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Abstract

We present details on the observing strategy, data-processing techniques, and spectroscopic targeting algorithms
for the first three years of operation for the Dark Energy Survey Supernova Program (DES-SN). This five-year
program using the Dark Energy Camera mounted on the 4 m Blanco telescope in Chile was designed to discover
and follow supernovae (SNe) Ia over a wide redshift range (0.05<z<1.2) to measure the equation-of-state
parameter of dark energy. We describe the SN program in full: strategy, observations, data reduction, spectroscopic
follow-up observations, and classification. From three seasons of data, we have discovered 12,015 likely SNe, 308
of which have been spectroscopically confirmed, including 251 SNe Ia over a redshift range of 0.017<z<0.85.
We determine the effective spectroscopic selection function for our sample and use it to investigate the redshift-
dependent bias on the distance moduli of SNe Ia we have classified. The data presented here are used for the first
cosmology analysis by DES-SN (“DES-SN3YR”), the results of which are given in Dark Energy Survey
Collaboration et al. The 489 spectra that are used to define the DES-SN3YR sample are publicly available
athttps://des.ncsa.illinois.edu/releases/sn.

Unified Astronomy Thesaurus concepts: Type Ia supernovae (1728); Supernovae (1668); Cosmology (343);
Cosmological parameters (339); Observational cosmology (1146); Sky surveys (1464)

1. Introduction

Supernovae (SNe) Ia have fundamentally changed our
understanding of the universe. It is through their utility as
accurate distance indicators that the High-Z Supernova Search
Team (Riess et al. 1998) and the Supernova Cosmology Project
(Perlmutter et al. 1999) were able to make the groundbreaking
discovery that the expansion of the universe is accelerating. To
date, the cause of this phenomenon, commonly referred to as
“dark energy,” remains unknown.

The quest for understanding the cause of the acceleration and
constraining the models that describe it have motivated ever-
improving SN searches over the past two decades. At redshift
z�1 these cosmology-oriented programs include the Supernova

Legacy Survey (SNLS; Conley et al. 2011), the Sloan Digital Sky
Survey-II Supernova Program (SDSS-II; Frieman et al. 2008), and
more recently, Pan-STARRS (Tonry et al. 2012; Rest et al. 2014).
The low-redshift sample necessary for anchoring the Hubble
diagram includes SNe Ia heterogeneously collated from the
Calán/Tololo survey (Hamuy et al. 1996), several Harvard-
Smithsonian Center for Astrophysics (CfA) surveys (Riess et al.
1999; Jha et al. 2006; Hicken et al. 2009, 2012), the Carnegie
Supernova Project (CSP; Contreras et al. 2010; Stritzinger et al.
2011; Krisciunas et al. 2017), the Lick Observatory Supernova
Search (Ganeshalingam et al. 2010; Stahl et al. 2019), and (more
recently) the homogeneous Foundation Survey (Foley et al. 2018).
Nearly all observations of SNe Ia at z>1.1 are obtained from
space with a few dozen well-observed objects to date (Suzuki
et al. 2012; Riess et al. 2018; Williams et al. 2020).
The surveys described above all obtain distance measure-

ments from light-curve fits to cadenced multicolor photometry

81 The authors contributed equally to this work.
82 NASA Einstein Fellow.
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(Riess et al. 1996; Guy et al. 2010). But to define the sample of
SNe Ia used in a cosmological analysis requires a parallel
spectroscopic follow-up program. Real-time spectroscopy
allows the survey to robustly differentiate observed transients
between SNe Ia and other classes of SNe, while also obtaining
precise redshifts for the objects. Thus, the spectroscopic
program determines what data are included in a Hubble
diagram as well as the position of these data along the redshift
axis. For high-redshift (z>0.2) SN surveys, the spectroscopic
program traditionally requires more observing time on larger
facilities than the entire photometric observing program.

In this paper we give an overview of the Dark Energy Survey
—Supernova Program (DES-SN), and describe the SN
spectroscopy program used in the first three seasons of the
survey. These observations define the base sample used in the
first cosmological analysis of spectroscopically classified
SNe Ia from DES-SN (“DES-SN3YR”). This paper is one in
a series (Kessler et al. 2015; Gupta et al. 2016; Kessler &
Scolnic 2017; Brout et al. 2019a; Lasker et al. 2019; Kessler
et al. 2019; Smith et al. 2020) that combine to produce
cosmological constraints from DES-SN alone (Dark Energy
Survey Collaboration et al. 2019b; Brout et al. 2019b; Hinton
et al. 2019; Macaulay et al. 2019) and in combination with
other DES probes (Dark Energy Survey Collaboration et al.
2019a).

The format of the paper is as follows. In Section 2 we
describe the strategy and status of the overall DES-SN
observing program. Section 3 explains how SN candidates
are defined and extracted from the data, while Section 4 details
the spectroscopic follow-up campaign for each observatory
used in our program. In Section 5 we derive the effective
spectroscopic selection function from the classifications
obtained by our program, essential for understanding the
biases in a spectroscopically derived SN Hubble diagram from
DES. We conclude in Section 6 by looking toward future
releases and analyses of DES data.

2. The DES Supernova Program

2.1. Dark Energy Survey

The Dark Energy Survey (Dark Energy Survey Collabora-
tion et al. 2016) was a 6 yr, ∼570 night survey using the 4 m
Blanco telescope at Cerro Tololo Inter-American Observatory
(CTIO) in Chile. It used the Dark Energy Camera (DECam;
Flaugher et al. 2015), a 520 megapixel wide-field imager with a
2.2° field of view and deep-depleted CCDs, giving it excellent
quantum efficiency out to 1 μm. Commissioning of the camera
began in 2012 September and a period of data-taking by DES
called Science Verification (“SV”) was carried out from 2012
November through 2013 February. The first season of the
survey (“Y1”) began on 2013 August 31 and the third season
(“Y3”) ended on 2016 February 12.

DES is split into two distinct observing modes: the wide-area
survey (DES-wide), observing 5000 square degrees in grizY to
a 5σ depth of i≈23.5 mag, and DES-SN. The observing
strategy for DES-SN is optimized for the purposes of SN Ia
cosmology. DES-SN is a 10-field hybrid-depth survey,
designed to obtain a few thousand well-observed light curves
of SNe Ia over a redshift range 0.2<z<1.2.

There are three defining aspects of DES-SN. The first is the
excellent z-band response of DECam owing to the deep-
depleted CCDs (Diehl et al. 2014). This allows for rest-frame

optical light curves of z≈1 SNe Ia to be well measured. The
second is excellent calibration, as this has been the largest
systematic uncertainty in SN Ia cosmology (Scolnic et al.
2018). The DES Science Requirements state that the survey
must be calibrated to 0.5% in its absolute calibrations and
colors.
The third defining aspect is photometric classification of

SNe Ia. The field of view of DECam is much larger than that of
any previous camera on a similarly sized telescope, allowing
DES-SN to observe an unprecedented area for its depth. Thus,
given the quantity of faint SNe that DES-SN discovers, any
realistic spectroscopic resource allocation will only permit
spectroscopic classification for a small fraction of these SNe.
To make optimal use of the DES-SN data, the final analysis of
this data set will rely on photometric classification for our
primary cosmology analysis. This does not remove the need for
spectroscopic follow-up observations of live SNe, but rather
places different priorities on the follow-up program, as
explained in Section 4.
In the remainder of this section we first describe in detail the

first three seasons of the DES-SN observing program.

2.2. Exposure Time and Depth

DES-SN has fields of two different depths: eight “shallow”
and two “deep” fields, with limiting AB magnitudes of ∼23.5
and ∼24.5, respectively, where each field is a single pointing of
DECam. The deep fields serve to extend the redshift range of
cosmologically useful SNe Ia out to z≈1.2, while the more
numerous shallow fields add volume and numbers at
intermediate redshifts. The total exposure time for each filter
and the median limiting magnitude for both the deep and
shallow fields are given in Table 1. Longer observations are
split into a number of shorter exposures and coadded (e.g., 11
exposures for the 1 hr per epoch z-band deep fields). Limiting
magnitudes for each observation are derived from artificially
inserting SNe into our processing pipeline and determining the
magnitude at which 50% of all such objects are recovered
(Kessler et al. 2015). Derived directly from the data, these
limits take into account real observing conditions. Throughout
the text, we refer to an observation of one field, in one filter, on
one night, as a “filter epoch.”
DECam has a 2°.2 diameter field of view and an observable

area (excluding chip gaps) of 2.7 deg2. Considering masked
pixels, dead CCDs, and field overlaps, the DES-SN program
covered a total effective observing area of 23 deg2, nearly six

Table 1
Exposure Times

Filter Shallow Field Deep Field

texp
a Nexp

b Depthc texp
a Nexp

b Depthc

g 175 1 23.7 600 3 24.6
r 150 1 23.6 1200 3 24.8
i 200 1 23.5 1800 5 24.7
z 400 2 23.3 3630 11 24.4

Notes.
a Total exposure time per filter epoch (in seconds).
b Number of exposures per filter epoch.
c Median limiting magnitude per pointing over the first three seasons of DES-
SN, defined as the magnitude at which 50% of fake SNe inserted into the
pipeline are recovered by difference imaging (Kessler et al. 2015).
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times the area of SNLS. DES-SN does not dither over the gaps,
since filling these in decreases the area repeatedly observed on
the subsequent epoch. Dithers on the order of a few arcseconds
are carried out, allowing instrumental artifacts to be corrected
in processing. Since dithers do not cross the chip gap, any
object in a field appears on only one chip for all DES-SN
exposures; therefore, our processing pipeline treats each chip
independently.

2.3. Field Locations

The 10 DES-SN fields are grouped in 4 distinct regions of
the sky, coinciding with well-observed legacy fields. Each
region contains two adjacent shallow fields and in two of the
four regions there is also an adjacent deep field.

