarks. Therefore, it could
be considered as the most energy-efficient volatile PIM.

Fig. 10b shows the log-scaled normalized latency of the same
under-test platforms to execute the MAC-based applications. Based
on our observation, SOT again stands as the fastest design, where
the S design stands as the second-best. Here, D2 shows the worst
performance mainly due to its intrinsic multi-cycle operations to
avoid data overwritten issues [8].

6 CONCLUSION AND FUTUREWORK
In this work, we studied the opportunities and challenges of lever-
aging the residue number system (RNS) as an alternative for the con-
ventional binary number representation to acceleratemultiplication-
and-accumulations (MACs) in the Processing-in-Memory (PIM) do-
main. We first developed a PIM-RNS architecture, entitled PRIMS,
and analyzed PIM architecture’s potential with the inherent par-
allelism of the RNS arithmetic. We then built a comprehensive
cross-layer evaluation framework to quantitatively study this prob-
lem in eight MAC-based applications considering both PIM and
RNS impacts. The obtained results show that with a proper choice
of PIM technology, the RNS could be a promising approach to accel-
erate the PIM operations further and reduce data communication
overhead.

There are numerous applications accelerated using RNS, which
can be divided into two categories: (1) applications that persist
against error, error-resilient, which means they function correctly
in the presence of faults at the cost of accuracy or performance
degradation. Their operations are comparable with the approximate
computation in the weighted number system, where we decrease
the precision to reduce the hardware cost with a slight accuracy
loss. In this case, a smaller number of bits can be used to perform
modular arithmetic operations, leading to a reduction in area, delay,
complexity, and accuracy. (2) applications that cannot tolerate error
during the operations, including cryptography and critical-mission
tasks. In this case, the error occurrence possibility is omitted using

a larger dynamic range and/or extending the dynamic range. The
defined dynamic range must cover all possible intermediate results
to avoid overflow (error). As future work, the proposed framework
will be extended to explore a proper tradeoff between accuracy and
the performance metrics, including complexity, power consumption,
and operating frequency with respect to the dynamic range of a
target moduli set.

7 ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under Grant No. 2005209 and No. 2003749.

REFERENCES
[1] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for

deep convolutional neural networks,” IEEE journal of solid-state circuits, vol. 52,
no. 1, pp. 127–138, 2016.

[2] A. Roohi et al., “Apgan: Approximate gan for robust low energy learning from
imprecise components,” IEEE Transactions on Computers, vol. 69, no. 3, pp. 349–
360, 2019.

[3] H. Sharma et al., “Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network,” in ISCA. IEEE, 2018.

[4] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),”
in ISSCC, 2014, pp. 10–14.

[5] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[6] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise operations
using commodity dram technology,” in MICRO. IEEE, 2017, pp. 273–287.

[7] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in 2017MICRO.
IEEE, 2017, pp. 288–301.

[8] S. Angizi and D. Fan, “Redram: A reconfigurable processing-in-dram platform
for accelerating bulk bit-wise operations,” in 38th ICCAD, 2019, p. 8942101.

[9] A. Roohi, S. Angizi, D. Fan, and R. F. DeMara, “Processing-in-memory acceleration
of convolutional neural networks for energy-effciency, and power-intermittency
resilience,” in 20th International Symposium on Quality Electronic Design (ISQED).
IEEE, 2019, pp. 8–13.

[10] C.-H. Chang et al., “Residue number systems: A new paradigm to datapath
optimization for low-power and high-performance digital signal processing
applications,” IEEE circuits and systems magazine, vol. 15, no. 4, pp. 26–44, 2015.

[11] M. Taheri et al., “Efficient incorporation of the rns datapath in reverse converter,”
IEEE TCAS II: Express Briefs, 2020.

[12] M. Taheri, N. Shafiee, M. Esmaeildoust, Z. Amirjamshidi, R. Sabbaghi-nadooshan,
and K. Navi, “A high speed residue-to-binary converter for balanced 4-moduli
set,” Journal of Computing and Security, vol. 2, no. 1, pp. 43–54, 2015.

[13] M. Taheri, K. Navi, and A. Sabbagh Molahosseini, “Efficient programmable power-
of-two scaler for the three-moduli set {2n+ p, 2n- 1, 2n+ 1- 1},” ETRI Journal,
vol. 42, no. 4, pp. 596–607, 2020.

[14] D. Reis et al., “Modeling and benchmarking computing-in-memory for design
space exploration,” in GLSVLSI, 2020, pp. 39–44.

[15] S. Angizi et al., “Accelerating deep neural networks in processing-in-memory
platforms: Analog or digital approach?” in ISVLSI. IEEE, 2019, pp. 197–202.

[16] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Graphs: A graph processing accelerator
leveraging sot-mram,” in DATE. IEEE, 2019, pp. 378–383.

[17] S. Jain et al., “Computing in memory with spin-transfer torque magnetic ram,”
IEEE TVLSI, vol. 26, no. 3, pp. 470–483, 2017.

[18] S. Angizi et al., “Rimpa: A new reconfigurable dual-mode in-memory processing
architecture with spin hall effect-driven domain wall motion device,” in ISVLSI.
IEEE, 2017, pp. 45–50.

[19] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep neural
networks,” pp. 383–396, 2018.

[20] X. Fong et al., “Spin-transfer torque devices for logic and memory: Prospects and
perspectives,” IEEE TCAD, vol. 35, no. 1, pp. 1–22, 2015.

[21] X. Fong, S. K. Gupta et al., “Knack: A hybrid spin-charge mixed-mode simulator
for evaluating different genres of spin-transfer torque mram bit-cells,” in SISPAD.
IEEE, 2011, pp. 51–54.

[22] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area model for
emerging nonvolatile memory,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[23] . DRAM Power Model. https://www.rambus.com/energy/.
[24] (2011) Ncsu eda freepdk45. [Online]. Available: http://www.eda.ncsu.edu/wiki/

FreePDK45:Contents

Session 6A: Poster Session I

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

270

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

	Abstract
	1 Introduction
	2 Background
	2.1 Residue Number System in a Nutshell
	2.2 RNS-based MAC Unit

	3 PRIMS architecture
	4 PIM Impact: Choice of Technology
	4.1 Framework
	4.2 Latency
	4.3 Energy Consumption
	4.4 Area

	5 Application-level Performance
	6 Conclusion and Future Work
	7 Acknowledgments
	References