The prefix for each DES field name is derived from the name
of the legacy field in which it is located: “X” for the fields lying
in the XMM-LSS (Pierre et al. 2004) footprint, “C” for the
fields clustered around the Chandra Deep Field—South
(CDFS; Giacconi et al. 2001), “E” for the fields in and around
Elais-S1 (Rowan-Robinson et al. 2004), and “S” for fields
located in SDSS—Stripe 82 (Adelman-McCarthy et al. 2007).
The centroids of each field are given in Table 2. Shallow fields
have a suffix of 1 or 2, with the more northerly field given the
designation 1. Deep fields have a suffix of 3. All fields in the
same region contain a small (∼1%) amount of overlap with one
another.

The DES-SN fields lie within the DES-wide footprint to
benefit from a consistent photometric calibration (Figure 1).
This constraint forces all fields to be relatively close in R.A.
(RA), spanning only three hours. The fields are broadly
distributed in decl. in order to allow for spectroscopic follow-
up observations at low airmass from northern observatories for
half of the fields (X and S), while the C and E fields are more
southerly to allow for longer windows at low airmass and better
avoidance of the Moon.

In addition to considerations of calibration and spectroscopic
follow-up observations, the DES-SN fields were selected with
Milky Way extinction and ancillary data in mind. Eight of 10
fields are located in low-extinction regions where (E(B−
V )<0.02 mag). The DES-SN fields overlap with deep near-
infrared (VIDEO; Jarvis et al. 2013) and mid-infrared (SWIRE;
Lonsdale et al. 2003) survey regions, with field centroids
optimized to minimize the area lost from masking of bright
stars and their bleed trails.

2.4. Observing Strategy

DES observed in seasons, ∼5.5 months long, starting in mid-
to late August and ending in early to mid-February. The season
is constrained from being extended by the requirement of low-
airmass observations in the compact DES-wide footprint. The
length of the continuous observing season helps to reduce the
fraction of truncated DES-SN light curves, particularly for
highly time-dilated SNe at z�1. Most DES nights are dark,
but CTIO scheduled gray and bright time for DES as well to
provide the wider community with access to DECam during
dark time throughout the year. As such, the structure of DES-
SN observations—survey duration, cadence, sky brightness—
are the result of these competing interests.
DES uses an algorithmic scheduler (ObsTac; Neilsen &

Annis 2014) to determine the survey program (DES-SN or
DES-wide), field, and filter to observe given the apparent
observing conditions, the completeness of the DES-wide
footprint, and the length of time Δtseq since the last accepted
observation of each DES-SN sequence. A “sequence” is
defined as a series of exposures that are not interrupted once
they begin, regardless of changing conditions. The number of
exposures per filter, per field is listed in Table 1. For each of the
DES-SN shallow fields a sequence is all of the exposures in all
of the filters (grizz) with a total exposure time of 15 min. For
the DES-SN deep fields, each filter epoch is treated as a distinct
sequence in each filter (i.e., ggg, rrr, iiiii or zzzzzzzzzzz), with
exposure times of 10, 20, 30, and 60 min, respectively. This
uncoupling of the long deep field filter epochs introduces
scheduling flexibility for ObsTac to better optimize
observations.
A DES-SN sequence is triggered if Δtseq�4d and the

seeing (measured at zenith in the i band) is �1 1 or with no
lower limit on the seeing if Δtseq�7 days. Priority is always
given to the sequence with the largest Δtseq. There are upper
limits on the projected seeing for the deep (1 3) and shallow
(1 8) fields to minimize poor-quality data. DES-SN observa-
tions require the predicted sky brightness for a filter epoch (in
mag/arcsec2 above dark) to be less than 3/3/2/2 for g/r/i/z.
For the shallow fields this is loosened to 5/4/2/2 if
Δtseq�7 days, as otherwise the filters being tied together in
one observing sequence would result in long gaps in red filters
owing to the brightness of the Moon. ObsTac additionally
requires a starting airmass <1.5 per sequence, though this is

Table 2
Field Locations

Legacy Field DES R.A. Decl. R.A. Decl.
ID [time] [deg] [deg] [deg]

CDFS C1 03h 37m 05 83 −27:06:41.8 54.2743 −27.1116
C2 03h 37m 05 83 −29:05:18.2 54.2743 −29.0884
C3 03h 30m 35 62 −28:06:00.0 52.6484 −28.1000

Elais-S1 E1 00h 31m 29 86 −43:00:34.6 7.8744 −43.0096
E2 00h 38m 00 00 −43:59:52.8 9.5000 −43.9980

SDSS Stripe 82 S1 02h 51m 16 80 00:00:00.0 42.8200 0.0000
S2 02h 44m 46 66 −00:59:18.2 41.1944 −0.9884

XMM-LSS X1 02h 17m 54 17 −04:55:46.2 34.4757 −4.9295
X2 02h 22m 39 48 −06:24:43.6 35.6645 −6.4121
X3 02h 25m 48 00 −04:36:00.0 36.4500 −4.6000

Note.RA and DEC given in J2000 coordinates.
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loosened at the edges of each season and sometimes before any
bright-time shutdown to avoid long observing gaps.

The data quality (DQ) for each exposure is assessed based on
an analysis of its output from the difference imaging pipeline
(DiffImg; Kessler et al. 2015). There are three possibilities
for the status of an exposure: Pass, Fail, or Junk. Pass means
that minimal acceptable DQ has been achieved and that Δtseq
should be reset to zero, while Fail means it has not.
Specifically, an image fails DQ if the measured point-spread
function (PSF), converted to i-band zenith, is >2 0, or if the
artificial sources of magnitude 20 we insert into our pipeline
have a measured signal-to-noise ratio (S/N) of <20 (<80 for
the deep fields). Junk means that the pipeline was unable to
process the image, either due to instrumental errors or
exceedingly poor weather. If an exposure is labeled as Fail or
Junk, then it is not considered “accepted,” and the clock for
retaking the sequence (Δtseq) is not reset to zero.

2.5. Survey Summary Statistics

The DES-SN program took 6877 exposures totaling 487.69
hours of on-sky time during the first three years of the survey.
Data quality was assessed as Pass for 87.7% of the exposure
time. The mean number of total (Pass) epochs per field per
season was 29.3 (24.6) for each shallow field and 25.6 (22.7)
for each deep field. The number of good filter epochs per
season varied from 15 to 28, while the total number was in the
range 21–32.
The mean duration of the observing season for each DES-SN

field was 167 days, with only small variations across the
seasons (163/168/170). The observing season per field varied
from 153 days (X3r in Y3) to 182 days (C3z in Y2). Typically
the southern fields have a longer continuous visibility than the
more northerly fields (171 days for SN-C and SN-E; 160 and
164 for SN-S and SN-X, respectively.)
The mean cadence for DES was 7.4 days when considering

only good-quality imaging; the cadence was 6.1 days when
including all imaging. The shallow fields have a slightly better
cadence than the deep fields (7.3 days and 7.8 days,
respectively). The shallow fields vary between a cadence of
7.1 days to 7.5 days and in the deep fields—where bands are
observed independently—there is no effective difference in
cadence (range of 7.7 days to 7.9 days). The median for all of
the above quantities is 7 days.
Figure 2 shows a histogram of the cadences for the first three

years of DES-SN, split by field depth. Sixty-eight percent of all
epochs were taken with a cadence of 4–8 days and 23% were
taken with a cadence of 9–13 days. Although observations are
given top priority programatically at Δtseq=7 days, a number
of factors cause a long tail to higher cadences. In particular,
there are poor-weather nights, nights DES is off-sky for
community time, nights when sky brightness is above the
observing threshold, and nights when the time allotted for
programmed DES-SN sequences exceeds the time of field
visibility.
We note that there are cases where we have a cadence <4

days, seemingly in contradiction with ObsTac. There are two

Figure 1. Top:the DES footprint (yellow), with the DES-SN shallow (blue)
and deep (red) fields overplotted. A Mollweide equal-area projection is used.
Positions of fields are listed in Table 2. Bottom:enlarged view of the DES-SN
C fields. The shallow fields (C1 and C2) are again in blue and deep C3 is
outlined in yellow. These DECam footprints are plotted over a contour plot of
Milky Way extinction. Bright stars (MV<8 mag) are plotted in white.
Overplotted are the boundaries of fields observed by SWIRE (gray), VIDEO
(green), and CDFS (orange).

Figure 2. Stacked histogram of the number of days between good-quality data
in a single filter epoch over the first three years of the DES-SN program, split
between deep (yellow) and shallow (blue) fields. Note the peak at 4 days (when
observations can be made owing to adequate seeing), and at 7 days (when
observations begin to be forced regardless of the seeing).
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causes for this. The majority of the short-cadence exposures
(79%) come from a shallow field sequence where one filter fails
DQ but the others pass; in these cases Δtseq is not reset, which
can lead to short cadences for some filters. The remaining
short-cadence exposures are due to data-processing lags, where
DQ was not accessed prior to the next night’s observations. We
have only 61 filter epochs with a gap in the cadence >15 days,
on average 0.5 per filter epoch per season. Fewer than half of
these gaps occur between September 15 and January 31.
Therefore, most of the large light-curve gaps are at the very
beginning (when weather is often poor), or at the very end of
the season, when overriding of ObsTac was permitted. As the
end of the DES-SN season is needed to complete already-
discovered SN light curves rather than to search for new SNe,
assessment of the overall DES collaboration needs permitted a
reduced DES-SN cadence without sacrificing SNe that could
potentially be part of a cosmological-analysis sample.

In Figure 3 we show the cumulative distribution function
(CDF) for the measured FWHM of the point-spread function
(PSF) for each DES-SN exposure, split by band and depth. The
measured FWHM is larger for bluer bands, as the atmosphere
produces a larger PSF for smaller wavelengths. The median
observed FWHM in griz (in arcseconds) is 1.41/1.29/1.17/
1.09. As seen in Figure 3, the distributions of FWHM are
similar for the deep and shallow fields with the exception of the
poorest ∼10% of images in the deep fields, which were taken
in significantly better conditions than those in the shallow
fields. This is as expected given our observing algorithm. We
note that for real-time scheduling decisions, ObsTac does not
use the measured FWHM but rather it uses the i-band zenith
PSF to prioritize observations. As a consequence, the median
i-band zenith PSF is consistent across all bands, as expected.

In Figure 4 we plot the distribution of limiting magnitude of
each filter epoch, split by band. The median depth across all
bands is very similar, which was the intended outcome of our
chosen exposure times. Despite our usage of the term “shallow,”
these fields have per-exposure depths of ∼23.5 mag, deeper than
SDSS (Sako et al. 2018) and equal to or slightly deeper than
the Pan-STARRS Medium-Deep Survey (Rest et al. 2014). The

larger variation in bluer bands is an effect of observing across a
large variety of sky brightness conditions.

3. Transient Identification

In order to rapidly detect transient candidates and trace the
evolution of previously discovered events, DES-SN data was
processed nightly at the National Center for Supercomputing

Figure 3. Distribution of observed PSF FWHM (in arcseconds) for each
exposure in the first three years of the DES-SN survey.

Figure 4. Depth of the DES filter epochs in the first three seasons of the survey,
split by deep and shallow fields. The median depth in the deep and shallow
fields is shown by solid and dashed lines, respectively.
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Applications (NCSA83) in Urbana-Champaign, IL. Next, we
briefly describe these steps and how they have evolved during
the survey. We end this section with statistics for detections
over the first three seasons of DES-SN.

3.1. Image Processing, Difference Imaging, and AutoScan

DES observations are transferred from CTIO to NCSA at the
end of each exposure, where they are bias-subtracted, flat-
fielded, masked for bad pixels, and corrected for crosstalk and
nonlinearity by the DES Data Management team (DESDM).
Saturated stars and their bleed trails, cosmic rays, and satellites
are masked out, and the sky background is measured and
subtracted from the image as described in Morganson et al.
(2018).

Transients are identified from these images via the DES-SN
Difference Imaging Pipeline DiffImg (Kessler et al. 2015).
All exposures in a given filter epoch are coadded to form a
single “search image.” Source extraction is performed on both
search and “reference images” (created by coadding images
taken in good conditions during previous DES observing
seasons) to determine a common astrometric solution. The
images are PSF-matched and the reference is subtracted from
the search image to create a “difference image” from which
sources are extracted. Every source detected by DiffImg on
every filter epoch is classified as an “object,” and is saved in a
database.

Each detected object is evaluated by a supervised machine-
learning algorithm (autoScan; Goldstein et al. 2015), derived
from features computed directly from the difference, search,
and reference images. autoScan determines whether each
source is likely to be a real astronomical point source or an
artifact of the reduction pipeline (unmasked artifact, subtraction
error, etc.). autoScan assigns a score (0–1) to each object,
where a higher score indicates a higher likelihood of the object
being a non-artifact. An object with an autoScan score �0.5
is labeled an “ml_object” to specify that it has passed machine
learning and is most likely a detection of a real astrophysical
transient.

3.2. Candidates and Transients

The presence of multiple spatially and temporally coincident
“objects” triggers the creation of a “candidate.” Two objects
detected in different images within 1″ of the same position,
both of which have an autoScan score �0.3 (intended to
minimize the number of real transients discarded), in any
combination of filters and detected less than 30 days apart
receive a unique SuperNova IDentification number, or SNID.
PSF-fitted photometry (i.e., “forced photometry”) is measured
on all previous images at the candidate’s position and updated
with each subsequent observation (Kessler et al. 2015). SNIDs
are provided as unique IDs in all DES-SN data-release
products.

To remove slow-moving asteroids and lower the contamina-
tion rate, a “transient” (hereafter transient) is defined as a
candidate consisting of at least two ml_objects detected on
more than one night. All transients are given unique names in
the format “DESXXYYzzzz” based on their location and time
of discovery. “XX” represents the last two digits of the year in
which that observing season began (13, 14, and 15 for DES Y1,

Y2, and Y3, respectively) while “YY” is filled by the DES-SN
field in which the transient was first discovered. “zzzz” is a
unique alphabetical identifier within the season that ascends as
the season progresses (a, ..., z, aa, ..., zz, etc.). Each transient is
matched to a likely host (Section 3.3), and its light curve is
compared to template SN light curves (Section 3.4) to prioritize
the event for spectroscopic follow-up observations.
To further prioritize SNe over spurious detections and slowly

evolving astrophysical transients, such as active galactic nuclei
(AGNs), we define a “transient_status” flag to remove the most
commonly found cases of artifacts that pass our simple
transient criteria. There are four indicators of an artifact for
which we evaluate: (i) pixel correlation (repeated detections on
a single pixel, column, or row), (ii) band multiplicity
(nonphysical fraction of all detections occurring in single
band), (iii) large temporal separation between detections (Δt
between ml_objects), and (iv) large quantity of poor subtrac-
tions (indicating multiple good ml_objects by chance). For
each transient, these criteria are evaluated for each season
separately. Only objects with a valid transient_status flag in just
one observing season are considered as possible targets for
spectroscopic follow-up observations.

3.3. Host Galaxies

Host-galaxy matching for the real-time DES-SN survey used
the DES SVA1-GOLD galaxy catalog, created from DES
Science Verification data and thus free of contaminating SN
light. These catalogs are complete to r≈24.4 mag (r≈
25.5 mag in the deep fields). Photometric redshifts are
estimated for all hosts based on a neural network as described
in Sánchez et al. (2014).
Host galaxies are assigned to candidates via the directional

light radius method (DLR; Sullivan et al. 2006). The DLR
method uses the distance between the candidate and the galaxy
in normalized units of the light profile, evaluated considering
the shape of the galaxy, projected in the direction of the
transient (dDLR) to identify the likely host. To identify the host
galaxy of each transient, DLR is computed for all galaxies
within a 15″ radius, and the closest galaxy in this dimensionless
measure is assigned as the likely host, provided dDLR�4
(Gupta et al. 2016). If no galaxy satisfies this criterion, the
candidate is considered to be hostless.

3.4. Photometric Classification

To prioritize candidates for follow-up spectroscopy we use
the Photometric Supernova IDentification software (PSNID;
Sako et al. 2011). PSNID compares the light curve of each
candidate to a grid of templates of the most common SN
subtypes (SNe Ia, Type II SNe, and Type Ib/c SNe), measuring
the best-fit parameters or template for each of the models to the
data. The probability that the model describes the data,
FITPROB_SNXX, is computed, and used to determine the
Bayesian probability of the candidate being a particular
subtype: PBAYES_SNXX. As part of DES-SN real-time survey
operations, PSNID was run with each new epoch of
photometry, both with and without a prior on redshift (taken
to be the photo-z of the host) to shape our spectroscopic SN
follow-up program.83 http://www.ncsa.illinois.edu
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3.5. Candidates Detected

Table 3 presents statistics describing the number of objects,
candidates, and transients found in each of the first three
seasons of DES-SN. From three seasons of DES-SN, we
discovered 11,995 single-season transients (SSTs), an average
of 24 per night.

The differences in statistics between seasons are quite small,
with  10%( ) variation among seasons. Candidates observed
across multiple seasons (e.g., AGNs) are attributed to the first
season in which they appear. As such, Y1 has a much higher
number of candidates than the other seasons, but a consistent
number of SSTs. Splitting by field, the DES-S and DES-X
shallow fields, with close proximity to the ecliptic, have 220%
more candidates per field than the more southerly shallow fields
(C1, C2, E1, and E2) but the same number of transients to
within 5%, highlighting the need for multi-epoch detection
prior to spectroscopic classification.

4. Spectroscopy

In this section we give a full overview of the SN
spectroscopy program for the first three seasons of DES-SN.
Section 4.1 describes the strategy used to select SN candidates
for live follow-up spectroscopy, while Section 4.2 describes the
tools used to facilitate this task. With our strategy and
requirements in place, Section 4.3 details the spectroscopic
resources available to DES-SN, along with a brief description
of the reduction techniques used. The methodology used to
classify individual spectra is discussed in Section 4.4 with
results as a function of observatory and redshift given in
Section 4.5. A full observing log of all spectroscopic data taken
by DES-SN can be found in Appendix A1, with all
classifications obtained listed in Appendix A2.

4.1. Follow-up Strategy and Target Selection

With the primary cosmological analysis of DES-SN driven
by photometrically classified SNe Ia, the prioritization of
objects for follow-up spectroscopy is no longer solely driven
by the need to place events on a Hubble diagram. The DES-SN
spectroscopic sample is a complementary probe used to
constrain systematic uncertainties and biases in the photometric
sample.

For DES-SN, the spectroscopic sample constitutes a truth
sample for training photometric classification in DES. It is
needed to evaluate the impact that spectroscopic properties

have on light-curve properties (e.g., Foley et al. 2011) and, with
a known correlation between SN Ia properties and host-galaxy
properties (Sullivan et al. 2010; Kelly et al. 2010; Smith et al.
2012), to alleviate potential biases caused by the loss of SNe in
low-luminosity galaxies that will be missed by our spectro-
scopic follow-up program of SN host galaxies. Most crucially,
though, SN spectroscopy allows for an independent cosmolo-
gical analysis, testing the quality of our data and our analysis
techniques. With limited spectroscopic resources available
(Table 4), here we describe the four modes of our live
spectroscopy program and how they were implemented in the
first three years of DES-SN.

4.1.1. A Magnitude-limited Sample

A magnitude-limited sample is a useful component for a
spectroscopic SN survey in that it creates an easily quantifiable
selection function of all SNe. Spectroscopically confirming all
SSTs without bias, this sample is used for testing and validation
of photometric classification routines.
The primary source of observations for this program was the

OzDES program (Yuan et al. 2015; Childress et al. 2017;
Lidman et al. 2020). On any given OzDES observing night, all
active SSTs with r<22.7 or i<22.7 mag in the field being
observed have a fiber placed on them. These observations were
supplemented by those from other observatories—primarily the
Southern African Large Telescope (SALT) and MMT—to
obtain classifications of SSTs not obtained at the AAT owing to
weather, observing cadence, or other classification inefficien-
cies. The goal for completeness in this campaign was all SSTs
brighter than r=21.5 mag, though as we will demonstrate
later this goal was not achieved.

4.1.2. SNe Ia in Faint Hosts

Since the inclusion of a SN in the photometric cosmology
analysis requires a spectroscopic redshift, all SNe occurring in
galaxies too faint for our OzDES host-galaxy spectroscopy
campaign (r>24 mag; see Lidman et al. 2020 for details)
would be excluded from our cosmology sample. This creates a
selection bias against SNe Ia as a function of both decreasing
host-galaxy mass as well as increasing redshift. To characterize
this bias we carried out a follow-up program for spectro-
scopically classifying SNe Ia in faint host galaxies, ensuring
that these SNe Ia can be retained in our final analysis. The
redshift information obtained from the spectrum can be used
alone or in conjunction with the spectroscopic classification.

Table 3
DES-SN Detection Statistics

Type Total Y1 Y2 Y3 Deepa Shallowa

Objectsb 4.88 M 1.63 M 1.66 M 1.59 M 265 K 137 K
ML Objectsc 1.21 M 421 k 389 k 397 k 52,623 37,139
Candidatesd 46.0 k 18,555 13,586 13,809 1099 1640
Transientse 17,209 6404 5521 5284 731 534
SSTsf 11,995 4259 4192 3544 592 352

Notes.
a Mean number per field type, per season.
b Detection in a single filter epoch by DiffImg as defined in Section 3.1.
c Objects with (autoScan score �0.5) as defined in Section 3.1.
d Spatially coincident detections as defined in Section 3.2.
e Candidates consisting of ML Objects on multiple epochs as defined in Section 3.1.
f Transients with “transient_status” >0 in one season only. See Section 3.2 for details.
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SN Ia candidates for this program are selected based on their
early-time light curve, fit with PSNID, and prioritized based on
the apparent faintness of their host galaxy. There is overlap
between this program and the magnitude-limited one, as a
bright candidate can also be hostless. The faint hosts program
(which targets SNe in faint galaxies, not the galaxies
themselves) had dedicated observing time at the Very Large
Telescope (VLT) and the Gran Telescopio Canarias (GTC),
with additional data taken using Keck and Magellan.

4.1.3. A Representative Sample of SNe Ia

The last of the three live SN Ia follow-up programs in DES-
SN is designed to obtain a representative sample: a spectro-
scopically confirmed sample of SNe Ia that evenly samples the
redshift distribution of SNe in the final photometrically
classified analysis. This sample allows us to test for environ-
mental dependence and evolution of spectroscopic properties
with redshift. With this information missing from a photometric
analysis, by quantifying this effect and optimizing cuts to
alleviate its impact, we can ensure that the cosmological
constraints obtained from our photometrically selected sample
are unbiased.

For this follow-up program, we first determine likely SN Ia
candidates using PSNID fits. The other follow-up programs
independently fill portions of this parameter space, e.g., low-
redshift SNe for the magnitude-limited sample and (preferen-
tially) high-redshift SNe for the faint host sample. As a result,
the representative program primarily observes SNe Ia at
redshifts 0.3<z<0.7, and is biased toward higher-mass
hosts at high redshift, areas that are missed by our other follow-
up programs. Dedicated observing programs at Gemini and

Magellan comprise the majority of this sample, though data for
this was collected at Keck and MMT as well.

4.1.4. Non-Ia Supernovae

DES is a cosmology survey, and thus DES-SN has been
designed to discover, measure, and confirm SNe Ia. But as a
deep and wide transient survey, there are many other
interesting types of transients that can be found in the data.
We briefly note here three additional classes of transients for
which we have made a concerted effort to obtain follow-up
spectroscopy: superluminous SNe (SLSNe), rapidly evolving
transients (RETs), and Type II SNe (SNe II).
These programs are much smaller than our SN Ia program,

with the only follow-up time specifically allocated for such
observations coming from the VLT (SLSNe; RETs), GTC
(SLSNe), Magellan (SN II), and Gemini (SN II). Despite
limited spectroscopic time, non-Ia events classified by DES-
SN have been discussed widely (Papadopoulos et al. 2015;
Smith et al. 2016; Pan et al. 2017; Pursiainen et al. 2018; Smith
et al. 2018; Angus et al. 2019; de Jaeger et al. 2020).

4.2. Facilitating Follow-up Spectroscopy

To successfully carry out our multiple spectroscopic
observing programs across a globally distributed collection of
telescopes requires real-time coordination and centralized data
storage. For this purpose we developed a tracking database and
web application called ATC,84 hosted at the National Energy
Research Scientific Computing Center (NERSC).

Table 4
DES-SN Spectroscopy Program

Observatory PI Mode Instrument Wavelength (nm) Allocationa Targeting strategyb Season Spectrac

AAT C. Lidmand Classical 2dF/AAOmega 380–880 48n mag lim; non-Ia Y1,Y2,Y3 1032
AAT C. Smithd Classical 2dF/AAOmega 380–880 2n mag lim; non-Ia Y1 7
Gemini-S R. Foleyd Queue GMOS 520–990 18 h representative Y1 2
Gemini-N/S R. Foley Queue GMOS 520–990 39.6 h representative Y3 25
Gemini-S L. Galbany Queue GMOS 520–990 10 h faint host; non-Ia Y3 4
GTC F. Castander Queue OSIRIS 480–920 54.6 h non-Ia Y1,Y2,Y3 19
Keck A. Filippenkod Classical DEIMOS 455–960 4n representative Y1,Y2,Y3 7

Classical LRIS 340–1025 11.5n + 26 h representative Y1,Y2,Y3 19
Magellan R. Kirshner Classical LDSS3 425–1000 2n representative Y2,Y3 23

Classical IMACS 390–1000 8n representative Y2,Y3 33
Magellan S. González-Gaitán Classical LDSS3 425–1000 4n faint host; non-Ia Y3 23
Magellan D. Scolnic Classical LDSS3 425–1000 1n representative Y3 7
MMT R. Kirshner Classical BCS 330–850 7n mag lim Y2,Y3 30
SALT M. Smith Queue RSS 385–820 41.6 h mag lim Y1,Y2 21
SALT E. Kasai Queue RSS 385–820 37.5 h mag lim Y3 31
VLT M. Sullivan Classical X-Shooter 300–2480 14.1n faint host Y2,Y3 89
VLT M. Sullivan Queue X-Shooter 300–2480 13 h non-Ia Y1,Y3 8
Miscellaneouse L L L L L L L 5

Total 101.6n + 233.3 h 1385

Notes.Program IDs for the spectroscopic campaigns listed here can be found in the acknowledgements.
a Hours are used for queue-scheduled time, nights for classical time.
b Primary selection criteria used as described in Section 4.1.
c Number of spectra of DES-SN candidates obtained.
d Program includes spectroscopy of live DES-SN targets, but is not the primary purpose of the program.
e Spectroscopic observations, obtained from other facilities, including SOAR, LICK/Shane, PESSTO/NTT and the KISS Survey. These are primarily serendipitous
observations of bright DES-SN transients observed by other surveys.

84 ATC: All Transients Considered;https://portal-auth.nersc.gov/atc2/web/.
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After discovery of each DES transient, a “portfolio” on ATC
is created. Information including coordinates, photometry,
discovery date, and host-galaxy association are propagated to
ATC upon creation, with each new photometric data point and
light-curve fit pushed in real time. Using a tagging system to
indicate to observers which transients should be observed,
when, and from where, follow-up spectroscopy is coordinated
and scheduled through ATC. With utilities to produce finder
charts, store and visualise reduced spectra, and track candidates
of interest, all of the DES-SN follow-up spectroscopy, which
we detail in the following section, was dependent on the ATC.

4.3. Spectroscopic Observations and Reductions

Here we describe the observing campaigns undertaken by
DES. In Table 4 we list the main details of the spectroscopic
programs for which DES SN Ia targets were observed including
the targeting strategy used for each facility and the number of
candidates targeted under each program. The number of unique
transients targeted and classified by each facility is listed in
Table 5.

Appendix A1 presents our observation log of spectra taken
of DES transients. For each observation we list the DES
transient name, the telescope or instrument, the MJD and UT
date of the observation, the magnitude of the transient at the
time of observation, and the percent increase of the flux from
the transient over the background flux. All long-slit observa-
tions were carried out at the parallactic angle (Filippenko 1982).
We note that Table 4 lists the total allocated time, not on-sky
time, and that repeated observations of the same target are
counted in the observation log. As a result, classification
efficiency cannot be directly related from the number of
confirmed events. The algorithm used to classify individual
spectra is discussed in Section 4.4, with the results given in
Table 5 and Appendix A2.

Spectroscopic reductions were performed by the individual
observing teams using pipelines developed for each facility/
instrument, usually based on standard IRAF routines85 with
the exception of OzDES which used a modified version of
the 2dfdr3 pipeline (Croom et al. 2004). Raw spectra were

bias/overscan-subtracted, flux- and wavelength-calibrated, and
rectified prior to an extraction of the SN spectra. For higher-
redshift targets embedded in their hosts, modest spatial-width
apertures were used when extracting the SN spectra to
minimize host contamination.

4.4. Spectroscopic Classification

To classify our reduced spectra we use the publicly available
SNID (SuperNova IDentification; v5.0; Blondin & Tonry 2007)
and superfit (v3.5; Howell et al. 2005) software packages
with updated template libraries based on the spectroscopic
catalogs of Silverman et al. (2012), Liu et al. (2016), Modjaz
et al. (2016), Gutiérrez et al. (2017), Quimby et al. (2018), and
Williamson et al. (2019). These approaches use cross-
correlation techniques (SNID) and chi-squared minimization
(superfit) to produce, for a given spectrum, a rank-ordered
list of matches from a spectral library of SNe, galaxies, or any
other variable objects. These codes also allow for external
information, such as redshift and phase, to be included in the
fit. Where available, all fits were performed using the
spectroscopic redshift obtained either from galaxy emission
lines in the spectrum itself or from literature data. Owing to its
inclusion of galaxy contamination when fitting the observed
spectrum, superfit was used as the primary classification tool
for most events.
Classifications were determined via visual inspection of the

resulting rank-ordered fits by a subset of coauthors, and were
based on consensus of the best-fit templates. For spectral
classification, we consider the following classes of events
“SNIa,” “SNIbc,” “SNII,” “SLSN-I,” “TDE,” “AGN,” “M-
star,” “galaxy” and “uncertain.” Spectra with obvious signal,
but no obvious transient light are classified as “galaxy,” while
those with some signal from a transient, but no convincing
template matches are classified as “uncertain.” All transient
classifications are determined by matches returned by either
SNID or Superfit with the exception of the solitary
spectroscopically confirmed tidal disruption event (TDE),
which was classified by visual comparison with known TDE
spectra. For SNe Ia classifications we do not attempt to
subcategorize events as peculiar subtypes (e.g., SN 1991T,
SN 1991bg, SN Iax) owing to a combination of the features that
characterize these classes (e.g., Si II λ6150) being routinely
redshifted outside of the maximum wavelength observed and

Table 5
DES-SN Spectroscopic Statistics

Telescope Spec Observations Spec Iaa Spec Ib/ca Spec IIa Spec SLSNa Spec TDEa

AAT 1039 of 547 SN 78 (188 of 106) 1 (9 of 2) 14 (45 of 19) 0 (2 of 1) 0 (-)
Gemini-N/S 31 of 29 SN 21 (21 of 21) 2 (2 of 2) 0 (-) 1 (3 of 1) 0 (-)
GTC 19 of 18 SN 10 (11 of 11) 0 (-) 0 (-) 5 (6 of 5) 0 (1 of 1)
Keck 26 of 23 SN 11 (11 of 11) 0 (-) 2 (2 of 2) 1 (4 of 3) 0 (1 of 1)
Magellan 86 of 86 SN 49 (56 of 56) 1 (1 of 1) 6 (6 of 6) 0 (-) 1 (1 of 1)
MMT 30 of 27 SN 12 (12 of 12) 0 (-) 0 (1 of 1) 1 (1 of 1) 0 (-)
SALT 52 of 43 SN 18 (25 of 24) 4 (4 of 4) 2 (2 of 2) 0 (-) 0 (-)
VLT 97 of 92 SN 49 (50 of 50) 1 (1 of 1) 10 (11 of 10) 4 (7 of 5) 0 (-)
Others (SOAR & LICK) 3 of 3 SN 1 (1 of 1) 0 (-) 1 (1 of 1) 0 (-) 0 (1 of 1)
External (PESSTO & KISS) 2 of 2 SN 2 (2 of 2) 0 (-) 0 (-) 0 (-) 0 (-)

Total 1386 of 869 SN 251 (377) 9 (17) 35 (68) 12 (23) 1 (4)

Note.
a Spectroscopic discoveries. Total number of spectra taken and unique transients observed is given in brackets.

85 Image Reduction and Analysis Facility: IRAF was distributed by the
National Science Foundation’s (NSF’s) National Optical-Infrared Astronomy
Research Laboratory, which was managed by the Association of Universities
for Research in Astronomy (AURA) under a cooperative agreement with
the NSF.
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the relatively low S/N of many spectra, which are primarily
used to distinguish SNe Ia from other types.

For a definitive classification to be claimed, both the
approximate phase of the SN, as determined from the light-
curve evolution, and the spectroscopic redshift (if available)
must match the entire list of best-fit templates returned by
SNID or superfit. If no spectroscopic redshift from the host
galaxy is available, then the SN redshift can be fit as well, and a
definitive classification can be claimed if the phase, type, and
redshift are robustly determined by the fitting software. For
SNe Ia where the characteristic feature that defines this class,
SiII λ6150 is routinely redshifted outside of the maximum
wavelength observed (e.g., z=0.4 for AAOmega), a spectral
classification is claimed only if the presence of SiII λ4100 can
be inferred either directly or in combination with subtraction of
galaxy light in superfit to distinguish these events from
SNe Ic.

Where a classification is highly probable but with some
degree of uncertainty, we use the following classifications:
“SNIa?,” “SNIbc?,” “SNII?,” and “SLSN-I?.” These classifica-
tions are used in two cases. The first is when there is no
independent host-galaxy prior on the redshift and a small
fraction of viable fits exist with a redshift and/or type that
differs from the primary classification. The second is where a
spectrum is a good fit to templates over only one half of the
spectrum for plausible reasons: a low-S/N spectrum, poor sky
subtraction, or host-galaxy contamination (primarily in the red
portion of the spectrum, as the SN is typically brightest in the
blue). The phase is still required to match the light curve in all
cases. Spectra where SNID and superfit return differing
best-fit classifications are classified as “uncertain,” with the
exception of spectra where host-galaxy light is known a priori
to dominate over transient light. In these cases, accounting for
∼10% of all classifications, the superfit classification, which
simultaneously fits for both transient and galaxy is used as the
primary classification tool.

Figure 5 shows a range of spectroscopic classifications from
DES-SN with their best-fit template models overplotted.

4.5. Spectroscopic Results

Table 5 presents the results of the spectroscopic program
from the first three seasons of the DES-SN program. Of 707
transients spectroscopically targeted, we have classified 307
SNe and 1 TDE over a redshift range of 0.017<z<1.86 and
a dynamic range of >1000 in peak observed flux. Table 6 splits
our full sample by spectroscopic type. Combining certain and
likely classifications, we have identified 251 spectroscopic
SNe Ia, 35 SNe II (including IIn and IIb), 12 SLSNe, and 9
SNe Ib/Ic. Spectroscopic classifications obtained by DES-SN
are listed in Appendix A2.

In Figure 6 we show the redshift distribution of the SNe Ia
classified by our program, color-coded by the telescope that
provided the classification. The observing program that drives
the follow-up for each telescope can be seen in the redshift
range of classified SNe Ia in the figure. VLT (faint hosts)
dominates at high-z, while the AAT and SALT (magnitude-
limited) fill out medium and low redshifts. Magellan and
Gemini extend from mid- to high redshift owing to a mixture of
magnitude-limited and representative programs.

In Figure 7 we show the apparent magnitude distribution of
transients targeted, and classified, as a function of telescope,
where the magnitude is taken from the DES epoch immediately

preceding the spectroscopic observation. Here we include all
classifiable spectra as successes, including where the transient
targeted has previously been spectroscopically confirmed. Note
that while OzDES obtained nearly three times as many spectra
as all the single-slit programs combined, the classification
efficiency for AAT (∼25%) was far below that of the single-slit
follow-up (>70%).
We show in Figure 8 the classifiedversusunclassified

spectra obtained at VLT, plotted as a function of apparent
magnitude, percent increase over background, and S/N
(indicated by the size of the points). To compute the S/N for
each spectrum we split the region 5000<λ(Å)<9000 into
200Å sections, and determine the rms about the best-fit line in
each section. The S/N for the spectrum is then the average over
all sections of the mean flux over rms per section. The linear
fitting accounts for the fact that an SN spectrum has broad lines
and therefore the simple rms cannot be used as an indicator of
uncertainty alone. As expected, we find that the non-classified
spectra tend to lie in the regime of low S/N and/or faint
objects. By design there are very few transients observed with
this program that are not significantly above the background.
As a result, our classification efficiency with VLT is high.
The number of spectroscopic classifications increased

dramatically as the DES survey progressed. While the number
of AAT nights increased modestly (from 10 to 12 to 16), the
number of DES-SN spectra obtained from all other observa-
tories over the first three seasons rose from 27 to 127 to 203.
This expansion of resources resulted in 24/75/152 spectro-
scopically classified SNe Ia and 34/95/179 spectroscopically
classified transients in DES Y1/Y2/Y3, respectively. We note
that the efficiency of the survey pipeline itself also improved
through the seasons; both the speed at which DES data were
processed and the quality of artifact rejection increased
dramatically from Y1 to Y3. These improvements also
contributed to the year-on-year increase in classified SNe Ia.

5. Selection Function

A key input to the DES-SN3YR cosmology analysis is the
spectroscopic selection function (Espec): the function that
describes how the spectroscopically confirmed SN Ia sample
relates to the broader set of photometric candidates that could
have been observed. Understanding and modeling Espec is
critical as it is used through simulations to determine the bias
corrections applied to each observed event. Modeling all the
features and selection criteria that shape Espec is exceptionally
challenging: these range from real-time changes in observing
conditions at follow-up telescopes to human prioritization of
candidates when observing, and, with most follow-up resources
primarily available in dark time, variation of our follow-up
capabilities across the lunar cycle. With a large number of
variables and human intervention in the decision-making
process, rather than attempting to model Espec from first
principles, we instead determine an empirical effectiveEspec for
SNe Ia in DES.
This section is as follows. In Section 5.1 we derive Espec

from DES-SN data alone. In Section 5.2 we independently
derive Espec using a forward-modeling approach, as discussed
in Kessler et al. (2019), and used in the nominal DES-SN3YR
cosmology analysis Brout et al. (2019b), and use both estimates
to simulate DES-SN, which we then compare to the DES-SN
sample in Section 5.3. In Section 5.4 we show how the
different estimates of Espec affect the distance-modulus bias
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correction for our spectroscopic SN Ia sample and discuss the
implications for the cosmological parameters determined for
the DES-SN3YR sample. The results presented here do not
supersede the results presented in Brout et al. (2019b) and
Kessler et al. (2019), and do not impact the associated
systematic uncertainty of the DES-SN3YR cosmological
analysis by Dark Energy Survey Collaboration et al. (2019b).

5.1. Deriving Espec Directly from DES-SN Data

Espec is the fraction of cosmologically useful SNe Ia
identified as candidates by DES-SN that are subsequently
spectroscopically classified. Thus, the denominator of Espec

should be the subset of SSTs (Section 3.2) detected by DES
that were real SNe Ia. Since we do not know the true

Figure 5. Example spectral classifications from the DES-SN3YR data set. Spectra are plotted in blue with the best-fit SN template overplotted in black. Fits are
derived using superfit. Prominent spectral features used to classify each object (λ6150, λ4100 for SNe Ia; λ4861, λ6563 for SNe II) are highlighted with vertical
red dashed lines. The classification of each object and facility used is highlighted in each panel.

Table 6
DES Classification Summary

Type Classifications

SNIa 225
SNIa? 26
SNII 24
SNII? 9
SNIIn? 1
SNIIb? 1
SNIbc 5
SNIc 4
SLSN-I 11
SLSN-I? 1
TDE 1
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classification of all SSTs from DES, we determine the likely
number of SNe Ia based on the results of photometrically
classifying our full three-year data sample. In contrast to the
real-time survey where decisions were based on rising
incomplete light curves, here, for consistency and increased
accuracy, we use the full light curves for every object. We
define Espec as a function of the peak magnitude of the transient
in the observer-frame iband (mi), which was used to prioritize
most spectroscopic follow-up decisions. Thus,

=E m
N m

N m
. 1i

i

i
spec

SpecIa

PhotIa
( )

( )
( )

( )

To determine NPhotIa, we first select all 12,015 SSTs from the
first three seasons of DES. To remove spurious artifacts from the
data, we require each transient to have peak S/N�5 in at least
two bands. We then fit the full light curves with PSNID
(Section 3.4), using both the SN Ia light-curve models and core-
collapse SN (CCSN) templates from Sako et al. (2011). To
ensure that our results are unbiased with respect to whether a
transient has been matched to a host or not or has independently
obtained a spectroscopic redshift, we assume a flat prior on
redshift in the light-curve fit. To determine a sample of all likely
SNe Ia, we use cut thresholds defined by Sako et al. (2011, 2018)
and select events with a chi-squared probability relative to the
SN Ia model, FITPROB_SNIa�0.01 and SN Ia Bayesian
probability, PBAYES_SNIa�0.9. We exclude at most two
filter epochs of photometry with Δχ2�10 from the fitting,
guarding against outliers from sub-optimal real-time photometric
processing.

We next restrict this sample of likely SNe Ia to those which are
cosmologically useful. We measure the best-fit light-curve
parameters using the Guy10_UV2IR version of the SALT2
model (Guy et al. 2010) in the “SuperNova ANAlysis” (SNANA)
software package (Kessler et al. 2009). This model is defined
over a wider wavelength range than the B14-JLA model (Betoule
et al. 2014), providing more complete coverage of the DES filters
over a wide redshift range. This allows us to estimate “‘SN only”

photometric redshifts across 0.0<z<1.2, and to estimate peak
fit rest-frame i-band magnitudes for all SNe Ia. To ensure that all
candidates are treated equally independently of whether they
were spectroscopically targeted, we use a flat prior on the redshift
for all candidate SNe Ia. To remove likely CCSN events and
failed fits, we only consider events with −4<x1<4 and
−1<c<1. While these cuts are less stringent than those used
to define a cosmological sample, they ensure that all spectro-
scopically confirmed events are retained. Our final sample
comprising NPhotIa consists of 2634 photometrically classified
SNe Ia.
For the spectroscopic sample, we similarly fit each of the 251

spectroscopically classified SNe Ia using the “Scene Modeling
Photometry” (SMP; Brout et al. 2019a) used in the DES-
SN3YR cosmology analysis (Brout et al. 2019b) and
consistently enforce −4<x1<4 and −1<c<1.
To estimate Espec, we bin both our photometric and

spectroscopic SN Ia samples by peak i-band magnitude as
measured from the best-fit SALT2 model, and divide NSpecIa by
NPhotIa (Figure 9). This represents the efficiency of obtaining a
spectroscopic classification for a transient of a given magnitude
based on data alone. Our derived spectroscopic selection
function, Espec, is given in Table 7.
To normalize Espec we set the efficiency equal to 1 (i.e.,

100% classification rate), for objects with mi�20.3. While
there are 34 SNe Ia (1.3% of the total photometric sample)
brighter than this limit which have not been confirmed, these
are unconfirmed due to operational issues (lack of telescope
time or processing problems), and as such Espec is not a simple
function of mi below this limit.
To determine the statistical uncertainty on Espec, we follow

the method adopted by Frohmaier et al. (2017) for SN rate
calculations, treating the number of spectroscopic classifica-
tions as a binomially distributed variable. We plot as our error
bars in Figure 9 the bounds containing 68.3% of the
probability.

5.1.1. Systematic Uncertainties

Several assumptions were made when determining Espec. To
ensure that Espec is unbiased, we repeat our analysis, changing
the following underlying assumptions:

1. Replacing the Guy_UV2IR SALT2 model with the model
of JLA-B14 (Betoule et al. 2014), used in the DES-3YR
cosmological analysis, but spanning a narrow wavelength
range;

2. Considering the observed rather than fit peak i-band
magnitude;

3. Enforcing stricter/less conservative PSNID cuts when
determining our photometric sample: i.e., changing
(FITPROBIa, PBAYESIa)>(0.01,0.9) to (0.001,0.5) or
(0.1,0.99).

4. Enforcing stricter SALT2 cuts when determining our
photometric sample: i.e., changing (|x1|<4, |c|<1) to
(|x1|<3, |c|<0.3).

Our systematic is taken to be the maximum variation in the
derived Espec in each magnitude bin. We plot this alongside the
statistical uncertainty in Figure 9. Over the entire magnitude
range, the systematic uncertainty is comparable to or smaller
than the statistical uncertainty.

Figure 6. Redshift histogram of all 251 spectroscopically confirmed SNe Ia in
the first three seasons of DES (Δz=0.05). The histogram is split by discovery
observatory, with the median redshift of the SNe Ia classified by each telescope
indicated in the legend.

13

The Astronomical Journal, 160:267 (21pp), 2020 December Smith et al.



5.2. An Alternative Approach: Espec Derived from Simulations

The “data-driven” Espec, derived in Section 5.1, is indepen-
dent from assumptions on the underlying distribution of SNe Ia
but requires assumptions about our ability to accurately
photometrically classify SN candidates. Such redshift-free
photometric classification may be susceptible to contamination
from stripped-envelope SNe (SeSNe; Vincenzi et al.
2019; Möller & de Boissière 2020), thus we also derive
Espec using simulated samples as an independent verification.
The “model-driven” Espec, derived here matches that used in

the DES-SN3YR cosmology analysis (Dark Energy Survey
Collaboration et al. 2019b).
By simulating DES-SN3YR without any spectroscopic

selection (i.e., assuming that Espec≡1 independent of
magnitude), we can predict the expected magnitude distribution
of all SNe Ia in our photometric data—NPhotIa in Equation (1).
By dividing the spectroscopic SN Ia sample by this simulated
sample as a function of peak i-band magnitude, we determine
Espec in a model-driven approach.
This approach is insensitive to uncertainties around photo-

metric classification that could bias our data-driven approach,
but is instead dependent on an assumed model of SNe Ia. This
includes the distribution of SN Ia SALT2 parameters (x1, c),
their rate as a function of redshift, and the intrinsic scatter
model that represents the un-modeled variation in the SN Ia
Hubble diagram (σint). To simulate DES-SN3YR, we use the
simulation tool of Kessler et al. (2019), which combines the
actual observing pattern of DES-SN with assumptions on the
underlying distribution of SNe Ia to produce simulated data
sets. For parameters underlying the simulation, we match those
used in the DES-SN3YR analysis (Brout et al. 2019b), namely:

1. SALT2 model: Betoule et al. (2014; JLA–B14_
LAMOPEN)86

2. SN Ia instrinsic scatter model: Guy et al. (2010)
3. SN Ia rates: Perrett et al. (2012)
4. SALT2 parameter distribution: Scolnic & Kessler (2016;

Table 1, high-z,G10 row)
5. MW dust maps: Schlafly & Finkbeiner (2011)

Figure 7. Observed apparent magnitude distributions for transients spectroscopically observed in the first three seasons of DES. Magnitudes are i band for all
observatories other than AAT and SALT, which were r-band-selected follow-up programs. Distributions are shown separately for each telescope, in order of
increasing median apparent magnitude: from r=20.8 for SALT to i=23.0 for Gemini. The lighter shaded histogram in each plot represents the subset of
observations that resulted in a successful classification.

Figure 8. Observed i-band magnitude plotted against the percentage increase
over background flux for each SN observed by our VLT program. SNe that
are > 10,000% the brightness of their background are plotted at this value for
purposes of clarity. Successful classifications are shown as blue filled circles,
while non-classifications are plotted as red open circles. The size of each point
is proportional to the S/N for the spectrum as described in Section 4.5.

86 This is an extension in wavelength coverage of the JLA-B14 model
(Betoule et al. 2014), which would otherwise only use DES-SN gr photometry
in light-curve fits of low-redshift (z�0.11) SNe.
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6. Extinction law: Fitzpatrick (1999)
7. Nuisance parameters: α=0.15, β=3.1
8. Cosmology: flat ΛCDM,ΩM=0.3, H0=70 kms

−1Mpc−1

To determine our model-driven Espec we simulate DES-SN
with fixed Espec==1 and divide the spectroscopic SN Ia
sample by this simulated sample in bins of peak i-band
magnitude. The model-driven Espec efficiency ò is determined
from a sigmoid fit to the binned data,

=
+ ´ -

 i
s

s i s1 exp
, 2peak

0

1 peak 2
( )
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where s0, s1, and s2 are free parameters determined with emcee
(Foreman-Mackey et al. 2013). For the fitting, we model data
uncertainties using a Poisson distribution. We perform the fit
on the data-simulation ratio and then use the sigmoid
amplitude, s0, as the normalization parameter. This allows
Espec to asymptote to a constant value for bright transients, go

to zero for sufficiently faint transients, and transition smoothly
between these two extremes.87,88

Figure 9 shows Espec as determined using this method with
the intrinsic scatter on the simulated SNe based on the intrinsic
scatter models of Guy et al. (2010; G10) or Chotard et al.
(2011; C11) as implemented through the spectral variations
defined in Kessler et al. (2013). The assumption of either
scatter model results in minimal differences in Espec.
The two derivations of Espec are statistically consistent.

Using the statistical uncertainties from the data-driven model
and the 1σcontour from the model-based derivation, we find
χ2/DoF=0.7. Visible differences between the two estimates
of Espec may be due to the assumption of a smooth sigmoid
function in the model-dependent approach; while classification
efficiency monotonically increases for brighter transients on a
given telescope, the strategy of having different telescopes for
different targets results in a non-smoothly varying process as
shown by the evolution of the data-driven Espec.
Having determined Espec using two independent methodol-

ogies and shown that they produce consistent results, we now
turn to see if these estimates of Espec can replicate the observed
distributions of z, x1, and c for the DES-SN3YR data set in
simulated samples.

5.3. Data Comparison to Simulations

The data-driven Espec derived in Section 5.1 comes directly
from the observed data and is not dependent on simulations or
any assumptions on SN properties. Thus, a realistic simulation
of DES-SN that includes this spectroscopic efficiency should
recover a spectroscopic SN Ia sample that is consistent with the
DES-SN3YR sample both in redshift and as a function of the
SN Ia light-curve parameters.

Figure 9. Top:histogram of the number of SNe Ia spectroscopically classified
(251; green) and photometrically classified (2634; blue) in this paper, as a
function of peak observed i-band magnitude. Bottom:data-driven Espec

(green), defined as a function of peak observed i-band magnitude, derived
from the data shown in the top plot. Error bars are statistical uncertainties in
each bin, and the gray band is our estimated systematic uncertainty, described
in Section 5.1. In our analysis we set the efficiency to 1 at i�20.3 mag to
prevent artifacts in our derived μ-bias, as described in the text. The model-
driven estimates of Espec, described in Section 5.2, are shown as solid and
dotted lines depending on the assumed scatter model G10 or C11, respectively.
We show the 1σcontour for the G10 derivation only and note that the contours
with the C11 model are very similar. The model-driven Espec has an arbitrary
normalization, which we scale here to minimize the difference with respect to
the data-driven Espec.

Table 7
DES “Data-Driven” Spectroscopic Efficiency

Peak Mag(i) Efficiency σstat σsys

20.3 1.000 +0.000/−0.205 +0.000/−0.556
20.5 0.538 +0.127/−0.131 +0.239/−0.038
20.7 0.667 +0.108/−0.121 +0.026/−0.128
20.9 0.750 +0.094/−0.113 +0.050/−0.083
21.1 0.550 +0.076/−0.078 +0.055/−0.100
21.3 0.309 +0.073/−0.067 +0.119/−0.014
21.5 0.259 +0.062/−0.056 +0.067/−0.018
21.7 0.333 +0.063/−0.060 +0.032/−0.035
21.9 0.178 +0.042/−0.038 +0.078/−0.013
22.1 0.180 +0.040/−0.036 +0.009/−0.019
22.3 0.197 +0.037/−0.034 +0.021/−0.069
22.5 0.113 +0.028/−0.025 +0.012/−0.021
22.7 0.110 +0.025/−0.022 +0.008/−0.025
22.9 0.067 +0.017/−0.015 +0.008/−0.025
23.1 0.049 +0.014/−0.012 +0.009/−0.016
23.3 0.023 +0.010/−0.008 +0.006/−0.002
23.5 0.008 +0.007/−0.004 +0.004/−0.007
23.7 0.005 +0.008/−0.004 +0.008/−0.001

Note.The efficiency is fixed to 1.000 below magnitude 20.3.

87 The procedure used to define this selection function is available
herehttps://github.com/anaismoller/DES_selection_function/tree/DES3yr_
frozen.
88 The model-driven Espec is available within the SNANA framework as part of
the public DES-SN 3YR data release.
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To test the consistency of the data-driven Espec with the
DES-SN3YR data set, we simulate DES-SN using the
parameters given in Section 5.2 and Espec derived in
Section 5.1. To match the DES-SN3YR cosmology analysis
(Brout et al. 2019b) we determine the SALT2 parameters for
our simulated sample and the DES-SN3YR data set using the
JLA–B14 model. Figure 10 shows the binned redshift, x1, and
color distribution for the DES-SN3YR sample compared to our
simulated sample, normalized to the same number of SNe Ia as
the spectroscopic sample, with uncertainties calculated as N
for the observed data.

There is good agreement between our simulation and the
data. We find a χ2/DoF of 1.07 when considering the
distribution of redshift for our simulated sample compared to
the DES-SN3YR sample, with χ2/DoF=1.26 for x1 and 0.76
for color. This does not simply represent a judicious choice of
binning; for example, shifting the starting point of our
Δc=0.03 bins by 0.01 in either direction leads to
χ2/DoF<1. A two-sided Kolmogorov–Smirnov (KS) test
using the distributions of these parameters, returns p-values of
0.11, 0.38, and 0.16 for z, x1, and c, respectively, showing no
evidence that our simulated and observed data sets arise from
different distributions.

In Figure 11 we plot the two-dimensional distribution of derived
SALT2 x1 and c from our spectroscopic sample and compare it to
a contour plot derived from a kernel density estimator (KDE) of
our simulation. In Figure 12 we show the simulated and measured
evolution of SALT2 parameters over the redshift range of our
observations. Both plots demonstrate that our data match the trends
expected from our simulation with our x1/c measurements
clustered around the peak of the KDE and an increasing
(decreasing) trend with redshift or SALT2 x1 (c). There are some
statistically significant differences: an overabundance of observed
SNe Ia in low-probability areas of x1/c space and a trend
for lower-than-expected x1 values at z<0.1, potentially a

consequence of brightest, high-x1SNe Ia saturating DECam at
the lowest redshifts than their fainter, low x1 counterparts. Overall,
it is difficult to state whether these differences are due to small
number statistics, signs of unaccounted bias in Espec, whether the
intrinsic parameter model for SNe Ia in DES differs from that
determined from SDSS+PS1+SNLS data (Scolnic & Kessler
2016) or whether the intrinsic parameters that describe SNe Ia
evolve with redshift (Nicolas et al. 2020).
The Espec determined in Equation (1) is clearly a simplified

description of our strategy. Follow-up decisions and classifica-
tion efficiency (both of which are combined into Espec) were
functions of multiple variables beyond peak magnitude,

Figure 10. Distributions of redshift, SALT2 x1, and SALT2 c for both our spectroscopic sample and a DES-like simulation using Espec we derived from the data (and
which therefore should be representative of the spectroscopic sample). The simulation is normalized to the number of points in the data histogram and uncertainties on
the data are N statistics. The goodness-of-fit for each histogram is shown as the χ2 on each plot.

Figure 11. Joint distribution of SALT2 x1 and c for a DES-like simulation that
uses the data-driven Espec. The contours are derived from a kernel density
estimator where darker colors represent higher population density. Measured
parameters from our spectroscopically confirmed SNe Ia are plotted in green.
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including host-galaxy mass, local surface brightness, and
observed color. We explored adding these variables to the
definition of Espec, but as shown in this Section, using just a
single variable provides an effective description of the full
DES-SN3YR spectroscopic sample.

For comparison, we also run a DES-like simulation
assuming the model-driven Espec, determined in Section 5.2,
and again compare the resulting z, x1, and c distributions to the
data using the two-sample KS test. We find the probabilities
that the underlying distribution of our simulated samples
matches the observed distribution to be 0.02, 0.41, and 0.18,
respectively. While the x1 and c distributions are consistent,
there is some evidence for a difference in the redshift
distribution, primarily driven by an underabundance of SNe Ia
in the simulation compared to data at lowz. This under-
abundance, which peaks at z≈0.25, is similar in nature but
slightly stronger than the underabundance at mid- to low
redshifts from the data-driven model, which peaks at z≈0.35.
These results match those found in Brout et al. (2019b) and
Kessler et al. (2019).

Having shown that our two, independently derived estimates
of Espec can replicate the DES-SN3YR data set, we now
consider how these deviations affect cosmological constraints
derived from the DES-SN3YR data set.

5.4. μ-Bias

The cosmological parameter analysis and measurement of
systematic uncertainties for the DES-SN3YR sample in Brout
et al. (2019b) uses the model-driven Espec as a baseline. The
utility of this approach is clear, as Espec is derived from the
same suite of simulations defined by Kessler et al. (2019) and
used to quantify the uncertainties in the analysis. It would also
be difficult to do a rigorous evaluation of systematic
uncertainties owing to the photometrically classified sample
used in the data-driven approach. However, the benefit of the

data-driven approach is that, being free of the assumptions that
go into defining the model of the observed SNe Ia population, it
allows for a comparison of Espec that cannot be computed from
the simulations alone.
We demonstrate the effects Espec imparts on our observed

data in Figure 13, where we show the simulated redshift-
dependent bias in distance modulus for various assumptions
about our selection effects. For each selection function, we
simulate DES-SN using identical input parameters, matching
those listed in Section 5.2, only varying the assumed Espec. The
bias (Δμ) is computed as the difference between the
“observed” distance modulus (μobs), derived from fitting each
simulated light curve with the JLA-B14 model and determining
distances using the simulated nuisance parameters (α=0.15,
β=3.1) and the true distance modulus (μtrue) in bins of
redshift using a weighted mean with σint=0.066 as deter-
mined in Brout et al. (2019b).
The black solid line in Figure 13 shows the μ-bias that would

be expected from a perfect spectroscopic selection (i.e.,
Espec=1); the depth of the photometry from DES means
there would be nearly no bias for a perfectly selected SN Ia
sample out to z≈0.3, smoothly dropping off thereafter to a
bias of Δμ=0.025 at z≈0.85. Refer to Figure 6 for the
redshift distribution of the DES-SN3YR subsample.
The data-driven and model-driven functions (shown in

Figure 13 in red and blue, respectively) agree on average,
differing by <0.007 to z=0.75 and >0.02 mag only at
z>0.85, which represents less than 3 percent of the DES-
SN3YR sample. The differences can be attributed to the
different shapes of the selection functions (Figure 9). The steps
and plateaus seen in the data-driven model are due to the
binned nature of the data-driven model, while the functional
form of the model-driven Espec leads to a simpler redshift
evolution: flat at low z and an effectively linear decline
thereafter. The difference in μ-bias between the black line and
either of the two other lines isolates the effect on the μ-bias due
to the spectroscopic selection, distinct from the pipeline

Figure 12. Redshift dependence of SALT2 x1 and c for a DES-like simulation
that uses the data-driven Espec. The lines are rolling averages of the simulated
parameters, while weighted mean and the standard deviation on the mean are
shown for the data, binned by Δz=0.05.

Figure 13. Redshift-dependent bias derived from spectroscopic selection
function derivations. The black solid line shows the recovered bias on the
distance modulus, μ, derived with perfect spectroscopic efficiency, which
reveals the limitations of the survey (and perfect photometric classification).
The red line is the μ-bias derived from the data-driven Espec, while the blue
dashed line shows the model-driven Espec. In both cases, 1σuncertainties are
derived by considering maximal and minimal 1σvariations in Espec as shown
in Figure 9, and shown as red error bars and a blue band, respectively. All
Especʼs assume an intrinsic G10 scatter model for consistency.
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detection efficiency. This demonstrates that the μ-bias due
explicitly to Espec lies between 0.01 to 0.03 mag over a wide
range of redshift. The difference between the data-driven and
model-driven Especʼs is consistent with the 1σstatistical
fluctuations observed for the model-driven selection function,
as shown by the blue shaded region in Figure 13. For the
cosmological parameters, Brout et al. (2019b) determined that
the selection function has only a minimal impact, finding that
variations in the model-driven selection function can cause a
shift in the equation-of-state of dark energy, w of 0.001, with
σw=0.007: the ninth largest source of uncertainty. Given the
statistical consistency between the data-driven and model-
driven selection functions, it is clear that cosmological
parameters derived using the data-driven selection function
will be entirely consistent with the DES-SN3YR cosmological
results (Dark Energy Survey Collaboration et al. 2019b).

6. Summary

In this paper we have presented the survey operations and
spectroscopic follow-up observations for the first three years of
DES-SN. This includes a detailed overview of the DES-SN
observing strategy. On average, a DES season was ∼5.5
months long, with each of our 10 fields observed in griz every
7.4 days. The median depth was ∼23.5 mag in the eight
shallow fields and ∼24.6 mag in the two deep fields. The
median observed FWHM in griz for our program was 1 41/
1 29/1 17/1 09.

We described results from our data-processing pipeline, the
details of which are mostly contained in other papers (Kessler
et al. 2015; Goldstein et al. 2015; Gupta et al. 2016; Morganson
et al. 2018). DES-SN recorded 1.21 million real single-epoch,
single-filter detections—nearly 400 per image. From these detec-
tions, approximately 46,000 SN candidates were identified, which
we subsequently narrowed down to 12,015 viable single-season
transients. On average we discovered 24 likely SNe per night.

We then presented our live-SN spectroscopy follow-up,
consisting of magnitude-limited, faint host, representative, and
non-Ia programs. Observations were made on an assortment of
telescopes. In total we collected 1385 spectra—1039 of which
were from AAT—resulting in 251 classifications of SNe Ia and
56 non-Ia SNe. Our spectroscopically classified SN Ia sample
spans a redshift range of 0.017<z<0.85, forming the basis
of the DES-SN3YR data set.

Finally, we derived the effective spectroscopic selection
function (Espec) from our large, diverse follow-up program that
resulted in our classified sample of DES SNe Ia. One method is
data-driven, relying on photometric classification to determine
the fraction of real SN Ia in our data while the model-driven
method relies on simulations of our survey. The two
independently derived estimates of Espec are consistent over a
wide magnitude range and produce distributions of z, x1, and c
that match the DES-SN3YR data set when simulating DES-SN.
We show the resulting redshift-dependent bias Espec imparts
upon the measured distance modulus for each method and
remark on how this is a subdominant systematic error on the
resulting cosmology analysis, as shown in the companion paper
Dark Energy Survey Collaboration et al. (2019b).

This paper has gone through internal review by the DES
collaboration.

Based in part on data acquired through the Australian
Astronomical Observatory under program ATAC A/2013B/12.

We acknowledge the traditional owners of the land on
which the AAT stands, the Gamilaraay people, and pay our
respects to elders past and present. Based on observations
obtained at the Gemini Observatory, which is operated by the
Association of Universities for Research in Astronomy, Inc.,
under a cooperative agreement with the NSF on behalf of the
Gemini partnership: the National Science Foundation (United
States), the National Research Council (Canada), CONICYT
(Chile), Ministerio de Ciencia, Tecnología e Innovación
Productiva (Argentina), and Ministério da Ciência, Tecnolo-
gia e Inovação (Brazil). Observations with Gemini were
obtained under NOAO programs 2013A-0373 and 2015B-
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GS-2015B-Q-7, GN-2015B-Q-10, as well as GS-2015B-Q-8
under a Chilean program. Based on observations made with
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Observatorio del Roque de los Muchachos of the Instituto de
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tions with GTC were made under programs GTC77-13B,
GTC70-14B, and GTC101-15B. Some of the data presented
herein were obtained at the W. M. Keck Observatory, which is
operated as a scientific partnership among the California
Institute of Technology, the University of California and the
National Aeronautics and Space Administration (NASA). The
Observatory was made possible by the generous financial
support of the W. M. Keck Foundation. Observations with
Keck were made under programs U063-2013B, U021-2014B,
U048-2015B, and U038-2016A. The authors wish to
recognize and acknowledge the very significant cultural role
and reverence that the summit of Maunakea has always had
within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations
from this mountain. This paper includes data gathered with
the 6.5 meter Magellan Telescopes located at Las Campanas
Observatory, Chile, partially through program CN2015B-89.
Observations reported here were obtained at the MMT
Observatory, a joint facility of the Smithsonian Institution
and the University of Arizona, under programs 2014c-SAO-4,
2015a-SAO-12, 2015c-SAO-21. Some of the observations
reported in this paper were obtained with the Southern
African Large Telescope (SALT) under programs 2013-1-
RSA_OTH-023, 2013-2-RSA_OTH-018, 2014-1-RSA_OTH-
016, 2014-2-SCI-070, 2015-1-SCI-063, and 2015-2-SCI-061.
Based on observations collected at the European Southern
Observatory under ESO programmes 093.A-0749(A), 094.A-
0310(B), 095.A-0316(A), 096.A-0536(A), 095.D-0797(A).
Based on observations obtained at the Southern Astrophysical
Research (SOAR) telescope, which is a joint project of the
Ministério da Ciência, Tecnologia, Inovações e Comunica-
ções (MCTIC) do Brasil, the U.S. National Optical Astron-
omy Observatory (NOAO), the University of North Carolina
at Chapel Hill (UNC), and Michigan State University (MSU).
SOAR observations obtained under program 2014B-0205.
Research at Lick Observatory is partially supported by a
generous gift from Google.
The Southampton group acknowledges support from EU-

FP7/ERC grant [615929]. MS acknowledges funding from the
European Research Council (ERC) under the European Union?
s Horizon 2020 research and innovation program (grant
agreement No. 759194—USNAC). The Penn group was
supported by DOE grant DE-FOA-0001358 and NSF grant
AST-1517742. This research used resources of the National
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No. 839090. This work has been partially supported by the
Spanish grant PGC2018-095317-B-C21 within the European
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provided by ANID, through the Millennium Science Initiative
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Funding for the DES Projects has been provided by the U.S.
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IFAE is partially funded by the CERCA program of the
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Appendix

Observational data and results obtained by DES-SN during
the first three years of survey operations. Table A1 shows
details (target, instrument, date, brightness) of all spectroscopic
observations taken for the DES3YR analysis, while Table A2
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lists the aggregated classifications and redshifts for transients
discovered by DES-SN. Full versions of these tables can be
found as part of the DES-3YR data release.89
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Table A1
Spectroscopic Observing Log: DES-SN Y1-Y3

Transient SNIDa Telescope Instrument Obs Date Obs Date Observedb % Fluxc

Name [UT] [MJD] Magi Increase

DES13C1c 1246286 AAT AAOmega-2dF 2013 Oct 01 56566 22.3 335.4
DES13C1d 1254622 AAT AAOmega-2dF 2013 Oct 01 56566 23.7 29.8
DES13C1e 1246275 AAT AAOmega-2dF 2013 Oct 01 56566 21.9 151.3
DES13C1ehq 1272887 AAT AAOmega-2dF 2013 Oct 01 56566 L L
DES13C1eie 1264730 AAT AAOmega-2dF 2013 Nov 30 56626 24.1 21.3
DES13C1eie 1264730 AAT AAOmega-2dF 2013 Dec 01 56627 24.1 21.3
DES13C1feu 1251839 SALT RSS 2013 Oct 08 56573 19.9 238.9
DES13C1feu 1251839 AAT AAOmega-2dF 2013 Oct 30 56595 20.9 92.8
DES13C1feu 1251839 AAT AAOmega-2dF 2013 Nov 02 56598 21.2 71.2
DES13C1feu 1251839 AAT AAOmega-2dF 2013 Nov 30 56626 22.0 35.8
DES13C1feu 1251839 AAT AAOmega-2dF 2013 Dec 01 56627 22.0 35.8

Notes.This table is available in full as part of the DES-SN3YR data release:https://des.ncsa.illinois.edu/releases/sn.
a Matches value used in the DES-SN3YR cosmology analysis (Dark Energy Survey Collaboration et al. 2019b).
b Apparent magnitude from DES-SN observation on the epoch tphot closest to the time of spectroscopic follow-up tspec. Column is blank for entries where no DES-SN
photometric data point, passing DiffImg, is available within 21 days of observation.
c Brightness of target at time of observation relative to the surface brightness of the background. Column is blank for entries where no DES-SN photometric data
point, passing DiffImg, is available within 21 days of observation.

Table A2
Spectroscopically Confirmed SNe in the DES-SN3YR Sample

Transient Name SNID RA (J2000) DEC Classification z

DES13C2bxd 1247673 54.5104 −29.1570 SNIc 0.04042
DES13C3dgs 1248677 53.6462 −28.1270 SNIa 0.35067
DES13C3ui 1248844 51.6694 −28.0652 SNII 0.06667
DES13E1ao 1248907 7.2814 −43.1410 SNIa 0.17140
DES13S2cmm 1249305 40.6367 −1.3583 SLSN-I 0.66229
DES13C2dyc 1249851 55.2180 −29.4000 SNIa 0.21591
DES13S1qv 1250017 43.1937 −0.1275 SNIa 0.183
DES13X3fca 1251622 36.0173 −4.3570 SNII 0.09615
DES13C1feu 1251839 53.2667 −26.9648 SNIc 0.05982

Note.This table is available in full as part of the DES-SN3YR data release:https://des.ncsa.illinois.edu/releases/sn.

89 https://des.ncsa.illinois.edu/releases/sn
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